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ABSTRACT

A numerical solution technique has been developed for computing the flow
field around an isolated helicopter rotor in hover. The flow is governed by
the compressible Euler equations which are integrated using a finite vol-
ume approach. The Euler equations are coupled to a free wake model of
the rotary wing vortical wake. This wake model is incorporated into the fi-
nite volume solver using a prescribed flow, or perturbation, technique which
eliminates the numerical diffusion of vorticity due to the artificial viscos-
ity of the scheme. The work has been divided into three major parts. In
the first part, comparisons of Euler solutiuns to experimental data for the
flow around isolated wings show good agreement with the surface pressures,
but poor agreement with the vortical wake structure. In the second part,
the perturbation method is developed, and used to compute the interaction
of a streamwise vortex with a semispan wing. The rapid diffusion of the
vortex when only the basic Euler solver is used is illustrated, and excellent
agreement with experimental section lift coefficients is demonstrated when
using the perturbation approach. Finally, the free wake solution technique
is described and the coupling of the wake to the Euler solver for an isolated
rotor is presented. Comparisons with experimental blade load data for sev-
eral cases show good agreemen*, with discrepancies largely attributable to
the neglect of viscous effects. The computed wake geometries agree less
well with experiment, the primary difference being that too rapid a wake
contraction is predicted for all the cases.
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Chapter 1

Introduction

1.1 Background

The helicopter has proven itself as a useful and practical vehicle since

the late 1940’s. However, the aerodynamics of these aircraft is considerably
more complex and difficult to analyze than that of conventional fixed wing
aircraft. If one considers the flight envelope of a helicopter, the range of
flow regimes covers most of the fluid dynamic phenomena of interest to any
aerodynamicist. In forward flight, the flow around the main rotor blades is
unsteady and three dimensional. At the tip of the advancing blade, transonic
speed may be reached, resulting in shocks. On the retreating blade, high
angles of attack can result in dynamic stall, and over the inboard portion
of the blade a region of reversed flow is found. Each blade operates in the
vortical wake of the other blades of the rotor—in particular there is a strong
interaction between the advancing blade and the tip vortex of the preceding
blade once every revolution. One must also consider the interaction of the
main rotor wake with the tail rotor, or the interference between the two main
rotors in a tandem configuration. The presence of the fuselage complicates
the picture even more. All this contributes to making the helicopter an
aerodynamicist’s nightmare—or dream, depending upon his or her attitude.

One thing the helicopter does that conventional aircraft cannot do is

18
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Figure 1.1: Comparison of hovering rotor and fixed wing wakes

hover or fly at very low speeds efficiently. For an isolated rotor in hovering
flight the flow picture is simplified since the loads on the rotor blades are
steady. By considering the flow field in blade fixed coordinates, one has the
analog to steady state flight of a conventional aircraft. Even here, however,
are difficulties not found in fixed wing aircraft aerodynamics. The difference
between a hovering rotor wake and a classical fixed wing wake can be seen
in Figure 1.1, taken from McCroskey [42|. The tip vortex of each rotor
blade passes near the following blade, resulting in rapid variations of the
spanwise aerodynamic loading near the tip. Also, the wake descends below
the rotor, in contrast to the fixed wing wake which is convected downstream

of the wing. Because of this, the structure of the rotary wing wake has
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a significant impact on the load distribution of the rotor. This is quite
different from the classical fixed wing wake for which the effect of the wake
roll up is only third order in the angle of attack (Ashley & Landahl (3], pp.
135-136). The implication of this is that even for the seemingly simple case
of the hovering rotor, there are important nonlinear fluid dynamic effects
that must be accounted for if the aerodynamic loads on the rotor are to be
accurately predicted.

The above discussion sheds some light on why the analysis of helicopter
aerodynamics lags that of fixed wing aircraft. The complex aerodynamics
of rotary wing flow fields is not easily amenable to analytic treatment, and
generally the techniques that have developed over the past forty years are
based on drastic simplifications of the real flow field. With the advent of high
speed computers, the possibility of handling these complicated flow fields
numerically is gradually being realized. The development of computational
fluid dynamics technology has had a great impact on the design and analysis
of conventional aircraft, for which many robust techniques for predicting
aerodynamic loads have been developed. Progress in this technology for
rotary wing configurations has lagged that for fixed wiﬁg aircraft, in good
part due to the essentially more complex flow fields associated with the
former.

The research reported herein deals with the prediction of the aerody-
namic loads on a hovering rotor. The next section of this chapter reviews
methods for modeling the vortical wake of a hovering rotor. The computa-
tion of the aerodynamic loads and the coupling of the wake model to the
solution of the near field flow of the rotor blades is discussed in section
1.3. Finally, the chapter ends with a discussion of the aims of the current

research and an outline of the rest of the thesis.
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1.2 Hovering Rotor Wake Models

Many approaches to modeling the rotary wing wake exist. Most models
are based on the assumption of an inviscid, irrotational, incompressible low
with embedded vorticity. Classical vortex theories of propellers provide a
starting point for rotor analyses. These methods model the blades and wake
with distributions of bound and trailing vorticity and use the Biot-Savart
law to compute the induced velocities. The classical theories assume that
the wake may be treated as a rigid, non-contracting helical vortex sheet.
This is consistent for high speed propellers for which the induced velocities
are small compared to the axial translation speed. For a hovering rotor, this
assumption is clearly wrong as the only velocities are the induced velocities.
From momentum theory, it is known that the induced velocity over the rotor
disk is half the velocity in the fully developed wake. Hence the wake cf the
rotor must contract. Furthermore, the structure of the hovering rotor wake
is found to be much different from the classical picture of a vortex sheet
(Figure 1.1). For this reason, propeller vortex theory cannot be directly
applied to rotary wings in hover. More realistic models of the wake are
required for accurate prediction of the blade loads. There are primarily two
approaches to modeling the wake in common use today: prescribed wake
and free wake analyses.

Prescribed wake hover prediction methods have been in widespread use
in recent years (Landgrebe [38,39], Kocurek & Tangler [35]). These meth-
ods use experimental data to derive empirical formulas relating the rotor
blade geometric parameters and thrust coefficient to the vortex wake geom-
etry. More refined models have been developed by adding further correla-
tions based on the rotor load distribution (Landgrebe et al. [40], Kocurek
& Berkowitz [34]). These methods have been quite successful in predicting
hover performance for conventional rotor configurations. However, these

schemes do not correctly model the flow physics, namely the transport of
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vorticity in the wake. Their most serious limitation is their reliance on exper-
imental data for predicting the wake geometry. This empiricism works well
for rotors similar to those of the experimental data base. If unconventional
planforms or twist distributions are used, the prescribed wake correlations
are no longer valid and the results obtained with this approach must be
treated with suspicion. For this reason, these methods are not reliable for
new configurations, such as tilt-rotor aircraft, in which the wake geometry
may differ considerably from that of a conventional helicopter rotor.

This limitation is overcome by free wake analysis methods (Clark &
Leiper (18], Summa [64]). These methods are based on Helmholtz’s theorem
that vortex lines in an inviscid, incompressible fluid must lie along stream-
lines. The wake is modeled as vortex sheets and filaments, and the force free
positions of these vortices are determined iteratively. Free wake methods are
the most general approach to wake modeling currently being used. The price
of this generality is that they are computationally expensive. For conven-
tional rotors, free wake methods often give results no more accurate than
the prescribed wake methoas. For this reason, prescribed wake methods are
favored in industry. However, free wake models, being firmly rooted in the
flow physics, are better suited to unconventional configurations for which
an experimental data base does not exist. Furthermore, free wake methods
can provide insights into the physics of rotary wing wakes, something that
prescribed wake approaches cannot do.

Recently, Miller [45,44,43] has developed a fast free wake method based
on a simplified model of the rotor wake. Miller has replaced the helical wake
vortices with either vortex lines (his two dimensioual model) or vortex rings
(three dimensional model) lying at the mean position of the vortex spirals
below the blade. As with the more geometrically detailed free wake models,
the force free positions of these vortices are found iteratively. Miller uses

only two vortex filaments to represent the trailing vorticity: one tip vortex
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and one inboard vortex representing the inboard vortex sheet. This wake
model has also been used by Roberts & Murman [54,46] who have shown
that more than one vortex filament is required to model the inboard portion
of the vortext sheet accurately. The results obtained with these simple free
wake models show that reasonably accurate results can be obtained for a
small computational cost, making the fast free wake analysis method a useful
tool for hover performance prediction.

Although the free wake model of the rotor wake captures the flow physics
by allowing the transport of vorticity, some limitations in the model still
exist. It is based on the assumption of a potential flow, meaning that dis-
tributed vorticity is not admitted; the wake is modeled as vortex sheets and
filaments, and corvection of the wake elements is treated in a Lagrangian
fashion. Any distributed vorticity, such as in the tip vortex core, cannot
be treated with potential methods. If rotational flow fields are to be com-
puted, either the Euler or Navier-Stokes equations must be used to model
the flow. The solution of these equations requires the use of a fixed grid in
an Eulerian reference frame. Liu et al. {41] have presented a solution of the
incompressible Navier-Stokes equations for a rotor in hover. Unfortunately,
their solution .does not show the expected contraction of the wake, possibly
because of their lack of a model for the far wake. Also, they considered a
flow having & Reynolds number much lower than exists for most rotors of en-
gineering interest. Much work needs to be done in developing Navier-Stokes
methods for computing the vortical wake of a hovering rotor.

The modeling of the rotor wake is of course only part of the hover prob-
lem. The aerodynamic loads on the blade must also be computed. Fur-
thermore, there is a very close coupling between the detailed near field flow
about the rotor blades and the subsequent roll up and convection of the
wake. In the next section, the computation of the flow field about the rotor
blades and the coupling of this to the wake model are examined.
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1.3 Rotor Blade/Wake Coupling

The most common method of computing the aerodynamic loads of he-
licopter rotor biades is to model them as lifting lines or lifting surfaces.
These models are based on the assumption of small disturbances to an in-
viscid, irrotational flow. Lifting line theory requires the further assumption
that three dimensionality may be treated as a perturbation on a two di-
mensional flow about each rotor blade section. This latter assumption is
violated at the tip of the blade, and in the blade/vortex interaction region
if the tip vortex is sufficiently strong and close to the blade. Lifting surface
theory is three dimensional, so that the blade vortex interaction is more ac-
curately represented. One restriction of these blade models is the linearized
treatment of the boundary conditions. More geometric generality may be
acheived by using a surface singularity method (panel method) to model
the blade (Summa [64], Morino et al. [48]). This approach is based on the
Green’s function method for the Laplace equation, and strictly speaking is
confined to incompressible flows.

Lifting line, lifting surface, and panel methods treat the portion of the
trailing vortex wake attached to the blade as either a fixed or free sheet. The
prescribed wake methods and the simplified free wake model of Miller [45]
fix the position of the trailing vortex sheet. Miller uses the computed bound
circulation distribution to determine the strength of the vortices in the free
portion of the wake. In the free wake methods of Summa [64] and Morino et
al. [48] the paneling of the attached near wake corresponds to the beginning
of the free wake, and the positions of the attached wake elements are found
iteratively as part of the free wake solution procedure. This provides a
natural and very close coupling of the wake geometry solution to the near
field flow around the blade.

The governing equation for the lifting line, surface, and panel methods

is the Laplace equation, which is exact for an incompressible potential flow.
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However, the tip Mach number is often large enough that compressibility
effects are significant. This can be accounted for through the use of an
approximate compressibility correction, such as the Prandtl-Glauert rule.
However, if transonic speeds are reached at the blade tip, the linear gov-
erning equation is no longer adequate to model the flow. For these cases
either the transonic small perturbation or full potential equation is required
to compute the flow about the rotor. To solve these equations, a finite dif-
ference or finite volume approach must be used. Such methods require the
value of the potential to be defined at fixed points in an Eulerian reference
frame. This in turn makes it necessary to generate a grid system around
the rotor blade, which is called the computational domain. By solving the
equation, the flow field is known throughout the computational domain.

The transonic small perturbation (TSP) equation is based on small geo-
metric disturbances to the flow of an inviscid, irrotational ideal gas at near
sonic velccities. This allows the use of linearized boundary conditions at
the rotor surface, and simplifies the grid generation task. This equation has
been applied to the case of a rotary wing in hover by Caradonna et al. for
both non-lifting [13,6] and lifting flows[12]. The TSP equation is strictly
valid only in the transonic range, and as with lifting surface theory, the lin-
earized treatment of the boundary conditions is not valid at a blunt leading
edge. The full potential equation, on the other hand, is valid from traasonic
to subsonic speeds, and allows the rotor geometry to be more accurately
modeled. This requires the generation of a boundary conforming grid sys-
tem. It has recently been used for a hovering rotor by Strawn & Caradonna
(63] and Egolf & Sparks [24].

Coupling a finite difference potential solver to a rotor wake model is
complicated by the fact that the treatment of the vortex wake on a fixed
Eulerian mesh is somewhat more difficult than for surface integral methods.

Vortex sheets and lines must be represented by branch cuts in the computa-
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tional domain. In Caradonna et al. [12], Egolf & Sparks [24], and Strawn &
Caradonna [63], the vortex wake is prescribed. The trailing vortex system of
the blade is treated as a quasi-planar sheet lying along a coordinate surface.
The tip vortex spirals below the blade are fixed in space, and are represented
by branch cuts in the domain. Strawn & Caradonna used an experimen-
tally determined wake geometry, while Egolf & Sparks used the Kocurek &
Tangler [35] prescribed wake model. This is an effective approach when the
wake vortices do not lie too close to the rotor blades. Because the potential
equation does not convect vorticity, modeling a free vortex wake requires a
Lagrangian treatment of the sheet within the finite difference domain. In
general, a free sheet will not lie along a coordinate surface, complicating the
branch cut boundary condition. Murman & Stremel [49] and Steinhoff &
Suryanarayanan [62] have treated the problem of vortex sheet roll up using
a finite difference potential solver. More work remains to be done on this
approach.

The formation of the tip vortex and the structure of the trailing vortex
sheet shed from the rotor blade are, of course, dependent upon the viscosity
of the fluid and the enforcement of the no slip condition at the solid surface.
Potential models cannot compute this process. The Kutta condition pro-
vides a model for specifying separation from sharp trailing edges and tips.
Some additional separation model is needed to approximate the tip vortex
formation around a rounded tip (e.g. Summa [64]). Furthermore, if the
tip vortex of one blade passes sufficiently close to the following blade, the
distortion of the vortex path and changes in the core structure cannot be
handled with a potential method. To compute strong blade/vortex interac-
tions as well as the roll up of the wake as it comes off the blade, the Euler
or Navier-Stokes equations are needed to solve for the near field flow around
the blade. Although viscous forces provide the physical mechanism for the

separation of the vortical wake from the blade, the roll up and convection of
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the wake is primarily an inviscid phenomenon. This suggests that the Eu-
ler equations, because they admit vortical solutions, should be an adequate
model for computing the near field flow around a rotor blade, provided they
yield a realistic model of separation.

The Euler equations for an inviscid, non-heat conducting ideal gas have
been used to compute the flows around fixed wing configurations (e.g. Jame-
son & Baker [31], Rizzi & Eriksson [53]). Researchers have found that, con-
trary to expectations, the Kutta condition at a sharp trailing edge need not
be explicitly enforced. The usual explanation for this turn of events is that
the artificial viscosity of these schemes mimics the effect of real viscosity at
sharp edges. More puzzling is the fact that separation is observed around
smooth edges, such as rounded wing tips. Again, artificial viscosity is the
suspected culprit, and it has been suggested that this separation would not
occur if the grid were suitably refined. The mechanism for separation in
Euler codes has not been clarified, and much work needs to be done in this
area.

Although the cause of separation in Euler codes is not completely un-
derstood, it has been observed that the rolled up vortical wakes computed
by such methods appear to be realistic models of real wakes. Much work
has been done on leading edge separation around slender configurations in
particular, with emphasis on understanding the nature of the roiled up vor-
tices. Powell et al. [50] have examined the nature of leading edge vortices
computed using the conical form of the Euler equations. The total pressure
loss in the vortex core was observed to be insensitive to such numerical pa-
rameters such as the magnitude of the artificial viscosity and the refinement
of the grid. Furthermore, the total pressure loss was very similar to that
observed experimentally. Powell et al. proposed that the total pressure loss
is due the discrete nature of the computed vortex sheet. Firite volume solu-

tions of the Euler equations must yield a sheet with a finite thickness rather
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than a contact discontinuity. This thickness results in a total pressure loss
as the tangential velocity goes through zero across the sheet. Powell and his
colleagues further argue that for this reason, the discrete Euler equations
mimic the effect of viscosity in s real fluid, and hence realistically model a
shear layer in a high Reynolds number flow. If this is the case, then finite
volume solutions of the Euler equations should be a better model for vorti-
cal flows than might be expected at first. The Navier-Stokes equations may
only be necessary for flows in which viscous effects cannot be neglected, such
as flows with large scale separation.

Because the Euler equations admit vortical solutions, they can be used
to compute the flow in the wake region of a rotor as well as around the
blade. This avoids the assumption of an incompressible potential flow with
embedded vortex sheets required by the Lagrangian free and prescribed wake
methods described in the previous section. In principle, a finite volume grid
can be constructed that extends from the rotor blade near field to the wake
reg:on below the rotor, and the entire flow field of the rotor may be found
as part of the same solution procedure. This eliminates the need to couple a
wake model to the rotor blade near field solutiou, and is similar in philosophy
to the free wake panel method of Summa [64]. However, this approach is
not practical. The vortical regions in the wake are typically very compact.
To be able to resolve the wake structure below the blade, an extremely
fine grid is needed in the region of the vortex core. Either a globally fine
grid is required or some form of local refinement must be used. The first
option results in excessive resolution in regions where the flow gradients are
small. The second option requires either a priori knowledge of the location of
the wake vortices or an adaptive refinement strategy. This complicates the
algorithm for solving the equations. A second problem is that the artificial
viscosity required by the Euler solver will result in 2 non-physical diffusion

of the vortex as it is convected below the blade, although real viscosity or
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inviscid instabilities may diffuse it. An attempt to overcome these problems
has been made by Steger & Kutler [61], who computed the vortical flow
in the wake of an aircraft using a very simple adaptive grid strategy and
fourth order accurate spatial differencing. Finally, since the rotor wake is
of infinite axial extent below the rotor, some model for the portion of the
wake lying outside the computational domain is required in order to get the
proper wake contraction and induced velocities near the blade. For these
reasons, it is preferable to model the wake separately, and to couple it to
the Euler solution of the near field of the blade. To take full advantage of
the properties of the Euler equations, the coupling strategy should allow
the computation of strong blade/vortex interactions in which the tip vortex
passes very close to the trailing blade, including the situation in which the
blade cuts through the rotational core of the vortex.

Little work has been done to date using the Euler equations for hovering
rotors. Sankar et al. [56] have presented one solution technique using the
Euler equations coupled to a wake model. Their approach consists of writing
the state vector as a perturbation about the velocity field induced by the
vortex wake. The wake is modeled as a single tip vortex spiral whose position
is prescribed below the rotor blade. A further simplification is to ignore
the spanwise and chordwise induced velocity components, and to write the
perturbation about the axial component of the induced velocity in a limited
region of the computational domain near the rotor blade. Although the
method demcnstrated by Sankar et al. is relatively simple, it does not make
full use of the advantages of the Euler equations over potential methods.
This approach is effectively a downwash, or angle of attack, correction at
the blade, turning the Euler solver into an extended lifting line method.
Also, Sankar and his co-workers cannot compute the strong interactions of
a tip vortex with a rotor blade because of the excessively simple inclusion

of the wake influence. Finally, a more complete wake model is required to
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accurately predict the aerodynamic loads on the rotor.

In a more recent paper, Agarwal and Deese [1] also solve the Euler equa-
tions for the flow around a rotor blade. As in Sankar et al., the approach of
Agarwal and Deese is essentially to correct the angle of attack of the blade
to account for the wake influence. Unlike Sankar and his co-workers, they
use the results of a free wake calculation to determine the induced angle
of attack at the rotor blade, and this is translated into a effective geomet-
ric twist distribution. The free wake solution and the Euler computation
are performed independently; there is no coupling or iteration between the
two. In the cases they present in [1], they make a further simplification
by simply adjusting the collective pitch rather than giving the blade a new
twist distribution. As with Sankar et al., this fails to take full advantage of
the properties of the Euler equations over the potential equation. Agarwal
and Deese point out that to capture the rotor wake with the Euler solver,
a highly refined grid must be used. They conclude that coupling the free
wake solver to the Euler solver may provide an effective solution algorithm
for hovering rotor flows.

in Roberts & Murman (55|, an earlier version of the work described in
this thesis is reported. As in Sankar et al., the wake is computed separately
from the Euler solution around the blade. The wake model used is that of
Roberts & Murman [54], which is essentially the vortex ring model devel-
oped by Miller (45]. For the case computed in [55], the induced velocity
field of the entire semi-infinite wake is used to specify the far field boundary
conditions for the Euler solver. This introduces the vortex wake into the
finite volume computational domain. To reduce the smearing of the wake
vortices due to artificial viucosity, the induced velocity of the entire wake
is computed at each grid cell in the computational domain and subtracted
from the total velocity field before the smoothing operator is applied. Al-

though this reduces the smearing of the vortices, the truncation error in the
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coarse regio=s of the grid still results in more diffusion of the vortex core
than than is desired. Insufficient resolution in the far field means that the
core structure of the tip vortex spiral cannot be specified properly at the
boundary. Finally, the scheme did not fully couple the prediction of the
wake geometry to the near field flow of the rotor blade.

With this background of previous work on the hover problem established,
the approach and objectives of the present research will be discussed in the

next section. Finally, an outline of the remainder of the thesis will be given.

1.4 Present Research

As discussed in the previous section, application of existing finite volume
or finite difference methods to a hovering helicopter rotor is complicated by
the fact that the wake of a rotor is very compact, making it difficult to
compute the flows without smearing the wake excessively due to inadequate
grid resolution and numerical dissipation. If these problems can be over-
come, Euler methods will prove a valuable tool for understanding hovering
rotary wing flow fields and serve as a necessary step towards a complete
Navier-Stokes model.

The objectives of the current research are three-fold. First, the issue
of whether numerical solutions of the Euler equations yield realistic models
of the vortical structure and the roll up of the wake is addressed. This is
done by comparing the solution of the Euler equaticns to the experimen-
tally measured wake flow field of a conventional wing of moderate aspect
ratio. Second, a method of introducing a streamwise vortex into the compu-
tational domain such that its structure remains well defined even in coarse
regions of the grid is developed. This is to allow efficient computation of the
blade/vortex interaction for a hovering rotor. The method is demonstrated
by computing the interaction of a single streamwise vortex passing over a

low aspect ratio wing and comparing with experiment. Finally, an iterative
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method for coupling a free wake solution of a hovering rotor wake with the
near field flow around a rotor blade is developed, and the results for a two
bladed model rotor are compared to experiment.

In the next chapter, the finite volume algorithm for the Euler equations
is presented, and the code validated for the ONERA M6 wing at transonic
speed and an aspect ratio 6 wing of rectangular planform at a highly sub-
sonic Mach number. The trailing vortex system computed in the latter case
is compared to experiment, and the validity of the Euler equations for com-
puting the structure of the wake is discussed. In chapter 3, a method for
introducing a streamwise vortex into the Euler computational domain and
computing its interaction with a wing is presented. The method is vali-
dated against the experimental data of Smith & Lazzeroni [57]. Chapter 4
discusses the coupling of the Euler solver with Miller’s simplified free wake
model. An iterative solution procedure for combining the two methods is
presented, along with computations of a two bladed rotor in hover. These
results are compared to the test data of Ballard et al. [5] and Caradonna &

Tung [14]. Finally, conclusions are presented in chapter 5.
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Chapter 2

Euler Solution Procedure

In this chapter, the governing equations for an inviscid gas, the Euler
equations, are given, and the algorithm for solution of the equations is pre-
sented. The method used is the finite volume multistage scheme of Jameson
[31]. The generation of the body fitted grid is discussed. An O-O grid topol-
ogy is used, and the grid generator is the algebraic code of Erikssor [25].
Two test cases are presented for validation of the Euler code. The first is
the ONERA M6 wing at transonic speed. Comparisons are made between
computed surface pressures and the experimental data of reference [7]. The
second test case is the rectangular planform wing tested by Weston {67] at
a low Mach number. Comparisons are made with both surface pressures
and wake surveys. The purpose of this comparison is to determine whether
the numerical solution of the Euler equations yields a realistic model of the

trailing vortical wake of a lifting wing.

2.1 Euler Equations

The flows considered here are taken to be steady. The Reynolds number
is assumed to be high and the Prandtl number is of order unity, meaning
that viscous and thermal effects are confined to thin shear layers. Flows

with massive separation are not treated here. The outer inviscid flow is
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then governed by the equations for an inviscid, adiabatic, ideal gas, called
the Euler equations. With this model, the boundary layers and wakes are
ignored, and only the Euler equations are solved for the outer flow. Although
only steady flows are of interest here, solutions are found by solving the
unsteady Euler equations in a time asymptotic fashion. The unsteady Euler
equations are given here in integral form, and are derived from an application
of the laws of conservation of mass, momentum, and energy to an arbitrary
control volume in an Eulerian reference frame. The boundary conditions
necessary for obtaining a steady state solution are also presented.

Consider the control volume V shown in Figure 2.1. Conservation of
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Figure 2.1: Control volume

mass requires that the time rate of change of the mass of fluid in the control

volume equal the net flux across the boundaries. Writing this in integral
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form gives
%///pdsz= —// pi-fdz, (2.1)
4 av

where p is the fluid density, i is the velocity, t is time, d3z is a differential
volume element, d?z is a differential area element on the control volume
surface, and fi is the outward pointing normal at the control volume surface.

Applying Newton'’s second law to the flow through the control volume,

5 [[[sie=- [[ sa@nyate- [[oide. (22
\ 4

av av
where p is the static pressure of the fluid.

we get

Conservation of energy across the control volume yields the energy equa-

tion, ]
i/‘f/pEd’a: = —// (pE + p) -ad’z (2.3)
at
|4 v
where ..
E=¢T+ “_2_2

Here T is the temperature of the fluid and ¢, is the specific heat at constant
volume.
Finally to close the system, an equation of state is required. This is
given by the ideal gas law,
p=pRT (24)

where R = ¢, — ¢, is the ideal gas constant, c, being the specific heat at a
constant pressure.
The continuity, momentum, and energy equations can be written in a

more convenient form given below,

%//v Ud3z+fa_[ F(U)-ad% =0, (2.5)
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where

p pu
pu pui + pi
U=]|pv |, F(U)=| pvi+ P.i )
W pwi + pk
pE (pE + p)ii
and ) .
_ p -4
E= pog ; + )

The vector U is called the state vector, and F(U) is the flux vector; u, v,
and w are the cartesian components of the velocity @ in the z, y, and z
directions, respectively, and 1, 7, and k are the corresponding unit vectors
in those directions. The equation of state has been used to eliminate T from
the energy equation; the symbol 7 is the ratio of the specific heats, ¢p/c.,
and is taken to be equal to 1.4. The steady state is reached when the surface
integral in Equation (2.5) is zero.

The steady state boundary conditions required to complete the specifi-
cation of the steady problem are now presented. At a stationary solid wall,

there is no fluid flux across the surface. This is written as

g

g-n=0, (2.6)

where #i is the unit normal at the surface. In the far field upstrearmn of the

wing, the flow should approach a uniform stream,

lim U=U. (2.7)

T——00

where Uy, = (pm,pwum,O,O,mem)T is the state vector of the uniform
free stream, z being taken as the free stream direction. The flow field is not
uniform at downstream infinity for a lifting flow due to the existence of a
vortical wake. The usual boundary condition in the Trefftz plane is that the
flow perturbation in the streamwise direction vanishes,

au
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Finally, the flow is required to separate from the body at shary trailing
edges. This is called the Kutta condition.

To solve Equations (2.5) numerically, it is useful to non-dimensionalize
the dependent and independent variables. The reference values used to
normalize the variables are arbitrary, the only requirement being that the
choice of normalization constants be consistent. In this thesis, the density
and pressure are normalized by their free stream values, poo and poo, and
the velocity is non-dimensionalized by ax/,/7, Where ao, is the free stream
speed of sound. Lengths are normalized by an arbitrary length scale c,
usually taken to be the chord of the wing, and t is normalized by ¢,/7/@oo-
With these choices for the normalization constants, the non-dimensional
Euler equations are identical to Equation (2.5). The non-dimensional free

stream state vector becomes
1
VTMe
0
0 a2
1
1t =

where M, is the free stream Mach number. In the remainder of this thesis,

Uy = , (2.9)

the non-dimensional equations will be referred to unless otherwise noted.
In the next sectiors of this chapter, the numerical algorithm for solving

Equation (2.5) is presented.

2.2 Spatial Discretization

The finite volume spatial discretization used here is that developed by
Jameson & Baker [31] and Rizzi & Eriksson [53]. This consists of dividing the
computational domain into hexahedral cells (Figure 2.2). The state vector
U is defined at the center of each cell. The flux vector at the cell center,
F(U), is computed from the state vector. To approximate the flux integral

on the right hand side of Equation (2.5), the flux vectors at adjoining cells
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are averaged to get the flux vector on a cell face. This is dotted into the
projected area of the cell face. The sum of the outgoing fluxes across all six
faces of the cell is computed to get the approximation to the right hand side
of Equation (2.5).

Figure 2.2: Finite volume cell

If X,Y, and Z are the computational coordinates in the ¢, 7, and k

directions, the discrete approximation to the flux integral can be written as

Fijk = 6x (5"x '#xf(U).-,,-,k) + by (Sv - sy F(U), ;)
+6z (gz - uzF (U)i,j,k) . (2.10)

The operators §x and ux are the central difference and averaging operators

in the X direction and are defined as
ox fijk = fi-{-%',’,k = f.'_%,,',k
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and

1
pxfije= 3 (f.-+;.:',k + finy :'.k) .

T
Analogous operators are found for the Y and Z directions. The values
Sx, Sy, and Sz are the projected face areas in the positive X, Y and Z
directions, respectively (Figure 2.2).

This approximation to the flux integral can be seen to yield a central
difference discretization of the equations, which is second order accurate on
a cartesian grid. Central difference algorithms for first order equations are
dispersive rather than dissipative (see Anderson, et al. (2]). This is because
the truncation error consists of odd order higher derivatives rather than even
order derivatives. For nonlinear equations, this can lead to instability due
to aliasing errors. As energy cascades from long wavelengths to short wave-
lengths, the shortest wavelengths cannot be resolved on the finite volume
grid. As a result, these waves show up as distorted long waves. To elim-
inate this unphysical behavior, a dissipative mechanism must be added to
the discrete Euler equations. The form of the dissipation term is described

below.

2.3 Artificial Viscosity

The artificial viscosity model, or dissipation operator, used is that of
Jameson et al. [32]. It consists of two terms, a fourth difference and a
second difference expression. The fourth difference artificial viscosity has
the following form:

Vii —
D-(‘:)k == {5X (,,'—f'kf.(,‘,-)ﬁ?rU-‘.j.k) + } . (2.11)

.5,k

Only the difference in one coordinate direction is shown; the differences in

(4)

the other two coordinate directions are similar. In Equation (2.11), €/,

is the fourth difference dissipation coefficient, V; ;  is the cell volume, and
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7,7,k i8 the time step for the cell, scaled to a CFL number of 1; Ui ;i is the
state vector at cell ¢, 7,k with pE replaced by pE + p in the energy equation.
Since pE + p = pH, where H is the total enthalpy, this has the effect of
admitting a constant total enthalpy flow as an exact solution to the discrete
equations. This is a desirable property, since the flows considered here will
have a constant total enthalpy in the steady state. This also allows the use
of enthalpy damping, which will be described in section 2.6. The definition
of the fourth order coefficient will be given shortly.

The inclusion of the cell volume V; ;  is necessary to make the dissipation
term consistent with the flux integral term and with the time derivative
term in Equations (2.5). The unscaled time step term, 7; jx, is equivalent
to scaling the dissipation term by the spectral radius of the flux Jacobian,
3F/aU. Pulliam [51] has analyzed artificial dissipation models for the Euler
equations, and he shows that by using a Jacobian scaling term in the artificial
viscosity in combination with a central difference discretization of the flux
integral results in a difference scheme that emulates an upwind differencing
algorithm.

The fourth difference dissipation provides a level of background dissi-
pation sufficient to stabilize the time marching algorithm, and to kill the
odd-even decoupling of the solution typical of central difference algorithms
for the Euler equations. In transonic flows, the fourth difference artificial
viscosity operator is insufficient to capture shocks. A second difference ar-

tificial viscosity is required. This takes the form

V. .
D-u;,)k = {5x (;:i"ff.(',zj),ﬁxﬁi,j,k) +-- } , (2.12)
where'e‘(:-)'k is the second difference dissipation coefficient.

The two smoothing coefficients in the X direction are determined from

the formulas

(2)
Cit Lk

63 pir1.ik
4p5Pit1 gk

5% Pijk
4p’epi

— ™ max (

) : (2.13)
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e‘(:_)%'j'k = max (0, kW) — esi)% ,j,k) (2.14)

with similar expressions for the Y and Z directions. The form of the second
difference dissipation coefficient is designed so that it turns on only near
shocks. In smooth regions of the flow field, the second difference of pressure
is small, and is formally of second order in the grid spacing. This makes
D) formally of third order in the grid spacing. Near shocks, the pressure
switch is of order unity, and locally the second difference artificial viscosity
becomes first order. Typical values éf x(2) are 0.1 to 0.25.

Because the second difference smoothing is necessary solely to capture
shocks, it is not needed for shock free flows. If a purely subsonic flows is
computed, it has been found that the fourth difference alone is adequate to
stabilize the calculation. For these flows, x(2) is set to zero.

The fourth difference artificial viscosity provides a background dissipa-
tion in order to stabilize the time stepping scheme. However, it will cause
wiggles, and can possibly be destabilizing, at a shock. The form of €(4) is
chosen such that in smooth regions of the flow, where the pressure gradi-
ents are mild, the coefficient takes on its largest values. Near shocks, where
the second difference pressure switch becomes of order unity, the fourth
difference artiﬁcia.l viscosity coefficient is turned off. Note that the fourth
difference artificial viscosity is formally a third order quantity in the grid
spacing. The value of x(4) is chosen to be between 0.004 and 0.01.

2.4 Muliistage Time Integration

Applying the spatial discretization and artificial viscosity operators to
the Euler equations on the finite volume grid, one obtains the semi-discrete

equations
dU; ik _ 1
dt Vii,

- {Fijx— Dijk}, (2-15)
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where the dissipation operator is

Di3u+ Dij

D=
This forms a large system of coupled nonlinear ordinary differential equa-
tions for U. To integrate these equations, the multistage time stepping
scheme of Jameson & Baker [31] is used.

The multistage scheme is applied at time level n as follows:

u® = un,
gl = yo_ ‘AVt (F(O)_D(O)), (2.16a)
vt = yo_ ,év_‘ (F® - D), (2.16b)
u® = po_ 3% (F® - D), (2.16¢)
oW = o _ 4% (F® - ), (2.16d)
Un+1 — U(4)_
The multistage coefficients are
a; = %,ag= %,a; = E,a. = 1.

The artificial smoothing is evaluated only at the initial stage of the temporal
integration. This is to reduce the operation count for the scheme. The time
step At for cell 1, 7,k is foL -d from the formula

Viik ,
+c gma, ’

Atijx = CFLI — (2.17)

G'Smaz

where c is the speed of sound, Spaz is the vector sum of the maximum
projected areas of the cell in the z, y, and z directions, and CFL is the
Courant-Triedrichs-Lewy number, wl _ch is chosen by the stability limit of
the multistage schemc. For the coefficients of the time stepping scheme given

here,
CFL < 2V2

42



(see appendix A). Most of the cases presented in this thesis were run at
the maximum allowable CFL number given above. As shown here, the time
step for each cell is chosen such that the CFL number is constant throughecut
the computational domain. Larger cells will run at larger time steps than
small cells. As a result, the integration is no longer time accurate, but the
convergence to the steady state is accelerated. Essentially, the vemporal
integration scheme has become an iteration path to the steady state, but
the solution at any intermediate iteration level no longer has any physical
meaning.

One important feature of the multistage teinporal integration scheme
presented here is that the steady state operator, F; j x— D; j i, is independent
of the time step used in the integration.

Note here that the value of 7; ; x which is used to scale the artificial vis-
cosity operator presented in the iast section 18 simply equal to At; ;x/CFL.
This is necessary to make the artificial viscosity independent of the CFL

number used to reach steady state.

2.5 Boundary Conditions

Boundary conditions on the computational domain are required to main-
tain a properly posed initiai-boundary value problem, just as they are re-
quired analytically. However, the number of boundary conditions which may
be prescribed mathematically are not sufficient to close the discrete equation
system. Extra relations must be derived from the local analytic behavior of
the governing partial differential equations. These extra relations, and their

physical significance, are discussed in this section.

2.5.1 Solid Wall

At the solid wall, we have the physical boundary condition given by
Equation (2.6), namely, the requirement of no flux through the wall. For
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the continuity and energy equation, this is easily incorporated by simply
setting the mass and energy fluxes to zero at the wall. However, in the
momentum equation, there is still a pressure contribution at the solid wall.
To obtain the value of the pressure at the wal, the pressure is extrapolated
from the interior using the normal momentum equation as formulated by
Rizzi [52]. The expression is obtained by writing the momentum equation

at the wall snd dotting it into the unit normal,

-

3
pa—'t‘-ﬁ+(pa.va)-ﬁ=-vp.a

where fi is the unit normal at the wall. Using Equation (2.6) and noting
that in wing-fixed coordinates dfi/dt = 0, the momentum equation may be
rewritten as

ol (d- Vi) = Z—:. (2.18)

Equation (2.18) gives the pressure gradient normal to the solid wall in
terms of the known surface curvature and the velocity at the wall. The
velocity at the wail is taken to be the tangential component of the velocity
in the first computational cell off the body. With this, Equation (2.18) is
solved for dp/dn at the wall, and the pressure is extrapolated to the wall
from the first interior cell.

2.5.2 Far Field

Analytically, we have the requirement that the flow disturbances van-
ish at upstream infinity, Equation (2.7), and that streamwise perturbations
vanish in the Trefftz plane, Equation (2.8). These are more difficult bound-
ary conditions to apply, since the computational domain only extends a few
chords from the wing at which distance the disturbances will not have van-
ished. Also, the far field boundary conditions given above are for the steady
state flow. Since unsteady equations are being marched in time to reach the

steady state, the problem being solved is an initial-boundary value problem.
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The numerical boundary conditions applied at the computational far field
are developed with the requirement that the transient disturbances pass
through the boundary with mimimum reflections. The far field boundary
conditions used are those of Jameson & Baker (31], who use the theory of
characteristics to satisify these conditions.

At the far field boundary, the Euler equations are written in coordinates

normal and tangential to the boundary,

au au au ou
E_Aﬁ-kBa_Tl-l-Cﬁ (2.19)

where N, T, and T’ are local cartesian coordinates normal and tangential
to the boundary, and A, B, and C are the N, T, and T, components of the
flux Jacobian 8f/ dU. The normal direction is taken to be positive pointing
out of the domain. The boundary conditions are developed by assuming all
incident waves are normal to the boundary in the far field, so the tangential

derivatives may be taken to be zero. Equation (2.19) then reduces to

au au

A similarity transform can be found which diagonalizes the Jacobian
matrix A in Equation (2.20). If S~! and § are the matrices of the left and

right eigenvectors of A, respectively, then the matrix

u, 0 O 0

0 u, O 0
A=S"'AS=|0 0 u, O

0 0 0 uz+a

0 0 O 0 U, —a

, (2.21)

CcC o oo

is a diagonal matrix of the eigenvalues of A; u, is the velocity normal to the
boundary (positive outward) and a is the speed of sound at the boundary.

The one-dimensional equations are then written in compatibility form,

oU oU
19U, g-19Y _
STISS+ASTISS =0, (2.22)
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and the values of the characteristic variables are determined. If the as-
sumption is made that the flow is locally isentropic, then the compatibility

equations 2.22 can be rewritten in the form

au; | aU;
o Thaw

for i = 1 to 5, where ); is the * eigenvalue A and U; is the correspond-

(2.23)

ing characteristic variable. The characterisic variables associated with each

eigenvalue are:

Un @ 8 (2.24a)

Un : ug (2.24b)

Up U (2.24¢)
Unp+a @ up+ 20 (2.24d)
n . n "’—1 .

2a

-a : - 2.24

u, —a Up y—1 ( e)

where s is the entropy, and u;; and u¢z are the components of velocity tan-
gential to the boundary. The last two variables are the Riemann invariants.
The compatibility equations thus can be seen to correspond to entropy, vor-
ticity, and acoustic waves normal to the boundary.

It should be noted that the form of the compatibility equations given
here is not unique, and if the isentropic assumption is not used another set
of equations may be found (e.g., see Courant & Hilbert [20], pp. 434-436).

From the theory of characteristics, it is known that the number of bound-
ary conditions specified should equal the number of characteristics entering
the domain at the boundary, which correspond here to those associated with
the negative eigenvalues of A. At a subsonic inflow u,, and u,, —a are negative
and u,+a is positive, so four characteristics enter the domain, corresponding
to the incident entropy, vorticity, and downstream running acoustic waves.
These four characteristic variables specified. The characteristic variable cor-

responding to the upstream running acoustic wave is extrapolated from the
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interior in order to close the system at the boundary and determine the state
vector there. At a subsonic outflow, there is one incoming characteristic, the
upstream running acoustic wave, which is specified. The outgoing acoustic,
vorticity, and entropy waves are extrapolated.

The implementation of the boundary conditions in the code is now de-
scribed. Since none of the flows considered here have a supersonic free
stream, only the subsonic boundary conditions will be described. The in-

coming and outgoing Riemann invariants are

. ., 2a 2a
Tez = Upez "N+ ﬁ = u, + ‘m‘, (2.253)
and
., 2a 2a
'oo=“oo'n—7_°°1=un—7_1. (2.25b)

Here, .. and a.; are, respectively, the velocity and speed of sound at the
first interior point of the domain, and @ and a4 are the free stream values,
and # is the unit normal pointing out of the domain.

The velocity normal to the boundary is found from

1
Un =g (Fez + roo) (2.26a)
and the speed of sound is given by
-1
a= "T (rez — o) - (2.26b)
At the inflow, the entropy is specified, and is given as
p
P-—'; = 1. (2.27&)
At an outflow, the entropy is extrapolated:
P _ DPez
_—= =, 2.27b
P pix ( )

The values of p and p are then formed from

1

(l.2 T
p=

1(#)
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and
p= o
-

The tangential velocity is specified from the free stream at an inflow point
and extrapolated at an outflow. This is most easily done by writing the
total velocity as

at an inflow boundary and
1-‘. = ng + (un - agz . ﬁ)ﬁ (2.28b)

at an outflow boundary. Doing it this way avoids having to explicitly com-
pute the tangential component of velocity at a boundary point.
The boundary conditions are updated at each stage of the multistage

time integration.

2.5.3 Artificial Viscosity

Establishing proper boundary conditions for the artificial viscosity terms
is difficult. The mathematics of the governing partial differential equations
does not tell us anything about the dissipation terms. Physical reasoning
also fails us since the additional terms are not physical. Finally, the fact
that the artificial viscosity uses a five point difference stencil in each coordi-
nate direction means that special treatment is required at the first two cells
adjacent to the boundary. The present treatment of the dissipation terms
at the boundaries of the computational domaia is based on the analysis of
Eriksson [27], who developed a boundary treatment of the artificial viscosity
that guarantees that the terms are globally dissipative. The implementation
of his approach is presented here.

For the second difference term, the smoothing flux across a boundary
face is set to zero. Let the subscripts 1 and O represent the values at an

interior cell adjecent to the domain boundary and a dummy cell just outside
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the boundary, respectively (Figure 2.3). This boundary condition on the
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Figure 2.3: Artificial viscosity difference stencil at boundary
second difference dissipation is equivalent to setting

U, = U1 (2.29)

For the fourth difference artificial viscosity, Eriksson’s treatment is equiva-
lent to linearly extrapolating the values from the first two cells inside the

domain to two dummy points outside the boundary, i.e.

U, =20, - U,, (2.30a)
U_, =30, - 2U.,. (2.30b)
The implementation of these boundary conditions is most easily accom-

plished by linearly extrapolating the state vector U and the pressure p
according to Equations (2.30a) and (2.30b). Beczuse the pressure is also
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linearly extrapolated, the second difference dissipation coefficient el(?k be-
comes zero at the boundary face, which accomplishes the same thing as
Equation (2.29). The same difference stencil for the artificial viscosity op-
erator can thus be used at all the interior cells.

This boundary condition for the artificial viscosity is applied both at the
solid wall and at the far field boundaries. At the symmetry plane, the flow

variables are simply reflected across the boundary.

2.6 Enthalpy Damping

The flows being computed here are steady, and have a constant total
enthalpy. The unsteady equations are used simply to provide an iteration
path to the steady state, and time accuracy is not of concern. This is the
justification for using local time stepping as described in the section on the
multistage integration scheme, as this provides one way of accelerating the
convergence of the code to the steady state. Another convergence acceler-
ation approach used here is known as enthalpy damping, which has been
proposed by Jameson {32]. This approach has been further examined by
Turkel [65] and by Jespersen [33]. A detailed derivation of the modified
equation set that results from the use of enthalpy damping is given in ap-
pendix B. The general outline of Jameson’s approach to enthalpy damping
is given below.

Jameson gives a heuristic development of the approach based on his ex-
perience with iterative solutions of the steady transonic potential equation.
The argument he presents is based on an irrotational, unsteady subsonic

flow. This flow can be described by the wave equation,

1
a—z'¢‘l — ee — bnn — P =0, (2.31)

where £ = z — ut, § = y — vt, and ¢ = z — wt; this is derived assuming by

assuming constant velocity for the transformation (see appendix B). If this
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equation is modified by adding a term proportional to the time derivative

of ¢, the telegraph equation,

—bu+ ade — bee — ban — bt =0, (232)

is obtained. This equation has solutions consisting of exponentially damped
waves (see Courant & Hilbert [20], pp. 192-193). Jameson, in his devel-
opment of methods for the solution of the potential equation for transonic
flows, has found that the coefficient a used has a strong effect on conver-
gence rate of the iterative scheme. He proposes that a similar term be added
to the Euler equations to simulate the effect of the ¢; term in the potential
equation. To do this, he notes that for an unsteady, irrotational flow with a

uniform free stream, the Bernoulli equation becomes
¢t = Hoo — H, (2.33)

where H is the total enthalpy and H,, is the free stream total enthalpy.
Therefore, Jameson suggests modifying the unsteady Euler equations by
adding a term proportional to the difference in the local total enthalpy and
free stream total enthalpy to the equation system. The modified equation
set is

ou ~ =
—aT'f'V-F(U)-i-a(H—Hoo)U:O, (2.34)

where

P
The reason for replacing pE with p in the energy equation is that otherwise,

a term proportional to H? appears, which according to Turkel [65] can lead
to difficulties, and according to Jameson et al. [32] can be destabilizing.

Jameson has found it to be effective then to use the form in Equation (2.34).
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There are two properties to note about the modified equation. First, the
additional terms vanish when H = H,,. Thus for steady flows in which the
total enthalpy is uniform, the steady state operator is unchanged. Using the
modified equation will therefore not affect the steady state solution. The
second point of interest is that the modified equation set has no physical
meaning. The transients computed with these equations do not represent
any physical transients. The justification for the use of the modified equa-
tions rests on the fact that only the steady state is of interest, and the path
used to reach the steady state is irrelevant. If transient flow phenomena are
of interest, Equations (2.34) cannot be used.

In solving this equation set, the approach used is to solve the four stage
temporal integration for the standard equation set (2.5), and to add the
enthalpy damping terms as a point implicit update of the state vector at the
end of the time step. Also, it has been found to be most convenient to replace
a with 2, so that the implicit update step becomes independent of the time
step used in the niultistage integration. Typically, the enthalpy damping
coefficient a is taken to be 0.025, a value determined through numerical
experimentation. It has been found that the enthalpy damping does not
affect the maximum allowable time step of the basic multistage algorithm.
Also, despite the fact that enthalpy damping is theoretically destabilizing
(Turkel, [65]) in supersonic regions, it has not been found necessary to turn
it off in these regions for transonic cases.

The advantages of the enthalpy damping for accelerating convergence
have been found to be most pronounced for low Mach number flows. In
the high subsonic to transonic range, enthalpy damping has not greatly
affected the convergence rate. For highly subsonic flows, it has had a marked
effect. For the lowest speed flows presented in this thesis (Mo, < 0.2), the
convergence rate has been observed to be as much as 5 times faster with

enthalpy damping. Since most of the results shown here are in the subsonic
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range, this has been a compelling reason for using enthalpy damping.

2.7 Grid Generation

The finite volume grids used for all the cases but one in this thesis are
generated by the algebraic code of Eriksson {25]. The grid generator maps
the space between the wing surface and a quasi-spherical cuter boundary
into a logical cube, as illustrated in Figure 2.4. Figure 2.5 shows the grid
generated for the ONERA M6 wing. The grid has an O-O topology, in
which both the chordwise and spanwise grid sections have an O-grid topol-
ogy. The attractive feature of this grid is its relative economy in grid points
around the wing. The grid points are clustered in the high gradient regions
near the leading and trailing edges, and at the wing tip, and the grid is
stretched in the far field where resolution is not needed. Transfinite inter-
polation is used to generate the grid, and it consists of using interpolating
functions to compute the coordinate geometry between boundary planes in
the computational domain.

One problem with mapping the space between the wing surface and the
outer computational boundary onto a logical cube is that singular lines will
arise in the computational domain where coordinate surfaces fold over one
another. This can be seen in Figure 2.5, for the O-O grid, where the singular
lines are seen to be emitted from the corners of the wing tip. Eriksson has
done a classification and study of the coordinate singularities that arise in
the mapping of the physical space to the computational space in reference
[26]. He shows that the stability of the cell based finite volurne scheme is not
affected by the presence of the grid singularities. He also concludes that the
truncation error in the vicinity of the singular lines becomes zeroeth order,
but that the overall error of the scheme lies between first and second order
in the grid spacing.

In the grid generator developed by Eriksson, the singular lines are made
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Figure 2.4: Mapping from physical space to computational space (from ref-
erence [25])
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Figure 2.5: Grid generated for the ONERA M6 wing (from reference {53|)
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to come off the wing tip in the spanwise direction, and intersect the outer
boundary along lines approximately 45° to the free stream direction and in
the plane of the wing (Figure 2.5). This makes the grid well behaved in
the wake region. Since one of the purposes of the present research is to
examine the wake computed by the finite volume Euler equations, this is a
very desirable property.

Ip the remainder of this chapter, the solutions for the ONERA M6 wing

and the wing tested by Weston are presented and compared to experiment.

2.8 ONERA M6 Test Case

The first case presented here is the ONERA M6 wing at a free stream
Mach number of 0.84 and an angle of attack of 3.06 degrees. The purpose of
this case is to validate the present finite volume algorithm for the Euler equa-
tions. This case has been computed by a number of authors and therefore
is a suitable test case of the present method. The computed pressure coeffi-
cients for this case are compared to the experimental values of reference [7].
The solution was obtained on a grid of 96 cells in the chordwise direction, 20
cells in the spanwise direction, and 20 cells from the wing surface to the far
field boundary. This gives 38,000 grid cells, which is moderate resolution. It
should be noted that this grid is identical to that used by Rizzi & Eriksson
[53] for this same test case. The artificial viscosity coefficients used were
x(2) = 0.1,x(4) = 0.01. The CFL number was 2.8 and the enthalpy damping
coefficient was 0.025. The solution was obtained after 1000 iterations of
the Euler solver, and took approximately 13 minutes of CPU time on the
Cray X-MP/48. The iteration history is shown in Figure 2.6, where the root
mean square of the change in the state vector at each iteration is shown.
Chordwise distributions of the pressure coefficient are shown :n Figure 2.7.
The solid lines are the computed pressure coefficients, and the symbols are
experimental values. The ordinate is \/z/c rather than the usual z/c. This
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ONERA M6 - a = 3.06°, My = .84, 96 x 20 x 20 grid
Iteration History
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Figure 2.6: Convergence history for the ONERA M6 wing

has the effect of stretching the coordinates at the leading edge, making the
rapid expansion in that region more clearly visible. All the surface pressure
coefficient plots in this thesis are plotted this way. The agreement is good
over most of the wing, with larger discrepancies near the root than at the
tip. The weak shock at the leading edge and the stronger shock near the
midchord are captured by the scheme, and can be seen to coalesce into a
single strong shock near the tip. At the root, the aft shock is seen to be
stronger and further aft than was observed experimentally. This difference
may be attributed to shock/boundary layer interaction, which weakens the

shock in transonic flow, and results in the shock being further upstream

87



ONERA M6 - a = 3.06°, M, = .84, 96 x 20 x 20 grid
Surface pressure coefficient
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Figure 2.7: Computed and experimental surface pressures, ONERA M6
wing, My, = 0.84, a = 3.06°

than in an inviscid calculation. The agreement of the surface pressures at
the leading edge with the observed suction peak is very good, although this
is possibly fortuitous. Very good agreement is seen near the wing tip, where
the leading edge and the midchord shocks coalesce into a single strong shock.
This merging of the leading edge and midchord shocks is very clearly seen
in Figure 2.8, in which Mach contours in the first cell off the wing surface
are shown.

One of the more interesting features of this solution is the behavior at

the tip (y/b = 0.99, Figure 2.7). The experimental data clearly show a
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ONERA M8 - a = 3.08°, M, = .84, 96 x 20 x 20 grid
Mach Number Contours
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Figure 2.8: Surface Mach number contours, ONERA M6 wing, M., = 0.84,
a = 3.06°

secondary suction peak on the upper surface of the airfoil near the trailing
edge. Qualitatively similar behavior is seen in the computed results, in that
there is lift being produced over the last 60% of the airfoil chord at the tip
section. This behavior can be explained by the formation and roll up of the
tip vortex over the wing. Here we have the situation discussed in chapter
one, namely the separation of the flow around a rounded wing tip without
specifying & Kutta condition. The discrete Euler equations, because of the
addition of the numerical dissipation terms, are providing a pseudo-viscous

simulation of the flow. That is, the artificial viscosity provides a mechanism
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for the separation of the flow around the tip, although the details of this
process are not clearly understood. Although this in a sense mimics the
physics of a real viscous flow, the details of the separation process in the
discrete Euler equations cannot be construed as simulating the real flow in
that region. However, the large scale vortical structures in the wake may be

insensitive to these details. This latter point will be addressed below.

2.9 Weston Test Case

The second case run for a fixed wing geometry is the wing tested by We-
ston at Langley Research Center [67]. This wing is of rectangular planform,
untwisted, with a semispan to chord ratio of 3 and NACA 0012 airfoil section
with a body of revolution tip. It was tested at low speed, corresponding to a
Mach number of 0.1425. The experimental data consists of surface pressure
coefficient measurements and detailed wake surveys, making it well suited
for comparing the present solutions with the actual wake structure. The
computations for this case were performed on a 128 x 32 x 32 grid (132,072
cells), which is a reasonably fine resolution grid. The artificial viscosity co-
efficients were x(2) = 0 and x(*) = 0.004. The enthalpy damping coefficient
was set to 0.1. To reduce the computation time for this case, 500 iterations
were run on first on a coarse grid of 64 x 16 x 16 cells, which was generated
by ignoring every other grid point on the final grid. The coarse grid solution
was then injected onto the fine mesh, and another 500 iterations were run.
Total CPU time for this case was approximately 23 minutes on the Cray
X-MP/48. The iteration history is shown in Figure 2.9.

The comparison of the surface pressures shown in Figure 2.10 are seen
to be good. At the root section, the suction peak is seen to be kigher than
experiment. This appears to be due primarily to the flow angularity in the
wind tunnel. Figure 2.11, taken from Weston [67], shows the measured flow

angularity in the empty tunnel, which is considerable near the wing root
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WESTON TEST CASE - a = 8°, Mo = .1425, 128 x 32 x 82 grid
Itevation History
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Figure 2.9: Convergence history for Weston wing, Eriksson’s grid

location. At each section, the computed pressure at the trailing edge is
seen to show more recompression than was observed experimentally, due to
the growth of the boundary layer on the wing. However, in moving along
the span to the tip, the lift coefficient at each section is seen to fall off
more rapidly than was observed experimentally. Again, the considerable
flow angularity in the tunnel can account for the discrepancy. Near the tip
itself, the computed suction peak at the leading edge is much lower than was
observed experimentally. At the leading edge stagnation point near the tip,
there is a lower pressure than in the experiment. Similar behavior is seen
in the ONERA MBS results at the 99% span section (Figure 2.7). Solutions
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WESTON TEST CASE — a = 8°, M, = .1425, 128 x 382 x 32 grid
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Figure 2.10: Computed and experimental surface pressures, Weston wing,
My, = 0.1425, o = 8°, Eriksson’s grid

on a coarser grid also show very similar behavior. One possible cause for
this behavior is the difference in the tip geometry between the computation
an experiment. The experimental wing model had a body of revolution tip
(both for the ONERA M6 and for the Weston wing), while the compuational
geometry is rounded but not a body of revolution. Also, the grid singularity
intersects the wing at the tip leading edge, and locally the solution accuracy
is degraded.

At the tip of the wing (y/b = 0.99, Figure 2.10) the pressure coefficients

show a secondary suction peak at the trailing edge, qualitatively similar
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Figure 2.11: Flow angularity in empty wind tunnel
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to the experimental observations. The cause of this localized reduction in
pressure appears to be due to the formation of the tip vortex as it rolls
up over the wing tip. Although the tip is rounded, there is a separation
occurring as at the sharp trailing edge, and the flow is qualitatively behaving
like the real, viscous flow. The significant quantitative differences in the load
distribution do show that the behavior, although mimicking the physical
process, is not a reliable model of the physics.

One difficulty with the grid generator used to create the grid for this case
is that the body of revolution tip geometry cannot be accurately modeled.
Eriksson’s grid generator will round off the tip, but does not provide exactly
a body of revolution shape. Furthermore, his treatment of the grid singular
lines as they come off the tip places certain restrictions on the degree of free-
dom allowed in specifying the tip shape geometry vithout getting too highly
skewed a grid. For this reason, computations have also been performed for
this case on a grid provided by Wedan [66]. This grid was generated by a
hybrid algebraic/elliptic PDE procedure. The two surface grids are shown
in Figures 2.12 and 2.13. Wedan’s grid has the same number of cells as
the Eriksson grid, but with a different distribution of grid points. It alsc
accurately models th2 body of revolution wing tip (Figure 2.13). Solutions
obtained using this grid are shown in Figure 2.14. Because with Wedan’s
grid the chordwise coordinate planes on the wing surface do not lie along
the streamwise direction as they do with Eriksson’s grid, the pressure coef-
ficients were interpolated to the experimental spanwise stations. Note the
similar results as for the original grid over the inboard portion of the grid,
but the differences at the tip. With this grid, pressure distribution at the
99% semispan location more nearly matches the experimental data qualita-
tively, although the suction peaks at the leading and trailing edges are still
lower than experiment. The differences are likely not only to the differences

in the tip shape, but in the differences in the spanwise resolution at the tip,
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WESTON TEST CASE - a = 8°, My, = .1425, 128 x 32 x 32 grid
Eriksson's grid, wing surface
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Figure 2.12: Wing surface grid, Eriksson’s grid generator
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WESTON TEST CASE - a = 8°, Mo = .1425, 128 x 32 x 32 grid
Wedan's grid, wing surface
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Figure 2.13: Wing surface grid, Wedan’s grid generator

which is slightly coarser with Wedan’s grid. Clearly, the local behavior of
the flow is sensitive to the details of the grid and the tip geometry.
Although the Euler solutions on the two grids are significantly different
in detail near the wing tip, both have quite similar surface pressure dis-
tributions inboard of the tip and both are consistently underpredicting the
experimental suction peaks over most of the wing. As stated above, a likely
culprit for this state of affairs is the flow angularity in the wind tunnel. To
get a better understanding of this discrepancy, a comparison has also been
made between both Euler solutions and the resuits of a surface singularity

potential code (panel method). Since the free stream Mach number is so
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WESTON TEST CASE ~ a = 8°, My, = .142E, 128 x 32 x 32 grid
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Figure 2.14: Computed and experimental surface pressures, Weston wing,
My = 0.1425, a = 8°, Wedan’s grid '

low and the flow is attached over most of the wing, the Euler solution and
the potential solution should give very similar results. The panel code used
is QUADPAN (Coppersmith, Youngren, & Bouchard [19]), which is a pro-
duction code used by Lockheed. This code uses quadrilateral panels, with
constant source and constant doublet strengths on each panel. A total of
975 panels on the wing surface were used to model the wing, and the wake
panel were extended 100 chord lengths behind the wing.

Comparisons between the chordwise pressures obtained with the Euler
solver on Eriksson’s grid and with QUADPAN are shown in Figure 2.15.
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Overall agreement is very good, although the Euler solution shows slightly

WESTON TEST CASE — a = 8°, M, = .1425, 128 x 32 x 32 grid
Surface pressure coefficient
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Figure 2.15: Comparison of Euler and QUADPAN solutions, Weston wing,
Eriksson’s grid

less lift forward of 30% chord and more aft than the panel code. This
suggests a slight difference in the thickness distribution of the wing between
the two solutions, although both are nominally the same. (In fact, exactly
the same airfoil section coordinates were used as input for Eriksson’s grid
generator and for the panel code.) Significant differences at the tip are
visible, as to be expected, since the Euler solucion is showing separation
around the tip and the panel code has a fixed planar trailing vortex wake

that is emitted only aloug the wing trailing edge. However, the suction
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peaks match quite well over the inboard sections.
Surface pressures for the Euler solution on Wedan'’s grid and the panel

code are shown in Figure 2.16. The agreement is excellent over the wing.

WESTON TEST CASE - a = 8°, My, = .1425, 128 x 32 x 32 grid
Surface pressure coefficient
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Figure 2.16: Comparison of Euler and QUADPAN solutions, Weston wing,
Wedan’s grid

Even at the tip, the surface prossures are in amazingly good agreement,
especially considering that the tip shape in the panel code is rectangular,
not a body of revolution. The agreement in this region may be somewhat
fortuitous. As for Eriksson’s grid, the suction peaks agree quite well between
the Euler and potential solutions.

The agreement between the potential solution and both Euler solutions
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is very encouraging, because the two models should be nearly identical for
this particular flow. Also, the agreement inboard of the tip indicates that the
details of flow near the tip computed by the Euler equations have only a local
influence and are dominated by the details of the mesh and tip geometry
i. that region. Also, the agreement of the Euler and potential solutions
further indicates that the discrepancy in the measured and computed surface
pressures is due primarily to the flow angularity in the wind tunnel.

Because the flow at the tip is so different for the two Euler solutions on
two different grids, but the differences have only a local influence on the
loading on the wing, it is of interest to see ho~/ sensitive the computed wake
structure is to the details at the tip. Also, comparisons with experimental
wake surveys will also indicate how well the Euler equations model the
physical wake structure.

Comparisons of the wake structure computed by the two Euler solutions,
as well as experimental cesults, have been made at a location of approxi-
mately 1/2 chord downstream of the trailing edge. The grids at that station
are shown in Figures 2.17 and 2.18. Note that Eriksson’s grid provides
much better resolution in the wake than Wedan’s grid. Figures 2.19, 2.20,
and 2.21 show computed and experimental contours of total pressure coef-
ficient, defined as (p; — pe..) /2pu’,. A well defined tip vortex is seen both
computationally and experimentally. The two computed tip vortices are
very similar in location and total pressure loss despite both the differences
in the computed load distribution near the wingtip and the differences in the
grid resolution in the wake. The solution on Eriksson’s grid has a slightly
greater total pressure loss in the core of the vortex and is slightly inboard of
the vortex computed on Wedan’s grid. The vortex position is based on the
location of the total pressure minimum in both cases, and the difference is
within a grid cell, so the discrepancy is not significant. Overall, the agree-

ment between the two calculation is quite good, despite the differences in
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WESTON TEST CASE - a = 8°, My, = .1425, 128 x 32 x 32 grid
Erikeson’s grid, wake surface
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Figure 2.17: Grid surface ~ 0.5¢ downstream of trailing edge, Eriksson’s
grid
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WESTON TEST CASE - a = 8°, My, = .1425, 128 x 32 x 32 grid
Wedan's grid, wake surface
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Figure 2.18: Grid snrface s 0.5¢ downstream of trailing edge, Wedan’s grid
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WESTON TEST CASE - a = 8°, Moo = .1425, 128 x 32 x 32 grid
Pt — Proo / %pu?.,
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Figure 2.19: Total pressure coefficient, z/c ~ 0.5, Eriksson’s grid

the geometric modeling of the tip, the computed load distributions at the
tip, and the differences in the grid resolution in the wake. This suggests
that the initial stage of the wake roll up computed by the Euler equations is
not sensitive to the local flow details in the region where separation occurs,
nor to detail differences in the grid resolution.

Although each computatation agrees well with the other, the level of total
pressure loss is lower in the calculations than in the experiment. (Compare
the results in Figures 2.19 and 2.20 to the experimental values in 2.21.)
Furthermore, no total pressure loss can be seen in the inboard portion of the

vortex sheet in the computation, in contrast to the experiment. The position
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WESTON TEST CASE - a = 8°, Mo, = .1425, 128 x 32 x 32 grid
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Figure 2.20: Total pressure coefficient, z/c ~ 0.5, Wedan’s grid
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Figure 2.21: Total pressure coefficient, z/c = 0.5, experiment
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of the computed tip vortices agree well with experiment, as determined by
the location of the total pressure minimum. The discrepancy in the level of
total pressure loss between the computations and experiment is most likely
due to the neglect of viscosity.

Static pressures are shown in Figures 2.22, 2.23, and 2.24 as contours

of constant pressure coefficient. = The computed pressures in the core of

WESTO&! TEST CASE - a = 8°, M, = .1425, 128 x 32 x 32 grid
P — Poof 20U,
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Figure 2.22: Pressure coefficient, z/¢ ~ 0.5, Eriksson’s grid

the vortex are higher, and more uniform, than was observed experimentally.
The computed pressure coefficients differ from the experimental values by
an order of magnitude, although once again the two computations are very

similar. This is further evidence that the details at the tip do not have
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V!ESTOI;I TEST CASE - a = 8°, Mo = .1425, 128 x 32 x 32 grid
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Figure 2.23: Pressure coefficient, z/¢c ~ 0.5, Wedan’s grid

77



Figure 2.24: Pressure coefficient, z/c = 0.5, experiment
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a strong influence on the structure of the wake computed with the Euler
solver. The quantitative comparison with the measured pressure in the
wake is poor, however.

The third wake quantity which was compared was the axial velocity in

the vortex core, which are shown in Figures 2.25, 2.26, and 2.27. The results

WESTON TEST CASE - a = 8°, Mx = .1425, 128 x 32 x 32 grid
u/uc contours
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2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

Figure 2.25: Axial velocity, u/uq, z/c & 0.5, Eriksson’s grid

are shown as contours of constant axial velocity normalized by the free
stream velocity. As with the total and static pressure, the computed results
obtained on the two different grids agree well with each other, and do not
agree well with the measured values. Note that the computed results show

an axial velocity deficit in the core of approximately 10% of the free stream
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WESTON TEST CASE - a = §°, Mo = .1425, 128 x 82 x 32 grid
t/uqgo contours
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Figure 2.26: Axial velocity, t/uq, z/c = 0.5, Wedan’s grid
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Figure 2.27: Axial velocity, u/uq, z/c = 0.5, experiment
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velocity, in contrast to the 20% velocity excess observed experimentally. The
reasons for this are not quite clear. According to Brown [10]|, whether an
axial velocity deficit or excess is seen depends upon the ratio of induced
to profile drag, with a deficit occurring when the viscous drag is high. By
this argument, an inviscid calculation should shoew a velocity excess, and it
should be greater than the experimental value. Weston [67] also discusses
the experimental axial velocity excess based on the theory of Batchelor [8].
Again, the theory states that the axial velocity in the core is generated in
a primarily inviscid manner, and for this case should be an excess velocity.
The fact that exactly the opposite is seen here suggests that the mechanism
by which the tip vortex is formed in the Euler code is considerably different
than the physical mechanism.

For the calculations shown here, the Euler equatior solutions are seen
to be a poor model for the structure of the wake. This is in contrast to
the results for leading edge vortex flows computed by Powell et al. [50]. In
reference [50], the argument is presented that discrete solutions of the Euler
equations should be a realistic model for such flows, in particular for the
core of the vortex. Their argument is a kinematic one, namely, the velocity
must pass throngh a minimum in the center of a discrete she~t. If the total
enthalpy is constant, and the dynaniic boundary condition of no pressure
jump across the sheet holds, then there must be a total pressure loss whose
base level is set only by the strength of the sheet. The art. >zial viscosity of
the computation, and the physical viscosity of the real flow, affect the total
pressure loss only to a higher order.

For the flow shown here, this argument does not hold. Unlike the leading
edge vortex flows, the vortex sheets here are much weaker. The low Mach
number of the current computation (My, = 0.1425) compared to the super-
sonic leading edge vortex flows means the base total pressure loss here will

be much less than for the leading edge vortex. The momentum deficit due
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to the viscous boundary layer will produce a total pressure loss of the same
order of magnitude as the jump in velocity across the boundary layer. Note
that, for the inboard portion of the sheet, the experimental total pressure
loss contours virtually overlay the u/uo, contours (Figures 2.21 and 2.27).
Also, since the wake here is a free vortex sheet, and hence rolls up as it
is convected downstream, the streamwise diffusion due to the artificial vis-
cosity will have a significant effect on the development of the wake. To
see this, the computed and measured total pressure coefficients two chords
behind the wing are shown in Figures 2.28, 2.29, and 2.30. Note that the

WESTON 1TEST CASE - a = 8°, My, = .1425, 128 x 32 x 32 grid
Pt — Pten [ 3983
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Figure 2.28: Total pressure coefficient, z/¢ = 2, Eriksson’s grid

experimental core is still quite compact, and in fact its structure is not very
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Figure 2.29: Total pressure coefficient, z/c ~ 2, Wedan’s grid
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Figure 2.30: Total pressure coefficient, z/c = 2, experiment
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different from its structure at one half chord behind the trailing edge. The
same cannot be said for the computed cores, which are much more diffuse
than they were upstream. The grids are much coarser at this location than
upstream. This effect does not appear in a conical flow computation, in
which the dimensionality of the problem has been reduced by one. Even
in fully three dimensional calculations of a leading edge vortex flows, which
have also been observed to provide remarkably accurate values of total pres-
sure loes, the conicality or approximate conicality of the flow and the large

vortex strengths mean that the results will be similar to a conical solution.

2.10 Summary

The algorithm for solving the Euler equations has been verified for two
test cases. The agreement with experimental pressure distributions for both
the ONERA M6 wing at transonic speed and the plain rectangular wing
tested by Weston at low vach number is good. Discrepancies in the span-
wise load distribution between computations and experiment in the latter
case appear to be due to flow angularity in the wind tunnel. The Euler
solutions for Weston’s wing have been computed using two different grids
with different tip geometries and differing resolution in the wake. The load
distributions at the tip were seen to be sensitive to the differences in the
grids and tip shapes, but the overall location and structure of the tip vortex
were relatively insensitive to these local features.

Comparisons of the experimental and computational wake structures
were mixed. The location of the vortex core was well predicted, but the
details of the structure were very different. Differences in the level of total
pressure loss in the core appear to be due to the neglect of viscous effects.
More puzzling is the existence of an axial velocity excess observed experi-
mentally in the core of the vortex, in contrast to a computed axial velocity

deficit. This suggests that the numerical process which the causes the flow
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to separate, and the initial stages of the tip vortex formation computed by
the discrete Euler equations, are very different from the physical process in

a real flow.
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Chapter 2

Perturbation Scheme

In this chapter, a method is developed for computing the interaction
between a streamwise vortex and a wing. First, the problems of using the
unmodified finite volume algorithm developed in the previous chapter for
computing such flows are discussed. The motivation behind the pertur-
bation, or prescribed flow, scheme for introducing a vortex into the finite
volume computational domain is presented. The modifications of the basic
finite volume solver required by the perturbation approach are then de-
scribed. A very simple model problem, the steady flow nf a streamwise
vortex in a rectangular section channel, is presented to illustrate how the
perturbation approach eliminates the numerical diffusion of vorticity. Fi-
nally, the perturbation scheme is validated against the experimental data of
Smith & Lazzeroni [57).

3.1 Problems with Euler Solver

Since the primary topic of this thesis is rotary wing flows in which there
is an interaction between a compact tip vortex and the rotor blade, it is
necessary to examine the ability of the finite volume scheme to handle such
flows. Rather than considering a hovering rotor directly, a simpler problem

is used to study this issue. The problem examined is the interaction of a
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streamwise vortex with a fixed wing, and is shown schematically in Fig-
ure 3.1. This flow configuration is also of practical interest in itself, since
it corresponds to such situations as the interaction of the wake of a canard
with a main wing, or the problem of a tip or leading edge vortex impinging
on a tail surface. The interaction treated here is assumed to be steady, and

can be described by the steady Euler equations.

T
o Yo

Figure 3.1: Schematic of wing/vortex interaction

One approach to computing such a flow would be to generate a grid
around the wing and introduce the vortex through the upstream boundary
conditiona. In principle, there would appear tc be no reason why this would
not work. However, two difficulties arise if this simplistic approach is used.
The first is that a very fine grid is required at the upstream far field boundary
to resolve the vortex core. The second is that the artificial viscosity of the
scheme will diffuse the vorticity before it reaches the lifting surface. Both
these problems are discussed below.

To understand the first problem, it must be explained how a vortex is
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introduced at the inflow boundary. Any vorticity can be introduced into the
computational domain only through two of the inflow boundary conditions.
The first is the specification of the tangential velocity at the far field. The
swirl velocity associated with the vortical flow field results in a tangential
velocity component different from the freestream. Secondly, the entropy is
specified at an inflow boundary. From Crocco’s theorem, we can expect
that in the core of the vortex, where the flow is rotational, there will be a
gradient of entropy (assuming homenthalpic flow; if there are total enthalpy
gradients, the flow may be rotational yet isentropic). Conversely, by speci-
fying a varying entropy and constant total enthalpy at the inflow boundary,
a rotational flow must be introduced into the computational domain. The
entropy and tangential velocity specification are seen to provide the only
mechanism by which vorticity can be introduced into the domain.

A closer examination of the tangential velocity boundary condition shows
that it does not give vorticity directly. Specification of the tangential velocity
really gives the circulation, not the vorticity itself. This is because the

circulation around a closed circuit is related to the vorticity by the integral

r= /sfa;-ﬁd’z, 2.1)

where T is the circulation, & is the vorticity, and S is the surface bounded
by the circuit. It is seen that for a given circulation around the circuit,
the vorticity distribution is not uniquely defined. The entropy boundary
condition will give vorticity, since for a homenthaipic flow, the distribution
of entropy is related to the vorticity through Crocco’s theorem. However, if
the core of the vortex is more compact than the spacing of the grid at the far
field, the structure of the core cannot be properly described. This is shown
schematically in Figure 3.2. The size of the rotational core is shown to be of
the order of the grid spacing. Clearly the entropy gradient in the core of the

vortex cannot be resolved in the far field. As a result, the vor’ = ‘teined
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in the interior of the computational domain is much larger than the actual
vortex. Although the grid resolution increases as the wing is approached,
the equations contain no mechanism to cause the vortex core to shrink in the
interior of the domain; that is, there is no production of entropy in the core
to make up for the failure to adequately resolve the entropy in the far field.
For the grids typically used in Euler computations, and the characteristically
compact core of a lift generated voriex, this problem will generally exist for
most computations.

VORTEX
CORE
a

Figure 3.2: Schematic of vortex core size vs. far field grid resolution

The second problem referred to was the effect of the artificial viscosity
required for numerical stability. This added diffusive term causes the vortex
to be smeared as it is convected downstream, as was seen in the previous
chapter. Since the artificial viscosity term is proportional to some power

of the grid spacing ([Az]® here for the fourth difference dissipation), the
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numerical diffusior is greatest where the grid is the coarsest. Thus at the
far field inflow boundary, where there is generally insufficient resolution
to accurately introduce the vortex into the domain, the artificial viscosity
aggravates the problem even more. It is seen that a sufficiently fine grid is
required not only to resolve the vortex, but to reduce the level of numerical
diffusion of vorticity.

It is a difficult task to provide enough resolution to allow the detailed
structure of the vortex to be resolved in the far field, and hence allow the
proper vortex to be introduced into the domain. First of all, if the grid reso-
lution is increased globally so that a logically cubical computational domain
can be maintained, the convergence of the scheme will suffer drastically. The
work per iteration scales as the number of grid cells N. The allowable time
step of the scheme scales as Az, which is a typical length scale of a cell.
This scales as N ‘§, meaning the number of iterations required to reach a
steady state goes as N 3. Thus the work required to reach the steady state
roughly scales as N 3. If, for example, the grid resolution is doubled in each
coordinate direction, the work required to reach a steady state is increased
by roughly a factor of 16, and the storage required increases 8 times. It is
easily seen that to provide a fine enough global grid to be able to resolve an
incoming vortex at the far field the scheme will become prohibitively expen-
sive. Not only that, but global grid refinement provides excessive resolution
in regions where it is not necessary. This is clearly not a viable solution to
the problem.

An alternative way of providing resolution of the vortex core is to use
a local refinement of the grid. This is probably best done by usinz either
grid embedding, or patched or overlaid grids along the vortex path. This
means that a logically cubical grid structure cannot be maintained, and
a pointer system is required to provide the connectivity information of the

grid. What is gained by this approach is the economy of grid points, because
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resolution is provided only where needed. Care is required at grid interfaces
to maintain spatial accuracy and conservation. The effect of the embedding
on the quality of the solutions is an important issue. Further difficulties arise
if the embedding is to be done adaptively, which is certainly a conceptually
attractive idea since the vortex path is not known a priori. A good adaptive
grid strategy requires both an sffective way of finding the vortex, and a way
of refining the grid during the course of the computation that both resolves
the vortex and is efficient. Developing such an approach is a far from trivial
task, and adds considerably to the complexity of the scheme.

For these reasons, an alternative approach is used here in which the
vortex location and structure may be specified, without the need to provide
a grid capable of resolving the rapid flow gradients. This approach is based
on the idea proposed by Buning & Steger [11] and subsequently used by
Chow et al. [16], and Srinivasan and his co-workers [58,59,60]. This method,
called the perturbation or prescribed flow scheme, is described in the next
section.

It should also be noted before continuing that the discussion in this
section on the difficulties of resolving a vortex being convected through
the computational domain is not limited to the particular algorithm of this
thesis. The comments apply to any method used to solve the Euler equations
in an Eulerian frame of reference. Navier-Stokes schemes will encounter
the same problems as well. The perturbation scheme that is developed in
this chapter is also very general in its application. Although the details of
implementiag the scheme will depend upon the algorithm used, the basic

features of the approach are independent of the Euler solver.

3. Perturbation Scheme

The perturbation scheme used here was introduced by Buning & Steger

[11] as a generalization of freestream subtraction for the Euler equations.

93



They used it to compute flows having a non-uniiorm free stream without the
need for excessive grid resolution in the far field. More recently, Srinivasan et
al. [58,59,60] have used this approach for computing the unsteady interaction
of a vortex with an airfoil. They have demonstrated that the approach allows
the vortex to remain well defined and compact, even in coarse regions of
the grid. The present investigation implements the scheme differently than
Srinivasan and his co-workers, since the flows of interest here are steady. In
this respect, the current work is more closely related to the work of Chow
et al. [16], who sclved the Euler equations for the steady, two dimensional
flow around an airfoil using the Buning & Steger perturbation approach.
The prescribed flow solutions for their calculations were found using a finite
difference full potential equation to reduce the resolution needed for the
Euler solver. The fundamental ideas of the current work are described below.
To clarify the basis of the approach, the details of the implementation will
be left to the next section.

The basis of the perturbation method is that over some region of the
flow field of interest the local behavior is similar to that of a simpler flow
which may be described analytically. For the case of the interaction of a
streamwise vortex with a wing (Figure 3.1), the flow near the vortex core
behaves as if it were an isolated vortex, the influence of the wing being weak
in that region. In other words, the flow field is dominated locally by the
velocity field associated with the vortex. Furthermore, the flow field of an
isolated vortex that satisfies the steady Euler equations can be readily found.
By computing this vortex induced flow and subtracting it from the discrete
appro..imation to the Euler equations, the need to provide a grid capable of
resolving the rapid fiow field gradients in the vicinity of the vortex core is
eliminated.

To be more specific about how the scheme works, consider the compress-
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ible Euler equations (2.5)

(%///Ud’x+// #(U) - ad% = 0. (3.2)
v v

The spatial discretization of this equation was described in the previous
chapter. It consists of the approximation to the flux integral and the addition

of the artificial viscosity terms. The semi-discrete equations may be written

2 du
#"k = —‘—,-R,',j.k (3.3)
where the residual R is defined as
Rijr = Fijx — Dijp, (3.4)

F; jx being the finite volume flux integral approximation and Dj ;: being
the artificial viscosity operator for cell (i, 7,k). With the basic finite volume
scheme, R is driven to zero by the pseudo-time integration.

From the induced velocity field of an isolated vortex, a state vector
Ug = (po, pouo,povo,powo,poEo)T that satisfies, or approximately satisfies,
the steady Euler equations can be readily computed. Subtracting the flux
integral associated with this state vector from Equation (3.2) yields

:—t// Udsz+/f{f(U) ‘f(Uo)} adiz =0. (3.5)
v av

Since the second surface integral is zero, the equation is unchanged analyt-
ically. However, Ug will not necessarily satisfy the discrete equations due
to the truncation error and artificial viscosity. In the limit of vanishing grid
spacing, these terms will vanish. However, for a finite grid resolution these
terms in general will be non-zero. The magnitude of these terms depends
upon the gradients of the flow field as well as the resolution of the grid. By
applying the discrete spatial operator (Equation (3.4)) to the flow field Uy,

a set of residuals R are found at each cell. These residuals are subtracted
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from the residuals R associated with the complete state vector U. The

discrete Euler equations to be solved are

Tk = (R~ Roli (3.
In solving this equation, the residuals R are no longer driven to zero, but
are driven to Rg. This allows the truncation error of the scheme to be
approximately corrected in the region of the vortex. This is because Ro
represents the truncation error of the scheme applied to the prescribed flow
Upyp. Near the vortex core, Uy has large spatial gradients, and Ro takes
on large values due to the difference between the discrete operator and the
differential operator applied to Uy at that location. Since the gradients of
the state vector U are assumed to show similar variations to Up near the
vortex, the residual R should show similar behavior as Ry if the differential
operator is being statisfied. Away from the vortex location, the prescribed
flow residuals will be small, since the flow field gradients are weak, and the
solution in those regions will behave as if the standard finite volume scheme
is being used there.

One important issue in using the perturbation scheme is the question of
consistency. In Equation (3.5), the state vector Uy was assumed to satisfy
the steady Euler equations. If this is the case, in the limit of vanishing
grid spacing the residuals Ro will vanish, and the Euler equations will be
recovered. Thus the scheme is consistent with the steady Euler equations
if, and only if, the prescribed flow exactly satisfies the Euler equations. If
Uy is not an exact solution to the steady Euler equations, the prescribed
flow residuals R will remain non zero when the grid spacing vanishes, and
the schrme is not consistent. In practice, it is possible to find a prescribed
flow that exactly satisfies the steady Euler equations only in special circum-
stances. However, in the next section, a method of obtaining a prescribed
flow solution that nearly satisfies the steady Euler equations is developed.

Equations (3.6) are integrated in time using the multistage algorithm
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described in the last chapter, with the Ro terms being treated as source

terms. The temporal integration is now of the form

v = v,

y = ul_ alg (F© - DO - Ry), (3.7a)
U = UO - a7k (FY - DO -Ry), (3.7b)
U® = UO oSt (FO - DO - R,), (3.70)
UW = UO - a, T (FO - DO - Ro), (3.19)

Un+1 — U“).

It should also be noted that except for the inclusion of the prescribed flow
residuals Rg, no changes in the spatial discretization, the artificial viscosity
operator, or the enthalpy damping are required. The boundary conditions
are slightly changed, in that the far field velocity now consists of a freestream

plus the induced velocity of the prescribed vortical field, i.e.

gy = iy + o, (3.8)
where iy is the velocity at the far field boundary, @, is the undisturbed
uniform freestream, and @, is the prescribed flow velocity field at the far
field boundary, which is taken for the cases here to be the induced velocity
of the vortices making up the prescribed flow field. In the far field bound-
ary conditions given in the last chapter, the incoming Riemann variable
(Equation (2.25b)) is replaced by

= . _ 244
= ket / A8 3.9
Foo = gy A= = (3.9)
where ayy is given by the equation
M2 1 g -ty
= - 3.10
G =1 ( 2 + 0 1) 2 ( )



and the inflow tangential velocity specification (Equation (2.28a)) is replaced
by
i4= &'ff+(u,. —Gﬂ'ﬁ)ﬁ. (3.11)

Also, the entropy at the inflow boundary will not necessarily be uniform,
since the prescribed flow is rotational. The specification of a uniform freestream
entropy (Equation (2.27a)) is replaced by

’% = 5(2) (3.12)
where S(Z) is the entropy distribution in the far field. In general, S(z) will
be equal to 1 everywhere except in the rotational core of the prescribed flow
vortex, where it must vary as a consequence of Crocco’s theorem. The man-
ner in which the non-uniform entropy in the core is determined is described
in the next section. The outflow boundary conditions are unchanged except
for the new incoming Riemann variable, Equation (3.9).

Except for the changes in the time stepping algorithm and in the far
field boundary conditions, the scheme is identical to that presented in the
previous chapter. No changes in the stability of the scheme have been ob-
served, and for all the cases presented here, a CFL number of 2.8 has been
used.

The main difference between the perturbation approach as it is applied
here and as it is used by Srinivasan et al. is that the flows being computed
here are assumed to be steady. The prescribed flow Uj is a steady vortical
flow, and the Euler equations are integrated in time to reach a steady state.
For this reason, the prescribed flow residuals need only be computed once
and stored, rather than being computed at each iteration.

A question arises for the case for which the prescribed flow is not a
good approximation to the actual flow field over thz entire computational
domain. For example, consider a streamwise vortex impinginy on a wing

leading edge. A pre~cribed flow ccasisting of an undisturbed streamwise
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vortex will be a very poor approximation both in the immediate vicinity
of the wing and downstream of the wing. Even for cases in which the
vortex does not hit the wing but still passes very close to it, the distortion
of the vortex path from its undisturbed position will be large enough that
specifying the undisturbed vortex as the prescribed flow will result in large
errors, rather than a reduction of the error. However, the resolution of this
problem is extremely simple: the terms R may be switched off in regions
of the flow where U is a poor approximation to the actual local behavior.
For example, in the case in which the vortex impinges on the wing leading
edge, Ro may be set to zero near the wing and downstream of the trailing
edge. In these regions, the Euler equations are being solved in the normal
way, i.e. the vortical flow is “captured”. By specifying the vortex up to the
wing, the problem of numerical diffusion is avoided, so that the vortex will
be properly defined at the wing. Also the grid resolution is the finest near
the wing, meaning that the problem of numerical diffusion of the vortex is
least important there. Finally, the structure of the vortex after its encounter
with the wing is not known, and neglecting to specify the prescribed flow
field in this region is consistent with allowing the wake generated by the

wing to be captured by the Euler code.

3.3 Prescribed Flow Specification

Two sets of calculations will be shown to demonstrate the perturbation
scheme. One is the convection of a streamwise vortex in a square cross
section channel (Figure 3.3). The prescribed flow consists of an infinite
vortex in an unbounded fluid with a uniform velocity along the direction
of the vortex. The other set of calculations consists of the interaction of
a streamwise vortex with a fixed wing. The geometry of the wing/vortex
interactions described in this chapter is shown in Figure 3.4. A semispan

wing is attached to wall, and a streamwise vortex is generated upstream. It
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Figure 3.3: Channel geometry

is assumed that the vortex has completely rolled up and thus is axisymmetric
by the time is reaches the wing. The distance of the vortex from the wall
is denoted by y, and its displacement above the wing is z,. The manner
of specifying the prescribed flow field Uy is essentially the same for both
configurations, and is described below.

For the channel flow the velocity field of the prescribed flow is assumed
to be identical to the induced velocity field of an infinite incompressible line
vortex in a uniform freestream. For the wing/vortex cases, an image vortex
to account for the symmetry plane is added as well. Since the induced
velocity of the vortex pair results in a downward motion of the pair, the
two vortices are placed at an angle to the freestream given by their mutual
induced downwash. To avoid the singular behavior of the velocity field
near the vortex, a finite core structure is necessary. The Rankine vortex is
chosen for the channel flow cases due to its very simple core structure. For
the wing/vortex interaction cases, a more physically realistic model of the
upstream generated vortex is needed, and the Lamb core structure is used

due to its smooth variation of vorticity.
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Figure 3.4: Wing/vortex interaction geometry

The tangential velocity of a two-dimensional Rankine vortex is given

by
[‘ .
37 ifr>a
up = { i (3.13a)

il ifr<a
and the tangential velocity of a Lamb vortex is given by
up= o {1- ) (3.13b)
where uy is the tangential velocity, I' is the circulation, r is the distance
from the center of the vortex and a is the vortex core size. The choices of
the vortex core size and the circulation for the wing/vortex calculations are
discussed in section 3.5. The induced velocity of the streamwise vortex and
its image is computed at the center of each cell of the finite volume grid
using Equation (3.13a) or (3.13b), and the uniform freestream velocity is
added to that.
After computing the velocity at each cell, the density and pressure are

required to complete the specification of the state vector Ugy. Outside the
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core, these are determined by assuming a constant total enthalpy and en-
tropy at the freestream values. In the core of the vortex, the total enthalpy
is taken to be the freestream value. To determine the entropy distribution in

the core, use is made of Crocco’s theorem, given here in dimensional form:
VH=TVs+ 4 x d, (3.14)

where H is the total enthalpy, T is the temperature, s is the specific entropy,
i is the velocity, and @ = V x4 is the vorticity. It is seen that Equation (3.14)
implies that the entropy is not constant, but has a radial variation through
the rotational core. To determine the entropy distribution through the core,
equation Equation (3.14) is rewritten in non-dimensional form to get

vg=P_1
py-1

Vs+tuxa (3.15)

where the equation of state has been used to eliminate T', and s has been non-
dimensionalized by c,. Now, if the total enthalpy is taken to be constant,
Equation (3.15) may be simplified further by using the definition of H to
eliminate p and p. The resulting equation is

1 a-4d .

5 (H - T) Vs=-dxd. (3.16)
Since H is determined by the freestream Mach number and # is known
from the induced velocity field of the vortices making up the prescribed flow
field, s can be found by numerically integrating Equation (3.16) through
the vortex core. For the channel flows, this is easy to do since the flow is
axisymmetric about the vortex core, and there is only a radial variation in
entropy. Strictly speaking, for the wing/vortex flows, the flow will not be
axisymmetric due to the influence of the image vortex. However, for the
small core vortices treated here, the flow near the core is very nearly that of
an isolated vortex, and thus will be treated as axisymmetric for the purposes

of integrating Equation (3.16).
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For a Rankine core structure, Equation (3.16) for an axisymmetric vortex

reduces to

2
9s —_ - 2,1:.!:1 7
E‘ = W, (3.1 a.)
7-1 T 8x3%ad

for r < a. The entropy is uniform outside the core, r > a. This entropy

distribution is plotted in Figure 3.5 for I'/a = 1. A Lamb vortex has a radial

Losses in a Rankine Vortex
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Figure 3.5: Nondimensional entropy distribution in a Rankine vortex core,
F/a=1,vy=14

entropy distribution given by

s —Timeme (8’ {1 - e—(a)’}

= - {1 - e—(i)’}2 (3.17b)

7~1
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and is shown in Figure 3.6. The above equations are given in non-dimensional

Losses in a Lamb Vortex
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Figure 3.6: Nondimensional entropy distribution in a Lamb vortex core,
F/a=1,v=14

form; these are integrated numerically to find the distribution of entropy in
the core. A cubic spline is fitted through the resulting distribution to allow
interpolation of the entropy to the centers of the finite volume cells. The
spline formula is given in Dahlquist & Bjérck ([21], pp. 131 to 134). Outside
the vortex, where the entropy is uniform, s is set equal to zero.

Once the entropy is known, the entire prescribed state vector Up can be
determined. To get the density, the equation of state and the constant total

enthalpy assumption are used. The equation of state describing the relation
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between pressure, density, and entropy, is
p=ple’. (3.18a)
It is more convenient to define a new variable
S=e¢e’
and write the equation of state as
2_s (3.18b)

This definition gives S equal to 1 outside the rotational core, and greater
than 1 in the core. This is the same definition of S as the function S(Z)
given in the discussion of the far field boundary conditions in the last section.

From the known velocity field and total enthalpy, the ratio of pressure to

P '7—1( ﬁ'-&')
t=1 (g-— 3.19
P v 2 (8.19)

Combining Equations (3.19) and (3.18b) yields the following equation for

p= {5 (n -5} (320

Also, from Equation (3.19), the total energy £ = H — p/p can be readily

density is

the density,

found. With the density, velocity, and the total energy known at each cell
in the domain, the prescribed flow state vector Uy is known.

Now that Uy is specified throughout the computational domain, the fi-
nite volume operator for the flux integral and the artificial viscosity operator
are applied to Ug. This gives the residuals R of the prescribed flow. These
are computed once and stored. During the multi-stage time integration, Ro
is subtracted from the residuals R of the complete flow field U. Thus in the
steady state, the residuals R are driven to Ry, not to zero. Near the core of

the vortex, where the prescribed flow residuals are large, the state vector U
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will show the same rapid variations as the undisturbed vortex. Away from
the vortex, the residuals Rq will be small, and the solution will be locally
similar to a conventional Euler solution.

It should be pointed out that it is not necessary to have ar analytic model
fo: the prescribed vortical flow field. In principle, a numerical solution for
the prescribed flow can be used. For example, a high resolution numerical
solution of the Navier-Stokes equations for an isolated vortex could take the

place of the Rankine or Lamb vortex core structures used here.

3.4 Vortex in Channel

The first set of computations shown are for the flow of a streamwise vor-
tex in a square section channel. The purpose of these results is to illustrate,
using a simple model problem, how the perturbation scheme eliminates the
numerical diffusion of vorticity. The configuration is shown is Figure 3.3.
The channel length is five times the channel height. The grid points are
uniformly distributed, with a crossflow resolution of 20 x 20 cells, and 10
cells in the streamwise direction. The inlet Mach number is 0.5, vortex core
radius is 0.1k, where h is the channel height, and the vortex circulation is
0.lah/\/7, where ay is the freestream speed of sound. A Rankine core
structure is assumed. The choice of the vortex strength is arbitrary. The
core size is such that it lies across approximately 4 x 4 finite volume cells
in the crossflow direction. This is a coarse resolution of the vortex, but is
finer than is generally acheived for lift generated wakes such as presented
in the last chapter. For the fine mesh results presented in chapter 2, the
resolution of the tip vortex was roughly similar to the resolution for these
cases. Three cases will be shown: in the first, the Euler solver was run with-
cut the perturbation scheme, and the vortex was introduced only through
the inlet boundary conditions; in the second, the perturbation scheme was

used to prescribe the vortex flow field; and in the third, a prescribed flow
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field that did not satisfy the Euler equations was used to demonstrate the
consequences of the failure of satisfying the consistency. All cases were run
at a CFL of 2.8, a fourth difference artificial viscosity coefficient of 0.004, no
second difference dissipation, and an enthalpy damping coefficient of 0.025.

Figure 3.7 shows the vorticity vectors at the middle of the channel for

VORTEX IN CHANNEL - Standard Euler scheme
Vorticity Vectors
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Figure 3.7: Vorticity vectors in channel, standard Euler scheme

the standard Euler scheme. The mean flow is in the same direction as the
vorticity vectors. Although the specified vortex has a Rankine core, for
which the vorticity is uniform in the core and zero outside, it is seen at the
inlet that the vorticity apparently is not uniform in the core. This is due to

the fact that the vorticity is computed by a finite difference approximation
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to the curl, and the truncation error of the difference formula gives the
appearence of a nonuniform vorticity.

It is immediately apparent, looking at Figure 3.7, that the vorticity is
being diffused as it is convected downstream. The core size is growing, and
the peak vorticity magnitude is decreasing downstream. This is more clearly
seen in contour plots of the vorticity magnitude in the cross flow plane at

the inlet and outlet (Figures 3.8 and 3.9). Plots of total pressure loss at

VORTEX IN CHANNEL - Standard Euler scheme
VYorticity Magnitude
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Figure 3.8: Vorticity magnitude contours in channel inlet cross-section, stan-
dard Euler scheme

the inlet and outlet (Figures 3.10 and 3.11) also show the growth of the

core and the diffusion of vorticity. These effects are purely numerical; the
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VORTEX IN CHANNEL - Standard Euler scheme
VYorticity Magnitude
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Figure 3.9: Vorticity magnitude contours in channel outlet cross-section,
standard Euler scheme
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VORTEX IN CHANNEL - Standard Euler scheme
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Figure 3.10: Total pressure contours in channel inlet cross-section, standard
Euler scheme

110



VORTEX IN CHANNEL - Standard Euler scheme
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Figure 3.11: Total pressure contours in channel outlet cross-section, stan-
dard Euler scheme
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Euler equations are not dissipative, so the vortex should not diffuse as it
is convected downstream. Also, this model problem is highly idealized, in
that the vortex structure is very simple (there is no rolling up of a vortex
sheet as with the lift generated wakes of the previous chapter) and the grid
is uniform. Yet even here, it is seen that there is considerable nunierical
diffusion. In most cases of interest, the grid stretci:ing and the evolution
of the vortical regions will further aggravate the situation, and numerical
diffusion will in all likelihood be even worse.

To illustrate the effectiveness of the perturbation scheme in eliminating
the numerical diffusion of vorticity, this same case was run using the pertur-
bation scheme in which the prescribed flow consisted of a strear.wise vortex
in an unbounded fluid. All the numerical parameters (artificial viscosity co-
efficients, CFL number, and enthalpy damping coefficient) were unchanged.
Figures 3.12, 3.13, 3.14, 3.15 and 3.16 show the vorticity vectors, vorticity
magnitude contours, and total pressure loss contours at the same locations
as in the previous case. It is seen that the vortex core retains its defini-
tion throughout the channel. The numerical diffusion of vorticity is entirely
eliminated. It is important to note that the perturbation scheme had no
effect on the convergence rate of the solver. Figures 3.17 and 3.18 show the
iteration history, with the logarithm of the root mean square of the changes
AU plotted against the iteration number. This shows that the perturbation
scheme does not adversely impact the performance of the Euler code. This
should be true for any algorithm used to solve the Euler equations, and is
not peculiar to the finite volume scheme used here.

The final case shown in this section demonstrates what happens when the
prescribed flow does not statisfy the steady Euler equations. In this case,
the prescribed flow was that of an infinite vortex at a slight angle to the
freestream. The vorticity vectors are shown in Figure 3.19. Two things can

be noted about this solution. The first is that the vortex does not experience
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VORTEX IN CHANNEL - Perturbation scheme
Vorticity Vectors
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Figure 3.12: Vorticity vectors in channel, perturbation scheme
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VORTEX IN CHANNEL - Perturbation scheme
Vorticity Magnitude
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Figure 3.13: Vorticity magnitude contours in channel inlet cross-section,
perturbation scheme
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VORTEX IN CHANNEL - Perturbation scheme
Vorticity Magnitude
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Figure 3.14: Vorticity magnitude contours in channel outlet cross-section,
perturbation scheme
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VORTEX IN CHANNEL - Perturbation scheme
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Figure 3.15: Total pressure contours in channel inlet cross-section, pertur-
bation scheme
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VORTEX IN CHANNEL - Perturbation scheme
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Figure 3.16: Total pressure contours in channel outlet cross-section, pertur-
bation scheme
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VORTEX IN CHANNEL - Standard Euler scheme
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Figure 3.17: Convergence history, standard Euler

118

800.



log (AU)

-2.

-3. 1

-5.

-6.

-7.

VORTEX IN CHANNEL - Perturbation scheme
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Figure 3.18: Convergence history, perturbation scheme
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VORTEX IN CHANNEL - “Tilted" prescribed vortex
Vorticity Vectors
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Figure 3.19: Vorticity vectors in channel, perturbation scheme, tilted vortex

numerical diffusion. The second is that the solution makes no physical sense
whatsoever. The problem here is that the prescribed flow is not a solution
to the Euler equations, unlike the previous case. Furthermore, in the limit
of vanishing grid spacing, the sclution obtained with this prescribed flow
will still show the same behavior, with the vortex lying at an angle to the
freestream. Because Ug does not satisfy the steady Euler equations, the
residuals Ry will not vanish as the grid is refined.

In looking at the plots of vorticity magnitude (Figures 3.20 and 3.21)
and total pressure loss (Figures 3.22 and 3.23) at the inlet and outlet, it

is seen that the vortex core does not get diffused. More interestingly, the
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VORTEX IN CHANNEL - “Tilted” prescribed vortex
Vorticity Magnitude
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Figure 3.20: Vorticity magnitude contours in channel inlet cross-section,
perturbation scheme, tilted vortex

vortex has moved upward slightly from the charnel centerline (z = 0) at
the outlet. The prescribed flow has the vortex tilted in the y direction, but
at a constant z. The reason for this is simply because the vortex, being
tilted slightly to the freestream direction, must experience a lift. In the
Figures 3.20 to 3.23, the primary flow direction is out of the plane of the
page, and the sense of the circulation around the vortex is counter-clockwise.
Thus the vortex should experience a force in the positive z direction, which

explains the displacement of the vortex from its prescribed position.
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VORTEX IN CHANNEL - “Tilted” prescribed vortex
Vorticity Magnitude
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Figure 3.21: Vorticity magnitude contours in channel outlet cross-section,
perturbation scheme, tilted vortex
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VORTEX IN CHANNEL - “Tilted” prescribed vortex
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Figure 3.22: Total pressure contours in channel inlet cross-section, pertur-
bation scheme, tilted vortex
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VCRTEX IN CHANNEL - “Tilted” prescribed vortex
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Figure 3.23: Total pressure contours in channel outlet cross-section, pertur-
bation scheme, tilted vortex
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3.5 Wing/Vortex Interaction

As a demonstration of the ability of the perturbation approach to ac-
curately handle flows with compact vortical regions, computations of the
interaction of a streamwise vortex with a wing have been performed. The
configuration is shown in Figure 3.4. The wing has a semispan to chord
ratio of 2:1, and a NACA 0006 airfoil section. It is untwisted and unta-
pered. Three cases have been computed and compared to the experimental
results of Smith & Lazzeroni [57]. In each calculation, the circulation and
core size of the vortex was fixed. The prescribed flow field Uy was specified
as described in the previous section.

The core size and circulatio= of the vortex is required in order to compute
Uy. The core size was determined from the experimental measurements
of the downwash in the wake of the vortex generator. By measuring the
distance between the maximum and minimum downwash, the core radius
was found to be about 0.05 chord. This was taken to be the same for all the
cases. The circulation was chosen by matching the experimentally observed
lift coefficient at the wing root for the first case presented here by using a
lifting line analysis. This gave a vortex circulation of 0.05 normalized by the
freestream velocity and wing semispan. It was then assumed that the vortex
strength was the same for all the other cases run. This assumption is based
on the requirement that the irduced downwash of the wing on the vortex
generator is the same for each rase run. This assumptiou is reasonable,
since the induced lift on the wing did not vary much between tie fuur cases
run. To further check the validity of this assumption two checks ware done.
First, the induced downwash at the vortex generator due to the wing was
estimated by treating the wing as a horseshoe vortex. Because for the cases
shown here the wing was only very lightly loaded from the mid semispan to
the tip, the horseshoe vortex was taken to have the same lift as the wing

but only half the span. The induced angle of actack at the vortex generator
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on the symmetry plane was was found to be only 0.025°; this is only %% of
the geometric angle of attack of 5°. Within the range of the lift coefficients
for the cases here, the induced velocity at the vortex generator due to the
wing is negligible, and the assumption of a constant circulation is justified.
The second check on the strength of the vortex was done by using a lifting
line solution for the isolated vortex generator to determine the peak bound
circulation, which should equal the circulation of the fully rolled up tip
vortex. The lifting line gave the same vortex circulation as was determined
by the above procedure.

Three cases are shown below. For each case, the vortex core size and
strength are the same. The wing is at zero angle of attack for all three
cases, and the vortex is convected over the wing at a distance of 1/2 semis-
pan from the wall. The vertical location of the vortex above the wing is 1/2,
1/4, and O chord lengths, respectively. Computations were done on a grid
of 96 x 20 x 20 cells. No second difference dissipation was used, the fourth
difference artificial viscosity coefficient was 0.01, and the enthalpy damping
coefficient was 0.025 for each case. All cases were run at a CFL of 2.8. Two
computations were performed for each of the cases, cne with the perturba-
tion scheme and one with the standard Euler algorithm. In the latter set
of solutions, the vortex was introduced into the computational domain only
through the far field boundary conditions. In the first case the vortex is
1/2 chord from the wing. This is sufficiently far from the wing that the
vortex path differs little from its undisturbed location, and the prescribed
flow residuals are specified throughout the domain. Figure 3.24 compares
the spanwise C distribution computed with the perturbation scheme to the
experimentally measured values. The vortex location is specified throughout
the computational domain. Excellent agreement with the experimental data
is seen for the perturbation solution, while the conventional Euler solution

(Figure 3.25) does not show the rapid gradients at the mid semispan of the
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WING/VORTEX INTERACTION - My = .8, yo = .6b, 2, = .b¢c
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Figure 3.24: Comparison of computed and experimental spanwise lift distri-
butions, z/¢ = 0.5, perturbation scheme

wing. The “blip” in the lift coefficients distributions in the tip region is a
result of the local increase in lift due to the rolling up of the tip vortex over
the wing tip. Note that the solution obtained with the perturbation scheme
shows a slight positive lift over the outboard section of the wing, as in the
experiment, while the standard Euler solution has a negative load over the
entire wing.

For the case in which the vortex passed 1/4 chord above the wing (Fig-
ure 3.26), the lift distribution shows oscillations around the mid semispan

when the prescribed flow residuals were specified everywhere. This is pre-
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Figure 3.25: Comparison of computed and experimental spanwise lift distri-
butions, z/c = 0.5, standard Euler scheme
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Figure 3.26: Comparison of computed and experimental spanwise lift distri-
butions, z/c = 0.25, perturbation scheme, vortex prescribed everywhere

sumably because the undisturbed vortex path is quite different from the
actual path, and Uy is not a good approximation to the local behavior after
the vortex passes over the wing. When Ry is set to zero above the wing
the spanwise wiggles disappear. This is the solution shown in Figure 3.27.
Again, prescribing the vortex in the region before the wing allows the steep
gradients in the spanwise lift distribution to be captured, as opposed to the
non-perturbation solution of Figure 3.28 in which Rg is zero everywhere.
In Figures 3.29 and 3.30, the vortex is impinging on the wing leading

edge. Clearly the undisturbed vortex flow field is an extremely poor ap-
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WING/VORTEX INTERACTION - My, = .8, yo = .50, 5, = .26¢
Spanwisa Lift Distribution
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Figure 3.27: Comparison of computed and experimental spanwise lift distri-
butions, z/c = 0.25, perturbation scheme, vortex prescribed up to wing
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Figure 3.28: Comparison of computed and experimental spanwise lift distri-
butions, z/c = 0.25, standard Euler scheme
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Figure 3.29: Comparison of computed and experimental spanwise lift distri-
butions, z/c = 0, perturbation scheme, vortex prescribed up to wing

proximation to the flow after the vortex hits the wing. For this reason,
the prescribed flow residuals Ry are turned off once the vortex reaches the
wing. Note that the perturbation solution shows much steeper spanwise
gradients in the lift compared to the non-perturbation solution. The rapid
change in the lift as the induced velocity changes from downwash to up-
wash is completely lacking in the conventional Euler solution (Figure 3.30).
The perturbation solution agrees less well with experiment than the other
two cases, with a much higher computed download at the wing root than

was observed experimentally. The discrepancy between computation and
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Figure 3.30: Comparison of computed and experimental spanwise lift distri-
butions, z/¢ = 0, standard Euler scheme

experiment is most likely due to the fact that the experimental vortex was
not axisymmetric, but was a trailing vortex wake of a wing (the vortex
generator). The experimental results showed a marked asymmetry in the
induced loads depending upon whether the vortex was above or below the
wing. The wing was only three semispans behind the vortex generator, so
the wake was not completely rolled up. From the computations of the roll
up of the trailing vortex sheet of an elliptically loaded wing performed by
Baker [4] and Moore [47], it is estimated that rolled up tip vortex would be

expected to contain 90% of the bound circulation of the vortex generator at
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that location.

Figure 3.31 and Figure 3.32 show the velocity vectors and total pressure

WING/VORTEX INTERACTION - M. = .3, y, = .5b, 2, =0
Velocity Vectors
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Figure 3.31: Velocity vectors in crossflow plane through wing midchord,
z/c =0, perturbation scheme

contours in a spanwise plane through the midchord of the wing. It is clearly
seen that the vortex is split into two vortices of the same sense, one passing
over the wing and the other passing under the wing. Note that the two
vortices moving slightly in the spanwise direction, the upper vortex moving
outboard and the lower vortex moving inboard. This is due to the effect of
the image of each vortex in the wing.

Another factor affecting the computed results is the location at which
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Figure 3.32: Total pressure contours in crossflow plane through wing mid-
chord, z/c = 0, perturbation scheme
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the preacribed flow residuals are turned off. For this case the prescribed
flow residuals were specified up to a distance of two cells from the leading
edge. It could be expected that the vortex core will increase in size as it
approaches the wing due to the adverse pressure gradient in that region. A
calculation was also performed in which R was set to zero approximately
1/4 chord upstream of the wing. This calculation is shown in Figure 3.33.

The maximum download at the wing root and the upload outboard of the

WING/VORTEX INTERACTION - My = .3, yo = .5b, 2y = .26¢
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Figure 3.33: Comparison of computed and experimental spanwise lift distri-
butions, z/c = 0, vortex “turned off” one quarter chord upstream

vortex are virtually unchanged. This could be expected on the grounds

that the induced velocities at these locations depend upon the circulation,
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which was unchanged. The gradient in the spanwise lift is slightly less steep
than the calculation shown here, indicating an increase in the core size.
However, this is may be due as much to numerical diffusion of the vortex
in the region upstream of the wing as to the effect of the adverse pressure
gradient immediately upstream of the wing.

Figure 3.34 shows the contours of lifting pressure coefficients, defined
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Figure 3.34: Lifting pressure coefficients, Ap/}puZ,, perturbation scheme

as (Plower — Pupper) / %pugo, on the wing as computed by the perturbation
approach. The contour levels are identical to the experimental results of
Figure 3.35. The agreement with the experimental data is very good. The

location of the zero lift line is the same as in the experiment. The computed

137



Figure 3.35: Lifting pressure coefficients, Ap/ %pugo, experiment
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contours do not match the experimental contours near the root, which again
is due to the computed download being larger than was measured. The
contours near the leading edge show very similar behavior to that observed in
the experiment. In contrast, the lifting pressure coefficients computed with

the standard Euler scheme (Figure 3.36) are not even qualitatively similar
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Figure 3.36: Lifting pressure coefficients, Ap/ %puﬁo, standard Euler scheme

to the experimental results. This case in particular shows the power of the
prescribed vcrtex approach for the computation of wing/vortex interaction

flows.
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3.6 Sunimary

A perturbation scheme for the computation of a wing/vortex interaction
has been developed. The perturbation scheme is shown to allow the vortex
to be introduced into the computational domain without the problem of
numerical diffusion of vorticity, and without requiring excensive grid resolu-
tion. Furthermore, by setting the prescribed flow residuals % zero in regions
where the prescribed flow does not provide a good approximation to the local
behavior cf the flow, strong interactions between the wing and vortex can be
computed. Comparisons of the computed wing/vortex interactions with ex-
periment illustrate the accuracy of the perturbation scheme, and conversely
the inability of the standard Euler solution algorithm to compute such flow
reliably.

In the next chapter, the perturbation scheme developed here is combined

with a free wake model to compute the flow about a helicopter rotor in hover.
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Chapter 4

Hovering Rotor Solutions

In this chapter, a method for solving the flow around a hovering heli-
copter rotor is presented. The approach adopted couples the finite volume
Euler solver presented in the previous chapters with a free wake model of
the semi-infinite rotor wake. In the next section, the Euler equations in a
rotating coordinate system are presented, along with the necessary modi-
fications to the finite volume scheme to compute the flow around rotating
blades. Next, the wake model is described, and the free wake iteration
procedure is presented. The computation of the prescribed flow for the
perturbation scheme applied to the rotor is then described, and the com-
bined free wake/Euler iteration procedure is developed. Hovering solutions
are performed and compared to the experimental data of Ballard, Orloff &
Luebs [5] and Caradonna & Tung [14].

4.1 Euler Equations in Rotating Coordinates

In hovering flight, the aerodynamic loads on a helicopter rotor are steady.
Thus in a frame of reference attached to the rotor blades, the flow field
may be assumed steady, and the Euler equations may be solved in a time
asymptotic fashion as described in chapter 2. Some modifications to the

scheme are required when transforming the Euler equations into a rotating
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coordinate frame, and these changes are discussed below.
The equations of motion are re-written in a coordinate frame attached

to the rotor, shown in Figure 4.1. In this coordinate system, z points in

Figure 4.1: Rotor blade coordinate system

the chordwise direction (from leading to trailing edge), y is the spanwise
direction, and z lies along the axis of rotation. The inertial coordinates z',
y', and 2’ are taken to coincide with z, y, and z at an instant in time ¢.
Let @' be the velocity measured in the inertial reference frame and # be the
velocity relative to the rotor blade. The velocities %' and @ are related by
the equation

-

@=0+QxZ,

where {1 is the angular velocity of the rotor and € = kQ.
With these definitions, a coordinate transformation from the inertial to

the rotating coordinates yields the following form of the Euler equations:

.;?;//V Udz+ /J F(U)-ad%+ //V/S(U)dsz =0, (41
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where

p P
pu . pud + pi
U=|pv |, FU)=| pvit+pj |,

pw pwi + pk
PE, p(E.+p)u

0

—p (Q%z + 2Qv)

S(U) = | —p (% - 20u) |,

0

0

and

-1 B, &'-ﬁ’—ﬂ’(zz+y2).
T—1p 2

The control volume V is fixed in the rotating reference frame. The equations
in the rotating frame differ from the equations for the fixed wing case by
the addition of the terms S(U) and the replacement of the total energy E
by the quantity F,. The source terms in the z and y momentum equations
represent the centrifugal and Coriolis accelerations. The term E, in the
energy equation is analogous to the total energy in an inertial frame of

reference, and the quantity
H,=E, + %, (4.2)

which is called the total rothalpy is analogous to the total enthalpy in the
inertial frame. For a flow which is steady in the rotating reference frame,
the condition of constant H, replaces the condition of constant H which
occurs in the fixed wing case.

Using the definitions for & and @', the Equations (4.1) may be rewritten

in terms of the absolute rather than the relative velocity components:

%/f Uodz+ [ [F(U,) ad%z+ [[[s(U)d5z=0, (43)
v av v

143



where

P pd’
pu' pu'd + pi
Us=|pv' |, F(U)=| po'i+pj |,

pw' pw'a + pk
PE; p(E.+p)id

0

—pQv'
S(U,)=1| pOu' |,
0
0

and E, is rewritten in the form

1 p o
vy-1p 2
The latter form of the Euler equations is preferable to Equation (4.1) for a

Er-:

couple of reasons. One is that the discrete flux integral is approximated by
averaging the absolute velocity components to the cell faces and evaluating
the coordinate rotation term €1 x Z at each cell face to get the relative velocity
4. This should be more accurate in the far field where the grid is stretched,
since the coordinate rotation component is evaluated at the cell face rather
than averaged between the cells. The second advantage is that the artificial
viscosity is applied only to the absolute momentum components in the z
and y momentum equations. Again, this is particularly important in the far
field where the grid is stretched and the €} x # component will vary rapidly
between adjacent cells.

The non-dimensionalization of the equations is the same as described in
chapter 2. That is, the density and pressure are normalized by their values
at infinity, poo and pe, the velocity is normalized by as//7, lengths by the
blade chord ¢, and time by ¢,/7/aco. This choice of non-dimensionalization
yields the following definition for the angular velocity

0= quh'p

7 (4.4)
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where M, is the tip Mach number and R is the non-dimensional rotor
radius, or rotor blade aspect ratio. Thus the tip Mach number enters the
problem through the definition of the angular velocity.

The basic algorithm for solving Equation (4.3) is the same as that pre-
sented in chapters 2 and 3 for the fixed wing cases, with the necessary

modifications for the differences in the equations. Only these differences are
described below.

4.1.1 Flux Integral Evaluation

The discrete approximaticn to the flux integral is essentially the same
as Equation (2.10) in chapter 2. That is, the flux vector is computed at
two adjacent cells and theu averaged to get the cell face value. However,
to compute the flux vector, both the absolute velocity 4’ and the relative
velocity # are needed; @' is found from the state vector U,, but @ is not
stored. The relative velocity is easily obtained from the absolute velocity by
use of the equation & = @' — {1 x £. To form the flux vector from each cell,
the coordinate rotation term is evaluated at the cell face, rather than the
cell center, and subtracted from the absolute velocity. This allows a more
accurate evaluation of the fluxes in regions where the grid undergoes rapid
stretching, such as in the far field.

In addition to the flux integral, the centrifugal and Coriolis terms must
also be computed. The terms S(U,) are easily evaluated at each cell and
are multiplied by the cell volume to approximate the volume integral. These

source terms are added to the flux integral residual R.

4.1.2 Artificial Viscosity

The only change in the artificial viscosity from the fixed wing case is the
replacement of the total enthalpy H with the total rothalpy H, in the energy

equation. The dissipation terms are otherwise evaluated exactly as in the
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fixed wing case, including the treatment at the boundaries. The symmetry
condition at the wing root is replaced with a periodicity condition for the
rotating blade; this is described below.

4.1.3 Solid Wall Boundary Conditions

As in the fixed wing case, all that is needed at the rotor blade surface
is the pressure, which is found by extrapolation from the interior using the
normal momentum equation. The normal momentum equation differs from
the fixed wing case due to the addition of the centrifugal and Coriolis terms.
Since the normal component of the relative, rather than the absolute, veloc-
ity is zero at a solid wall, it is more convenient to work with the momentum
equation written using the relative velocity «.

The momentum equation in nonconservative form is

aa - -
p5g + P Vi+ Vptpil x (ﬂx:i:‘+2&')=0. (4.5)
The velocity @ is obtained from the absolute velocity &' by evaluting the
coordinate rotation velocity € x Z at the solid surface and subtracting it
from 4’. Dotting this equation into the unit normal at the surface, fi, and

using the fact that @ -fi = 0 and 31i/dt = 0 yields
— A ~ 8p ~ ~ — — a
(pu-Vn)-u—£+pﬂx(Qxa:+2u)-n. (4.6)

The term on the left hand side is evaluated in the same way as for the fixed
wing; the centrifugal and Coriolis terms are evaluated using the coordinates

at the surface and the tangential component of the relative velocity there.

4.1.4 Far Field Boundary Conditions

If the Euler equations are written in terms of the relative velocity and a
one dimensional analysis like that described for the far field boundary con-

ditions in chapter 2 is performed, the characteristic variables are identical to
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those found in the fixed wing case. That is, the transformation to rotating
coordinates does not alter the eigenvalues and eigenvectors of the one dimen-
sional equations, and the similarity tranform is unchanged. Thus the same
characteristic boundary conditions as those presented in chapters 2 and 3
are used. These require the specification or extrapolation of the Riemann
invariants, entropy, and tangentiai velocity components at the boundary.
To evaluate the characteristic variables, the relative velocity components

are needed. The far field velocity is

)

7= ﬁ‘wake -0 x z, (4.7a)

—

where @, is the induced velocity field of the semi-infinite vortex wake and

—f

{1 x Z is evaluated on the boundary. The evaluation of the @ ,,, term will

be described in section 3. The extrapolated velocity component is
- — = -
oz = U, — (1 X Z, (4.7b)

where @, is the absolute velocity at the first cell inside the boundary. These
two velocity components are used to evaluate the Riemann invariants and
the tangential velocity at the boundary. With thes~ invariants, the normal
velocity component and the speed of sound are evaluated as before. At
an inflow boundary, the specification of the tangential velocity gives the

absolute velocity as

@ =dgy+ (up—Ugy-R)A+AXT, (4.8a)
and at an outflow point,

@ = Gop + (Un — Teg - A) A+ x Z. (4.8b)

The entropy is either specified at an inflow or extrapolated at an outflow
boundary exactly as for the fixed wing case. The entropy at the inflow is
not necessarily uniform, since it varies through a vortex core. The specifi-

cation of the entropy distribution in the core is done as for the fixed wing
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perturbation approach of the previous chapter. This point will be taken up
in more detail in the section on the coupling of the Euler solver with the

free wake code.

4.1.5 Periodic Boundary

For a fixed wing, the coordinate surface at the wing root was a symmetry
boundary. At a rotor blade root, this is not the case. Instead, there is

rotational symmetry (Figure 4.2). To handle this, the coordinate surface

Figure 4.2: Rotational symmetry at the blade root

at the blade root must be symmetrical about the axis of rotation to allow
periodic boundary conditions to be applied (Figure 4.3). In this thesis,
only two bladed rotors are treated, but the extension to more blades is
straightforward. To generate the periodic boundary at the blade root, the
airfoil section there is taken to be an ellipse with its major axis lying along
the x-direction (normal to the axis of rotation) and the minor axis lying

along the z-direction (the axis of rotation). Care is taken so that the grid is

148



Figure 4.3: Periodic boundary condition at the blade root

symmetric about the z-axis (Figure 4.4). Periodic boundary conditions are
then applied in an obvious fashion to both the flux integral and artificial
viscosity cperators. Although the grid at the blade root does not match
a real rotor hub geometry, the error is small since little lift is produced
near the root of the blade, and it does have the advantage of satisfying the

rotational symmetry condition exactly.

4.1.8 Temporal Integration

There is no change to the multistage time stepping scheme presented
in chapter 2. The same multistage coefficients are used and the time step
restriction applies. The time step is based on the relative rather than the
absolute velocity at each cell. Enthalpy damping is still used, but in the
rotating frame of reference it becomes rothalpy damping; that is, the total
enthalpy is replaced by the total rothalpy, and the damping is driven by
the difference in the local total rothalpy and its uniform steady state value.
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Figure 4.4: Grid at rotor blade root

It is applied exactly as in the fixed wing cases, as an implicit update after
a complete multistage integration. The rothalpy damping is desirable for
the same reasons as in the fixed wing solutions, in that one series of cases
presented below are at a very low tip Mach number. Even for a high tip
Mach number, the flow at inboard stations of the rotor is highly subsonic,
and the rothalpy damping is useful in accelerating convergence.

In the next section of the chapter, the wake model is described and the
free wake iteration procedure is explained. The coupling of the wake solution

to the Euler solver will be described in section 3.
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4.2 Wake Model

The model for the hovering rotor wake was developed by Miller [45]. The
model is based on Helmholtz’s vortex theorems for an inviscid, incompress-
ible low, which state that vortex lines must follow streamlines of the flow.
By representing the semi-infinite helical wake as discrete vortex filaments,
the geometry of the wake is found by iteratively solving for the force free
positions of the filaments. Miller made several simplifying assumptions to
yield a very fast solution procedure while still capturing the physics of the
wake flow. The model and solution procedure are described here.

The helical vortex wake of a hovering rotor is shown in Figure 4.5. The

Figure 4.5: Vortex wake of a hovering rotor

trailing vortex wake from each blade is modeled as discrete filaments. Five
filaments are used; one to model the tip vortex, and four to represent the
inboard portion of the vortex sheet. The choice of five vortices is based
on earlier studies of the wake model (Roberts & Murman [54] and Miller
et al. [46]) in which it was demonstrated that this provides an adequate
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representation of the helical wake. The manner in which the circulation of
each filament is set is described in the next section.
Let u,, uy, and u, be the radial, azimuthal, and axial velocity compo-

nents in the frame of reference of the rotor (Figure 4.6), and n is the filament

Figure 4.6: Vortex velocity components

index. The requirement that each filament lies along a streamline yields the

following equations for the vortex trajectories:

u u u

The essence of the free wake procedure is the solution of the Equations (4.9)
for the N vortex filaments. Several approximations are made to simplify the
solution procedure. First, the contribution of the rotor blade bound circu-
lation to the induced velocity in the wake is neglected, as the contribution
of each blade cancels when averaged over the azimuth. Next, the velocity
perturbations in the azimuthal direction are ignored, which allows uy to be
written as

uy, = rafl. (4.10)
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Substituting into Equations (4.9) yields

drp = unﬂdqb, (4.11a)
dz, = u&"dqb. (4.11b)

Neglecting the azimuthal velocity perturbations is equivalent to treating the
flow in a given azimuthal plane to be axisymmetric. This allows the helical
vortex filaments to be replaced by vortex rings for the purposes of computing
the induced velocities. A further simplification is made by computing the
velocities and solving for the position of the vortices only in the azimuthal
plane containing the rotor blade, ¢ = 0. The vortex rings are constructed by
taking 180° segments of the helical filaments from each blade and replacing

them with vortex rings at their mean locations, as shown in Figure 4.7. The

T - - -

Figure 4.7: Formulation of vortex ring model

first series of rings replaces the segment of each helical filament from ¢ = 90°
to ¢ = 270° from the two blades; the next series of rings is made from the
¥ = 450° to ¢ = 630° segments, etc. The firat quarter spiral of the filaments
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from each blade, ¥ = 0 to ¢ = 90° still remain—their contribution to the
induced velocities below the rotor blade may be computed by replacing the
two quarter spirals of each filament with a single ring of half the circulation
of the filament. The location of these rings are fixed in the rotor plane, and
are not found as part of the free wake iteration procedure.

Since the wake has an infinite extent in the axial direction below the
blade, the position of each filament cannot be determined throughout the
wake. The force free position of each filament is found only for the first
720° of its age, or four passes below the rotor blade. After that point,
the remaining semi-infinite wake is modeled by two vortex cylinders, one to
represent the tip vortex and one to represent the entire inboard portion of
the wake. The strength of the tip vortex cylinder, %P;, is found by dividing
the tip vortex circulation I' by the axial separation between the last two

free tip vortex spirals, Az (Figure 4.8). The radius of the vortex cylinder is
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Figure 4.8: Vortex cylinder far wake representation

fixed at the radius of the tip vortex at its fourth passage below the blade,
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and it begins a distance Az below the tip vortex spiral. To set the strength
of the cylinder modeling the inboard portion of the trailing vortex sheet,
the centroid of the four filaments representing the free portion of the sheet
are lumped at their centroids for the last two passes below the blade. The
cylinder strength and location is determined as for the tip vortex cylinder,
based on the circulation and location of the vortex centroids (Figure 4.8).
With this wake model, the determination of the wake geometry requires
the solution of Equations (4.11a) and (4.11b). The determination of the
velocities at the vortex locations is discussed first, and then the iterative

solution procedure is described.

4.2.1 Velocity Computation

Since the wake model assumes an incompressible, inviscid, irrotaticnal
flow with embedded vorticity, the velocities in the wake are found by sum-
ming the induced velocities of all the vortex rings and cylinders used to
model the wake. The induced velocity of each ring is found by using the
Biot-Savart law. The formulas for the induced velocity of a vortex ring and
a vortex cylinder are given by Miller in reference (45]; they are repeated here
for completeness.

By applying the Biot-Savart law to a vortex ring of radius r and circula-
tion I', the radial and axial components of the induced velocity at a radius
n and axial distance z from the plane of the ring (Figure 4.9) are given by
the following integrals:

2r

r zrcos Y dy
r= < ) 4.12
Y b/ (n®+r2+ 22 — 2rncosy)? (4.122)
2r
"y = / r(r — ncosy) dy (4.12b)

ar o (nt+ri4 22— 2rr)cos¢)% .
The integrals in Equations (4.12a) and (4.12b) may be expressed in terms
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Figure 4.9: Coordinates for vortex ring induced velocity calculation

of complete elliptic integrals of the first and second kind,

K= w_ (4.13a)
o (1-k2sin?y)®
% 1
E= [ (1-k*sin?¢)* dy, (4.13b)
Q
where
kz = 4rn
(r+9)%+22

is the argument of the elliptic integrals K and E. With these definitions, the

velocity components u, and u, may be written in the following form:

T 2z (k2| _2-k%
u,—E% E{Em—zx}, (4.14&)

r /[k2 1-—"—;—(1-{-{;)
u,=4—w\/;q-{K—E[ (l—kz) ]} (414b)
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The induced velocity of the far wake vortex cylinders must also be com-
puted at each free vortex filament location. The radial and axial velocity

components of a vortex cylinder are given by

d
Ureyl = // Zrcony 'Ibdz 3 (4'153')
4# dz (n2 +r2 + 22 — 2zncos )3
- d
Ugeyl = // 4 (r ncos 'l’) ¢dz 3 (4.15b)
4" d.z (,'2 + ,-2 + 12 — 2'-') cos "b)i

Here, z is the axial dlstance from the end of the cylinder to the point at
which the velocity is to be evaluated, r ie the cylinder radius, and 5 is the

radius at the point of evaluation. Integrating the above equations over z

gives
2x
1 dT r cos ¢d
Upeyl = 4_Tf '/’ 'p 1 (4'163)
X6z J (n?+r2+ 22 — 2rncosy)3
2
o= B [ rleZneod) :
*ol T 4x dz J n?+r12—2rncosd (n? + r? + 22 — 2r cosy) 3
(4.16b}

Equation (4.16a) can be rewritten in term of the complete elliptic integrals
of the first and second kind

2

where k, K, and E are as prewously defined. The equation for the axial
component of induced velocity of the vortex cylinder, Equation (4.16b) is
left unchanged for now.

To evaluate the elliptic integrals, the Cayley series solution (reference
[15] are used. These series are rapidly convergent, and only a few terms
need to be retained. The series for K and E are:

om0 () (1 2 6o

1-3-5 2 2 2\3
G N e Il R



where

In the current implementation, the first four terms of the series are re-
tained; this choice was determined through numerical experimentation. The
expression for the axial component of velocity due to the cylinder, Equa-
tion (4.16b), cannot be expressed solely in terms of complete elliptic integrals
of the first and second kind, but contains elliptic integrals of the third kind.
For this reason, it is more convenient to evaluate the velocity by numerical
integration of Equation (4.16b) using the trapezoidal rule. Again through
numerical experiments, it was found that eighty integration steps in the v
direction gave sufficient accuracy. Care must be taken when n = r, since
the denominators of both fractions in the integrand vanish at the endpoints
of the integration, ¢ = 0 and ¢ = 2x. However, the integrand has a well
defined limit of zero as ¢ — 0,2x. The integrand is set equal to zero at the
endpoints when r = 1, and the expression is numerically evaluated for each
of the remaining steps.

It should also be noted that the expressions for the induced velocity of
a vortex ring are singular at the ring location itself (n = r, z = 0), and thus
cannot be used to evaluate the self-induced velocity of the ring. As given
by the above formulas, the self-induced velocity of a ring is infinite, which
is physically unacceptable because it corresponds to infinite kinetic energy.
This behavior is a result of the assumption that the vertex is concentrated
onto a filament of zero thickness. In realil;y, the vortex filament will have a
finite core radius due to the action of viscosity, and this will result in a finite
but non zero self-induced velocity. The self-induced velocity of a vortex ring

with a Rankine core structure and a rotational core radius a is given by
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Lamb (36], p. 241, as

soana= (1), )
This formula is used to compute the self-induced velocity of the vortex ring.
The value of the core radius a is chosen, following Miller, to be 0.01R,
where R is the radius of the rotor. This choice of the core size is based on
the theory of Landahl [37], and has been extended by Chung [17]. Since the
self-induced contribution is logarithmically singular, it is not too sensitive
to the exact value of @ within the given range. For the cases presented in
this chapter, the above value gives a core radius of the order of 7% to 15%
of the rotor blade chord c. The value used was chosen to be 0.15¢ for all the
cases presented below. (The reason for choosing a value of a in terms of the
blade chord rather than the rotor radius is due to the fact that the lengths
were non-dimensionalized by the chord rather than the radius in the code.
It is thus more conveuient to refer the value of a to the chord.)

Using the above formulas for the induced velocity of each vortex ring
and cylinder in the wake, the total induced velocity at each vortex loca-
tion is determined. These velocities are used to solve the vortex trajectory
Equations (4.11a) and (4.11b). The iteration procedure for determining the

vortex positions is described next.

4.2.2 Wake Iteration Procedure

The position of the wake vortices is determined only in the azimuthal
plane ¢ = 0. The equations of the vortex trajectories, Equations (4.11a)
and (4.11b), are solved iteratively. Let N be the number of helical vortex
filaments used to model the wake, and M be the number of passes of the
wake below the blade; for all the cases in this thesis, N = 5 and M = 4. The
total number of vortex rings used to model the free wake is then N x M. In
addition, there are N vortex rings in the tip path plane of the rotor, whose

positions are fixed, and two far wake vortex cylinders (Figure 4.10). The
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Figure 4.10: Complete wake model

positions of the vortex rings in the wake are not known a priori, and an

initial guess at their locations is made. For the first run of the free wake
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code within the combined Euler/free wake iteration procedure, the initial
guess has been taken to be a solution given by the lifting line/free wake
solver developed by Roberts & Murman for the given rotor. This geometry
is specified in the input file of the code. The choice of initial guess is not too
critical, and a uniform axial spacing of the wake vortices would work just as
well. For subsequent runs of the free wake solver, the initial guess for the
geometry is taken to be the previously converged wake geometry.

If n is the index of the vortex ring, then the position of the (n + N )"l vor-
tex ring is found by integrating the trajectory equations (4.112) and (4.11b)
over the interval ¢ = 0 to 7 to get

phew —- old + / oldd'p

Tnt+N —
= °“+5r,,+,,,, (4.20a)
oldd
:iu;v = old + / '»b
= zg"+5z,,+N. (4.20b)

The superscripts old and new refer to quantities evaluated before and after
the vortex wake geometry is updated, respectively. When the wake has con-
verged, the old and new values of the geometry and the vortex velocities are
the same. The integrals in Equations (4.20a) and (4.20b) are approximated
by taking the average velocity between the vortex locations n and n + N.

This yields the equations for the change in the vortex location,

old old
Srpyn = % h—-;L—, (4.21a)
old old
bzpiN = % ﬂ‘l_-'_zu‘_"‘”", (4.21b)
The position of the (n + N)* vortex ring given by Equations (4.20a)

and (4.20b) will not in general correspond to the original position. The new
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position computed from the trajectory equations is used obtain a new wake
geometry. However, the trajectory equations form an ill-conditioned system,
and taking the positions given by Equations (4.20a) and (4.20b) does not
yield a stable iteration procedure. Underrelaxation is required, meaning a
weighted average of the current vortex position and predicted vortex position
must be used to obtain the new vortex positions. The resulting equations

for updating the wake geometry are

rnevy = (1 — wy) r8N + wy (r;’,‘d + 6r,.+N) , (4.22a)

where w,, is the underrelaxation parameter, and is generally taken to be
0.2. 1t is easily seen that when w,, = 1, Equations (4.20a) and (4.20b) are
recovered. After the positions of the free vortex rings are found, the locations
and strengths of the two far wake vortex cylinders are recomputed, and the
next iteration starts.

To summarize the iteration procedure for determining the wake geome-

try:

1. the velocity at each of the N X M free vortex postions is determined
by summing the induced velocities of all the vortex rings and cylinders
in the wake;

2. the trajectory equations (4.21a) and (4.21b) are integrated;

3. the position of each free vortex ring is updated using Equations (4.22a)
and (4.22b);

4. the far wake vortex cylinder locations and strengths are recomputed

using the new wake geometry;

5. the iteration is continued until the geometry converges.
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No convergence criterion has been developed for the wake geometry iteration
procedure, as it has been found more convenient to run a fixed number of
iterations. For all the cases presented below, 200 iterations of the free wake
algorithm have been used for each free wake solution. The average change
in vortex position after 200 iterations is usually on the order of 108 of the
rotor radius.

Having described the Euler equations and free wake model, the manner

in which the two have been coupled will be presented.

4.3 Euler/Wake Coupling Procedure

Although the solution procedure for a hovering helicopter rotor is bro-
ken into two parts—namely, the Euler solution for the rotor blade near field
and the free wake solution for the semi-infinite wake—it is clear that these
two parts are not independent. The coupling of the Euler solver with the
free wake iteration procedure is the process by which information from each
solver is passed to the other. Basically, the free wake solver requires the
strength of the vortex filaments modeling the wake to be determined, and
this depends upon the spanwise load distribution of the rotor blade. This
information is available from the Euler solver for the blade near field flow.
In order to accurately compute the blade loads, the induced velocity field
of the wake must be used to prescribe the far field boundary conditions for
the Euler solver. In addition, since the wake vortices pass through the Eu-
ler computational domain—in particular, the tip vortex from the preceding
blade passes close to the blade—the portion of the wake within the compu-
tational domain must be introduced into the domain in a manner avoiding
the numerical diffusion of the wake vorticity. If this last requirement is not
met, the distribution of the blade load distribution cannot be accurately
computed.

The general outline of the coupled iteration procedure is as follows:
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1. the Euler solver initially run for 200 iterations, without including the

wake, in order to get a reasonably converged starting solution;

2. the bound circulation distribution along the span of the rotor blade is

determined from the Euler solution of the rotor blade near field;

3. the bound circulation distribution is used to set the strength of the
wake vortices, and the free wake algorithm is used to solve for the

wake geometry;

4. the new wake geometry and vortex strengths are used to determine
the induced velocities for the Euler far field boundary conditions, and
the wake is introduced into the Euler finite volume grid using the

perturbation scheme described in chapter 3;

5. the Euler solver is run another 100 iterations using the new boundary

conditions and wake geometry;

6. the procedure from step 2 to step 5 is repeated.

The details of the implementation are given below.

The strengths of the trailing vortices modeling the wake in the free wake
solver are determined by the spanwise bound circulation distribution on the
rotor blade. This is obtained from the Euler solution by performing a line
integral of the velocity,

I'(y) = f @ .ds, (4.23)
c
around a chordwise contour at a fixed spanwise station of the rotor (Fig-

ure 4.11). Because of the sensitivity of the rotor loads to the wake geometry,
the bound circulation can change greatly between each free wake solution,
especially in the initial stages of the coupled calculation procedure. For this

reason, the computation of the bound circulation is underrelaxed,

[new — pold wy (P - rold) s (4.24)
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Figure 4.11: Bound circulation determination

where I'!d is the previous bound circulation and T is the circulation eval-
uated using Equation (4.23). The underrelaxation parameter wj is usually
taken to be 0.5. For the initial iteration, ' is set using the combined
blade element/momentum theory (Gessow & Myers, [29]). With this bound
circulation distribution, the strengths of the trailing vortices are determined

using the following roll up schedule:

1. the tip vortex is assumed to roll up frem the position of maximum
bound circulation I'y,qz of the blade to the tip, and the strength of the

t.ip‘ vortex is set to be equal to ['y4z;

2. the distance from the location of 'y, to the blade root is divided into
four equally spaced segments, and the change in the bound circulation
in each segment gives the strength of the trailing vortex emitted from

each segment (Figure 4.12).

The location of the vortices in the tip path plane are fixed by determining
the centroid of vorticity within each segment,
va
J Tydy
y=5%—, (4.25)
J Tdy
Vi
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where y; and y2 are the endpoints of the segment (Figure 4.12). Because

o/

tip

A AN AN EA N

root

J

Figure 4.12: Trailing vorticity roll up schedule

the bound circulation can only be found between the spanwise grid nodes on
the blade, the bound circulation on the blade must be interpolated between
the grid cells along the blade to evaluate the above integral. To do this, the

Glauert transformation
y=§(1—cosa), 0<f#<m, (4.26)

is first used to get  at the locations at which I' is known. With § known,
the distribution I'(#) is determined using a cubic spline fit along the blade.

Next, Equation (4.25) is rewritten in terms of 6,

[}
fT(1-cost)sinde
6,

N X

Yo = (4.27)

?l‘ sin 0df
Ch
The integrals in Equation (4.27) are evaluated using a trapezoidal rule inte-
gration over each segment y; to y;. Thus the location of the vortex filaments
in the plane of the rotor are found, and with the vortex strengths known,
the wake geometry soluticn procedure is started.

With a new wake geometry, the specification of the far field boundary

conditions and calculation of the prescribed flow residuals for the Euler
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solver can be performed in a fashion similar to that described in chapter 3.
This is done using the same model of vortex rings and cylinders given by
the converged free wake geometry. The calculation of the far field induced

oo
velocities, @, ,.,

Equation (4.7a), are found by summing the induced veloc-
ities of all the wake vortex rings and cylinders using the formulas given in
the previous section. In the same way, the induced velocity at each cell in
the computational domain is determined. Since the portion of the trailing
vortex wake attached to the rotor blade is to be computed as part of the Eu-
ler solution procedure, the vortex rings fixed in the rotor tip path plane are
.excluded from these velocity calculations. That is, only the wake elements
lying below the rotor are used to determine the wake induced velocities in
the Euler computational domain.

In computing the induced velocity at each finite volume cell, the prob-
lem of avoiding the singularity near the vortex location is encountered, and
some core structure must be assumed. Unlike the free wake solver, in which
all that was needed was the self-induced velocity of the vortex, the induced
velocity field through the voitex core is required. To obtain this, it is as-
sumed that near the vortex itself, the velocity field of the vortex looks like
that of a two dimensional vortex plus a uniform velocity corresponding to its
self-induced velocity. The two dimensional core structure was taken to be a
Lamb vortex core, and the self-induced velocity component was found using
Equation (4.19). (Strictly speaking, the velocity given by Equation (4.19)
is for a Rankine core structure. Bliss [9] has developed a theory for the
self-induced velocity of a vortex with an arbitrary core structure, but the
difference here is not significant.) The core radius a was taken to be 0.15¢,
as described in the previous section, for all the cases presented here. Since
the assumption of a two-dimensional velocity field is valid only near the
core, it is necessary to transition from the Lamb velocity equation, Equa-
tion (3.13b), to the Equations (4.14a), and (4.14b) for a vortex ring at some
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point in the field. For distances > 4a from the center of the vortex core, the
velocity field was taken from the formulas for the induced velocity of a vor-
tex ring; at distance< 2a from the center of the ortex, the two dimensional
Lamb vortex velocity field plus the self-induced velocity was used. Linear
interpolation of the vortex ring and the two dimensional formulas was used
in the range 2a to 4a from the vortex center.

With the induced velocities known at each cell, the prescribed flow state
vector Uy is determined using the same procedure as in chapter 3. The
condition of constant total rothalpy replaces the constant total enthalpy
condition. To compute the entropy distribution in the vortex cores, the
assumption of an isolated two dimensional Lamb vortex structure is used,
and Crocco’s equation is integrated as in the fixed wing case. The equa-
tion solved is Equation (3.17b), given in the last chapter, for the entropy
distributicn through a Lamb vortex. This equation is also used to obtain
the entropy at the far field boundary, which is needed for specifing the en-
tropy at an inflow boundary. With the entropy, total rothalpy, and velocity
known, the entire state vector Ug can be determined. The prescribed flow
resiquals R are then found, and the Euler equations are integrated in time
in the same manner as in chapter 3.

It should be noted here that prescribed flow representing the wake is
not an exact solution of the steady Euler equations, since it consists of a
collection of stationary vortex rings. As shown in the previous chapter, the
finite volume equations are no longer consistent, since the prescribed ﬂ;:w
residuals will not vanish as the grid spacing vanishes. This problem can
only be avoided if a wake model which exactly satisfies the Euler equations

is used.
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4.4 Results

The flow fields of two rotors have been computed. The first is two bladed
rotor tested by Ballard, Orloff, & Luebs [5] at a low tip Mach number and
Reynolds number. In the experiment, the bound circulation distribution
along the blade was measured using a laser Doppler velocimeter. Also mea-
sured was the location of the tip vortex at its first pass below the rotor blade.
The second series of computations compares to the experimental results of
Caradonna & Tung [14]. This experiment measured the chordwise pressure
distributions at five spanwise stations on the blade, and the tip vortex ge-
ometry was measured using a hot wire anemometer. Computations for two

tip Mach numbers have been made.

4.4.1 Ballard et al. Test Case

The first rotor geometry computed here was tested by Ballard, Orloff, &
Luebs [5]. It is a two bladed rotor with a rectangular planform, an aspect
ratio of 13.7, NACA 0012 airfoil section, and a linear twist of 11 degrees from
root to tip. The collective pitch at 75% span is 9.8 degrees. The experiment
was run at a tip Mach number of 0.225 and a chord Reynolds number of
400,000 at the tip.

The computations were performed on a finite volume grid consisting of 96
cells around the blade chord, 20 cells from the blade to the outer boundary,
and 40 cells along the span. The distance from the rotor blade to the outer
boundary was six blade chords. The spanwise gridpoint distribution was
chosen to increase the resolution in the region of the blade vortex interaction.
This can be seen in a plot of the surface grid over the last 40% of the rotor
blade radius, shown in Figure 4.13. A spanwise section of the grid is shown
in Figure 4.14.

For all the calculations of this rotor, the CFL number was 2.8, the second

and fourth difference artificial viscosity coefficients were O and 0.01, respec-
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B, O & L ROTOR - 8,75 = 9.8°, M, = .226, 96 x 20 x 40 grid

Rotor blade surface grid
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Figure 4.13: Surface grid, outer 40% of Ballard et al. rotor

tively, and the rothalpy damping coefficient was 0.025. The wake geometry
underrelaxation parameter w,, was set to 0.2, and the bound circulation
relaxation parameter w; was set to 0.5.

The first three computions for this rotor were performed at the geometric
collective pitch setting of the e'xperiment, 8 75 = 9.8. The three calculations
were: (a) an Euler solution for the isolated rotor without the wake coupling;
(b) a solution in which the free wake and Euler solvers were coupled, but in
which the wake influence was included in the Euler code only through the far
field boundary conditions; and (c) a fully coupled Euler/free wake solution

using the procedure described in the last section. For case (c), the tip vortex
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B, O & L ROTOR - 6,73 = 9.8°, M;;, = .225, 96 x 20 x 40 grid
Coordinate cut through midchord
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Figure 4.14: Spanwise view of grid through rotor midchord, Ballard et al.
rotor

from the preceding blade lies approximately 1 blade chord below the rotor.
This is sufficiently far away that the distortion of the vortex path due to the
blade is relatively small. Because of this the prescribed flow residuals are
specified throughout the domain.

Figure 4.15 shows the bound circulation computed for the three cases,
along with the experimentally measured bound circulation. The bound cir-
culation has been non-dimensionalized by the tip speed times the rotor ra-
dius. The drastic differences in the blade loading among the three solutions

is due entirely to the differences in wake modeling. It is seen that the failure
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B, O & L ROTOR - 8,75 = 9.8°, M,,, = .225, 96 x 20 x 40 grid
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Figure 4.15: Spanwise bound circulation distribution, %;, Ballard et al.
rotor

to include the wake in the Euler solver results in a very large overprediction
of the thrust, due to the fact that the downwash at the blade is too low, and
hence the angle of attack along the blade is too high. Including the wake
through the far field boundary conditions results in some improvement; the
maximum bound circulation on the blade is better predicted, and the lift
is significantly lower along the blade. However, too much thrust is being
produced, and the load distribution does not show the same qualitative be-
havior as in the experiment. Case {c), the coupled Euler/free wake solution

using the perturbation scheme, is significantly better. The distribution of lift
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is qualitatively very similar to the experimental data, although the overall
thrust is clearly too high. The peak bound circulation is also slightly inboard
of the experimental position, corresponding to more wake contraction. It is
interesting to note that the peak I' for cages (b) and (c) are nearly the same,
even though the loadings inboard of the peak are quite different. In case (b),
more lift is produced inboard due to the fact that the tip vortex, which is
introduced into the Euler computational domain only through the boundary
conditions, is too diffuse by the time it reaches the rotor. Its contribution
to the downwash over the blade is thus not accurately computed. This can
be clearly seen in Figures 4.16 and 4.17, in which the velocity vectors in a
spanwise section through the midchord of the rotor blade are shown for the
two cases. Note that the tip vortex is well defined for case (c), whereas in
case (b) the vortex is no longer apparent. What is seen in Figure 4.16 is a
more uniform downwash due to the wake, but the rapid variation in the flow
velocities and the vortex core structure has vanished entirely. Interestingly,
the flow field near the tip is very similar in both cases.

Figures 4.18 and 4.19 show the computed wake geometry for case (b)
and case (c), respectively, as well as the measured tip vortex position at
the first pass below the blade. Both computations shows a more rapid
radial contraction of the wake than was observed experimentally, consistent
with the more inboard location of the bound circulation peak on the blade.
Also, it appears that the wake is descending at a more rapid rate than
in the experiment, although the magnitude of this rapid descent is more
difficult to estimate since only one measured tip vortex position is available.
However, this is consistent with the greater than observed thrust for these
two cases. Interestingly, the wake geometries predicted for the two cases
are quite similar despite the differences in the load distributions. This is
due to the fact that the tip vortex strengths are nearly the same, and this

concentrated vortex plays the dominant role in the evolution of the wake.
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B, O & L ROTOR ~ .75 = 9.8°, M,;, = .225, 96 x 20 x 40 grid
Velocity vectors
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Figure 4.16: Velocity vectors in cross flow plane through rotor midchord,
non-perturbation approach
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B, 0O & L ROTOR - 075 = 9.8°, M,;, = .225, 96 x 20 x 40 grid
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Figure 4.17: Velocity vectors in cross flow plane through rotor midchord,
perturbation approach
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B, O & L ROTOR - d.75 = 9.8°, M,;, = .225, 96 x 20 x 40 grid
Wake geometry
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Figure 4.18: Wake geometry, non-perturbation solution, Ballard et al. rotor
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B, O & L ROTOR - 4.75 = 9.8°, M, = .225, 96 x 20 x 40 grid
Wake geometry
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Figure 4.19: Wake geometry, perturbation solution, Ballard et al. rotor
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In Figure 4.15, the load distribution near the tip is quite similar for
all three cases, despite the differences in the wake influence. Although no
surface pressure measurements were made in the experiment, the computed
pressures were compared. In Figures 4.20, 4.21, 4.22, and 4.23, the pressure

B, 0 & L ROTOR - 8,45 = 9.8°, M,;, = .225, 98 x 20 x 40 grid
Chordwise section

-3. -~ WITHOUT WAKE
—~— WITH WAKE
-2.
C' -1 r/R=0.08
0. 1
1.
2. - - ’ . . —_— .,
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

N

Figure 4.20: Comparison of chordwise loading, with and without the wake,
93%R

coefficients for case (a) and case (c) are shown at four chordwise sections
within a chord length from the tip. Note the similarity in the pressure
distributions, which is remarkable for the fact that one solution has no wake
included and the other is the fully coupled Euler/free wake solution. This

observation was also noted in the computations for the other rotor presented
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B, O & L ROTOR - 9,75 = 9.8°, M;;, = .225, 96 x 20 x 40 grid
Chordwise section
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Figure 4.21: Comparison of chordwise loading, with and wit, vut the wake,
96% R
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B, 0 & L ROTOR - 0,75 = 9.8°, M;;, = .225, 96 x 20 x 40 grid
Chordwise section
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Figure 4.22: Comparison of chordwise loading, with and without the wake,
98%R
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B, O & L ROTOR - 8,75 = 9.8°, M,;, = .225, 96 x 20 x 40 grid
Chordwise section
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Figure 4.23: Comparison of chordwise loading, with and without the wake,
99%R
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iu this thesis, the rotor tested by Caradonna & Tung. Those results will be
shown below, and an explanaticn for the results will be presented then.

Although the fully coupled Euler/free wake solution of case (c) is in sig-
nificantly better agreement with the experimental data than the other two
cases, the thrust is still being overpredicted. This can be attributed to vis-
cous effects. Due to the low Reynolds number of the experiment (400,000
at the tip, based on tip chord), there is a significant difference the lift curve
slope of the blade compared to the inviscid lift curve slope. The magnitude
of lift loss due to viscosity was estimated using the two dimensional Euler
code ISES, developed by Michael Giles and Mark Drela [30,22]. This code
solves the steady, two dimensional, compressible Euler equations for airfoils
and cascades using a direct Newton iteration procedure. It also incorpo-
rates an efficient and robust coupling of the inviscid solver to an integral
boundary layer procedure. The boundary layer equations have been devel-
oped to handle Reynolds numbers as low as 250,000, including transitional
separation bubbles. The ability of the code to handle such flows has been
demonstrated by Drela in his thesis [22], as well as in a more recent paper
[23].

To estimate the viscous effect, ISES was run twice. First, an inviscid
calculation was made at a fixed lift coefficient of 0.7 and a Mach number of
0.2. This approximately corresponds to the peak computed lift coefficient;
on the rotor at about 90% radius. The inviscid angle of attack for these
conditions was found to be 5.73 degrees. Holding the angle of attack fixed
at thia value, a viscous calculation was run at a Reynolds number of 350,000
for the same Mach number. The computed lift coefficient was 0.63, or 10%
lower than for the inviscid case. This suggests that the angle of attack
should be reduced by 10%, or 0.57°, in the inviscid case to approximately
correct for the infiuence of the boundary layer on the lift. This correction

was simply made for the rotor by reducing the collective pitch of the blade
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by 0.6°.
In Figure 4.24, the collective pitch has been reduced by 0.6 degrees. The

B, 0 & L ROTOR - 0,75 = 9.2°, M,;p, = .225, 96 x 20 x 40 grid
Bound Circulation

x10-32

2.50 1 « EXPERIMENT [5]
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Figure 4.24: Spanwise bound circulation distribution, -ﬁ%;, Ballard et al.
rotor, reduced collective

agreement with experiment is very good. The position of the peak circu-
lation is still slightly inboard of the experimentally observed peak, again
indicating that the free wake computation is predicting a more rapid con-
traction of the wake than was observed experimentally. This is confirmed
in Figure 4.25, which shows the wake geometry for this case. Note that
the wake contraction is nearly identical with the previous case, but that

the axial location of the first tip vortex is identical to its measured value.
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B, 0 & L ROTOR - 8,75 = 9.2°, M,;, = .225, 96 x 20 x 40 grid
Wake geometry
0.0 4 -
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Figure 4.25: Wake geometry, Ballard et al. rotor, reduced collective

Again, since the calculated thrust now matches the measured thrust, this
is to be expected. The differences in the measured and experimental wake
contraction may be attributed to couple of factors. First, the computed
wake contraction is primarily dependent on the far wake model. It is the
radial component of the induced velocity due to the entire semi-infinite wake
that determines how rapidly the wake contracts. On the experimental side,
static thrust test are very sensitive to the test conditions. These experiments
were run in an enclosed chamber, meaning that flow recirculation will have
an effect on the flow field. The magnitude of these effects are difficult to

estimate.
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The solutions of the coupled Euler/free wake code required about 43
minutes of CPU time on the Cray X-MP/48 at NASA Ames Research Cen-
ter for these cases. About 25% of the time was spent in the computation of
the prescribed state vector Up, which was done after each free wake solution.
This portion of the code . an in scalar mode, while the Euler solver itself is
well vectorizea. The time spent in computing the prescribed flow could be
reduced by about half if the induced velocities of the vortex cylinders repre-
senting the far wake are not included in the specification of the prescribed
flow. Since the induced velocities of the far wake are smooth through the
finite volume grid, it is probably sufficient to include them only through the
far field boundary conditions. The work involved in the free wake iteration

procedure itself is negligible, requiring only 1% of the total solution time.

4.4.2 Caradonna & Tung Test Case

The second set of solution computed were for a rotor geometry tested
by Caradonna & Tung [14]. The rotor has two blades of aspect ratio 6,
is untwisted and untapered, with a NACA 0012 airfoil section. The rotor
was tested over a range of coliective pitch settings and tip A .ch numbers,
and the chordwise surface pressures were measured at five spanwise stations
along the blade. The tip vortex geometry was measured over the range
of 0 to 450° azimuth, using a hot wire anemometer. Computations were
performed for two experimental configurations, M;, = 0.439, 8 75 = 8° and
M, = 0.877, 0 75 = 8°. The corresponding Reynolds numbers at the tip for
the two cases are 1.56 x 10° and 3.12 x 109, respectively.

The grid for this rotor was similar to that for the previous roter, with
96 chordwise cells, 20 cells from the blade surface to the far field, but only
32 cells along the span. The reduction in the spanwise resolution was made
due to the lower aspect ratio of the blade; the resolution in the region cf

the blade/vortex interation is similar to that of the previous rotor, as can
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be seen in the surface grid plot, Figure 4.26.

C & T ROTOR - 96 x 20 x 82 grid

Rotor blade surface grid
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Figure 4.26: Surface grid, Caradonna & Tung rotor

The first case run was for the lower tip Mach number. A CFL number
of 2.8, no second difference dissipation, a fourth difference dissipation coef-
ficient of 0.01, and a rothalpy damping coefficient of 0.025 were used. In the
free wake solver, w,, was set to 0.1, and w; was set to 0.25.

Figure 4.27 shows the computed lift coefficient distribution compared
to experiment; the bound circulation was not measured in the experiment,
which is why the lift coefficients rather than the bound circulation are com-
pared here. The experimental lift coefficients were computed in reference

(14] by a chordwise integration of the measured surface pressure coefficients.

186



C & T ROTOR - 6,75 = 8°, M, = .439, 96 x 20 x 32 grid
Spanwise Lift Distribution
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Figure 4.27: Spanwise lift coefficient distribution, Caradonna & Tung rotor,
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The predicted thrust is higher than observed. The peculiar spike in the
computed C) near the tip is due to inaccuracies in the pressure extrapola-
tion to the surface, which i3 caused by the grid distortion near the leading
and trailing edges at the tip. (Recall from chapter 2 that near the coordi-
nate singularity, the difference equations are locally zeroeth order accurate.)

The wake geometry is shown in Figure 4.28; it is seen that the free wake

C & T ROTOR - 0,45 = 8°, M,,, = .439, 98 x 20 x 32 grid
Wake geometry
0.0 .

.0.2 e« COMPUTATION
. ¢ EXPERIMENT [14]
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-0.2 0.0 0.2 0.4 0.8 0.8 1.0 1.2 14
r/R

Figure 4.28: Wake geometry, Caradonna & Tung rotor, My, = 0.439

code predicts a much greater wake contraction than measured in the exper-
iment, and the axial descent rate of the tip vortex is overpredicted. This
second effect is consistent with the overprediction of the thrust. Figure 4.29

compares the computed and experimental surface pressure coefficients. The
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C & T ROTOR - 0.15 = 8°, My, = .489, 96 x 20 x 32 grid
Surface pressure coefficient
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Figure 4.29: Surface pressure distribution, Caradonna & Tung rotor,
M, = 0.439

agreement is fair, with the greater than observed lift once again apparent.

The second case run was for the tip Mach number of 0.877. This case
is obviously highly transonic, and as such is not representative of a real
hovering rotor. It does however provide a severe test of the scheme. A
CFL number of 2, second and fourth difference dissipation coefficients of
0.35 and 0.01, respectively, and a rothalpy damping coefficient of 0.025 were
used. The wake and bound circulation relaxation parameters were the same
as the previous case.

Figure 4.30 compares the computed and experimental lift coefficients.
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C & T ROTOR - §.75 = 8°, M,;, = .877, 96 x 20 x 32 grid
Spanwise Lift Distribution
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Figure 4.30: Spanwise lift coefficient distribution, Caradonna & Tung rotor,
My, = 0.877
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As for the lower tip Mach number case, the predicted thrust is higher than

observed. The wake geometry is shown in Figure 4.31; the predicted wake

C & T ROTOR - 8.75s = 8°, My;p = .877, 96 x 20 x 32 grid

Wake geometry
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Figure 4.31: Wake geometry, Caradonna & Tung rotor, My, = 0.877

geometry shows less contraction and a slower descent rate than the My, =
0.439 solution. This is in contrast to the experimental results, which showed
that the wake geometry was not sensitive to the tip speed. Figure 4.32
compa s the computed and experimental surface pressure coefficients. The
agreement is fair over the inboard sections, with larger discrepancies near
the tip. The shock is stronger and further aft than in the experiment. This
is consistent with the neglect of viscous effects in the computation; at the

96% span station, the local Mach number reaches approximately 1.5 before
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C & T ROTOR - 8.7 = 8°, M;,, = .877, 96 x 20 x 32 grid
Surface pressure coefficient
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Figure 4.32: Surface pressure distribution, Caradonna & Tung rotor,
Mip = 0.877
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the shock. The shock/boundary layer interaction should be strong in this
case.

Given the insensitivity of the blade loading near the tip for the Ballard
et al. rotor, a similar comparison was made for the Caradonna & Tung rotor,
to see if the same effect would be found on a blade of different twist and
aspect ratio. Also, comparisons at higher tip Mach numbers could be made
with this data. Solutions were obtained for the same collective pitch setting
and tip Mach numbers, but the wake was neglected. Comparisons of the
pressure coefficients at each of the exper<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>