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and the effect of the different numerical smoothing methods. When the high-accuracy
numerical smoothing is used, tke accuracy study shows that all the schemes are indeed
second order accurate. The low-accuracy smoothing reduces the accuracy of the schemes
as well as producing less smooth solutions on irregular meshes. Both triangular and
quadrilateral schemes can be used for spatial adaptation, but triangular meshes are
more easily fit around complex geometries and do not require modifications in the flow

solver.

Thesis Supervisor: Michael B. Ciles,

Assistant Professor of Aeronautics and Astronautics



Acknowledgments

have always offered and the love that never wavered. They have always believed I could
do anything I wanted to do. Their belief in me has always been a motivating force
behind my achievements. I would also like to thank my sister Cristina. These people

are more than my family, they are my friends.

Finally I'd like to thank the members of the CFD Lab. To the students and staff who
have been here for a.'while and are always there to donate their wisdom and experience
which only comes with time. To the students who are just starting out for reminding

me how much I have learned since [ started here.

This work was supported by Rolls-Royce PLC.



Contents

Abstract

Acknowledgments

Nomenclature

1 Introduction

1.1 Background . .. ... ... ... .. ... e

1.2 OVerview . . . . . . o e e e e e e e e e e e e

Numerical Schemes

2.1 GoverningEquations . . . . .. . ... ... ... L oo oL
2.2 Quadrilateral NiScheme . . . . . .. ... ... ... ...........
2.3 Triangular NiScheme . ... ... .....................
2.4 Quadrilateral Jameson Scheme . . . ... ... ... ...........
2.5 Triangular Jameson Scheme . . . . . . ... ... ... ... ... .. ..
2.6 Farfield Boundary Conditions . . . . . . . ... ... ... ........

2.6.1 Subsonic Inlet Boundary . . . . .. ... ... ...........

13

14

14

16

18



2.6.2 Subsonic Outlet Boundary . . . . . ... ... ........... 34

2.6.3 Supersonic Inlet Boundary . .. .................. 35
2.6.4 Supersonic Outlet Boundary . .. ... ... ........... 36
2.7 WallBoundary . ... ... .. . .. . e e 36
271 NiScheme........... ... ... ... ... . . . ... 37
2.7.2 Jameson Scheme . ... ... ... . ... ... 0L 38
2.7.3 Tangency Condition . . . .. ... ... ... ........... 38
2.8 Timestep . . . . . . . . . . e e e 39
Numerical Smoothing 41
3.1 Second Difference Operators . . . . . ... ... ... .. ......... 43
3.1.1 Low-Accuracy Second Difference . ... ... ... ........ 43
3.1.2 High-Accuracy Second Difference . . . . ... ... ... ..... 44
3.2 Freestream Smoothing . . . . . . .. ... ... L oo oL 47
3.3 Shock Smoothing . . . . .. ... .. .. ... .. 48
3.3.1 Second Difference Smoothing . . . ... ... ... ........ 49
3.3.2 Bulk Viscosity Smoothing . . . . . ... ... ... ........ 50
Mesh Generaticn and Pointer System 52
4.1 Elliptic Mesh Generator . . . . . ... ... ... ... ... . ..., 52
4.2 Complete Pointer System . . . . ... .. ... ... ... ... ... 53



4.2.1 Node Arrays . . . . . . . . . . i i e
422 Cell Arrays . . . . . . . .. e
423 Face Arrays . . . . . . . . .. .. e
424 EdgeFace Arrays. . . . . . . . ... ... ... ... ..
425 EdgeNode Arrays . . . . .. ... ... ... ... . ...,
4.3 Required Pointer System . . . . . . . ... ... ... ... ... ...,
44 Vectorization . . ... ... ... ... ... ...

Computational Examples

5.1 Supersonic Citcular Asrc Bump . . . ... ... .. ............

5.2 Transonic Circular Arc Bump . . . . ... ... ... ... ........

Accuracy Study

6.1 Mathematical Study . . .. ... ... ... ... . ... .. 0.

6.2 Numerical Study . .. ... ... ... ... . . ... ... ..

6.3 Results of Numerical Study . . . .. ... ... ... ...........
6.3.1 Effect of Numerical Smoothing on Accuracy . . . . ... ... ..
6.3.2 Conclusions . . . . . .. ... ...

Adaptation

7.1 Adaptation Criteria . . . . ... ... ... ... ... 0.

59

59

64

68

68

69

74

74

76

86



7.2 Quadrilateral Adaptation . . .. .. ... ... oL

7.3 Triangular Adaptation . . . . .. ... ... . ... . ...

8 Conclusions

Bibliography

A Computer Code

A.1 TriangularSchemes . . . .. ... .. ... ... ... . ... ...,

A2

A.l1l

A12

A.l13

A.l4

A.l5

Common Files . . . . . . . . . . . . . @ i

Mesh Generator . . . . . . . . . i v i i e e e e e e

NiScheme . . . . . . . . . . . . e

Jameson Scheme . . . . . . . ... . ..o e

Plotting Package . . . . . ... ... .. ... ... ...,

Quadrilateral Schemes . . . . . ... .. ... oo

A21

A22

A23

A24

A25

Common Files . . . . . . . . . . . . . e

Mesh Generator . . . . . . . .« o v i it e e e e e e e e e e

NiScheme . . . . . . . o i e e e e e e e e

Jameson Scheme . . . . . . . . . . . e

Plotting Package . . . .. .. ... ... ... . ....... ...

91

94

96



2.1

2.2

2.3

24

25

2.6

3.1

3.2

3.3

3.4

4.1

5.1

List of Figures

Quadrilateral cells surrounding node 1 with control volume for the Ni

Triangular cells surrounding node 1 with control volume for the Ni scheme 24

Quadrilateral cells surrounding node 1 with control volume for the Jame-

sonscheme . .. .. .. . . . .. ..

Triangular cells surrounding node 1 with control volume for the Jameson

scheme . . . . . . ...

Boundary cells for Ni scheme with control volume . ... ... .. ...

Boundary cells for Jameson scheme with control volume . . . . . . ...

Possible modes for quadrilateralcells . . . . .. ... ... ........

Possible mode for triangularcells . . . . . ... ... ... ........

Typical triangular and quadrilateralcells . .. ... ... ........

Division of quadrilateral cell for non-conservative, high-accuracy second

difference . . . . . . ... e e

Interconnection of pointer arrays . . . . . ... ... ... ... .....

Supersonic case: quadrilateral Jameson scheme with low-accuracy smooth-

ingon anirregularmesh . . . . . .. ... ... o 0oL

27

29

37

38

42

42

43

46

54



5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

Supersonic case: quadrilateral Jameson scheme with iow-accuracy smooth-

ingonaregularmesh . .. ... ... ... ... . ............ 61

Supersonic case: quadrilateral Jameson scheme with high-accuracy smooth-

ingon anirregularmesh . . . . . .. ... ... ... .. ... ... 62

Supersonic case: quadrilateral Ni scheme with high-accuracy smocothing

onaregularmesh . . ... .. ... ... ................. 62

Supersonic case: triangular Jameson scheme with high-accuracy smooth-

ingon anirregularmesh . . . . . .. ... ... L. 63

Supersonic case: triangular Jameson scheme with low-accuracy smooth-

ingon anirregularmesh . . . . . .. ... ... ... ........... 63

Supersonic case: triangular Ni scheme with high-accuracy smoothing on

anirregularmesh . . . . . . ... ... L L 63

Transonic case: quadrilateral Jameson scheme with low-accuracy smooth-

ingon an irregularmesh . . . . . ... .. ... ... o L., 65

Transonic case: quadrilateral Jameson scheme with low-accuracy smooth-

ingonaregularmesh . .. ... .. ... .. ..., ........... 65

Transonic case: quadrilateral Jameson scheme with high-accuracy smooth-

ingon anirregularmesh . . . . ... ... ... ... ........... 65

Transonic case: quadrilateral Jameson scheme with high-accuracy smooth-

ingonaregularmesh . ... ... ..................... 66

Transonic case: quadrilateral Ni scheme with high-accuracy smoothing

onaregularmesh . . ... ... .. ..... ... . ... ... ... 66

Transonic case: triangular Jameson scheme with low-accuracy smoothing

onanirregularmesh . . . . ... ... ... ... ... ... ... 0. 66



5.14

5.15

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

Transonic case: triangular Jameson scheme with high-accuracy smooth-

ingon anirregularmesh . . . . . . ... ... ... ... ... ... ..

Transonic case: triangular Ni scheme with high-accuracy smoothing on

anirregularmesh . . . . . . ... .. oL L L oL

Quadrilateral cell mesh for sinzduct . . ... ..............
Irregular quadrilateral cell mesh for sinzduct . . . ...........
Split quadrilateral triangle cell mesh for sinz duct . . . . ..... ...
Equilateral triangle cell mesh for sinz duct . . . . ... .........
Mach contours for sin?z duct . . .. ... ... ... ...........
% total pressure loss contours for sin?zduct . ... ...........

Order of accuracy for triangular Ni scheme with high-accuracy smoothing

onaregularmesh . . ... .. ... ... ... ... . ... .......

Order of accuracy for triangular Ni scheme with high-accuracy smoothing

onanirregularmesh . . . . ... .. ... .. ... .. .. .. .. ...,

Order of accuracy for quadrilateral Ni scheme with high-accuracy smooth-

ingonaregularmesh ... .. ... ....................

Order of accuracy for quadrilateral Ni scheme with high-accuracy smooth-

ingonanirregularmesh . . . .. ... ... ... ... ... .....

Order of accuracy for triangular Jameson scheme with high-accuracy

smoothing on aregularmesh . . . . ... ... ... ... .. ... ..

Order of accaracy for triangular Jameson scheme with high-accuracy

smoothing on an irregularmesh . . . . .. ... ... ... 0000,

10

67

67

77

77

78

78



6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

7.1

7.2

Order of accuracy for quadrilateral Jameson scheme with high-accuracy

smoothing on aregularmesh . . . . ... ... ... ........... 80

Order of accuracy for quadrilateral Jameson scheme with high-accuracy

smoothing on an irregularmesh . . . . . . ... ... ... oL 80

Order of accuracy for triangular Jameson scheme with low-accuracy smooth-

ing on a regular mesh, smoothing coefficient = 0.0005 .. ... ... .. 81

Order of accuracy for triangular Jameson scheme with low-acc'racy smooth- .

ing on a regular mesh, smoothing coefficient = 0.0001 .. ... ... .. 81

Order of accuracy for triangular Jameson scheme with low-accuracy smooth-

ing on an irregular mesh, smoothing coefficient =0.0005. . . . . . . .. 82

Order of accuracy for triangular Jameson scheme with low-accuracy smooth-

ing on an irregular mesh, smoothing coefficient = 0.0001 . . . . . . . .. 82

Order of accuracy for quadrilateral Jameson scheme with low-accuracy

smoothing on a regular mesh, smoothing coefficient =0.005 . . . . . .. 83

Order of accuracy for quadrilateral Jameson scheme with low-accuracy

smoothing on an irregular mesh, smoothing coefficient = 0.005 . . . . . 83

Order of accuracy for quadrilateral Jameson scheme with low-accuracy

smoothing on a regular mesh, smoothing coefficient =0.001 . . . . . . . 84

Order of accuracy for quadrilateral Jameson scheme with low-accuracy

smoothing on an irregular mesh, smoothing coefficient = 0.001 . . . . . 84
Numerical order of accuracy of numerical schemes . . .. ... .. ... 85
Manner of quadrilateral cell division with interfaces . .. ... .. ... 87
Levels of adaptation with a quadrilateralmesh . . . . .. ... ... .. 88

11



7.3 Manner of triangular cell division

7.4 Levels of adaptation with a triangularmesh . . . . . ... ... ... ..

12



ST T R - I

=

[

R

e ™ 2

Nomenclature

speed of sound

area

total energy

flux vectors in z and y directions
total enthalpy

Mach number

pressure

entropy

time

state vector at nodes
primitive state vector at node
velocity in the x direction
velocity in the y direction
velocity magnitude

flow angle

specific heat ratio

density

characteristic variable

13



Chapter 1

Introduction

Over the last decade more and more interest has been taken in using Computational
Fluid Dynamics (CFD) as a design and research tool. A productive tool must be
affordable as well as accurate. Since CFD methods have become an important tool in
aerodynamic design, it is important that we understand the numerical methods being
used by knowing their strong points and limitations. The goal of this work i8 to compare
the use of finite volume methods which solve the Euler equations on quadrilateral and

triangular meshes to better understand them.

1.1 Background

The use of numerical solution procedures with quadrilateral meshes has been ex-
tensively studied as well as procedures such as multi-grid and spatial adaptation which
reduce the computer time required to compute a solution. Multi-grid is a techaique
which is limited to steady state calculations in which iterations in the solution pro-
cedure are successively computed on several meshes of different node densities, and
flow changes are interpolated from coarser meshes to finer meshes. ln this manner
flow changes are greatly accelerated and so the computational time required is on the
same order as for the coarsest mesh and the accuracy is that of the finest mesh. For
quadrilaterals, the finer meshes are typically found by dividing a coarse cell into four
finer cells. The first multi-grid method for the Euler equations on a quadrilateral mesh
was developed by Ni [15] in 1981. In 1983 another method was developed by Jameson
[9]. Methods which spatially adapt automatically during the solution procedure have
also been developed. These methods place small cells where the physical characteristic

length is small, such as in shocks, and large cells where the physical characteristic length
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is large. Dannenhoffer and Baron (2] discuss the details by which a cell can be chosen for
adaptation. By using adaptation, the computational time is reduced, since to achieve
a desired refinement in one portion of a mesh, a globally refined tnesh is not required.
The method of Dannenhoffer and Baron combines both multi-grid and adaptation to

obtain the benefits of both methoda.

To use CFD methods to compute the flow around complex geometries, several meth-
ods have been tried. The difficult task is placing a mesh around the geometry. One
approach is to divide the flow field into several coarse blocks and a finer mesh is created
in each block. This method requires a large amount of interaction between the user and
the mesh generation program, but is widely used today. Another approach uses meshes
which surround different parts of a geometry and overlap to form a completely meshed
region. The complexiuy of this approach is in the need to interpolate between each mesh.
A third approach involves using unstructured triangles to completely mesh the region.
One particular method to create chis mesh is based on Delauray [4} triangulation which
allows the mesh generation process to be automatic. Baker [1] describes the generation

of a tetrahedral mesh about an entire aircraft using this method.

Interest in the third kind of mesh has prompted research in the use of triangu-
lar meshes to solve the Euler and Navier-Stokes equations. In 1985 Lohner, Morgan,
Peraire and Zienkiewicz [12] presented a finite element procedure for solving the Navier-
Stokes equations on a triangular mesh. A flow solver was developed by Jameson and
Mavriplis [14] which solves the Euler equations for a mesh composed of triangles and
a similar method was developed by Jameson, Baker and Weatherill [10] for use with
tetrahedra. As vith quadrilateral meshes, multi-grid and spatial adaptation methods
have been developed for use with triangular meshes. A triangular multi-grid method
was developed by Mavriplis and Jameson [14] which uses completely unrelated grids at
each level ana interpolates the solution for transfer from one mesh to another. Several
spatial adaptation procedures have been developed to refine the mesh where the physical
characteristic length is small. Unstructured triangular meshes may be refined without
creating interfaces between regions or coarse and fine cells. Substantial work has been

done by Holmes, Lamson and Connell (8] using the Delaunay triangulation method to
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add new points. Another method cf adaptation has been developed by Peraire, Vahdeti,
Morgan and Zienkiewicz [16] which completely remeshes the region putting finer cells

where the physical characteristic length is small.

Controversy exists in the CFD community as to the relative benefits of quadrilateral
and triangular meshes. In particular a recent paper by Ree [19] proved that the local
truncation error is only first order and he conjectured that this implies that the solution
is only first order accurate. This contrasts with the demonstrated second order accuracy
of finite volume quadrilateral schemes. Another paper by Giles [5| argues that on the
contrary these triangular schemes can be globally second order accurate. By being more
widely used for a longer period of time, quadrilateral schemes are better understood
and accepted, therefore the important part of the controversy is focused on how good

triangular schemes are.

The goal of this study is to address this question of how well a given computational
method can perform on a triangular mesh as compared to the more commonly used
quadrilateral meshes. In particular, two schemes will be examined: the node-based
quadrilateral cell Jameson scheme which has been modified for triangular meshes by
Mavriplis and Jameson [14], and the quadrilateral cell Ni scheme [15] which has been
modified here for use on triangular meshes. Care has been taken to keep the triangular

and quadrilateral versions of a scheme similar to provide a fair basis for comparison.

1.2 Overview

First a description of the numerical schemes which solve the Euler equations ex-
amined is given in Chapter 2. Next the numerical smoothing required to make these
schemes stable and suppress unwanted spurious modes as well as capture shocks is de-
scribed in Chapter 3. Chapter 4 presents the meshes and the pointer system which is
used to describe them. These chapters complete the description of the theory required
to write a computer program to implement the schemes described in Chapter 2. Flows

computed with these schemes are described in Chapter 5. In Chapter 6 mathematical

16



and numerical methods of determining the accuracy of these schemes are described and
numerical results are given. Finally a short discussion on spatial adaptation is given in

Chapter 7 and some conclusions of this study are given in Chapter 8.

17



Chapter 2

Numerical Schemes

In this chapter the governing equations for an inviscid gas, known as the Euler
equations, are presented along with two methods for numerically solving these equations.
Both methods are node based, finite volume numerical schemes. The first method is a
Lax-Wendroff scheme which was originally developed for quadrilateral cell meshes by
Ni [15] and further expanded upon by Giles [7]. This scheme will be referred to as a
“Nj Scheme” in the future. A triangular cell mesh extension of the Ni scheme which
was developed by the author will also be discussed. The second method is a four step
scheme which was developed by Jameson [11] for quadrilateral cell meshes and extended
for triangular cell meshes by Mavriplis and Jameson [14]. This scheme will be referred

to as a “Jameson Scheme”.

2.1 Governing Equations

The Aows examined here are steady. To reach a steady state, unsteady equations
will be integrated in time from some initial condition until there is no change in the

state of the fiow field.

For flows with sufficiently large Reynolds numbers the effect of viscosity is confined
to a thin region near solid walle where a boundary layer exists. The governing equations
used in this study neglect the viscous terms and the heat transfer terms from the full
Navier-Stokes equations and are referred to as the Euler equations. These equations are

first-order hyperbolic partial differential equations which can be written as
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8U__(3F+BG) (2.1)

3t \oz  ay

where U is a state vector of dependent variables and F and G are flux vectors in the z

and y directions respectively. F and G are functions of the state vector U.

[ P pu pv
u u?4 uy
v=|"1, r=|"™""|, a=|"* (2.2)
pv puy pvi+p
| PE | | puH | | poH |

The pressure p and enthalpy H can be written in terms of elements of the state

vector U and the specific heat ratio «, which is assumed to be constant.
1,2, 2
p=(r-1p|E - ;(u*+v%) (2.3)

H=E+*= (24)

The differential Equation (2.1) is written in conservation law form since the coeffi-
cients of the derivative terms are constant. Equations which can be written in conserva-
tion law form are well suited for finite volume numerical metkods. The conirol volume

used for these methods can be composed of quadrilaterals or triangles.

The flow variables are non-dimensionalized using the upstream stagnation density
and stagnation speed of sound. This non-dimensionalization does not change the gov-

erning equations and gives the following stagnation quantities.

1
H=— pozl, Po =

ol (25)

1
2
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2.2 Quadrilateral Ni Scheme

Given values for the state vector U at time t for all nodes in the domain, it is
desired to know what the state vector will be at time t + At. A second order Taylor
series expansion for Up,.a; at a node is taken about the solution at time ¢t where the

subscripts represent the time where the function is evaluated.

2
Usat = U + At(a—U) + %Atz(-a-ﬁ)
[ [}

at at?
oF 4G 1 a ad
= U — At(%‘i‘a)‘ - EAC(EAF'*'E;AG)f
At 1
= U — -X(f(de—Gdz) + Ef(Ade—AGdz)) (2.6)
¢
where
oF
AF = At(ﬁ)
t
oG
AG = At(ﬁ)‘ (2.7)

Equation (2.6) is developed by substituting in the differential equation form of the
governing Equation (2.1) and using Green’s Theorem. The integral in Equation (2.6)
is taken about a control volume around the node. This control volume is formed by
connecting the centroids of the four cells surrounding the node to the midpoints of
their shared faces. The control volume about node 1 is denoted by the dashed lines in

Figure 2.1.
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Figure 2.1: Quadrilateral cells surrounding node 1 with control volume for the Ni scheme

Equation (2.6) can be rearranged to define & change in the state vector U in time

At.

U = Uipae~U:

% ( f (Fdy-Gdz) + ; f (AFdy — AGdz))‘ (2.8)

The first term in Equation (2.8) is the flux through the control volume and will be
found by calculating the flux into each cell and distributing one quarter of this flux
to each node which belonga to the cell. AF and AG will also be calculated for each
cell. The second term in Equation (2.8) will be found by integrating around the control

volume using the values of AF and AG for the cell which the boundary of the control

volume passes through.

The change in the state vector at node 1 includes contributions from cells A, B, C

and D given by
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6Uy = 8Uyp + 8Uyp + 86U + 86U p (2.9)

All four contributions are calculated in a similar manner.

6U14, the contribution of cell A to node 1, as shown in Figure 2.1 is given by

6Uia = (Uiyae—Uia

At [ 1 1

at) 1 Fdy - Gdz) — -/ AFdy — AGd
(A)l_ 4£¢1M( v “) 2 056( Y z)]t

(%t)l f% (%)AAUA - i(AF(su—yz)— AG(:u—::z))]‘ (2.10)

where AU, is found by simple trapezoidal integration around cell A.

At

AU, =—(A

)A[ ~(Frt Fi)(sa=1) + (624 G)(za )
~(Fs+ B)(3312) + (G +Gi) s 22
—(Fy+ Fs)(ya—ys) + (Ga+Gs)(z4—z3)
~(Fi+ F)(n=90) + (G1+G)(z -0

= %(%‘-)A[ (Fs—F1)(y2—y4) — (Gs—G1)(z2—z4)

+H(Fa—F2)(ys- 1) — (Ga—Ga) (23— 1) ] (2.11)

The terms (4f) 4 and (4¢); are the timestep divided by the area for cell A and node

1 respectively. The calculation of these terms will be described in Section 2.8.

Using the chain rule AF and AG evaluated at time t in Equation (2.7) can be

rewritien as
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so = af %) - (E) AU (2.12)
¢ t

\ 3t

where AU was defined in Equation (2.11). (§fr) and (3§): are Jacobians of the flux
vectors F and G evaluated at time t. For the Euler equations U, F and G are given in

Equation (2.2), and for these state and flux vectors AF and AG are

(Apu)
AF, = u(Apu) + u(pAu) + (Ap) (2.13)
v(Apu) + u{pAv)

u((a0B)+ (ap) + H(pAw)

(Apv)
AG A= u(Apv) + v(pAu) (2.14)
v(Apu) + v{pAv) + (Ap)

L v((ApE) + (Ap)) + H(pAv)

where

[ 5 | [ (ap) |
A

va=| |, av,=|@ (2.15)

pv (Apv)

| PE | | (ApE) |

A
(rAu) = (Aou) - u(Ap)
(pAv) = (Apv) - v(Ap)
(8r) = (1-1)((80E) - w(dpu) - o(8p) + 3 +)(Ap)) (210

U is the value of the state vector at the cell which is the average of the state vector

at the four nodes which belong the the cell. AU, is found from Equation (2.11).
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2.3 Triangular Ni Scheme

The triangular Ni scheme was developed here as another triangular scheme which can
be used for comparison. The main difference between the quadrilateral and triangular
Ni echemes is that now the control volume is formed by conrecting the centroids of the
triangular cells which surround the node to the midpoints of their shared faces. For
discussion, let n be the number of cells surrounding a node. The control volume about

node 1 where n = 6 is denoted by the dashed lines in Figure 2.2.

Figure 2.2: Triangular cells surrounding node 1 with control volume for the Ni scheme

The change in the state vector at node 1 includes contributions from alil n cells

surrounding node 1 and is given by

8U, =8Uy4 + 68U + 6Uyc + --- all ncells (2.17)

All n contributions are calculated in a similar manner.
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Equation (2.10) extended for the triangular scheme now becomes

§Uya = (Uirat—Utha

at\ [ 1 1 ]
at) |1 Fdy - Gd --/ AFdy — AGd
( A )1 | 3 f;du( y ) 2 abc( y )

(%) %(-:—t) AU, - E(AF(ys—yz) — AG(zs-1z2)) (2.18)
1 A -

where AU, is again found by simple trapezoidal integration around cell A.

AU,4 =%(%) [‘(F2+F1)(!Iz—y1)+(Gz+Gl)(zz—21)
A
—(Fs+ F2)(ys—y2) + (Gs+G3)(zs—z2)
~(Ft F) (31 =v8) + (Gr+Go)(ms2s)
= %(%{)4[ —Fi(y2—-ys) + Gi(z2—7s)
—-Fy(ys—y1) + Ga(zs—z1)

—Fs(y1—y2) + Gs(z1-22) (2.19)

The terms (4%) 4 and (4¢), are once again the timestep divided by the area for cell A

and node 1 respectively. The calculation of these terms will be described in Section 2.8.

For the Euler equations AF and AG are found in the same manner as for the
quadrilaterals from Equation (2.16), except U 4 is the average of the state vector at the
three nodes which belong the the cell and AU is found from Equation (2.19).

2.4 Quadrilateral Jameson Scheme

Like the Ni scheme, the value of the state vector, U, is known at time t for all nodes

in the domain, and it is desired to know the value of this state vector at time ¢t + At.
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A multi-stage time stepping method is used for the Jameson scheme where a first order
approximation is used at each step. In particular a four stage time stepping method is

used in this thesis.

S
I

Uy

U, = Uo+alAt(a,—U)
at 0

= Uo—alAt a—F+a—G
dz = dy 0

A
= U - alf f (Fdy - Gdz)o
At
= Uo - alx(ﬂux)o
Uz = Uo - ag%(ﬂux)l

U3 = Uo b as%(ﬂux)g

At
UH.Ag = Uo - 047(ﬁux)3 (2.20)
1 1 1
a) = Z’ az = 5, Qg = E, Q4 = 1 (221)

where subscripts indicate which state vector is used to calculate the flux. The term
(4) is the timestep divided by the area evaluated at the node to keep the scheme

conservative. The calculation of this term will be described in Section 2.8.

Equation (2.20) is developed in a similar fashion as Equation (2.7) by substituting
in the differential form of the governing Equation (2.1) and using Green’s theorem. The
first order terms in the Jameson scheme are the same as the first order terms in the
Ni scheme, but are described differently by considering a different control volume. In
fact, in the limit of small timestep the Ni scheme reduces to the Jameson scheme. The
integral in Equation (2.20) is taken about 2 control volume around the node which is

formed by all of the four cells around the node, therefore the control volumes in the
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Jameson scheme are overlapping. This control volume is shown about node 1 by the

dashed lines in Figure 2.3.

5 a
' |
. |
B A
' [
' [

6} 1 Z
' |
] C D §
' l
i |
R -

7 8 9

Figure 2.3: Quadrilateral cells surrounding node 1 with control volume for the Jameson

scheme

The integral in Equation (2.20) is calculated by finding the contribution of each cell
to the flux into the control volume for each node. The contribution from cell A to the

flux at nodes 1, 2, 3 and 4 is the same.

fluxy4 = fluxsq = fluxg4 = fluxyy = fluxy (2.22)

where

flux 4 =% —(F2+ F1)(y2—-91) + (G2 +G1)(z2— 1)
—(Fs+F2)(y3—y2) + (Gs+G3)(z3—z2)
—(Fa+ Fs)(y4a—ys) + (G4+Gs)(z4—z3)

—(F1+ Fi)(y1—y4) + (G1+G4)(z1—24)
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[ (Fs— F1)(v2-94) — (Gs—G1)(z2—24)

B |

+(Fa—F3)(ys—y1) - (G4—Gz)(£3—zl) ] (2.23)

The flux at node 1 is then the sum of the contributions from the four surrounding

cells.

flux; = fluxy4 + fluxy;p + flux;c + flux;p (2.24)

where flux; g, flux;c and flux;p are calculated in a similar fashion as flux; 4.

2.5 Triangular Jameson Scheme

The triangular Jameson scheme is similar to the quadrilateral Jameson scheme ex-
cept now the cells which surround a node are triangular. For discussion let n be the
number of cells surrounding a node. The control volume about node 1 where n = 6 is

denoted by the dashed lines in Figure 2.4.

The integral in Equation (2.20) is once again calculated by finding the contribution
of each cell to the flux into the control volume for each node. The contribution from

cell A to the flux at nodes 1, 2 and 3 is the same.

ﬂuxm = ﬁuxu = ﬂuxu = ﬁlle (2.25)

where

flux, = %[ ~(F2+ F1)(y2-91) + (G2+G1)(z2—21)
—(Fs+ F2)(ys—y2) + (Gs+G2)(zs—z2)

—(Fit Fs)(41-9s) + (G14+Gs)(z1—23) ]
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Figure 2.4: Triangular cells surrounding node 1 with control volume for the Jameson

scheme

= %[ —Fy(y2—ys) + Gi(z2—zs)
—-Fi{ys—w1) + Ga(zs—11)

—Fs(y1-y2) + Gs(z1—12) (2.26)
The flux at node 1 is then the sum of the contributions from the n surrounding cells.

flux; = flux;4 + flux;p + :-- all n cells (2.27)

where flux, g, flux;c, ... are calculated in a similar fashion as flux; 4.

2.6 Farfield Boundary Conditions

The farfield boundary conditions are applied at the inlet and outlet boundary nodes,
and are used for both the Ni and Jameson schemes. The boundary conditions on

hyperbolic equations must correctly close the system of equations. Linear characteriatic
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theory determines the direction of wave motion in and out of the domain, and thus
where boundary conditions must be imposed. The following analysis is described by
Giles in [7] and & general formulation is presented by Dannenhoffer in [3]. To simplify

the process, primitive state vector variables U, are used where

U, = (2.28)

| P |

The first step in the process is to linearize the governing equations where the spatial

directions z and y are along the grid lines.

au, aU, U, _
7t T A 2z T BW =0 (2.29)

A and B are constant matrices evaluated at some reference state. The wave prop-
agation normal to the boundary (in the z direction) is dominant, therefore variations

parallel to the boundary (in the y direction) will be neglected. Equation (2.29) becomes

0y | 43U _

o 5 =0 (2.30)

The reference state for evaluation of the matrix A will be the flow on the boundary
at the old timestep. To reduce computational effort, the average value of the state
vector on the boundary will be used to evaluate A. This state will be denoted by the

subscript ( )cid—ave- The constant matrix A is then

c O
o

(2.31)

o &£
[~
O o

o O o
©
S ]
[
o
[

< old—ave

The matrix A can be diagonalized by a similarity transformation,
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u O 0 0
-1 0 u O 0
T AT = =A (2.32)
0 0 u+a 0
0 0 0 u-—a
< old—ave

where the matrix T is the matrix of right eigenvectors of A and che matrix T~! is the
matrix of left eigenvectors of A. Matrix A is a diagonal matrix whose elements are the

eigenvalues of matrix A.

3 0 3 3 -a? 0 0 1
1 -1
r=|° ? %3 % . | 0O 0 k0 (2.33)
0 s 0 0 0 pa 0 1
1 1 -
L 0 0 2 2 Jold-ave - 0 pa 0 l-old—aue
Multiplication of Equation (2.30) by T~! produces the equation
a¢ a¢
— — = 2.34
ot + oz 0 (2:34)

where ¢ = T~1U,. Variation from the values at the old timestep will be considered,
therefore §¢ = T~16U,. The four equations in the system of equations (2.34) are now
independent. The elements of ¢ are the linearized characteristic variables and the cor-
responding elements of A indicate the direction of the flow of information. For subsonic
flow where 0 < u < a the first three characteristics give waves propagating downstream
since the corresponding elements of A are positive and the fourth propagating upstream
since the fourth element of A is negative. For supersonic flow where u > a all waves

propagate downstream since all elements of A are positive.

2.6.1 Subsonic Inlet Boundary

For subsonic flow three pieces of information must be specified at the inlet boundary;

here they will be the total enthalpy, H, the entropy, s, and the flow angle, a.
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tana

v \p 1
(;_—l) ; + E(uz + v’) (235)
log(vp) — 7log(p) (2.36)
L (2.37)

A fourth piece of information comes from the interior of the flow field and will be

taken from the values the numerical solver predicts, therefore denoted by the subscript

( )prea- Let the subscript ( ),pec stand for the value which is specified by the inlet flow

conditions. The subscripts ( )oig and ( )new Will stand for the values at the old and

new time steps. The amount needed to bring the old values of H, s and tana on the

boundary to the specified values can be written in terms of a first order Taylor series

in ¢. The constant coefficient of the series can be changed by using the chain rule to

contain elements of Up.

(H)apee = (H)MI)
oH
= (H)a + (_) 6¢
” a¢ old-ave
oH
= (H)gq + (37,) T 6o
old—ave
1 v a+u a—u
- (H)OM T ('7—1)P P_a 2pa 2pa ]old—au¢5¢ (2.38)
(8)spec = (8)ata + [% p O olom_ms.ﬁ (2.39)
t = (t o L v Vv ] 56  (2.40)
(wacdpe = (tnalus + [0 - oo To] .

The change in the fourth characteristic §(¢4) is equal to the change that the flow

field predicts, &(¢4)pred- Since §¢ = T~16U,, the predicted change in the characteristic

variable §(d4)pred i8 found to be
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6(D4)prea = (—P0)otd OUprea + EPpred (2.41)

There are now four equations for the change in the characteristic variable ¢ which

can be written in matrix form.

Hopee - Daa | [ 5 82 %] [ 5(41) ]
84pec — Sold - % s 0 0 5(¢2) (2.42)
(tan a),pec — (tan a)og 0 Gl oISk oim 6(¢s)
6(64) pred o o o 1 | |64

Using the relation §U, = T'é¢, §¢ in Equation (2.42) can now be changed back into

primitive state vector values Up.

6(r)
§(u
o, = | °@ |
6(v)
| 6(0) |,
r _ 3,,2.  _ 2,,2 1 i 1
¢ DL e G (H)apec = (H)otg
-y -_—
| =13 v Sepec T Sold 112 43)
ua+uto| 1‘_"“ a+u ‘T" tan a,p.. — tan aq
| pau 2 —pav u’+v’Jold_“‘_ 5Pupred

To transform the change in the primitive state vector variables §U, back into the

change in the state vector §U the following transformation is performed

(s ] [ 1 o 0 o] [60]
6(pv) v p 0 O 6(v)
L S(pE) 4 new L %(“2+vz) pu  pv '7+1. Jold - 5(p) < new
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So finally the new value of the state vector at the inlet nodes is

2.6.2 Subsonic Outlet Boundary

For subsonic flow the outlet boundary is similar to the inlet boundary except now
only one piece of information must be specified; here static pressure p w:ll be used.
Once again the amount needed to bring the old value of p to the specified value on the

boundary can be written in terms of a first order Taylor series in ¢.

Pspsc = Pnew

Q.)lQ:
"

= Ppoa + ( ) 6¢
old—ave

aU,,) 5
=2 $
P) old—ave ( 3¢ old—ave

1 1
= Pod t [0 0 - —]
° 2 2 old—ave

Q
S

= Pold + (

D
-

5¢ (2.46)

The change in the first, second and third characteristics is equal to the change the
flow field predicts. Again, since §¢ = T 16U, the predicted change in the characteristic
variables 6(@1)pred, 5(¢2)prea 8nd 8(h3)prea are found to be

5(¢l)pnd = ('_az)old 6ppr¢d + 5Pprad (2.47)
6(¢2)p"ed = (pa)oa §vpred (2.48)
5(¢3)pr¢d = (pa)old Supud + 6Ppud (2.49)

As in the subsonic inlet condition, there are now four equations for the change in

the characteristic variable ¢.
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- 5(¢1)pnd
s(h)pnd
6(¢3)pnd

| Papsc — Pold |

o O O =

O O = ©
we = O O

1 560 ]
6(¢1)
6(¢s)
| 6(¢4) |

we. O O O

(2.50)

Using the relation §U, = T§¢, §¢ in Equation (2.50) can now be changed back into

primitive state vector values U,.

6(p)
5
5U, = (u)

5(v)
'6(P)-mw
BN

_|° 0%

0o L o

0 0 0

4 old—-ave

6d1pred
5¢2 pred
6¢3 pred

| Pspec — Pold |

(2.51)

The primitive state vector variables, §U),, are transformed to the state vector, §U,

by Equation (2.44) and the update is performed as in Equation (2.45).

2.6.3 Supersonic Inlet Boundary

Since for supersonic flow all waves flow downstream, to implement the inlet boundary

conditior it is simply necessary to prescribe the flow conditions. The inlet Mach number

M, pe: 18 specified as well as the flow angle a,p,., and the flow conditions are found from

these variables.

(1

1-1
+

(1+

2

2
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— P
P “
The state vector is fixed at
P
wcos a
g | Pt (2.52)
PW SiN Qgpec
| 7B+ 3wie |

2.6.4 Supersonic Outlet Boundary

For the supersonic outlet all waves flow out of the boundary, so the change in the

state vector predicted by the scheme is used here.

5Unew = Upred (2.53)

2.7 Wall Boundary

Two conditions are applied at the solid wall boundaries; first that there is no flux
through the wall faces and second that the flow is tangent to the wall at the wall nodes.
It would seem that the first condition would be sufficient to satisfy the second condition
without explicitly enforcing tangency, but this is not the case since the scheme is node
based. The flux on the face is computed by averaging the flux at the nodes, therefore it
is possible to have no flux through the walls while the nodal flux oscillates about zero at

the wall nodes. By imposing tangency at the nodes, this oscillatory state cannot occur.
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2.7.1 Ni Scheme

Since for the Ni scheme oniy half as many cells surround a boundary node as an
interior node, the control volume is half the size of the control volumes in the interior
of the flow field. Boundary cells are shown in Figure 2.5 with the boundaries of the
control volume denoted by dashed lines. When computing AU for the wall boundary
cells from Equation (2.11) for quadrilateral cells or Equation (2.19) for triangular cells,
the flux through the wall face consists only of the pressure term. The contribution to
AU from cells A, B (and C in the triangular case) to ncde 1 in Figure 2.5 is then found
in the same manner as for the interior nodes. The second order contribution to node
1 is also the same as for the interior nodes, except that now the integral must also be
taken along the wall boundary where AF and AG consist only of the pressure term.
For cell A the second order contribution from AF and AG along the boundary become

r—=—r—=—12
| |

| U . |
///t3///7////////////////////z /7

0 0
A 0
afra=| PP | ag,-= (2.54)
0 (Ap)
0 0
JA A

w'here as before

(89) = (1-1)((8pE) - u(Bpu) - o(Am) + 3P+ H)(BR)  (255)
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2.7.2 Jameson Scheme

The control volume for the Jameson scheme boundary nodes is also half the size of
the control volumes in the interior of the flow field. The boundary control volume is
shown in Figure 2.6. The no flux condition is easier to implement for the Jameson scheme
since there are only first order terms. When computing (flux) for the wall boundary
cells from Equation (2.23) for quadrilateral cells or Equation (2.26) for triangular celis

the flux through the wall face consists only of the pressure terms.

)
)
] B A
]

(-] N, R
L117177777777777777 777777777777
Figure 2.6: Boundary cells for Jameson scheme with control volume

2.7.3 Tangency Condition

The change in the state vector for both schemes is such that the new state vector will

satisfy flow tangency on the boundary. At each wall node a flow angle, a, is prescribed.

For both schemes the second and third components of the state vector are changed
from the value predicted by the solver, denoted by the subscript ( )sefore, S0 the new
values become

(Pu)new = (Pu)aqm + (pw)nsina

(P”)m = (P”)be[ou - (Pw)nccma (2.56)
where
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(pw)n = —(PU)seforesina + (PY)besorecoB (2.57)

and for the Ni scheme,

(PU)sesore = (pt)ota + 8(pu)ura (2.58)

(PV)besore = (Pv)otd+5(PV)ou (2.59)

2.8 Timestep

In the description of the basic schemes the timestep divided by the area, (%) , Was
referred to for a cell or a node. The term (4{) is computed on a cell basis and the value
at the node is found by summing (4¢) for the cells surrounding the node. A factor of :
is multiplied by the nodal (%) for the quadrilateral Ni scheme and 3 for the triangular
Ni scheme since the control volume at a node only includes this fraction of the cells

surrounding that node.

For the quadrilateral schemes the maximum stable (%5) on acell A is defined by Usab

in |22] from a Von Neumann stability analysis for the linearized 2-D Euler equations.

A 1 1
a) = $mi 2.60
( A )mz CFL m'n{luAy‘ - vAZ!| + aAl’ |uAym — vAz™| + aAm} (2.60)

The flow variables u, v and a are the average of the nodal values for the cell. For

cell A with nodes 1, 2, 3 and 4 running counterclockwige around the cell as shown in

Figure 2.1,
t 1 m_ 1
Az = E(zz +z3 -z - 34): Az™ = E(zl t22 - z4 - xs)
! 1: m 1
Ay = f\yz +ys—y; — y4), Ay™ = §(y1 ty2 —ys - ys) (2-61)
Al = \/(Ax:)z + (Ayl)z , Am = \/(Azm)ﬁ + (Aym)z
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For the triangular schemes the (4t) is found by Giles in [6] from energy methods.

At CFL-2 (2.62)
A m: luAzl—vAY| + [uAz™ - vAY™| + |[uAzZ"~vAY"| + a(Al+Am+An) T

The flow variables 4, v and a are again the average of the nodal values for the cell.
For cell A with nodes 1, 2 and 3 running counterclockwise around the cell as shown in
Figure 2.3

1 1
Az = (zz-m), Ay = (e - )
A" = G(es-m), A = ()

1 1
Az" = 5(21 - z3), Ay" = E(‘” —ys)

Al V(az)? 4 (Ag)?

Am = \/(Az"‘)2 + (Ay™)?

An = \[(Azr)? + (Ayn)? (2.63)

CFL stands for the Courant, Friedrichs, and Lewy number which gives the timestep
limit for stability. In [22] Usab presents a Von Neumann stability analysis for the
linearized 2-D Euler equations on the quadrilateral Ni scheme. The stability restriction
from this analysis is CFL < 7‘; Usab then says that this restriction is too strict and
that in practice CFL < 1 is used. This observation was confirmed in this work for
both the quadrilateral and triangular Ni schemes. It is possible that the non-linearity
in the Euler equations or numerical smoothing cause the increase in CFL limit. Using
energy methods, Giles shows in [6] that for the four step method used here for the
triangular Jameson scheme the stability limit gives CFL < 2v/2. The method finds the
CFL limit for which the energy associated with a solution is non-increasing. It has been
skown that for the four step quadrilateral Jameson scheme the stability limit also gives
CFL < 2y/2. In practice it was found that this limit is not strict enough and CFL < 2
was used.
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Chapter 3

Numerical Smoothing

Numerical smoothing is a dissipative operator which is added to numerical schemes
to damp out oscillations in the solution and provide stability. The Jameson schemes
do not have a dissipative term and are unstable without the addition of a dissipative
smoothing operator. Numerical smoothirg is also required for the Jameson schemes
to eliminate steady state, spatially-oacillatory modes which are allowed by the scheme.
Three 1nodes are allowed for the quadrilateral Jameson scheme and are shown as modes
a, b aad c in Figure 3.1. Three modes are also allowed for the triangular Jameson
scheme.. One is shown in Figure 3.2 and the other two are similar modes shifted by
one node. For the Ni schemes there is a dissipative term in the numerical operator
and the scheme is stable for a smooth flow field. For the quadrilateral Ni scheme
only one oscillatory mode is allowed which is shown a# mode a in Figure 3.1. The
triangular Ni scheme does not allow any of the oscillatory modes, but in the limit of
very smail timestep the Ni scheme reduces to the Jameson scheme which, as mentioned,
allows three modes. To provide stability and to eliminate osciilatory modes a fourth
difference freestreamsmoothing operator is used. For both schemes numerical smoothing
is required to capture discontinuities such as shocks. The smoothing required to capture

shocks will be referred to as shock smoothing.

First, the different second difference cperators used here will be described. These
operators are used to formulate the smoothing operators. Next the different methods

of freestreain and shock smnothing will be described.
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Figure 3.1: Possible modes for quadrilateral cells

o/ o/N 1/\ 0/\

Figure 3.2: Possible mode for triangular cells

42




3.1 Second Difference Operators

To compute the fourth difference smoothing operator for freestream smoothing, a
second difference of a second difference is is computed. For both quadrilaterals and
triangles two second difference operators are examined. The first is a relatively fast
operator which gives a non-zero second difference for a linear function on a non-uniform
grid. The second operator is slower but results in a zero second difference for a linear
function. By examining the effect of the second difference operator on a linear function
the accuracy of the operator is tested, since for second order or higher accuracy the

contribution must be zero.

Typical triangular aud quadrilateral cells are shown in Figure 3.3 with the corre-

sponding nodes.

cell A
cell A

Figure 3.3: Typical triangular and quadrilateral cells

3.1.1 Low-Accuracy Second Difference

This operator is not dependent on the location of the nodes surrounding the node
for which the second difference is computed, but merely on the function values at these
nodes. For a triangular mesh the contribution from cell A to the second difference at

node 1 is
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(D?S)14 = (S3 + S2 — 251) (3.1)

where S is the variable for which the second difference is computed. For a quadrilateral

mesh the contribution from cell A to the second difference at node 1 is

(D?S)14 = (S4 + Ss + Sz — 351) (3.2)

This second difference is conservative for both triangular and quadrilateral meshes

since the total contribution of each cell is zero.

3.1.2 High-Accuracy Second Difference

This operator consists of finding the first derivative for each cell and then combining
the derivatives on the cells surrounding a node to form a second difference. Unlike
the low-accuracy second difference operator, this operator is dependent on the grid
geometry. The operator for a triangular cell mesh will be examined first since the

operator for a quadrilateral cell mesh is essentially a triangular operator.

Referring to Figure 2.3 the first derivative is found with respect to z and y for cell

A.

(S2)a = Ay / f cellA E-Edz dy

- AA-/I..—Z—Sde
= I";(%(Sﬁsl)(vz—w) + %(Sa+Sz)(ys-yz) + %(s,+s,)(yl-y3))
- 2:4 (Sl(”’ —ws) + Sa(vs - !ll)+Ss(su—yz)) (3.3)

S)s = // 95 1z d
(S54)a ApJ Jeeta Oy i

= / Sdz
Ap J1-2-3
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= ;_1(%(32'*'51)(32_21) + %(SS'*‘S])(I;—zz) + %(Sl_*_ss)(xl_xs))

= 2Al (Sl(zg—zs) + Sa(zs—z1) + 53(21—32)) (3.4)

A similar process is performed to create a second difference. The integration is
taken around all the triangles which surround the node for which the second difference
is computed, using the derivative values calculated at the cells. To get a second difference
instead of a second derivative, there is no division by the area of the integrated region.

The contribution to the second difference &t node 1 from cell A is

(D*S)ia = /2 ($)ady— (S,)ads

= % [(Sz)A(!'s - y2) — (Sy) a(zs — 23) (35)

This second difference operator takes about twice as long to compute as the low-
accuracy second difference operator. It is also conservative since again the total contri-

bution of each cell is zero.

To formulate a second difference operator for a quadrilateral mesh a simi'ar process
is employed. It turns out that if the first derivative is found by integrating around
the complete quadrilateral, the oscillatory modes are not damped out, and the primary
purpose of the operator is not fulfilled. To prevent this problem, the quadrilateral is
broken into triangles and the triangular operator is applied. The division of cell A is
shown in Figure 3.4. For cell A the first derivatives for the triangle corresponding to

node 1 is

(Sz)a = An /-/dlA Edzdy

= Sd
A /;—2—4 4

= ALM(%(SH&)(m-m) + %(S4+Sz)(w—yz) + %(51+S4)(y1—y4))
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Figure 3.4: Division of quadrilateral cell for non-conservative, high-accuracy second

difference

(Sy)as

where A4 refers to the area of the triangle corresponding to node 1 for cell A.

2‘: (Sl(m —v4) + S2(va—w1) + 54(y1—y2))

AAI

—dzd
-[/ccuA ay zay

Sdz
1-2-4

(3.6)

A—_All(%(sﬁ-sl)(n—xl) + %(S4+Sz)(34-zz) + %(31+S4)(=:1—z4))

2A1 (51(2:3 —z4) + Sa(za— =1)+s4(,1_:,))
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Next the integral is taken around the outside edge of the triangle to give the contri-

bution of cell Al to the second difference at node 1.

(D*S)a = /;_‘(Sz)Aldy - (Sy) ardz
= %[(sz).u(m — y2) — (Sy)ar(zs — -"z)] (3.8)

Similar contributions to corresponding nodes are found for the other three triangles
into which celi A is divided. As with the triangular version of this operator it takes
about twice as long to compute this operator as the low-accuracy second difference
operator. For the quadrilateral mesh this second difference is not conservative since the
total contribution from each cell is not zero since the first derivative contribution is not

constant in the cell.

3.2 Freestreamn Smoothing

To damp out oscillations and provide stability a fourth difference operator is added
throughout the flow field. It is desirable to have a conservative operator so all terms

in the flow field cancel and therefore no mass, momentum or energy production occurs

due to the smoothing.

The first method of creating a fourth difference is to use the low-accuracy second
difference twice by operating first on the state vector and then operating on this second
difference. This fourth difference is conservative since the contribution of each cell to
the numerical smoothing is zero, but is only second order accurate on a uniform mesh
since the second difference operator used is only second order accurate on a uniform
mesh. The second method is to compute a second difference of the state vector using
the high-accuracy method and operate on this second difference with the low-accuracy
second difference. This operator is second order accurate since the first operator is
second order accurate and conservative since the second operator is conservative and

again the contribution of each cell to the numerical smoothing is zero. The second
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method is more expensive than the first, but the effect per iteration is an increase of

only 5-10% which is a small increase for the gain in accuracy.

The fourth difference is computed as a contribution from each cell to the nodes
which make up that cell. The freestream smoothing is multiplied by a coefficient ),
between 0.0 and 0.05, to conirol the amount of smoothing added to the scheme. To
make the numerical smoothing term consistent with the numerical scheme, the fourth
difference added to the change in the state vector at each node must be multiplied
by the ratio of (4¢) for the node to (4¢) for the cell as described by Roberts in [18].
For the quadrilateral Ni scheme in Equation (2.9) and for the triangular Ni scheme in
Equation (2.17) the change to the state vector due to cell A at node 1 becomes

SUia = 6Ua + V) (%) (%) (Dz(D2U))lA (3.9)
1 A

The value of the flux contribution for the quadrilateral Jameson scheme in Equa-
tion (2.24) and the triangular Jameson scheme in Equation (2.27) is changed such that

the contribution from cell A to node 1 becomes

ﬂuxm = ﬂuxlA + 6(1) (i) (Dz(DzU))lA (3.10)
at),
The flux terms are multiplied by (%!) for each node when the change in the state vector
is computed in Equation (2.20), so the smoothing term is consistent with the numerical
scheme. The numerical smoothing term for the Jameson scheme is only computed after

the first two of the four steps.

3.3 Shock Smoothing

In regions with strong discontinuities the fourth difference smoothing is not enough
to cause any of the schemes mentioned here to be stable. When strong discontinuities
are detected the freestream smoothing is turned off since it is destabilizing, and shock

smoothing is turned on. For the Jameson schemes the shock smoothing consists of a
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low-accuracy second difference which is turned on in regions of high pressure gradient.
Another method is used for th: Ni schemes which adds a bulk viscosity term in regions
of high velocity flux.

3.3.1 Second Difference Smoothing

To determine when to turn on the second difference smoothing a pressure switch is
used. This switch is found for each node and consists of the second difference of pressure
computed using the low-accuracy operator as shown in Equation (3.1) for triangular
meshes and Equation (3.2) for quadrilateral meshes and divided by the pressure at the
node. Near shocks this switch will be of order 1 but in the freestream it will be of order
Az?. For node 1 this switch is

()1 = 22 (3.11)
p1

Once the switch is found it is used when finding the second difference of the state
vector at the nodes which is computed using an operator similar to the low-accuracy

operator and multiplied by a coefficient, (2}, between 0.0 and 0.1.

For the triangular scheme the value of the flux contribution in Equation (2.27) is

changed such that the contribution from cell A to node i becomes
1
fluxia = fluxgy + €2 3 [ ((%)1 + (3p)z)(U2 - Uy)

+ ((sp)l + (’p)S) (Us - Uh) ] (3.12)

Similarly for the quadrilateral scheme the flux contribution in Equation (2.24) is changed

such the contribution from cell A to node 1 becomes
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flux;q4 = fluxjq + €@ 21'—,[ ((sp)1+(s,,.)z)(Uz -U)
+ ((ophs + (o) ) (03 - 02)

(AR BT
3.3.2 Bulk Viscosity Smoothing

To capture shocks, viscosity is added near shocks since viscosity would capture a
shock if it were accounted for in the governing equations. This method is similar to the
method described by Richtmyer and Morton in [17]. To ensure that the shock width
remains nearly the same, regardless of shock strength, terms quadratic in tke strain
rate are added to the differential equation. The volumetric dilatation, or the velocity
divergence, is a measure of the strain rate. In shocks the volumetric dilatation is highly
negative since shocks represent regions of extreme compression. The shock smoothing is
turned on when the volumetric dilatation is negative and is limited such that it is never
less than -0.1. The viscosity term which is added to the flux vectors is proportional
to the volumetric dilatation squared and, to prevent excessive smoothing at stagnation
points, the velocity squared. The change in the flux vectors, AF and AG now have the

viscosity term added to their second and third elements respectively.

(AF)a = (AF)a + }maz(-0.1, min(0., diviia)) divva(u? +v?)
(AG3)a = (AGs3)a + imaz(-0.1, min(0., divis)) divig(u®+v?)

(3.14)

For triangles the volumetric dilatation for cell A can be found by

divitg = scaled volumetric dilatation of triangular cell A

2 du Jv
Vil (a ¥ @) dedy
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@f;_z_s(udy — vdz)

= ﬁ(tﬂ(!ﬂ_!ﬂ) + uz(ys—y1) + u2(y1—2)

—(vi(z2—z3) — v2(23—121) — V271 —:1:2)) (3.15)
and similarly for quadrilaterals

divitq4 = scaled volumetric dilatation of quadrilateral cell A

- \/_//uuA(au av)dzdy
\/_f; . (udy — vdz)

= 7 ((u1—u3)(yz—y4) + (u2—us)(y3—w1)

— (v1—v8) (23— 24) + (02 —04)(2:3—::1)> (3.16)
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Chapter 4

Mesh Generation and Pointer System

In this chapter the mesh generation and the system for storing the information in
the mesh are described. An elliptic mesh generator was used to generate a quadrilateral
mesh and, since the development of a triangular mesh generator was not a major focus
of this work, the quadrilaterals in this mesh were divided into triangles to generate a

triangular mesh.

For meshes consisting of a regular arrangement of quadrilateral cells, the the nodes
of the mesh have traditionally been described in two dimensions by an (s, ;) indexing.
An alternative to this method of describing a mesh is to assign each ncde a number
and describe the connection between the nodes by one dimension of an array of mesh
elements. These elements can consist of cells, faces, edges or any other element which is
important in the numerical scheme. This system of describing a mesh will be referred
to as a pointer system. When a pointer system is used the flow solver is separated from
the mesh generator. Due to the inherent irregularity of most triangular meshes, it is
usually not possible tc use the first method of describing a mesh and a pointer system

must be used. All the meshes used for this study are described using a pointer system.

4.1 Elliptic Mesh Generator

Elliptic partial differential equations are used to generate a smooth mesh. The
equations are defined in a computational plane with coordinates £ and n whosc nodes

have a one to one mapping to the physical plane. The equations used are

Ezz + fw = P(E"’) . (4'1)
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Nz + My = Q(&,n) (4.2)

where P and Q are forcing terms defined by Steger and Sorenson [21]. By switching the

independent and dependent variables these equations become

azee = 20Zen +1Z0n = —J*(Pz¢ + Qzn) (4.3)
ayee — 20¥¢n + Yy = —J*(Pye + Qun) (4.4)
where
J = z¢yg — Toye
— 2 2
@ = Zp,ty,
B = z¢zq+t ynye
7 = i+

An H-mesh in a duct or blade cascade is created where the line £ = 0 corresponds
to the inlet boundary and the line £ = 1 corresponds to the outlet boundary. The lines

n =0 and n = 1 correspond to the upper and lower surface of the domain.

4.2 Complete Pointer System

To assure that the constraints of the pointer system would not restrict the code
developmert process, a very complete pointer system was put together. This system
stores three to four times as ruch information as is required to program the numerical
schemes described here. The minimum requirements are described in the following

section.

The pointer system used here consists of arrays of nodes, cells, faces, edge faces and

edge nodes. These arrays are interconnected in that elements in one array will point
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to elements in another array. Nodes are the only elements which do not point to cther
elements. The interconnection of the arrays is shown in Figure 4.1 where the arrows
indicate pointing from one array to another. In essence the complete pointer system
overdefines the connection between the arrays, but this allowed more freedom in the

code development process.

face edge face

edge node node cell

Figure 4.1: Interconnection of pointer arrays

4.2.1 Node Arrays

Each node is assigned a number. Arrays containing all the nodes hold information
about the z and y coordinate as well as the four elements of the state vector U for each

node. These variables were stored in

z(N) N =1,Nmaz

y(N) N =1,Nmas

U(s,N) N =1,Nmaz
1=1,4

Other information is temporarily stored at each node, such as the flux vectors F

and G and the change in the state vector §U.
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4.2.2 Cell Arrays

The cell is the basic computational unit for all the schemes described here. The
value of a flux, for example, is calculated for the cell and distributed to the nodes which
make up the cell. To completely describe the cell and its surrounding elements, each

cell points to the nodes and faces which make up the cell. The cell array for cell CC

consists of
N F4 3 celi(1,CC) = F1
cell(2,CC) = F2
cell(3,CC) = F3
F1 cc IF3 cell(4,CC) = F4
cell(5,CC) = N1
cell(6,CC) = N2
. - , cell(7,CC) = N3
cell(8,CC) = N4
cell(1,CC) = F1
cell(2,CC) = F2
cell(3,CC) = F3
cell(4,CC) = N1
cell(5,CC) = N2

cell(6,CC) = N3

As with the nodal arrays, other informaticn is temporarily stored at each cell, such
as the area divided by the timestep (ﬂ) and the change in the state vector at the cell

AU. This information can be accessed by merely knowing the cell number.
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4.2.3 Face Arrays

At one time, using the face as the basic computational element was considered.
This method is effective for the Jameson schemes mentioned here, but for consistency
between the Ni and Jameson schemes was replaced by the cell based method. Currently
the face elements are used to indirectly describe edge faces and plot the computational
mesh. Each face points to the cells on either side of it and the nodes which belong to
these cells. When a node or face lies outside the computational domain its value is set

to zero. The face array for face FF consists of

N 2 5 face(1,FF) = C1
face(2,FF) = C2
face(3,FF) = NI

C1 FF C2 face(4,FF) = N2
face(5,FF) = N3
face(6,FF) = N4

N3 0 6 face(7,FF) = N5

| face(8,FF) = N6

2
face(1,FF) = C1
face(2,FF) = C2
N3 ¢t FH  ©2 N4 face(3,FF) = N1
face(4,FF) = N2
face(5,FF) = N3
N face(6,FF) = N4

4.2.4 Edge Face Arrays

To implement the boundary conditions it is necessery to know which faces or cells

lie on the boundary and their orientation with respect to the boundary. The elementa
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of the edge face array point to the elements of the face array. Each face which is on the
boundary is oriented such that C1 and N3 (and N4 for the quadrilaterals) lie inside the

domain.

edge(EF) = FF

4.2.5 Edge Node Arrays

For convenience an array of edee nodes was also created. These nodes correspond
to the sciid wall boundary nodes. Information such as the flow angle o at a boundary

node was stored in an array indexed by the edge nodes.

4.3 Required Pointer System

The pointer system described in the previous section contains more information than
i8 required to implement the numerical schemes described here. The nodal arrays are
the independent variables of the system and should remain as they were described. The
rest of the pointer system can be replaced by a single array of cells. To specify which
cells lie on the boundaries the edge cells can be placed at the beginning of the array
with the first two nodes of these cells lying on the boundary. The cell array should be

arranged such that the entry for cell CC would consist of

N 3
cell(1,CC) = N1
cell(2,CC) = N2
ce cell(3,CC) = N3
cell(4,CC) = N4

N1 12

57



cell(1,CC) N1
cell(2,CC) = N2
cell(3,CC) = N3

CC

N1 - N2

4.4 Vectorization

To eliminate data dependencies which restrict vectorization and to create long vector
lengths, a coloring system is used. This system assigns a color to each element in the
array such that all elements of the same color do not contain data dependencies. The
arrays are then sorted such that all elements of the same color occupy consecutive
locations in the array. For example, data dependencies may occur in an operation on
an array of cells when two different cells contain a node in common. For quadrilateral
cells it is possible for simple cases to color the cell array with four colors such that the

cells of one color do not have common nodes.

All arrays in the pointer system used here were colored so the code would run on

an Alliant FX/3 computer which veed vector/concurrent arithmetic.
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Chapter 5
Computational Examples



than the high-accuracy smoothing. Essentially twice as many iterations were required
for the Ni schemes than the Jameson schemes since the CFL number for the Ni schemes

is half as large as for the Jameson schemes.

Several Mach number contours with increment 0.05 are shown in Figures 5.1 to 5.7
for different numerical schemes and numerical smoothing techniques. For the most part

the solutions lock the same.

In Figure 5.1 the effect of the low-accuracy smoothing on an irregular mesh can be
seen. Comparing the solution in Figure 5.1 to the solutions in Figure 5.2 with the low-
accuracy smoothing on a regular mesh and Figure 5.3 with the high-accuracy smoothing
on an irregular mesh, the contours are not as smooth. This effect exists because the
low-accuracy smoothing includes no information about the location of the neighboring
mesh points. For an irregular mesh this becomes important. In Figure 5.1 another
effect of the low-accuracy smoothing can be seen. The contours on the lower surface do
not intersect the solid wall smoothly. A slight turning of the contour lines can be seen.
This effect exists because the inviscid solution has g% # 0 on curved walls, whereas the

low-accuracy smcothing has a one-sided bias which implicitly assumes that gﬁ =0.

All the solutions pick up the normal shock cn the upper surface of the duct in the
reflection from the leading edge shock. This reflection interacts with the trailing edge
shock behind the bump, and reflects of the lower surface of the duct to combine with the
trailing edge shock. In general the quadrilateral schemes pick up this interaction between
tbe shocks better than the triangular schemes. This is partly due to the resolution since
as the mesh is refined, the shock is picked up by the triangular schemes as well as the
quadrilateral schemes. The triangular schemes have a harder time keeping the leading
edge shock and its first reflection straight. More work must be done with the shock

capturing smoothing to correct this.
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Figure 5.1: Supersonic case: quadrilateral Jameson scheme with low-accuracy smooth-

ing on an irregular mesh
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Figure 5.2: Supersonic cage: quadrilateral Jameson scheme with low-accuracy smooth-

ing on a regular mesh
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Figure 5.3: Supersonic case: quadrilateral Jameson scheme with high-accuracy smooth-

ing on an irregular mesh

1.0 @ T
Y 0.5 -
0.0 r 4 -
0.5 0.0 0.5 1.0 1.5 2.0
X

Figure 5.4: Supersonic case: quadrilateral Ni scheme with high-accuracy smoothing on

a regular mesh
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Figure 5.5: Supersonic case: triangular Jameson scheme with high-accuracy smoothing

on an irregular mesh
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Figure 5.6: Supersonic case: triangular Jameson scheme with low-accuracy smoothing

on an irregular mesh
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Figure 5.7: Supersonic case: triangular Ni scheme with high-accuracy smoothing on an

irregular mesh
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5.2 Transonic Circular Arc Bump

The second problem is transonic flow in a channel with a 10% circular arc bump
on the lower surface. The inlet Mach number is 0.675. A 64 x 18 cell mesh is used.
‘The inlet is subsonic, but the fiow is accelerated over the top of the bump and a shock
forms. This problem again illustrates the shock capturing methods as well as subsonic

interactions with solid wall boundaries.

Several Mach number contours with increment 0.1 are shown in Figures 5.8 to 5.15
for different numerical schemes and numerical smoothing techniques. Again, for the
most part the solutions look the same. Some plots show tighter shocks, but this is due

to different shock capturing methods more than the numerical schemes themselves.

As with the supersonic test case, the solution found using the quadrilateral Jameson
scheme with low-accuracy smoothing on an irregular mesh, as shown in Figure 5.8, is
significantly less smooth than the same case on a regular mesh, as shown in Figure 5.9.
The high-accuracy smoothing used with the quadrilateral Jameson scheme produces
much smoother results with both regular and irregular meshes as shown in Figures 5.11
and 5.10. In fact the irregular mesh has a very smooth solution with the high-accuracy

smoothing.

In Figure 5.13 an effect of the low-accuracy smoothing on the interaction with solid
wall boundaries can be seen. The smoothing tends to keep the Mach contours from
intersecting the solid wall smoothly. This can be seen by a turning of the contour lines
uear the wall. This effect can also be seen in for the supersonic case in Figure 5.1. Once
again the lack of information about the location of the mesh points in the low-accuracy
smoothing and the imposition of an unnatural boundary condition for the numerical

smoothing causes a problem.



1.0

Y 0.5 -

0.0 v r Y —r

Figure 5.8: Transonic case: quadrilateral Jameson scheme with low-accuracy smoothing

on an irreguiar mesh
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\ Figure 5.9: Transoaic case: quadrilateral Jameson scheme with low-accuracy smoothing

on a regular mesh

1.0

Y 0.5 1

0.0

Figure 5.10: Transonic case: quadrilateral Jameson scheme with high-accuracy smooth-

ing on an irregular mesh
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Figure 5.11: Transonic case: quadrilateral Jameson scheme with high-accuracy smooth-

ing on a regular mesh
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Figure 5.12: Transonic case: quadrilateral Ni scheme with high-accuracy smoothing on

a regular mesh
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Figure 5.13: Transonic case: triangular Jameson scheme with low-accuracy smoothing

on an irregular mesh
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Figure 5.14: Transonic case: triangular Jameson scheme with high-accuracy smoothing

on an irregular mesh
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Figure 5.15: Transonic case: triangular Ni scheme with high-accuracy smoothing on an

irregular mesh
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Chapter 6

Accuracy Study

It is shown mathematically by Giles [5] that both the Ni scheme and the Jameson
scheme are second order accurate for either quadrilateral or triangular meshes. The
nature of the mathematical proof as well as a numerical accuracy study which confirms

this result are examined in this chapter.

6.1 Mathematical Study

Giles shows in [5] that the global solution error is second order for steady state node
based finite volume schemes on irregular meshes. The analysis states that the local
truncation error is first order, but that this does not imply that the global error is also
first order. It is assumed that the numerical finite volume scheme is conservative and h
is some typical cell length. With this in mind, it is shown that the iruncation error has
a spectral content which can be split into two parts, a low-frequency component with
an amplitude which is O(h?) and a high-frequency compcnent with an amplitude which
is O(h). It is then shown that the hyperbolic differential operator

_OF(U) , 3G{U)

LU ="25 ” (6.1)

has a transfer function which is O(1) at low frequencies and O(1/h) at high frequencies.
From this it can be concluded that the global error is O(h?) for both low and high
frequencies, therefore the schemes are second order accurate. An important assumption
in the analysis is that the numerical smoothing does not produce a truncation error

which is worse than first order on irregular meshes.
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6.2 Numerical Study

A numerical study was performed to determine the accuracy of the schemes described
in Chapter 2. The purpose of this study was to confirm that these schemes are second

order accurate.

For inviscid flow, there should be no total pressure loss for smooth, subsonic flow.
Thus, for such flows any total pressure loss is purely numerical in nature. With this in
mind, the total pressure loss is used to define the error in subsonic flow through a duct
with a sin? z bump on the lower surface and a 0.50 inlet Mach number. The height of

the lower surface is given by

y = 0.10sin’(xz) 0<z<1 (6.2)

To describe the rumerical error on a mesh a global error is defined as the Li-norm of

this local error.

_ (Po)upl!raam - (Po)local
= (po)upatrcam (6‘3)
_ 2y
error = Tl (6.4)

For meshes composed of quadrilateral cells it is easy to define an appropriate mesh
for an accuracy study. To create a regular quadrilateral mesh a mesh is laid out in a
rectangular duct with a sin? z bump on the lower surface which is 3 units long and 1
unit high where cells away from the bump are square. A, a typical cell length, is defined
as the length of the cell faces. Four different meshes are used for the study with 8, 16,
32 and 64 faces per unit length. The second mesh in this series is shown in Figure 6.1.
To create an irregular quadrilateral mesh the nodes of these meshes are perturbed by an
amount determined by a sine function whose period has no relationship to the mesh.
Four different meshes are again used for the study with 8, 16, 32 and 64 faces per unit

length. The second mesh is shown in Figure 6.2.
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Two different mesh types are used for triangular cells. The first type is an irregular
triangular mesh and is identical to the meshes described for the quadrilateral cells where
the cells are split along the shorter diagonal to create triangles. h is defined in the same
manner as for the quadrilaterals since this defines a reference length for the cells. Again
four different meshes are used with 8, 16, 32 and 64 faces per unit length. An example
of the second mesh is shown in Figure 6.3. A second type of mesh was created which
contains only triangles which are very nearly equilateral. This type of mesh is what
could be referred to as a regular triangular mesh.. The duct for this mesh is slightly
wider than the previously described duct to facilitate the use of equilateral triangles.
The dimensions of the domain are now 3 X 5335 units instead of 3 x 1 units. Three
different meshes are used with 8, 16, and 32 faces per unit length. The second mesh is

shown in Figure 6.4.

Mach contours are shown in Figure 6.5 for the quadrilateral mesh shown in Fig-
ure 6.1 which are computed using the quadrilateral Ni scheme. Figure 6.6 shows %
total pressure loss contours for this flow. These are representative examples of solutions

for this fiow field regardless of the numerical scheme or mesh used.

The error is computed for each scheme on the previously defined sets of meshes.
The order of accuracy for the scheme is found by plotting log(h) verses log(error) and
finding the slope of the resulting line. Since the data will not exactly lie in a line, a last
squares approximation was used to fit a line through the data poicts and compute the

slope.

70



1.0

y 0.6
T Sia
1 -
T
0.0 r
-1.0 05 0.0 0.5 1.0 1.5 2.0
X
Figure 6.1: Quadrilateral cell mesh for sin? z duct
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Figure 6.2: Irregular quadrilateral cell mesh for sin® z duct
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Figure 6.3: Split quadrilateral triangle cell mesh for sin? z duct

. \WAVAVAVAVAVAVAVAVAVAVAY,
AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA' . AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAV
VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

VAVAY,
AVAVA_V‘VAVAVAVAVAV‘V‘v‘VA'AVAvcvcvezgxezegx#"¢A¢A¢X$:¢:¢:¢:e‘AVAVAVAVAVAVAV‘YAVAVAVAVAV‘VAVAVAV
v. ‘A#A'A"'A'A'A'A'A'A'AVAVAV
"'AV‘VAVAVAVAVAvchv‘vA

\VAVAVAVAVAV ¥, v,
o0 'A':':':VAV OO
VAVA' AVAVAV,Y
\/ VAVAVAVAV y u &
VAYA VAVAV, v, A'AV
YA"‘""A" A AV"‘¢

-1.0 -0.6 0.0 0.6 1.0 1.6 2.0

Figure 6.4: Equilateral triangle cell mesh for sin? z duct

72



0 INCREMENT = 0.06
1.

y 0.5+ MA\/
0-0 T T L] Ll Ll
0 -0.5 0.0 0.6 1.0 1.5
x

-1

2.0
Figure 6.5: Mach contours for sin? z duct
INCREMENT = 0.100
1.0 e —— X Y
q
—]

y 0.5 é:':':_

1.6 2.0

Figure 6.8: % total pressure loss contours for sin? z duct
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8.3 Results of Numerical Study

For each of the numerical schemes described in Chapter 2 a numerical accuracy study
was preformed as described in the proceeding section. For the Jameson schemes two
differert numerical smoothing methods are used as described in Chapter 3. The schemes
described here are all shown mathematically to be second order accurate. The order
of accuracy of the numerical smoothing has an effect on the accuracy of the numerical

scheme. This effect will be described in this section.

In the plots of the numerical accuracy data shown in Figures 6.7 to 6.14 it can be
seen that not all points lie on a straight line. For all points the smoothing coefficient
is the same, and the effect of this constant coefficient varies as A varies. In general,
the points lie on a line and a least squares fit to the points is a good approximation
to find the slope of this line. When fitting a line through the data there is some error
due to a limited number of points which are used. Some sets of data consist of three
points and others consist of four points, but the error is obviously small and depends
on the particular case. It is also possible for the numerical accuracy to be more than 2,
which is the numerical accuracy of the basic scheine, since the truncation errors are not
composed of terms exactly proportional to A2, but will also contain higher order terms.

This will be seen in the results presented here.

6.3.1 Effect of Numerical Smoothing on Accuracy

Two numerical fourth difference freestream smoothing methods were described in
Chapter 3 for both the triangular and quadrilateral schemes. The first was a low-
accuracy method and the second was a high-accuracy method, both of which are conser-
vative. In the accuracy studies only freestream smoothing which is applied throughout
the flow field was used. This is sufficient for stability since the problem used for the
accuracy study was designed to have sufficiently smooth flow. For the Ni schemes only
the high-accuracy smoothing was used. However, to illustrate the effect of smoothing

on accuracy, both freestream methods were used for the Jameson schemes.
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With the high-accuracy smoothing, the data for both the triangular and quadrilat-
eral schemes show that these schemes are second order accurate on both regular and
irregular meshes. This effect can be seen for the triangular Ni scheme by referring to
Figures 6.7 and 6.8, and for the quadrilateral Ni scheme by referring to Figures 6. and
6.10. For the triangular Jameson scheme this can be seen by referring to Figures 6.11
and 6.12, and for the quadrilateral Jameson scheme by referring to Figures 6.13 and
6.14. Second order accuracy is also achieved for smoothing coefficient values larger than

the values used here.

For the low-accuracy smoothing the story is different than when using the high-
accuracy smoothing. The Jameson schemes require some smoothing to be stable. With
a coefficient which is large enough to barely provide stability, the Jameson schemes may
retain their second order accuracy. It is important to note that the flow field here is
very smooth, and the value of the smoothing coefficient which barely provides stability
here is smaller than it would be in most flow fields. With a smoothing coefficient a
factor of five times larger the accuracy drops. In the first case the error due to the
numerical scheme which is second order accurate dominates over the error due to the
numerical smoothing. The order of accuracy which is calculated is effectively the order
of accuracy of the numerical scheme without the smoothing. As the mesh resolution
increases, eventually the smoothing error will dominate and the order of accuracy will
deteriorate. Formally, order of accuracy is concerned with the limit h—'O,'and in this
limit it will be less than second order. The beginning of this effect can be seen in
Figure 6.22. As the smoothing coefficient is increased the accuracy is reduced and the
error due to the numerical smoothing begins to play a role in the accuracy. The accuracy
decreases for the regular as well as irregular meshes with the low-accuracy smoothing
due to effects on the boundary. Dissipative errors occur on the boundary because the
solid wall boundary condition which is imposed is not appropriate for the low-accuracy
smoothing. The error can be estimated by noting that the smoothing attempts to
enforce g% = 0, and so it will create a numerical boundary layer at least one cell wide
with an error that is of order h(g._:)inviscid = O(h). The numerical boundary layer
has O(1/h) nodes compared to the total number of nodes which is O(1/A?), so a lower

bound on the order of magnitude of the root mean square error is
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error = o(,/%hz/%) = O(K¥?) (6.5)

This explains why the numerical error reduces to approximately O(k3/?). The effect of
increasing the smoothing coefficient can be seen for the triangular Jameson scheme on
a regular mesh by referring to Figure 6.15, and Figure 6.16 for high and low smoothing
coefficients respectively. The lowest smoothing coefficient which produces stability for an
irregular triangular mesh would not give seccnd order accuracy as shown in Figure 6.18.
For the quadrilateral Jameson scheme this effect can be seen for both regular and
irregular meshes by referring to Figures 6.19 and 6.20, and Figure 6.21 and 6.22 for

high and low smoothing coefficients respectively.

The numerical smoothing formulation used is very important. The accuracy of
the scheme will cnly be as good as the least accurate component, be that the basic
numerical scheme or the numerical smoothing. If the numerical smoothing is only first
order accurate, then the accuracy of the numerical scheme will be contarninated by the

smoothing.

6.3.2 Conclusions

In Figure 6.23 the results of the numerical accuracy study are suinmarized. For the
high-accuracy numerical smoothing, both the Ni and Jameson schemes for both quadri-
lateral and triangular meshes are second order accurate. This applies for both regular
and irregular meshes. On relatively coarse meshes, when the smoothing ccefficient for
the low-accuracy smoothing is at the minimum required to keep a scheme stable the
Jameson schemes for both quadrilateral and triangular meshes are approximately sec-
ond order accurate. When this coefficient is above this minimum or when much finer
meshes are used the accuracy of the basic numerical scheme is contaminated and the

accuracy drops below second order.
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Figure 6.7: Order of accuracy for triangular Ni scheme with high-accuracy srnoothing

on a regular mesh
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Figure 6.8: Order of accuracy for triangular Ni scheme with high-accuracy smoothing

on an irregular mesh
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Figure 6.9: Order of accuracy for quadrilateral Ni scheme with high-accuracy smoothing

on a regular mesh
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Figure 6.10: Order of accuracy for quadrilateral Ni scheme with high-accuracy smooth-

ing on an irregular mesh
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Figure 6.11: Order of accuracy for triangular Jameson scheme with high-accuracy

smoothing on a regular mesh
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Figure 6.12: Order of accuracy for triangular Jameson scheme with high-accuracy

smoothing on an irregular mesh
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Figure 6.13: Order of accuracy for quadrilateral Jameson scheme with high-accuracy

smoothing on a regular mesh
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Figure 6.14: Order of accuracy for quadrilateral Jameson scheme with high-accuracy

smoothing on an irregular meshk
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Figure 6.15: Order of accuracy for triangular Jameson scheme with low-accuracy

smoothing on a regular mesh, smoothing coefficiens = 0.0005
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Figure 6.18: Order of accuracy for triangular Jameson scheme with low-accuracy

smoothing on a regular mesh, smoothing coefficient = 0.0001
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Figure 6.17: Order of accuracy for triangular Jameson scheme with low-accuracy

smoothing on an irregular mesh, smoothing coefficient = 0.0005
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Figure 6.18: Order of accuracy for triangular Jameson scheme with low-accuracy

smoothing on an irregular mesh, smoothing coefficient = 0.0001
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Figure 6.19: Order of accuracy for quadrilateral Jameson scheme with low-accuracy

smocthing on a regular mesh, stnoothing coefficient = 0.005
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Figure 6.20: Order of accuracy for quadrilateral Jameson scheme with low-accuracy

smoothing on an irregular mesh, smoothing coefficient = 0.005
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Figure 6.21: Order of accuracy for quadrilateral Jameson scheme with low-accuracy

smoothing on a regular mesh, smoothing coefficient = 0.001
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Figure 6.22: Order of accuracy for quadrilateral Jameson scheme with low-accuracy

smoothing on an irregular mesh, smoothing coefficient = 0.001
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Numerical Accuracy

Smoothing Coef.

Triar:gular Ni scheme on regular mesh

mesh with high-accuracy smoothing

2.33 0.0025
with high-accuracy smoothing
Triangular Ni s<lieme on irregular mesh 2.17 0.0025
with high-accuracy smoothing
Triangular Jameson scheme on regular mesh 1.55 €.0005
with low-accuracy smoothing 1.94 0.0001
Triangular Jameson scheme on irreguiar mesh 1.33 0.0005
with low-accuracy smoothing 1.54 G.0001
Triangular Jameson scheme on regular mesh 1.90 0.0025
with high-accuracy smoothing
_'D’iangular Jameson scheme on irregular mesh 2.01 0.0025
with high-accuracy smoothing
Quadrilateral Ni scheme on regular mesh 2.04 0.005
with high-accuracy smoothing
Quadrilateral Ni scheme on irregular mesh 2.17 0.005
with high-accuracy smoothing
Quadrilateral Jameson scheme on regular i.52 0.005
i mesh with low-accuracy smoothing 2.25 0.001
Quadrilateral Jameson scheme on irregular 1.64 0.005
mesh with low-accuracy smoothing 2.12 0.001
Quadrilateral Jameson scheme on regular 2.01 0.005
mesh with high-accaracy smoothing
Quadrilateral Jameson scheme on irregular 2.C5 0.005

Figure 6.23: Numerical order of accuracy of numerical schemes
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Chapter 7
Adaptation

In order to reduce the computstional time required to find the solution to a problem,
spatial adaptation can be used. Spatial adaptation is a method which places small cells
where the physical characteristic length is small, such as in shocks, and large cells where
the physical characteristic length is large. Since the solution is not known before hand,
one method for creating an adapted mesh is to start with a course mesh and to divide

cells when the physical characteristic length becomes larger than some prescribed value.

7.1 Adaptation Criteria

The features which will be resolved by the adaptation procedure depend on the
parameter used to determine when to adapt. Dannenhoffer [3] discusses the merit
of different parameters, and concludes that the first difference of density provides a
parameter which will resolve both shocks and slip lines in isoenergetic flow, and is
inexpensive to calculate. If the division will take place on a cell basis, the first difference
of density is found for all the cells, and if the division will take place on a face basis,
it is found for all the faces. All cells or faces whose first diffzrence of density is greater
than some reference value are divided. The mean and standard deviation of the first
difference of density are found over all the cells or faces, and the reference value will be
the average plus a factor between O and 1 of the standard deviation. It was found that

a fector of 0.4 produces good results.
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7.2 Quadrilateral Adaptation

For quadrilateral cells the division process typically is made on a cell basis. Several
cells are chosen for adaptation and are divided into four smaller cells by adding a node
in the center of each chosen course cell and in the center of each of its faces. This
process produces an interface between a region of course cells and a region of fine cells.
This interface is a result of the regularity in a quadrilateral mesh. An example of such
an interface is shown in Figure 7.". Methods have been developed for dealing with the
problem of interfaces [3], but will not be discussed in detail here. Part of the problem is
the need to store data on the adaptation history and interface location and to deal with
interfaces with special methods in the numerical solver. Results produced by Shapiro
[20] for a quadrilateral mesh are shown in Figure 7.2. The computations by Shapiro
were done using a cell vertex finite element scheme which is essentially the same as the
quadrilateral Jameson scheme discussed here. The three meshes shown have 192, 609

and 1647 cells.

course
cell

interface

fine
cell

Figure 7.1: Manner of quadrilateral cell division with interfaces
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" DENSITY CONTOURS WITH INCREMENT 0.0219

vy

Figure 7.2: Levels of adaptation with a quadrilateral mesh
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7.3 ‘Triangular Adaptation

For triangular cells the irregularity in the mesh allows & cell to be divided into
smaller cells without creating interfaces. This means that once a cell is divided, no
added information must be stored and no special cases are required in the solver. The
order of accuracy of the numerical scheme as well as consistency are aleo preserved. To

illustrate this, a simple method for dividing triangular cells was developed.

The division process used here for triangular cells is face based. It is possible for a
cell to have one, two or three faces selected for division. To create a smooth mesh, when
two sides of a triangle are chosen for division the third is also divided. The manner of cell
division is shown in Figure 7.3. Other processes of cell division have been devised which
are based on cell division or Delaunay triangulation. These methods would probably
create a better adapted mesh, but were not investigated here since the sole objective was
tc demonstrate the relative ease with which triangular adaptation can be implemented.
A simple triangular mesh was used as a base mesh and the meshes after each level
of adaptation are shown in Figure 7.4. The triangular Jameson scheme was used to

compute the solution. The three meshes shown have 384, 1001 and 2228 cells.

/

one side three sides

Figure 7.3: Manner of triangular cell division
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Figure 7.4: Levels of adaptation with a triangular mesh



Chapter 8

Conclusions

This work sheds some light on the controversy in the CFD community over the
advantages of quadrilateral and triangular cell schemes. Two different node based finite
volume schemes for the Euler equations were studied: a Jamescn scheme and a Ni

scheme.

A triangular Jameson acheme flow solver was programmed as described by Mavriplis
(13] and a similar quadrilateral Jameson scheme was also programmed. A quadrilateral
Ni scheme flow solver as described by Ni [15] and Giles [7] was also programmed and
a triangular extension of this scheme was developed. Both schemes on triangular and
quadrilateral meshes produce similar results. In fact, the quality of the results is more

dependent on the numerical smoothing used than the flow solver.

Two different freestream smoothing techniques are examined and implemented with
the aumerical schemes. Numerical smoothing is required for stability of the Jameson
schemes and to reduce undesirable modes in all the schemes. The freestream smoothing
consists of a fourth difference of the state vector variables which is formed by taking
the second difference of a second difference. Two different methods for finding a second
difference are examined, one of which has low-accuracy and the other which has high-
accuracy but requires more time to compute. The result is that two conservative fourth
differences for numerical smoothing can be created one of which has low-accuracy and
another which has high-accuracy, but is more expensive. The low-accuracy smoothing
contains no information about the locations of the nodes in the mesh, and as a result
produces less smcoth solutions on irregular meshes and poorer solutions at solid walls
for triangular meshes than the high-accuracy smoothing. The problems with the solid

wall boundaries ave caused by impnsing boundary conditions on the flow field which
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cause the low-accuracy numerical smoothing to be convective.

A mathematical study shows that these node based numerical schemes for both
quadrilateral and triangular meshes are second order accurate. This is verified here by
a numerical accuracy study. The effect of numerical smoothing on the accuracy of the
scheme can be large. A numerical smoothing method which is firat order accurate can
reduce this second order accuracy to first order, since the scheme is only as accurate
as the lowest order accurate component. This effect is demonstrated here. When using
the low-accuracy smoothing, the accuracy drops below second order due to the lower
accuracy of the smoothing. The high-accuracy smoothing allows the schemes to retain
their second order accuracy. Therefore both the quadrilateral and triangular schemes

are second order accurate if the proper numerical smoothing is used.

Spatial adaptation reduces the computational time required to compute a solution
by placing small cells where the physical characteristic length of the flow is small and
larger cells where the physical characteristic length of the fow is large. One of the
advantages of triangles is the ability to divided cells such that no special interfaces
exist. Quadrilateral spatial adaptatior, however, requires interfaces between regions of
fine and coarse cells. While with triangular adaptation both second order accuracy and
conservation can be retained in the adapted region, the quadrilatera! adaptation can
retain only one of these qualities at the interfaces. In all, spatial adaptation is better
suited for triangular meshes, but methods have been developed for quadrilateral meshes

which are quite sat.sfactory.

Triangular meshes by nature of their irregularity allow for mesh generation about
complex geometries. The mesh generation process may be quite complicated, but can
be made to handle arbitrary several types of geometries and is extendable to three
dimensions. The ability to be quite general can be advantageous when compared with
the complexities invoived in block meshes or overlapping meshes which require user

input when generated which is harder to visualize in three dimensions.

A method to define an irregular mesh which is referred to as a pointer system

must be used for triangular meshes. Quadrilateral meshes require pointer systems only
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when adaptation or other special mesh operations are performed. A pointer system
describes the interconnection between elements of a mesh and can easily deal with any
irregularities or changes in the mesh structure. In general, pointer systems are beginning
to be used for both triangular and quadrilateral meshes, and don’t require much more
information than the traditional (i, 7) method of defining a mesh and allow for longer

vector lengths and more concurrency for a parallel processing computer.

This study has focussed on the basic development, performance and accuracy of
quadrilateral and triangular mesh schemes. The triangular schemes perform as well as
the quadrilateral schemes in both quality of results and accuracy provided an appropri-
ate numerical smoothing technique is used. This result justifies the continued research
in the use of triangular mesh schemes. More work must be done in the field of triangular
mesh generation and adaptation to bring these computational methods for triangular
meshes to a similar level of understanding as on quadrilateral meshes. In three dimen-
sions the use of tetrahedra as opposed to hexahedra significantly increases the ability to
produce meshes around complex three dimensional geometries and for this reason more

than any other justifies the need to continue research in this area.

93



Bibliography

(1} T. J. Baker. Three Dimensional Mesh Generation by Triangulation of Arbitrary
Point Sets. AIAA-87-1124, June 1987.

[2] J. F. Dannenhoffer and J. R. Baron. Robust Grid Adaptation for Complez Tran-
sonic Flows. AIAA-86-0495, January 1986.

(3] 3. F. Dannenhoffer II. Grid Adaptation for Complez Two-Dimensionel Transonic
Flows. ScD thesis, Massachusetts Institute of Technology, August 1987.

[4] Delaunay. “Sur la Sphere vide.” Bull. Acad. Science USSR VII: Class Scil, Mat.
Nat., 793-800, 1934.

[5] M. B. Giles. Accuracy of Node-Based Solutsons on Irregular Meshes. 11t Interna-
tional Conference on Numerical Methods in Fluid Dynamics, June 1988.

(6] M. B. Giles. Energy Stability Analysis of Multi-Step Methods on Unstructured
Meshes. Technical Report CFDL-TR-87-1, M.I.T., March 1987.

(71 M. B. Giles. UNSFLO: A Numerical Method for Unsteady Inviscid Flow in Turbo-
machinery. Technical Report CFDL-TR-86-6, M.I.T., December 1986.

(8] D. G. Holmes, S. A. Lamson, and S. D. Connell. Quasi-3D Solutions for Transonic,
Inviscid Flows by Adaptive Triangulation. ASME Gas Turbine Meeting, June 1988.

[9] A. Jameson. “Solution of the Euler Equations by a Multigrid Method.” Applied
Math. and Computation, 13:327-356, June 1983.

(10] A. Jameson, T. J. Baker, and N. P. Weatherill. Calculation of Inviscid Transonic
Flow over a Complete Asrcraft. AIAA-86-0103, January 1986.

[11] A. Jameson, W. Schmidt, and E. Turkel. Numerical Solutions of the Euler Equa-
tions by a Finite Volume Method Using Runge-Kutta Time Stepping Schemes.
AIAA-81-1259, June 1981.

94



[12] R. Lohner, K. Morgan, J. Peraire, and O. C. Zienkiewicz. Finite Element Methods
for High Speed Flows. AIAA-85-1531, July 1985.

(13] D. Mavriplis. Solution of the Two-Dimensional Euler Equations on Unstructured
Triangular Meshes. PhD thesis, Princetor University, June 1987.

(14] D. Mavriplis and A. Jameson. Multigrid Solution of the Two-Dimensional Euler
Equations on Unstructured Triangular Meshes. AIAA-87-0353, January 1987.

[15]) R.-H. Ni. A Multiple-Grid Scheme for Solving the Euler Equations. AIAA 18i-
025R, June 1981.

(16] J. Peraire, M. Vahdeti, K. Morgan, and O. C. Zienkiewicz. “Adaptive Remeshing
for Compressible Flow Computations.” Journal of Computational Physics, 72:449-
466, October 1987.

[17] Robert D. Richtmyer and K. W. Morton. Difference Methods for Initial-Value
Problems, pp. 311-313. John Wiley & Sons, second edition, 1967.

(18] T. W. Roberts. Euler Equation Computations for the Flow Over a Hovering Hel-
copter Rotor. PhD thesis, Massachusetts Institute of Technology, November 1986.

[19] P. Roe. Error Estimates for Cell- Vertez Solutions of the Compressible Euler Equa-
tions. Technical Report 87-6, ICASE, 1987.

[20] R. Shapiro. An Adaptive Finite Element Solution Algorithm for the Euler Equa-
tions. PhD thesis, Massachusetts Institute of Technology, May 1988.

[21] J. Steger and R. Sorenson. “Automatic Mesh-Point Clustering Near a Boundary
in Grid Generation with Elliptic Partial Differential Equations.” Journal of Com-
putational Physics, 33:405-410, 1979.

[22] W. J. Usab HII. Embedded Mesh Solutions of the Euler Equation Using a Multiple-
Grid Method. PhD thesis, Massachusetts Institute of Technology, December 1983.

95



Appendix A
Computer Code

This appendix contains the sources for the flow solvers for the quudrilateral Ni
scheme, the quadrilateral Jameson scheme, the triangular Ni scheme and the triangular
Jameson scheme. Also incl::ded is the code for the mesh generator and the plotting
program. The subroutines from the graphics package GRAFIC are not included.

A.1 Triangular Schemes

A.1.1 Common Files

This is file TRI.INC which includes many declarations and common block statements

and is included in all subroutines for the triangular schemes.

parameter Naxnodes = 6000
parametar Maxfaces = 16141
parameter Naxcells = 10000
parameter Naxedges = 424

| = 3xMaxnodes + 2+sqrt(Maxnodes)
! = 2+Naxnodes
! = 6+sqrt(Maxnodas)

integer Nmax
integer Fmax

Inumber of nodes
'number of faces (including edges)

integer Cuax Inumber of cells (including edge cells)
integer Imax, Omax Inunber of inlet and outlet nodes
integar V¥max Inumber of wall faces

integer Emax |nuaber of edge faces

integer Pmax {nunber of periodic nodes

integer Elimax

tnumber of edge nodes
integer tnode, tnode, inode

tlocation of diff. types of edge nodes

real pitch

reel pout

real 8inl

real x(Maxmodes)

real y(Maxnodes)

integer eface(Naxedges)
integer anode(Naxedgee)
real senode(Naxedges)
real cenode(Haxedges)
integer face(Maxfaces,6)
integer cell(Naxcells,6)
integer innode(Maxedges)

!blade pitch

loutlet pressure for bladas
{tan of inlet flow angle

1x values of nodes

!y values of nodes

farray of edge facrs

lerray of edge nodes

|sin and cos at edge nodes

larray of faces

larray of cells
finlet nodes

96



integer outnode(Maxedges) loutlet nodes

integer pnode(Maxedges,2) !periodic nodes

intager HCcolor(60) 'number of cells colorad each color
integer Ccolormax !max number of colors used

integer NFcolor(60) Inumber of faces colorad each culor
integer Fcolormax !max number of colors used

integer NEcolor(10) inunber of edges colored each color

integer Elcolormax, E2colormax !max number of colors used

common /tri/ Imax, Omax, ¥Wmax, Pmax

common /tri/ Nmex, Frax, Cmax, Emax

common /tri/ ENmax, tnode, bnode, inode

common /tri/ pitch, pout, S8inl

common /tri/ x, y, eface, enode, senode, cencda, face, cell
common /tri/ innode, outnode, pnods

common /color/ NCecolor, Ccolormax, NFcolor, Fcolormax
common /color/ NEcolor, Eicolormax, E2colormax

real Ninl finlet Mach number

integer Naxiter |max number of iterations

real CFL ICFL number

real epsicoef, epsl lsmoothing coef

real sigE, sigV !smoothing coef

real vol(Naxcells) Ifor vorticity smoothing

real durms Irms difference in state vector

real U(4,0:Naxnodes) |state vector

real dU(4,Naxnodes) Ichange in state vector at nodes

real Uc(4,Naxcells) Istate vector at cells

real dUc(4,0:Naxcells) Ichange in state vector at cells

real F(4,Mauxnodes) 1flux vectors at nodes

real G(4,Naxnodes)

real areal(0:Maxnodes) lcontrol area around each node

real areaC(0:Naxcells) larea of each cell

real deltk(O:Maxnodes) Itime atep at each node (Jameson)
! or cell (N1)

real deltC(0:Maxcells) Itime step at each cell

real die(4,Naxnodes) !dissipation at each node

real flux(4,0:Naxnodas) 1f1lux at each mode

common /£10/ Ninl, durms, Maxiter, CFL

common /flo/ epsicoef, eps2, sigE, sigV, vol
common /flo/ U, dU, Uc, dUc

common /flo/ F, G

common /f£1o/ deltC, deltF, areaC, areaN, dis, flux

perameter gam = 1.4
parameter gami = 0.4

This file contains the subroutines for input and output and is linked with all the

triangular schemes.

CEARRAINNEEAEANABRS ARSI RA R AR AR Rk kR kR Rk Rk Rk ok k&

c* *
c* write or read grid data from file *
c* *

cit‘llit‘t‘“i““ttt“““““t‘.‘ﬂt-tl‘*ttttttl#lttlltt‘t#t#‘ti

subroutine gridio(process)
implicit none

include °‘TRI.INC’

integer process Iread or write?
integer i, NM, FF, CC, EF, EN, col tpointers
intager IN, ON, WN, PX¥

1t (process.eq.1) then
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c** read in data from file
open(unit=30, status=’unknown’, form='unformatted’)

reed(30) Hmax, (x(NN), NN=1,Nmax), (y(NN),NNe1i, Nmax)
roeud(30) Frax, ((feco(FF,i),i=1,8) FF=1, Fpmax)

read(30) Waax, Emax, (eface(EF), EF=i,Emax)

read(30) tnode, bnode, inodo, ENmax, (enode(EN),EN=1,ENmax)
read(30) (senode(EN),EN=1,ENmax), (cenode(EN),EN=1,ENnax)
read(30) Imax, (innode(IN),IN=1,Imex)

read (80) Omax, (outnode(ON),ON=1,0max)

read(30) Paax, ((pnode(PN,1i),i=1,2),PN=1,Paax)

read(30) Caex, ((cell(CC,i),i=1,68),CC=1,Cmax)

read(30) Ccolormax, (NCcolor{col),col=1,Ccoloraax)
read(30) Fcolormex, (NFcolor(col),col=i, Fcolormax)
read(30) Eicolormax, E2colormax

read(30) (NEcolor(col),col=l,E2colormax)

read(30) pitch

close(unit=30)
else i? (process.eq.0) then

c* write data to file
open(unit=30, status=‘unknown’, form='unformatted’}

write(30) Nmax, (x(NN), NN=1 Nmax), (y(NN), NN=1,lmax)
vrite(30) Fmax, ((face(FF,1i),i=1,6), FF=1, Fmax)

write(30) ¥Wmax, Emax, (eface(EF),EF={,Emax)

write(30) tnode, bnode, inoda, ENmax, (enoda(EN),EN=1,ENmax)
write(30) (senode(EN) ,EN=1,ENmax), (cenode(EN),EN=1,ENmax)
vrite(30) Imax, (innode(IN),IN=1,Imax)

vrite{30) Omax, (outnode(ON),ON=1,Omax)

write(30) Pmax, ((pnode(PN,i),i=1,2),PN=1,Pmax)

write(30) Cmax, ((cell(CC,i).1i=1,8),CC=1,Cmax)

write(30) C:zolormax, (NCcolor(col),col=1,Ccolormex)
write(30) Fcolormax, (NFcolor(col),col=1,Feolormax)
write(30) Elcolormax, E2colormax

write(30) (NEcolor(col),col=1,E2colormax)

writa(30) pitch

close(unit=30)
endif

return
end

CHRKERIARRRIKARNRE KRR R R AR AR RN AR R R ARk Rk k kR kR Rk kR Rk kAR Kk kK

cx "
cx write or read flov data from file ®
cx *

CAR Rk b o o o ko ok o ok ok o o o o ol ok ok e sk o ook ok ok ok o o R o AR ok ok ok ok ok

subroutine flowio(process)
implicit none

include °'TRI.INC’

integer process ‘read or write?
integer 1, NN 'pointers

if (process.eq.1) then

c¢** read in data from file
open(unit=25, status='unknown’, form='unformatted’)

read(26) Minl
read(26) Nmax, ((U(i,NN),i=1,4) ,NN=1, Nwmax)
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close(unit=25)
else it (procass.eq.0) then

c* write data to file
open(unit=26, status=‘unknown’, form='unformatted’)

write{256) Minl
write(26) Mmax, ((U(4i,NN),i=1,4), NN=1,Nmax)

close(unit=25)
endif

return
end

CHRAXAXAIRASEABAARRREAI AL AR AN A DS Rk kR ARk AR kR kAR A Rk Rk

c* *
c* road input data from file *
c* *

CHEXAZANGNESEERERR RN S BAA RN BX BN A AN R RN KRN R R AR RNk

subroutine input
implicit none

include °TRI.INC®
real pi !the one and only

pl = 3.14169

open(unit=20, status~‘old’)
read(20,*) Maxiter, CFL

read(20,*) Minl, Sinl, pout
read(20,*) sigE, sigV, epsicoef, eps2
cloae (unit=20)

pout = pout/g:m
8inl = tan(pi*S8inl/180.0)

return
end

A.1.2 Mesh Generator

This is file GRID.INC which includes many declarations and common block state-

ments for the mesh generator.

parameter Maxdim = 200

real xx(0:Maxdim,O:Maxdim) !x coordinate of grid points

real yy(0:Maxdim,0:Maxdim) 'y coordinate of grid points
integer Nx 'number celis on x axis

integer Ny Po» " ®y

integer ILE, ITE 1leading and trailing edge of blade
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common /grid/ xx, yy, Nx, Ny
common /grid/ ILE, ITE

parameter IBX=251

real GSINL, GSOUT, CHINL, CHQOUT

intager II, JJ

real XB(IBX), XPB(IBX), YB(IBX), YPB(IBX), SB(iBX)

integer IIB, IBLE

real SBLE, SBLOLD, S8, SP

real XMIN, XMAX, YNIN, XLE, YLE, XP0S(Maxdim), YPOS(Maxdim)
integer NINL, NOUT,

common /cO1/ GSINL, GSOUT, CHINL, CHOUT, II, JJ,
XB, XPB,
I1B, IBLE, S8BLE, SBLOLD, SS, SP,
XMIN, XMAX, YMIN, XLE, YLE, XPOS, YPOS,
NINL, NOUT, NBLD

L & B N

Chkdaannnaxhnssnrnnssss FACE ARRAY

J1
/1IN
/1N
\
\
K1 >J3
/

/
/

-~
o —— e ———

/
2

KEhkkhhkakkinnsuksssse  CELL ARRAY

\
J3/________ \Jt
L1

kkkkkkanudnbnknktxannss EDGE ARRAY

Ja
/\
/ \
/ \
/ K1\
/ \
J1/ \J2
F(edge)

LR R L L P T I LR Ea LRI

prograa gridgen
implicit none

include °‘TRI.IKC®
include °'GRID.INC’

integer gtype

integer ON, IN, PX
integer 1, j

HBLD

Y8, YPB, 8B,

face(L,1) = K1
face(L,2) = A2
face(L,3) = J1
face(L,4) = J2
face(L,5) = J3
face(L,68) = J4

cell(K,1) = L1
cell(X,2) = L2
cell(K,3) = L3
cell(K,4) = J1
cell(K,B) = J2
cell(K,8) = J3

eface(EF) F

{type of grid
integer EN, EF, FF, NN, CC, col !pointers

{pointers

EEXRABEEAFAARE AR Rk

ke kkkkk b kR SRk kR

LESIRERE IR RSN L
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c*s

integer JJJ

datermine geometry
type*, 'Type of grid °’
type#, ° 1) Ni bump °*
type*, ° 2) blade’
type 100

100 fornat($,’ selection = °*)

accept 110, gtype

110 format(I)

cE**

cH#

ctw

Ccxk

cx#

ckx

cxx

Ckk

cH%

write(6,%) * °*

write(6,*) ’'Generating grid ...

write(8,s) * °

if (gtype.eq.1) then
create rectangular nesh
call rectangle
pitch = 0.

else if (gtype.eq.2) then

Read in, normalize and spline blade data

call readin

Initialize grid
call grinit

Fix up grid

call ellip{Msxdim,Maxdim,II,JJ,J3J, XX,YY,YPOS,XPOS)

call improv

changa pointers
doi=1, 14
do j =1, J)
xx(i1-1,3-1) = xx
yy(i-1,3-1) = yy
enddo
enddo
Nx = {1i-1
Ny = §3-1
endif

change rectangular mesh to triangular mesh

call pointers
call bpointers

rearrange node nunbers on edges
call edgenumbar

color cells and faces
call cellcolor
call facecolor
call adgecolor

write out data to file
call gridio(0)

stop
end

subroutine rectangie
implicit none

include °GRID.INC®

real*4 yymax, xxmmax, xxmin

fcoordinates of grid boundaries
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real*4 delta_x

roeal*4 delta_ y
integer n, i, j, kk, »
reals4 num

roals4 delta_xbot
reals*4 omega

real*4 pi

reals*d tau

real*d rr

real#4 yc

real*4 ang, delta_ang
real+*4d anjplus

reals4 delx, dely

!grid spacing in x direction
'grid spacing in y direction
Icounters

‘relaxation constant for

finterior point SLOR

Ithe one and only

‘height of bump

fradius of bump

'rr-tau

fangle of buap,angle betwesn nodes

'help define initial conditions

real+*4 alpha(Maxdim), beta(Maxdim) !coef. in modefied equation

real+*4 gamma(Naxdim)

real*q AA(Naxdima), BB(Naxdix)
real*4 CC(Maxdim), DD(Maxdim)
real+*4 EPS

integer Niter

real*4 error

tvalues for system of equations

‘allowable error
‘number of iterations so far
‘largest error for an iteration

real+*d x_xi(Maxdim), x_eta(Naxdin) Iderivatives on boundary
real*d x_xi_xi(Naxdim), x_eta_eta(Maxdim)

realsd x_eta_xi(Naxdim)
real*4d y_xi(Naxdim),

_eta(Naxdins)

reel+d y_xi_xi(Naxdim), y_eta_eta(Maxdim)

real*4 y_eta_xi(Maxdim)
real*4 theta, AR

real=4 R1, R2

real*4 Q1(Maxdim), P1(Maxdim)
real+*4 al(Naxdir), bi(Maxdim)
real+*4 ci(Maxdim)

real*4{ omega_P, omega_Q
real*4 Jacobi(Maxdim)

real*4 Jacobi2(Naxdim)
real+*4 xxi, yxi, xeta, yeta
real*4 a, b

pi = 3.14169

c+* number of nodes on X and y axea
XXmax = 3.
xxmin = -1,
yymax = |{.

call Irequest(’
call Irequest(’
call Rrequest(’

Nx*,Nx)
Ny’ .Ny)
tau’,tau)

'angle and aspect ratio of edge cella
'part of source tera

'part of source term, function of xi
talpha, beta, gazma on lower boundary

'relaxation conte. for source terms
!Jacobian on the lower boundary
!Jacobian squared in region
!derivativeu in region

!expcnents in aource terms

c call Rrequaest(’ omega’,omegn)
c call Rrequest(’ omega_P’, omega_P)
c call Rrequest(’ omega_Q°,omega_Q)
c call Rrequest(’ a’,a)
c call Rrequast(’ b’,b)
c call Rrequest(’ AR’ ,AR)
c call Rrequest(’ EPS' ,EP8)
omega = 1.
a=20.8
b=0.8
AR = 0.5
EP8 = 0.0006

it (tau.eq.0.) then
omega_P = 0.
omega_Q = 0.

ealge 1f (tau.lt.0.) then
AR o 1.
onega_P = 0.02
omege_Q = 0.02

else
omega_P = 0.02
omege_Q = 0.02
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endif

theta = .5»pi
dolta_x = (xxmax-xrmin)/real(Nx)

c*+ get initial and boundery conditions for x and y

if (tau.gt.0.) then
yc = 0.6%(-tau**2 + 0.26)/tau
rr = aqrt(0.26 + ycs42)
ang = asin(.5/rr)
if (mod(Nx,3) .ne.0) then
num = real(Nx - mod(Nx,3))
delta_xbot = (xxmax-xxmin)/nuam
angplus = 2.:ang/(num/3. + real(mod(Nx,3)))
else
angplus = 2.+ang+*delta_x
delta_xbot = delta_x
endif
delta_ang = 0.
do i = 0, Nx
yy(1.Ny) = yymax
xx(1,Ny) = xxmin + i*delta_x
it (xxzi.ly).lo.o.) then
xx(1,0) = xxmin + i*delta_xbot
yy(1,0) = 0.
elge 12 (xx(i,Ny).gt.0. .and. xx(i,Ny).1t.1.) then
delta_ang = delta_ang + angplus
xx(1,0) = 0.6 - rr¢sin(ang-delta_ang)
¥7(1,0) = rrxcos(ang-delta_ang) - yc
else 1f (xx(i,Ny).ge.1.) then
xx(1,0) = xxmin + (i-mod(Nx,3))*delta_xbot
yy(1,0) = 0.
endif
delx = (xx(i,Ny) - xx(1,0))/real(Ny)
dely = (yy(i,Ny) - yy(1,0))/real(Ny)
do § = 1, Ny-1
xx(1,]) = delx*j + xx(1,0)
y7(1.]) = dely+*j + yy(4,0)
enddo
anddo
else if (tau.lt.0.) then
delta_xbot = delta_x
do 1 =0, Nx
yy(1,4y) = yymax
xx(1,Ny) = omin + i*delta_x
12 (xx(i,Hy).1le.0.) then
xx(1,0) = xxmin + i*delta_xbot
yy(1.0) = 0.
else if (xx(1,Ny).gt.0. .and. xx(i,Hy).1lt.i.) then
xx(1,0) = xxpin + i*delta_xbot
yy(1,0) = -taus(win(pi*xx(1,0)))*+2
elso i (xx(i,Ny).ge.1.) then
xx(1,0) = zxmin + i*delta_xbot
y(1,0) = 0.
endix
delx = (xx(i,Ny) - xx(1,0))/real(Ny)
dely = (yy(1,Ny) - yy(1,0))/real(Ny)
do § = 1, Ny-1
xx(1,]) = delx+*j + xx(1,0)
yy(1,)) = dely*j + yy(1,0)
enddo
enddo
else if (tau.eq.0) then
delta_y = yymex/real(ly)
do 1 = 0, Nx
do j = O, Hy
xx(1,)) = isdelta_x + xxmin
yy(1,3) = j»delta_y
enddo
enddo
endif
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c* Solve for source terms
don= 1, Nx-1
Pi(n) = O.
Qi(n) = 0.
z_xi(n) = .6+(xx(n+1,0) - xx(n-1,0))
y.xi(n) = .6*(yy(a+1,0) - yy(n-1,0))

x_xi_xi(n) = (xx(n+1,0) - 2.*xx(n,0) + xx(n-1,0))
y-xi_xi(n) = (yy(n+1,0) - 2.+ry(n,0) + yy(n-1,0))

i (xx(n,0) .eq.0. .or. xx(n,0).eq.1.) then
x_ste(n) = max(5.*tau,1.)*AR*(-x_x1(n)+*cos(theta)

& - y_xi(r)*sin(theta))
y-eta(n) = max(5.+teu,1.)*AR*(-y_xi(n)+coa(thata)
X + x_x1i(n)*sin(theta))
else

x_eta(n) = AR+*(-x_xi(n)*cos(theta) - y_xi(n)+sin(theta))
y.eta(n) = AR*(-y_xi(n)*cos(theta) + x_xi(n)+*sin(theta))

ndift

x_ata_xi(n) = 0.6+(x_eta(n+1)-x_eta(n-1))
y-sta_xi(n) = 0.5+(y_sta(n+1)-y_esta(n-1))

Jacobi(n) = x_xi(n)*y_ ta(n) - x_eta{n)*y_xi(n)

al(n) = x_ete(n)**2 + y_ota(n)*#*2
bi(n) = x_xi(n)*x_ete(n) + y_xi(n)*y_eta(n)
ci(n) = r_xi(n)*+2 + y_x1(n)**2

enddo

c+ SOR by lines
Niter = 0O
error = 9899.
do while (error.gt.EP8)

error = 0.
Niter = Niter + 1

c** golve for source terms

if (tau.ne.0.) then
don=1, Ax-1
x_eta_eta(n) = 0.65(-7.+xx(n,0) + 8.»xx(n,1) - xx(n,2))

[ - 3.+x_eta(n)

y-eta_eta(n) = 0.6+(-7.+yy(n,0) + 8.2yy(n.1) - yy(n,2))
& - a.ty-otn(n¥

Ri = (-a1(n)*x_xi_xi(n) + 2.+bi(n)*x_eta_xi(n)
& - ci(n)*x_eta_eta(n))/Jacobi(n)**2

R2 = (-ai(n)»*y_xi_xi(n) + 2.+b1(n)+y_eta_xi(n)
& - e1(n)+y_eta_ata(n))/Jacobi(n)**2

P1(n) = P1(n) + omega_P+((y_eta(n)*R1 - x_eta(n)*R2)
& /Jacobi(n) - P1(n))

Qi(n) = Qi(n) + omega_Q*((-y_xi(n)*R1 + x_x1(n)*R32)
& /Jecobi(n) - Q1(n))

enddo
endif

c* solve for each line

do kk = 1, Ny-1

c* evaluate alpha, beta, and gamma

Thtr N NN N

doi = 1, Kx-1
alpha(i) = .26+(xx(1,kk+1)-xx(1,kk-1))#+»2
+ .26%(yy(i,kk+1)-yy(4,kk-1))*2
beta(1) = .28+ (xx(i+1,kk)-xx(1-1,kk))*(xx(4,kk+1)
-xx(4,kk-1)) + .26%(yy(i+1,kk)-yy(i-1,kk))
*(yy(1,kk+1)-yy(1,kk-1))
gemme (1) = .26+ (xx(1+1,kk)-xx(i-1,kk))*«2
+ .26+(yy(i+1,kk)-yy(1-1,kk))**2
Jacobi2(4) = (.26*(xx(1+1,kk)-xx(1-1,kk))=
(yy(1,kk+1)-yy(4,kk-1))
- .26%(yy(4+1,kx)-yy(1-1,kk))*
(xx(1,kk+1)-xx(1,kk-1)))**2
enddo
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¢+ Solve for x
c* set up matrix for tridiagonal system of oquations
doi =, Nx-1
AA(1) = omega*alpha(i)
DD(1) = -2.*(gamma(i) + alpha(i))
BB(1) = omega*alpha(1)
anddo

c* set up vector of constants for tridiagonal system of equations
do i = i, Nx-1
xxi = xx{1+1,kk) - xx(1-1,kk)
xeta = xx(i,kk+1) - xx(i,kk-1)

CC(1) = -omega*gamma(i)*(xx(4i,kk+1) + xx(i,kk-1))
+ omega*0.6+bata(4)*(xx(1+1, kk+1)
- xx(i+1,kk-1) - xx(1-1,kk+1) + xx(i-1,kk-1))
+ 2.«(omega-1.)+*(alpha(1) + gamna(i))*xx(i,kk)
- Jacobi?%:)*(Pl(i)*xxi*cxp(-u*kk) +
Q1 (1) *xeta*exp(-b*kk))

RN

enddo
cc(1) = CcC(1) - BB(1)+*xx(0,kk)
CC(Nx-1) = CC(Nx-1) - AA(Nx-1)*xx(Nx, kk)

c* solve tridisgonal sysotem of equations
call tridiag(l, Nx-1, BB, DD, AA, CC)
dom = 1, Nx-1
12 (abs(CC(m)-x7(m,kk)).gt.error) then
error = abs(CC(m) - xx(m, kX))
endif
xx(m,kk) = CC(m)
enddo

c* Solve for y
c* set up matrix for tridiagonul system of equations
do i1 = {, Nx-1
AA(1) = omega*alpha(i)
DD(1) = -2.+(gamma(1i) + alpha(i))
BB(1) = omega*alpha(i)
enddo

c* set up vector of constants for tridiagonal system of equations
do i =1, Nx-1
yxi = yy(i+1,kk) - yy(i-1,kk)
yota = yy(4,kk+1) - yy(4,kk-1)

CC(1) = -omega*gamme(1)*(yy(i,kk+1) + yy(i,kk-i))
+ 0.Stolcgntbotn({gt(yy(1+1.kkoi)
-yy(1+1 ,kk-1) - yy(1-1,kk+1) + yy(i-1,kk-1))
+ 2.%(omege-1.)+(elpha(1)+gamea(i))*yy (i, kk)
- Jacobi2(1)*(P1(1)*yxi+exp(-a*kk) +
01(1)tyetatoxp(-btkk§}

LB B 3 N 4

enddo
cc(1) = cc(1) - BB(1)*yy(0,kk)
CC(Nx-1) = CC(Hx-1) - AA(Nx-1)#*yy(Nx, kk)

c* solve tridiagonal system of equations
call tridieg(l, Nx-1, BB, DD, AA, CC)
dom =1, Nx-1
if (abs(CC(2)-yy(m, kk)) .gt.error) then
error = abs(CC(m) - yy(m, kk))
endif
yy(m,kk) = CC(m)
enddo

anddo

c* set xsxxmux and x=xxmin boundary conditions to next interior point
do kk = 1, Ny-1
yy(0,kk) = yy(1,kk)
yy(Nx,xk) = yy(Nx-1,kk)
enddo
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types*, ‘iteration cumber = ‘', Niter,’ error = °, error

enddo

return
end

(AR 2 R L L E R R Ll R R T T Y eI T TR P S

c*

ce Subroutine to solve a tridiegonal syatem of equations.

cs Taken from “Computational Fluid Mechanics and Heat Transfer"
c* by Anderson, Tannehill and Plaetcher.

c*

CRA BB b Rk b ok b o ok ok o o o ok o ok koo o o o o ko e o o ook ok o o ok ok ok O ROk

SUBROUTINE TRIDIAG(IL,IU,BB,DD,AA,RR)

INPLICIT NONE
include °‘GRID.INC®

INTEGER IL
INTEGER IU
REAL*4 BB(Maxdim)
REAL*4 DD(Maxdim)
REAL#4 AA(Maxdim)
REAL*4 RR(Maxdim)
INTEGER LP
INTEGER I, J
REAL*4 R

'SUBSCRIPT OF FIRST EQUATION
!SUBSCRIPT OF LAST EQUATION
'COEFFICIENT BEHIND DIAGONAL
!COEFFICIENT ON DIAGONAL
'COEFFICIENT AHEAD OF DIAGONAL
'ELEMENT OF CONSTANT VECTOR

'POINTERS

C» ESTABLISH UPPER TRIANGULAR MATRIX

LP = IL + 1
DO I =LP, IU
R = BB(I)/DD(I-1)
DD(I) = DD(I)-R+AA(I-1)
RR(I) = RR(I)-R*RR(I-1)
ENDDO

Cx+ BACK SUBSTITUTION
RR(IU) = RR(IU)/DD(IV)

DO I »LP, IU
J=1IU0 -1+ IL

RR(J) = (RR(J)-AA(J)*RR(J+1))/DD(J)

ENDDO
Cx* SO0LUTION S8TORED IN RR

RETURN
END

*
]
*
*
*
*

G oo o ok ol o ok o ook o ok ok ok ok ok o oo ol o e sk ook ok o ook o ko ok ok ok ok ok ok

c*

c* this subroutine requests the user to input the value of a
c* real variable

c*

*
L3
L3
*

€ 2 ok o ok e oo kool ok o ok o ok o o o ol o o ok o o ok o o ok ok ok ook o ok o ok ok o e ook o ok ok ok ok ok Ok

subroutine Rrequest (name,var)
character*10 name
real*4 var

write(6,1) name
1 format($,’ ",A," = *)
accept 11, var
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11 formas (F)

returr
end

CHNABALNBRR A AL ARI TR RIR AR SR NSRS O R R AR R ER R AN SRR AR AR R CR R RS kRS d k%

c* *
c* this subroutline requests the user to input the value of e *
cs integer viriable *
ox B

CHAABAAEZ AR R IR RIS RB AR SR VSR RR N R AR AR A R AR R ARk Sk kR kR Ak Rk k&
subroutine Ireguest (name,var)
character*10 name
integer var

write(@,1) name

1 format($.’ *,A,’ = )
accept i1, var

11 format (I)
reaturn
end

SUBROUTINE READIN
C---- Read in, normalize and spline blade data

INCLUDE °TRI.IKGC®
INCLUDE ‘GRID.INC®

CHARACTER#32 NANEXT
CHARACTER+*80 NANE

C---- Read in blade data
OPER(UNIT=3,8TATUS=‘0LD")
1000 FORMAT(A32)
READ(3,1000) NANE
READ(3,*) GSINL, GSOUT, CHINL, CHOUT, PITCH

WRITE(6,1001) NAME
1001 FORMAT(/,’' Blade name: ',A60)

READ(3,#) XB(1), YB(1)
XNIN = XB{1)
XMAX = XB(1)
YMIN = YB(1)
DO 1 IB = 2, 12346
READ(3,#*,END=11) XB(IB),YB(IB)
XMAX = AMAX1(XMAX,XB(IB))
IF(XNIK.GT.XB(IB)) THEN
XNIN = XB(IB)
YNIN = YB(I3)
ENDIF
1 CONTINUE
11 IIB=1IB -1
CLOSE(UNIT=3)

IF(IIB.GT.IBX) STOP 'Array overflow: IBX too small’

C---- Normelize blade and calculate surface arc length array
PITCH = PITCH/(XMAX-XNIN)
DO 2IB=1, IIB
XB(IB) = (XB(IB)-XMIN) / (XMAX-XMIN)
YB(IB) = (YB(IB)-YMIN) / (XMAX-XMIN)
2 CONTIKUE
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C---- close t.e. if open
IF( XxB(1) .NE.XB(IIB) .OR. YB(1) .NE.YB(IIB) ) THEN
ABOUT = ATAN( (YB(2) -YB{1)) / (xB(2) -xB(1)) )
APOUT = ATAN( (YB(IIB)-YB(IIB-1)) / (XB(IIB)-XB(IIB-1)) )
DSTE = BQRT( (XB(1)-XB(IIB))+*2 + (YB(1)-YB(IIB))*%2 )
AOUT = O.6+(APOUT+ASOUT)
XOUT = 0.6+ (XB(1)+XB(IIB)) + 3.0*DSTE*COS(AOUT)
YOUT = 0.6+(YB(1)+YB(IIB)) + 3.0%DSTE*SIN(AQOUT)
X81 = (XE(1)-XOUT)*C08(AGUT) + (YB(1)-YQUT)=*SIN(AOUT)
Y81 = --(XB{1)-XOUT)*8IN(AOUT) + (YB(1)-YOUT)+*COS(AQUT)
YPS1 = TAN(ASOUT-AOUT) * X81
XP1 = (XB(IIB)-XOUT)#*CO8(AOUT) + (YB(IIB)-YOUT)*SIN(AOUT)
YP1 = -(XB(IIB)-XOUT)*8IN(AOUT) + (YB(IIB)-YOUT)*COS(AOUT)
YPP1 = TAN(APOUT-AOUT) » XPi

WRITE(6,1002)

1002 FORMAT(/,’ Input flap deflection angle (degrees): ’,$)
READ(6,+) AFLAP
YPFLAP = TAN(3.14169*AFLAP/180.0)

WRITE(NAMEXT,1003) AFLAP

1003 FORNAT(' (flap deflection angle =" ,F4.1,')’)
LENSTART = INDEX(NAME, '’ *)
NANE(LENSTART : LENSTART+31) = NAMEXT

IIB = IIB+20
IF(IIB.GT.IBX) STOP °Array overflow: IBX too small’

DO 3 IB = IIB-20, 1, -1
XB(IB+10) = XB(IB)
YB(IB+10) = YB(IB)

3 CONTINUE

DO 4 IB =131, 10
ETA = 0.1(1B-1)
XX8 = XS1+ETA
YYS = YS1+ETA*ETA*(3.0-2.0+ETA) + YPS1*ETA*ETA*(ETA-1.0)

& - YPFLAP*XS81+0.6%(ETA-1.0)%*2
XB(IB) = XOUT + XXS*COS(AOUT) - YYS*SIN(AOUT)
YB(IB) = YOUT + XXS*SIN(AQUT) + YYS*COS(AOUT)
4 CONTINUE

DO 6 IB = IIB-9, IIB
ETA = 0.1+(IIB-IB)
XXP = XP1+ETA
YYP = YP1+ETA*ETA#(3.0-2.0+4ETA) + YPP1+ETA+ETA+(ETA-1.0)

& - YPFLAP#XP1%0.5%(ETA-1.0)**2
XB(IB) = XOUT + XXP*COS(AOUT) - YYP*SIN(AQUT)
YB(IB) = YOUT + XXP+8IN(AQUT) + YYP»COS(AOUT)
3 CONTINUE

ENDIF

C---- Sp%igo blade surface(s) and find leading edge position
SB(1) = 0.
DO 6 IB = 2, IIB
ALF = FLOAT( MIN(IB-1,IIB-1B) ) / FLOAT(IIB/2)
8B(IB) = 8B(IB-1) +
& 8QRT{ (XB(IB)-XB(IB-1))#*2 + (ALF*(YB(IB)-YB(IB-1)))**2)
(-] CONTINUE

CALL SPLINE(XB,XPB,SB,IIB)
CALL SPLINE(YB,YPB,SB,I11IB)

DO 7 IB=2, IIB
DP1 = XPB(IB-1) + GSINL*YPB(IB-1)
DP2 = XPB(IB) + GBINL*YPB(IB)
IF(DP1.LT.0.0 .AND. DP2.GE.0.0) GO TO 71
7 CONTINUE

STOP ‘Leading edge not found’
71 D8B = BR(IB) - 8B(IB-1)
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SBLE = S8B(IB-1) + DSBsDP1/(DP1-DP2)
XLE = SEVAL(SBLE,XB,XPB,SB,IIB)
YLE = SEVAL(SBLE,YB,YPB,SB,1IB)

RETURN
END

SUBRQUTINE GRINIT
C---- Fix grid points on boundary of domain, and initieiize interior

INCLUDE °'TRI.INC'®
INCLUDE °GRID.IKC®

C---- Input and check grid vize
WRITE(6, 1000)
1000 FORMAT(/,® Input II, JJ: °,$%)
READ(6,*) II,JJ
IF(II.GT.Maxdim) STOP ‘Array overflov: Maxdim too small’
IF(JJ.GT.Maxdin) STOP °*Array overflow: Maxdim too small’

C---- Set various parameters
SLEN = CHINL + 0.6*SB(IIB) + CHOUT
NINL = INT( FLOAT(II)*CHINL/SLEN )
NOUT = INT( FLOAT(II)«CHOUT/SLEN )
NBLD = II - NOUT - NINL + 2
ILE = NINL
ITE = II - NOUT + 1

C---- Set inlet stagnation streamline
DO 1 K=1, NINL
XX(K,1) = XLE + CHINL * FLOAT(K-NINL) / FLOAT(NINL-1)
TY(K,1) = YLE + (XX(K,1)-XLE) * GSINL
xx(K,JJ) = xx(K,1)
YY(K,JJ) = YY(K,1) + PITCH
1 CONTINUVE

C---- Bet outlet stagnation streamline
XTE = XB(1)
YTE = YB(1)

DO 2 K= 1, NOUT
1 = II-NOUT+K
XX(I,1) = XTE + CHOUT * FLOAT(K-1) / FLOAT(NOUT-1)
YY(I,1) = YTE + (XX(I,1)-XTE) * GSOUT
XX(I,JJ) = XX(I,1)
YY(I,JJ) = YY(I,1) + PITCH
2 CONTINUE

C---- Set points on blade suction surface
DO 3 E=1, NBLD
I = NINL + K - 1
8 = S8BLE - BBLE*FLOAT(X-1)/FLOAT(NBLD-1)
Xx(I,1) = SEVAL(S,XB,XPB,SB,IIB)
TY(I,1) = BEVAL(S,YB,YPB,SB,IIB)
3 CONTINUE

C---- fet points on blade prossure surface
DO 4 K=1, NBLD
I = NINL + K - 1
8 = S8BLE + (SB(IIB)-SBLE)*FLOAT(K-1)/FLOAT(NBLD-1)
XX(I,3J) = SEVAL(S,XB,XPB,SB,IIB)
YY(I,JJ) = SEVAL(S,YB,YPB,SB,IIB; + PITCH
4 CONTIKUE

C---- set up metrics

DO 6 I=1, II
XPOS(I) = FLOAT(I-1)/FLOAT(II-1)
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b COHTINUE

DO6J=1,J)
RJ = FLOAT(J-1)/FLOAT(JJ-1)
YPOS(J) = RJ - 1.8 * ( (RJ-0.5) * ((RJ-0.5)++2-0.25) )
6  CONTINUE

C---- Initialize interior grid
DO71I=1, II
DO 71 J =2, JJ-1
XX(I,3) = XX(I,1) + YPOS(J)*(XX(I,JJ)-XX(I.,1))
YY(X,J) = YY(I,1) + YPOS(J)*(YY(I,JJ)-YY(I,1))
71 CONTINUE
7 CONTINUE

RETURN
END

SUBROUTINE INPROV

C---- Improves grid after elliptic grid generation

INCLUDE °‘TRI.INC®
INCLUDE °'GRID.IKC’

DIMENSION SUM(Maxdim), XT1(Maxdim), YT1(Maxdim)
DIMENSION XT2(Maxdim), YT2(Maxdim)

D01 I
IN =
IP =

IF(I.EQ.1) IN=1

IF(I.EQ.II) IP=II

SUN(1) = 0.
DO 11 J = 1, JJ-1
JP = J+f
XS = xX(IP,J)+XX(IP,JP) - XX(IM,J)-XX(IM,JP)

Y8 = YY(IP,J)+YY(IP,JP) - YY(IM.J)-YY(IM,JP)
S8 = SQRT(X8*X8 + Y3+YS)
X8 = Xx8/88
YS = YS/88
SUM(JP) = SUN(J) + ABS( (XX(I,J)-XX(I,JP))*YS
& - (YY(I.J)-YY(I,JP))*XS )
11 CONTINUE
J=1

DO 12 JO = 2, JJ-1

SUMJ = FLOAT(JO-1)/FLOAT(JJ-1) * SUM(JJ)
121 IF(SUMJ.GT.SUM(J+1)) THEN

J = J+t

GOTO 121

ENDIF

ALPHA = (SUMJ-SUN(J)) / (SUM(J+1)-SUM(J))

XT2(J0) = XX(I,J) + ALPHA*(XX(I,J+1)-XX(I,J))

YT2(JO) = YY(I,J) + ALPHA*(YY(I,J+1)-YY(I,J))
12 CONTINUE

DO 18 J = 2, JJ-1
IF(I.NE.1) THER
XX(IM,J) = XT1(J)
YY(IN,J) = YT1(J)
ENDIF
XT1(J) = XT2(J)
YT1(J) = YT2(J)
IF(I.EQ.II) THEN
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XX(I,J) = XT1(J)
YY(I.!) = YT1(J)
ENDIF

13 CONTINUE

1 CONTIFUE

RETURX
E¥D

Ct‘tt“l“#“.ll-“‘l‘."lll‘l“t‘ttt“‘ti‘ﬁtt#‘##c

Cc Cc
C ISES - an Intogzated Steamtube Euler Solver €
(of (o}
C Written by N. Giles and X.Drela (o}
c c
C Copyright H.I.T. (1985) c
Cc c
Ct‘ttt!ﬁtttt‘ttt.it!t:‘lt‘ttt‘tl‘ttttttttltt‘tt‘ttc
Cc
SUBROUTINE ELLIP(IMAX,JNAX,1I,JJ,JJ3J,X,Y,YPOS,XPOS)
DIMENSION X(O:IMAX,0:JMAX), Y(G:IMAX,0:JMAX)
DINEKSION YPOS(JNAX), XPOS(INAX)
CHARACTER*1 ANS
(o}
DIMENSION C(400),D(2,400)
IF(I1.GT.400) STOP ‘ELLIP dimensions must be increased’
(o}
ITNAX = 60
(o}
DSET1 = { OE-1
DSET2 = 5.0E-3
DSET3 = 2.0E-4
c
RLX1 = 1.30 ! DMAX > DSET1
RLX2 = 1.5C ' DSET1 > DMAX > DSET2
RLX3 = 1.60 ! DSET2 > DMAX > DSET3
ccC  8TOP ! DSET3 > DMAX
c
RLY = RLX1
c
DO 1 ITER = |, ITMAX
(o]
DMAX = 0.
DO 6 JO0=2, JJ-1
JN = JO-1
JP = JO+1
(o}
IF(J0.EQ.JJJ) THEN
DO 2 I0=2, II-1
X(10,J0) = X(I0,JN)
2 CONTIKUE
GO TC 6
ELSE IF(J0.EQ.JJJ+1) THEN
DO 3 I0=2, II-i
X(10,J0) = x(10,JP)
2 COXNTINUE
GO TO 6
ENDIF
(o}
b0 6 I0=2, II-1
IM = I0-1
IP = I0+1
[

XMN = X(IN,JN)
XON = X{I0,JN)
XPM = X(IP,JN)
XNO = X(IN,JO)
X00 = Xx(I0,J0)
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XPC = X(IP,JO)
XNP = X(IN,JP)
XOP = X(10,JP)
XPP = X(IP,JP)
YN = Y(IM,JIN)
YON = Y(I0,JM)
YPN = Y(IP,JN)
YNO v Y(IN,JO)
Y00 = Y(10,J0)
YPO = Y(IP,JO)
YNP = Y(IN,JP)
YOP = Y(10,JP)
YPP = Y(IP,JP)

DXIN = XP0S(I0)-XP08(IN)
DXIP ~ XPOS(IP)-XP0OB(10)
DXIAV = 0.6*(DXIN+DXIP)

DETN = YP0S(JQ)-YPOS(JIM)
DETP = YP0S(JP)-YP0S(JO)
DETAV = 0.5+ (DETN+DETP)

DXDET = ( XOP - XOM ) / DETAV
DYDET = ( YOP - YON ) / DETAV
DXDXI = ( XPO - XNO ) / DXIAV
DYDXI = ( YPO - YMO ) / DXIAV

ALF = DXDET##*2 + DYDET#*2
BET = DXDET*DXDXI + DYDET*DYDXI
GAM = DXDXI#*2 + DYDXI*#+2

CXIM = 1.0 / (DXIM*DXIAV)
CXIP = 1.0 / (DXIP*DXIAV)
CETM = 1.0 / (DETM*DETAV)
CETP = 1.0 / (DETP*DETAV)

B = -ALF*CXIN

A = ALF*(CXIM+CXIP) + GAM* (CETM+CETP)
C(I10) = -ALF*CXIP

IF(I0.EQ.2) B = O

D(1,I0) = ALF+((XMD-X00)+CXIM + (XPO-XOC)#*CXIP)

+

GAM» ((XON-X00) *CETM + (XOP-X00) +CETP)
D(2,10) = ALF#((YND-YOO)*CXIM + (YPD-YOO)+CXIP)

+ GANs ((YOM-Y00)*CETM + (YOP-YOG)*CETP)

AINV = 1.0/(A - B*C(IN))

C(I0) = C(I0) » AINV

D(1,10) = { D(1,I0) - B+D(1,IM) ) » AINV
D(2,I0) = ( D(2,I0) - B+«D(2,IM) ) * AINV

CONTINUE

D(1,II) = 0.
D(2,1I) = 0.

IFIN = II-1
DO 8 IBACK=2, IFIN
10 = II-IBACK+1
IP = I0+1
D( 1,10) = D( 1,10) - C(X0)=D(1,IP)
D( 2,10) = D( 2.I0) - C(I0)*D(2,IP)
Xx(10,J0) = X(I0,J0) + RLX*D(1,I0)
¥(10,J0) = Y(I0,J0) + RLX*D(2,I0)
AD1 = ABS(D(1,I0))
AD2 = ABS(D(3,10))
DMAX = AMAX{(DMAX,AD1,AD2)
CONTINUE
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6 CONTINUE
c
WRITE(G,*) ‘'Dmex = °, DMAX, RLX
c
RALX = RLX%
IF(DMAX .LT.DSET1) RLX = RLX2
IF(DMAX.LT.DSET2) RLX = RLX3
IF(DMAX.LT.DSET3) RETURN
c
1 CONTINUE
c
RETURN
END ! ELLIP
SUBROUTINE SPLINE(X,XP,S,I1I)
c
DIMENSION X(1),XP(1),8(1)
DIMENSION A(480),B(480),C(480)
c
IF(II.GT.480) STOP 'SPLINE: Array overflov’
D01 I=1g, II
c
C------ Beoginning points
IF(I.EQ.1 .OR. S(I).EQ.S(I-1)) THEN
DSNI = 0.
DXN = 0.
DSPI = 1.0 / (8(I+1)-8(I))
DXP = X(I+1) - X(I)
c
C------ End points
ELSE IF(I.EQ.II .OR. 8(I).EQ.S(I+1)) THEN
DSNI = 1.0 / (8(I) - 8(I-1))
DXM = X(I) - X(I-1)
DSPI = 0.
DXP = 0.
c
C------ Interior points
ELSE
DSMI = 1.0 / (S(I) - 8(I-1))
DXN = X(I) - x(I-1)
DSPI = 1.0 / (8(I+1) - S(I))
DXP = X(I+1) - X(I)
c
ENDIF
c
B(I) = DSNI
A(I) = 2.0 = (DSNI + DSPI)
C(I) = DSPI
XP(I) = 3.0 » (DXP*DSPI*#*2 + DXM*DSMI#**2)
c
1 CONTINUE
c
CALL TRISOL(A,B,C,XP,II)
c
RETURE
END | SPLINE
SUBROUTINE TRISOL(A,B,C,D,KK)
c
DIMENBION A(1),B(1),c{1),D(1)
c

DO 1 K = 2, KX

KH=K -1
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10

11

10

11

C(KM) = C(RN) / A(KN)

D(KM) = D(XN) / A(KN)

A(K) = A(K) - B(X) *= C(KN)

D(K) = D(K) - B(K) * D(KN)
COETINUE

D(KK) = D(XK) / A(EK)

DO 2K = KK-1, 1, -1
D(K) = D(K) - C(K) * D(K+1)
CONTINUE

RETURN
END ! TRISOL

FUNCTION SEVAL(S8,X,XP,8,KN)
REAL X(1), XP(1), 8(1)

ILOY = 1
I=N

IF(I-ILOVW .LE. 1) GO TO i1

IMID = (I+ILOW)/2

IF(S8 .LT. S(INID)) THEN
I = IMID

ELSE
ILOW = IMID

ENDIF

GO TO 10

D8 = 8(I) - 8(I-1)

T = (88-8(I-1)) / D8

CX1 = D8»XP(I-1) - X(I) + X(I-1)

CX2 = D8*XP(I) - X(I) + X(I-1)

SEVAL = T#X(I) + (1.0-T)*X(I-1) + (T-T*T)#((1.0-T)*CX1 - T*CX2)
RETURK

END | SEVAL

FUNCTION DEVAL(88,X,XP,8,N)
REAL X(1), XP(1), 8(1)

ILOW = 1
I =N

IF(I-ILOW .LE. 1) GO TO 11

IMID = (I+ILOW)/2

IF(88 .LT. 8(INID)) THEN
I = IMID

ELSE

ILOW = IMID

ENDIF

GO TO 10

DS = 8(I) - 8(I-1)

T = (88-8(I-1)) / DS

CX1i = D8*XP(I-1) - X(I) + X(I-1)

CX2 = DS+XP(I) -~ X(I) + X(I-1)

DEVAL = (X(I)-X(I-1) + (1.-4.%T+3.%T*T)*CX1 + T+(3.%T-2.)*CX2)/DS
RETURN

END ! DEVAL
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subroutine pointers
implicit none

include °GRID.INC’

includa ‘TRI.INC®

integer 1, jJ !pointars
real=+4 Di, D2 'diagonals of rectargle -
integer NN, FF, CC !pointers

BN = 0
CC=0
FF =0

cx* assign values to node arrays
do j = 0, Ny
do 1 = 0, Nx
KN = NN + 1
x(NN) = xx(1,3)
y(NK) = yy(1,3)
enddo
enddo
Neax = NN

c** assign horizontal and vertical faces and cells
do j = G, Ny-1

do 1 =1, Nx
FF = FF + 1
face(FF,1) = 2sNx*j + 1
face(FF,2) = Nx*(2%)-1) + 4
face(FF,3) = (Nx+1)*] + 1
face(FF,4) = (Nx+1)#j + 1 + 1
CC=CC+1
cell(CC.1) = FF
cell(CC,6) = tace(FF,3)
cell(CC,4) = face(FF,4)
enddo .
do i =1, Nx
FF = FF + 1|
face(FF,3) = (Nx+1)+(j+1) + 1
face(FF,4) = (Nx+1)#*j + 4
CC=CC +1
cell(CC,1) = FF + Nx + 1}
cell(CC,4) = (Nx+1)=(j+1) + 1
cell(CC,6) = (Nx+1)*(j+1) + 1 + 4
enddo
FF = FF + 1
face(FF,3) = (Nx+1)*(j+2)
face(FF,4) = (Nx+1)*(j+1)
enddo
Cmax = CC
cx* agsign top boundary faces
doi= {1, Nx e

FF = FF + 1
tece(FF,1) = O
facs(FF,2) = Nx*(2+Ny-1) + 4
face(FF,3) = (Nx+1)+Ny + 4
face(FF,4) = (Nx+1)#Ny + 1 + {
face(FF,5) = 0

enddo

c+* set bottom edge face array
do i =1, Nx
face(1,2) = 0
face(i,68) = O
enddo
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c*+ get inlet edge face array
do j = 1, Ny
face((2+Hx+1)+§-Nx,2) = O
faca((2+Nx+1)*j-}x.6) = O
enddo

cx* set outlet adge Zece array
do J = 1, Ny
face((2+¥x+1)*j,1) = 0
face((2+Nx+1)%§,6) = O
enddo

c** gplit rectengular cells into tvo trienguler cells in grid

do j =1, Ny
do i = 1, Nx
FF = FF + |

DI = (xx(4,3)-xx(1-1,§-1))%+2 + (yy(i.j)-;y(i-l.;

D2 = (xx(i-%,1)-xx(1,3-1))*+2 + (yy(1-1,]

if (D1 .gt. D2) then

c if (mod(i+],2).eq.0) thea
faco((2+Hx+1)*(J-1)+Nx+4,1) = 2#(j-1)*Nx + 4
raco((ntuztl)t%-ﬂx+1.2) = (2+]-1)%Nx + 4

face((2+Nx+1)=
face((2+Nx+1)+

face(FF,3) = (Nx+1)s
foace(FF,4) = (Nx+1)«
face(FF,5) = (Nx+1)»
face(FF,6) = (Nx+1)»

{
i

+1
j-1) + 1+ 4
+ 1+ 1
3-1) + 4

cel1(2+Nx*(j-1)+1,2) = FF
cell(2#Nx*{j-1)+1,3) = (2+Nx+1)*(j-1) + Nx + 4

cell(2+Nx*(]-1)+1,6) = (Nx+1)+j + 4

cell(2+Nx+(]-1)+Nx+i,2) = FF
cell(2+Nx*(J-1)+Nx+1,3) = (2+Nx+1)*] - Nx + 1
cell(2+Hx*(j-1)+Nx+1,6) = (Nx+1)*(J-1) + 1 + 1

else

yy(4,

+ 1

+1
+1+1

face((2+Nx+1)*(J-1)+Nx+1,1) = (2+]-1)*Nx + 4
face((25Nx+1)*J-Nx+1,2) = 2+(J-1)*Nx + 1

face((2*Nx+1)»(J-1)+Nx+4,6) = (Nx+1)=*
faco((zt!x+1)=%-Nx¢1,e) = (Nx+1)*(j-1
tace((2+Nx+i)»

face((2sNx+1)*j+1,6) = (Nx+1)»(j-1) +
face(FF,3) = (Nx+1)»(j-1) + &
face(FF,4) = (Nx+1)#*j + 1 + 4
face(FF,5) = (Nx+1)t{ + 4
face(FF,68) = (Kx+1)»(j-1) + 1 + 1

+ 1 + 1
+ 1

J-1)+1,6) = (Nx+1)*i + 1 + 4

call(2+Nx*(3-1)+1,2) = (2+Nx+1)*j - Nx + 1

cell(2+Nx+(j-1)+i,3) = FF

cell(2+Kx*(§-1)+1,6) = (Kx+1)*§ + 1 + 1
cell(2+Nx+*(]-1)+Nx+1,2) = (2+«Nx+1)*(j-1) + Nx + 1

c311(2+Nx*(}-1)+Nx+1,3) = FF

cell(2+Nx*(j-1)+Nx+1,6) = (Nx+1)*(§-1) + 1

endif
face(FF,1) = (2+)-1)sNx + 1
face(FF,2) = 2+()-1)*Nx + i
enddo
enddo

Fmax = FF

return
end

subroutine bpointers
implicit none
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J-1)+Nx+1,6) = (Nx+1)»(j-1) + 1 + 1
taco((ztux+l)t%-ux+1.e) = (Yx+1)]

J-1)+1,6) = (Nx+1)*
face((2+Nx+1)+J+1,6) = (Nx+1)*(j-1



include °'GRID.INC’

include °TRI.INC’

integer i, §, n !peinters

integer FF, EN, EF, IN, ON, WH, PH {pointers

integer CC

integer Fi, F2 tperiodic faces

real dxN, dyN, dxP, dyP, dsN, dsP, dx, dy!change in x & y near node
integer node lcurrent node procosaed

EN
EF
IN
ON
WN
PN

00000

e+*% wall boundariee
if (pitch.eq.0.) then
doi =1, Nx
EF = EF + 1
eface(EF) = Ny+(24Nx+1) + 1
EH = EN + 1
node = (Nx+1)*Ny + 4
enode(EN) = node
dxP = x(noda+1) - x(node)
dyP = y(node+1) - y(node)
1 (1 .eq. 1) then
dxN = -dxP
dyN = -ayP
else
dxN = x(node-1) - x(node)
dyN = y(node-1) - y(node)
endif
if ((dxN+dxP + dyN#*dyP) .gt. 0.) then
dsN = sqrt(dxM+*2 + dyMss2)
deP = sqrt(dxPs#+2 + dyP**2)
dx = dxM/dsM + dxP/dsP
dy = dyM/dsM + dyP/dsP
else
dx = dxP - dxN
dy = dyP - 4yN
endif
senode(EN) = dy/sqrt(dxs+2 + dy**2)
conode(EN) = dx/sqrt(dx++2 + dy»*2}
enddo

EN = EN + 1

node = (Nx+1)*(Ny+1)

enodae (EN) = ncde

dxN = x{node-1) - x(node)

dyN = y(node-1) - y(node)

dxP = -dxN

dyP = -dyN

dx = dxP - dxN

dy = dyP - 4yM

senode (EN) = dy/sqrt(dx*#2 + dy*»*2)
cenode(EH) = dx/sart(dx»»2 + dy*»2)

tnode = EN

do i = {, Nx
EF = EF + 1
eface(EF) = 1
EN = EN + 1
node = i
oenode(EN) = node
dxP = x(node+1) - x(node)
dyP = y(node+1) - y(node)
if (1 .eq. 1) themn
dxN = -dxP
dyM = -dyP
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alse
dxN = x(node-1) - x(node)
dyN = y(node-1) - y(node)
endif
12 ((dxM+dxP + dyN«dyP) .gt. 0.) then
dsN = sqrt(dxN++2 + dyN#»2)
dsP = gqrt(dxP++2 + dyP*+2)
dx = dxN/daN + dxP/dsP
dy = dyN/dsN + dyP/dsP
elsa
dx = dxP -~ dxM
dy = dyP - dyM
endif
senode(EN) = dy/sqrt(dx**2 + dy*+2)
conode{EN) = dx/aqrt(dx*+2 + dy**2)
enddo

EN = EN + 1

node = Nx + 1

encde (EN) = node

dxN = x(node-1) - x(nods)

dyN = y(node-1) - y(node)

dxP = -dxN

ayP = -dayN

dx = dxP - dxN

dy = qyP - dyN

senode(EN) = dy/sqrt(dx+*+2 + dy+*2)
cenode(EN) = dr/aqrt(dx+*2 + dy*+2)

bnode = EN
Waax = 2+Nx
else if (pitch.ne.0.) then
c** perlodic nodes
do i =1, ILE
PN =PN +1
pnode(PN,1) = {
pnode(PN,2) = (Nx+1)*Ny + 1
enddo

do 1 = ITE, Nx»1
PN = PN + 1
prode(PN,1) = 1
pnode(PN,2) = (Nx+1)sNy + 1
enddo
Pmax = JLE + Nx + 2 - ITE

do 1 = 1, ILE-1
Fl =4
F2 = Ny=(2xNx+1) + 1
face(F1,2) = face(F2,2)
face(F1,6) = face(F2,8)
face(F2,1) = face(F1,1)
face(F2,5) = face(F1,5)
enddo

do 1 = ITE, Nx
Fl = {
F2 = Ny#(2+Nx+1) + 1
face(F1,2) = face(F2,2)
face(F1,8) = face{F2,6)
face(F2,1) = face(F1,1)
face(F2,56) = faca(F1,5)
enddo

c** the rest of the edge nodes and faces

c*x lower adge of airtoil
do 1 = ILE, ITE-1
EN « EN + 1
node = (Nx+1)*Ny + 1
enode (EN) = node
dxP = x(node+1) - x(node)

118



dyP = y{node+1) - y(node)
if (4 .eq. ILE) then
dxN = x(ILE+1) - x(node)
dyN = y(ILE+i) + pitch - y(node)
elase
dxN = x(node-i) - x(node)
dyN = y{node-1) - y(node)
endif
12 ((dxN#*dxP + dyM*dyP) .gt. 0.) then
dsN = aqrt(dxi{++2 + dyM*»2)
dsP = gqrt(dxPs»2 + dyP»»2)
dx = dxN/dsN + AxP/dsP
dy = dyN/dsN + dyP/dsP
eloe
dx = dxP - dxM
dy = dyP - dyN
endif
senode(EN) = dy/sqrt(dx++2 + dy++*2)
cenode(EN) = dx/sqrt(dx**2 + dy+*2)
FF = Ny*(2*Nx+1) + &

don=1, 86
fuce(FF-ILE+1,n) = face(FF,n)
enddo
EF = EF + |
eface(EF) = FF - ILE +
enddo

do FF = Hy*(2+#Nx+1)+Nx+1, Fmax
CC = face(FF,1)
call(CC,1) = FF-Nx+ITE-ILE
don=1, 6
face(FF-Nx+ITE-ILE,n) = face(FF,n)
enddo
enddo

Fmax = Fpax - Nx + ITE - ILE

EN = EN + 1
node = (Nx+1)*Ny + ITE
enode(EN) = node
dxN = x(node-1) - x(noda)
dyM = y(node-1) - y(node)
dxP = x(ITE-1) - x(node)
dyP = y(ITE-1) + pitch - y(node)
1f ((AxM+*dxP + AyM+dyP) .gt. 0.) then
dsM = sqrt (dxM**2 + dyM**2)
dsP = sqrt(dxP*+2 + dyP*+1)
dx = dxM/dsM + dxP/dsP
dy = dyM/dsM + dyP/dsP
else
dx = dxP - dxM
dy = dyP - dyM
endif
senode(EN) = dy/sqrt(dx*+2 + dy**2)
cenode(EN) = dx/sqrt(dx*+2 + dy**2)

tnode = EN

c** upper edge of airfoil
do 1 = ILE, ITE-i

EN = EN + |

EF = EF + 1

eface(EF) = 1

node = 1

enode(EN) = node

dxP = x(node+1) - x(noda)

dyP = y(node+1) - y(node)

12 (1 .eq. ILE) then
dxM = x((Nx+1)+Ny+ILE+1) - x{(node)
dyN = 7((Nx+1)+Ny+ILE+1) - pitch -~ y(node)

else
dxN = x(node-1) - x(node)
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drN = y(node-1) - y(node)
endif
it ((&xMsdxP + dyM+dyP) .gt. 0.) then
dsN = sqrt(dxN+»2 + dyM«»2)
dsP = 8qrt(AxP+**2 + dyP+»2)
dx = dxN/dsN + dxP/dsP
dy = dyN/dsN + dyP/dsP
elae
dx = dxP - dxM
dy = dyP - dyM
endif
senode(EN) = dy/sqrt(dx++2 + dy**2)
cenode(EN) = dx/eqrt(dx*%2 + dy++2)
enddo

EN = EN + 1
node = ITE
enode(EN) = node
dxN = x(node-1) - x(node)
dyN = y(node-1) - y(node)
dxP = x((Nx+1)*Ny+ITE-1) - x(node)
dyP = y((Nx+1)*Ny+ITE-1) - pitch - y(noda)
12 ((axM+dxP + dyM=dyP) .gt. 0.) then
dsN = sqrt(dxM**2 + dyM«*2)
dsP = sqrt(dxP+*2 + AyP**2)
dx = dxN/dsM + dxP/dsP
dy = dyN/dsN + dyP/dsP
elasa
dx = dxP - dxM
dy = dyP - dyM
endif
sencde(EN) = dy/sqrt(dx*+2 + dyx#2)
cenode(EN) = dx/sqrt(dx*+2 + dy*+2)

bnode = EN
Wmax = 2% (ITE-ILE)

endif

c** inlet and outlet boundaries

do j =1, Ny
EN = EN + 1
enode(ER) = (j-1)*(Nx+1) + 1
IN=1IN+1
innode(IN) = (J-1)*(Nx+1) + 1
EF = EF + 1
oface(EF) = (2+Nx+1)*§ - Nx

anddo

EN = EN + 1
enode(EN) = Ny«(Nx+1) + 1
IN = IN + 1
innode(IN) = Ny«(Nx+1) + 1

inode = bnode + Ny + 1|
Imax = IN

do j = 1, Ny
EN = EN + 1
enode(EN) = (Nx+1)#*j
ON = ON + 1
outnode(ON) = (Nx+1)#*]
EF = EF + 1
eface(EF) = (2+Nx+1)+*]
enddo

EN = EN + 1

enode(EN) = (Nx+1)*(Ny+1)
ON = OF + 1

outnode(ON) = (Nx+1)+(Ny+1)

ENmax = EN
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Emax = EF
Omax = OF

return

clt*tt‘t#‘ttitl‘i“.“t“t‘lti‘tti#‘ti“tit‘.ti‘tt‘i“i‘tiittti‘*

c*
c*
c*
c¥

*

renumbar edges so nodes are consecutive alorng edges *
*

and NS ies the intarioer node

*

c“*.i“.tiii.‘it#*#t"t“t‘it“.tttit‘tii#ii*l‘titttt‘tlt.li#i‘l

Ch*x

Ch2

cax

cH**

crk

subroutine edgenumber
implicit none

include °TRI.INC’
integer EF, FF, 1
integer save

do EF = 1, Emax
FF = eface(EF)

if (face(FF,1).3.0) then

doi=1,6, 2
save = face(FF,1)

!pointers

tsave value in face

face(FF.1) = face(FF,1+1)

faca(FF,i+1) = gave

enddo
endif
enddo

return
end

subroutine cellcolor
implicit pone

include °*TRI.IKC®

integer CC., NN, FF
integer Ncells

integer CC2(0:Naxcells)
integer Hcolor

integer cell2(Naxcells,6)
logical hascolor(Maxcells)

Initialize everything

Hcells = O

do CC = 1, Caax
cca{cc) = 0

enddo

Loop ovaer colors

do Hcolor = 1, 60

Initialize node color array

KCcolor(¥color) = O
do NN = {, Nmax

bascolor(NN) = .FALSE.

enddo

Loop over cells

do CC = i, Cmax

!pointers
tnumber of cells colored
'nevw number of cell
lcurrent color
inew cell number
thas node been colored current color?

Check 1f cell is already colored with old color
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Cx*

ckx

22

a3

cHx

c*x

if(cc2(cC) .NE.0) GOTO 22

cell nodes are already colored with nev color

Check if
12( hascolor(cell(CC,4)) .OR.
& hascolor(cell(CC,6)) .OR.
& hascolor(cell(CC,8)) ) GOTO 22

Set color markers

Ncells = Ncells +
CC2(CC) = Ncelle

NCcolor(Hcolor) = NCcolor(Ncolor) + 1

hascolor(cell(CC,4)) = .TRUE.
hascolor{cell{CC,5)) = .TRUE.
hascolor(cell(CC,8)) = .TRUE.

enddo

if(Ncells .EQ.Camax) GOTO 23

enddo

STOP 'COLOR; more than 6O colors required for cells’

Ccolormax= Ncolor

Redo pointers

do CC

= 1, Caax

cella(cca(cC),1) = cell(CC,1)
call2(cc2(cC),2) = cell(CC,2)
cell2(cca(cc),3) = cell(CC,3)
cell2(cc2(cC),4) = cell(CC,4)
cell2(cc2(cc),6) = cell(CC.5)
cell2(cc2(cc),6) = cell(cCC.8)

enddo

do CC = |, Cmax
cell(CC.1) = cell2(CC,1)
cell(CC,2) = cell2(CC,2)
cell(CC,3) = call2(CC,3)
call(CC,4) = cell2(CC,4)
call(CC,6) = cell2(cCC,B)
cell(CC,8) = call2(CC,8)

endds

cc2(0) = 0

do FF = 1, Fmax
face(FF,1) = CC2(face(FF,
face(FF,2) = CC2(face(¥F,
enddo

return
end

subroutine facecolor
implicit none

include ‘TRI.INC’

integer FF, NN, CC, EF
integer Nfcces

integer FF2(Maxfaces)
integer Ncolor

intager face2(Naxfaces,6)
logical hascolor(0:Maxfaces)

Initielize everything

Nfaces = O

1))
2))

!pointers

tnumber of faces colored

new nuabar of face

'current color

'nev facs number

'has node bean colored current color?
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do FF = |, Fmax
FF2(FF) = 0
enddo

cs** Loop over colors
do Ncolor = 1, 6O

c** Initialize node color array
NFcolor(Necolor) = O
do NN = 1, Nnax
hescolor(NH) = .FALSE.
enddo

c** Loop over faces
do FF = 1, Fmax

hascolor(0) = .FALSE.

c*+ Check if face is already colored with old color
12 (FF2(FF) .NE.0) GOTO 22

c¢x* Check if face nodes are already colorsd with new color
i2( hascolor(face(FF,3)) .OR.

& hascolor(face(FF,4)) .OR.
& hascolor(face(FF,5)) .OR.
& hascolor(face(FF,68)) ) GOTO 22

c** Set color markers
Nfaces = Nfaces + 1
FF2(FF) = Nfaces
NFcolor(Ncolor) = NFcoler(Neolor) + 1
hescolor(face(FF,3)) = .TRUE.
hascolor(face(FF,4)) = .TRUE.
hascolor(face(FF,6)) = .TRUE.
hascolor{face(FF,8)) = .TRUE.

22 enddo
if(Nfaces.EQ.Fmax) GOTO 23
enddo
STOP "COLOR; more than 60 colors required for faces'’
23 Fcolormax= Ncolor

c++x Redo pointers

do FF = 1, Fmax
face2(FF2(FF),1) = face(FF,1)
face2(FFA(FF),2) = face(FF,2)
f2ce2(FF2(FF),3) = face(FF,3)
face2(FF2(FF) ,4) = face(FF,4)
face2(FF2(FF) ,6) = face(FF,b)
face2(FF2(FF),68) = face(FF,8)

enddo

do FF = {, Fmax
face(FF,1) = face2(FF,1)
face(FF,2) = face2(FF,2)
face(FF,3) = face2(FF,3)
faca(FF,4) = face2(FF,.4)
face(FF,6) = face2(FF,5)
face(FF,6) = face2(FF,6)

enddo

do CC = 1, Caax
cell(CC,1) = FF2(cell(CC,1))
cell(CC,2) = FF2(cell(CC,2))
cell(CC,8) = FF2{cell(CC,3))
enddo

do EF = 1, Emax
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C*%

ch*

cox

c*%

Ck%

cH**

cax

22

23

cx%

ctt

eface(EF) = FF2(efece(EF))
enddo

return
end

subroutine edgecclor
implicit none

include °*TRI.IKC’

integer FF, KN, EF
integer Nedges

integer EF2(Maxedges)
integar Ncolor

integer eface2(Maxedges)
logical hascolor(Naxnodes)

Initialize everything
Nedges = O
do EF = 1, Enmax
EF2(EF) = 0
enddo

Loop over colors
do Ncolor =1, 6

Initialize node color array
NEcolor(Ncoler) = 0
do NN = 1, Nmax
hascolor(NN) = .FALSE.
enddo

Loop over faces
do EF = 1, Wmax
FF = eface(EF)

!pointers

Inumber of faces colored

'nev number of face

lcurrent color

'new face number

‘has node been colored current color?

Check if face is already colorad with old color

12 (EF2(EF) .NE.O) GCTO 22

Check if face nodes are already colored with new color
12( hascolor(face(FF,3)) .OR.
& hascolor(face(FF,4)) .OR.

Set color markers
Nedges = Nedgeas + 1
EF2(EF) = Nedges

X hascolor(face(FF,6)) j GOTO 22

NEcolor(Hcolor) = NEcolor(Kcolor) + 1
hascolor(face(FF,3)) = .TRUE.
hescolor(face(FF,4)) = .TRUE.
hascolor(face(FF,5)) = .TRUE.

enddo
1f (Nedges .EQ.Wmax) GOTO 23
anddo

STOP °COLOR; more than b colors required for wall edges’

Elcolormax = Ncolor

Loop over colors
do Ncolor = Eicolormax+i, 10

Initialize node color array
NEcoler(Ncolor) = O
do NN = 1, limax
hascolor(NK) = .FALSE.
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enddo

cs* Loop over faces
do EF = Wmax+], Emax
FF = aface(EF)

c*+ Chack 1f face is tlready colored with old color
12 (EF2(EF) .NE.0) GOTO 32

c** Check if face nodes are already colored with new color
12( huscolor(face(FF,3)) .OR.
& hascolor(face(FF,4)) .OR.
& hascolor(face(FF,6)) ) GOTO 32

c*s+ Set color markers
Nedgee = Nedges + 1
EF2(EF) = Nedges
NEcolor(Necolor) = NEcolor(Ncolor) + 1
hascolor(face(FF,3)) = .TRUE.
hascolor(face(FF,4)) = .TRUE.
hascolor(face(FF,5)) = .TRUE.

32 enddo
1f (Nedges .EQ.Emax) GOTO 33
enddo
STOP "COLOR; more than 10 cclors required for all e¢dges’
33 E2colormax= Ncolor
c*» Redo pointers
do EF = {1, Emax
eface2(EF2(EF)) = eface(EF)
enddo
do EF = 1, Emax
eface(EF) = efaca2(EF)
enddo

return
end

A.1.3 Ni Scheme

CENAABANESESREERAB SR AN R RR R R RN R RARERRRkERkRkRRkkRk kK

(1] *
cs main progrask for triangular Ni echeme *
c* *

Gk oo oo o oo o o o oo oo o o ool o o ok Rk

prograa triangle
implicit none

include °*TRI.INC®

integer Hiter Inumber of iterations
integer NN, CC, 1 Ipointer

integer N1, N2, N3 Incdes at corners of cell
recl maxchange !max change in state vector

intager maxnode, maxeqn lvhere max changs occure
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real onathird fons divided by three

c* read in data from 2ile
cell gridio(1)
call flowio(1)
call ipput

e* calculete control arca around each cell
call calcarea

Niter = O
duras = 999.
onethird = 1./3.

c+ otart history file from the top
open(unit=36,status='unknown’,forn="formatted’)
vrite(35,2) Minl
closw(unit=35)

2 format(’ inlet Nach number = *,25.3)

¢* 1loop until converged
do while ((Niter.lt.Maxiter) .and. (durms.gt.2.e-7))
Hiter = Niter + 1

c* get cell valuea of atate vector
do CC = 1, Cmax
N1 = cell(CC,4)
N2 = cell(CC,5)
NS = cell(CC,6)

Ue(1,CC) = (U(1,H1) + U(1,N2) + U(1,N3))+onethird
Uec(2,€C) = (U(2,N1) + U(2,N2) + U(2,N3))*onethird
Uc(3,cC) = (U(3,N1) + U(3,N2) + U(3,N3))+onethird
Uc(4,6C) = (U(4,H1) + U(4,N2) + U(4,N3))+onathird

enddo

e¢x calculate time step for each cell
call timestep

c* calculate flux at each node
call nodeflux

c* calculate change in state vector and fiuxes at each cell
call delcell

c* calculate change in state vector at each node
call delstate

c¢* add smoothing tera
call smooth

c+#* account for pericdic nodes
call bperiodic

c* set inlet and outlet boundary conditions
call binlet
call boutlet

c* change momentum change to make flow tangent at walls
call tangent

¢* update state vector value
do NN = 1, Hmax
U(1,NN) = U(1,NN) + au(1,NK)
U(2,NN) = U(2,NN) + 4Au(2,NN)
U(38,NN) = U(3,NN) + AU(3,NN)
U(4,NN) = U(4,NN) + AU(4,NN)
enddo

c¢* find root mean square difference in state vectoer
if (mod(Niter,10).eq.0 .or. Niter.1lt.i0) then
duras = 0.0
maxchange = O.
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do NN = 1, Nmax
doi=}i,4
durms = durms + 4U(1,NN)2#2
if (abs(dU(4,NN)).gt.abs(maxchenge)) then
maxchange = 4AU(i,NN)
maxnode = NN
maxsqn = 1
endif
enddo
enddo

durne = sqrt(durms/(4.sNmax))

c* print diagnostics to screen
call flowio(0)
open{unit=50, status=‘unknown', fora=‘unformatted’)
write(60) Cmax, (vol(CC),CC=1,Cmax)

close(unit=50)
10 open(unit=35, status=‘old’,access=’append’,err=10)
vrite(36,1) Nitor, durms, maxchange, x(maxnods),
& y(maxnode), maxeqn
close(unit=36)
write(6,1) Niter, durms, maxchange, x(maxmsde),
& y(maxnode), maxean
endif
enddo
1 format(’Niter=",14,’ rme=’,£90.7,' max=’,£0.7,’ x=’,
& £6.3,' y=',£6.3,' eqn=’,11)

c* yrite out data to file
cell flowio(0)

stop
and

€0 ookl e oo o ook o ok oo o o 0 o o ok o oo o o ol ok o Rk

c* *
cH calculate areas of cells and distribute to nodal area *
c* which is made up of the sum of the cell areas *
c# surrounding the node *
cx* *
ct**#*tt#tt#tt#i‘it#‘!#iﬁttt*!ttititltitttttt*tlttttt‘t!tttt#t*tt

subroutine calcarea
implicit none

inciude °TRI.INC®

integer CC !pointer
integer N1, N2, N3 !nodes at corner of cell
real dxi12, dx31, dyi2, dy3i !langth of cell edges

c* calculate area of cells

do CC = |, Cmax
N1 = cell(CC,4)
N2 = cell(CC,6)
N3 = cell(CC,0)
dx12 = x(N1) - x(N2)
dx31 = x(N3) - x(N1)
dy12 = y(N1) - y(N2)
dy31 = y(N3) - g(N1)
areaC(CC) = abs(dx31+dy12 - dy31+dx12)

enddo

return
end
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c -
c* calculate time step for nodos “
c* *

CHNRLANRARARAAARRRAIRAIRAABALRAAERIBIREAARR ARG RN R AR I RR AR R RS SRR &S

subroutine timestep
implicit none

include °‘TRI.IHC’

real onethird lone divided by thrae
integer NE, CC, PN, EN Ipointer

integer N1, N2, H3 Inodes related to face
integer P1, P2 tperiodic nodes

real delx, dely ix and y length of side
real delside 1length of side

real uu, vv, as, rr, wvl !values at node
integer CC1, CC2, col Ipointers

onethird = 1./3.

do N = 1, Nmax
deltN(dN) = O.
enddo

c¢** find time atep for each cell
c+#* delt 1s realy delt/area
CCa =0

do col = {, Ccolormax
! CCl1 =CC2 + 1
CC2 = CC1 - 1 + NCeolor(col)

CVD$ NODEPCHK
do CC = CC1, CC2
N1 = cell(CC,4)

N2 = cqll(CC,6)
N3 = cell(cCC,6)
rr = Uec(1,CC)

uu = Uec(2,CC)/rr
vv = Ue(3,CC)/rr

ww2 = yus*2 + vys*2
aa = sqrt(gan+gami»{Uc(4,CC)/rr - 0.6%ww2))

delx = x(N2) - x(N1)

dely = y(N2) - y(N1)

dalside = sqrt(delxs»2 + dely»*#2)

de1tC(CC) = abs(uu*dely-vv+delx) + aasdelside

delx = x(N3) - x(N2)

dely = y(N3) - y(N2)

delside = agqrt(delx**2 + dely#+2)

deltC(CC) = deltC(CC) + abs(uu*dely-vv+delx) + aa*delside
dslx = x(N1) - x(N3)

dely = y(N1) - y(N3)

delside = sqrt(delx++2 + dely**2)

de1tC(CC) = deltC(CC) + abs(uurdely-vv+delx) + aau+delside
deltC(CC) = CFL#*2./deltC(CC)

deltN(N1) = deltN(N1) + onethird/deltC(CC)
deltN(N2) = deltH(N2) + onethird/deltC(CC)
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deltN(N3) = deltN(N3) + onathird/deltC(cCC)

enddo
enddo

CVD$ NODEPCHE
do PH = 1, Pmax
P1 = pnode(PH,1)
P2 = pnode(PH,2)
deltN(P1) = deltK(P1) + deltN(F2)
deltN(P2) = delt}(P1)
! enddo

do NN = |, Nmax
deltN(HN) = 1./deltH(NN)
enddo

return
end

ChisdkdksdbbddbbsddbdbdssditbttbsbshsbdbbksdbsbikdddnddIddsthbhtn

en *
c* calculate flux vector values at nodes *
c %

CEARARRARIRIB AR ISR SRR RO NN ER NN RA RS RI R I RA kR SRR

subroutine nodeflux
implicit none

include °‘TRI.INC’
integer NN {pointers
real W« Ixinetic energy

do NN = 1, Nmax
c*¥ calculate £ and g at nodes
WW = 0.6+(U(2,UN)**2 + U(3,NN)**2)/U(1,KK)
F(1,8K) = U(2,NN)
F(2,NN) = U(2,KN)*=%2/U(1,NN) + gami+(U(4,NN) - ww)
F{3,NN) =~ U(2,NN)»U(3,NN)/U(1,NN)
F(4,NN) = (U{2,8N)/U(1,KN))*(gam*U(4 ,NN) - gaml+WW)

G(1,NN) = U(8,NN)

G(2,NN) = U(2,NK)*U(3,NK)/U(1,KK)

G(3,NN) = U(3,liN)**2/U(1,NN) + geal*(U(4,KN) - ww)

G(4,NN) = (U(3,NN)/U(1,NN))*(gam+U(4,NN) - gamlsWW)
enddo

return
end
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c* *
c* this subroutine finds the change in the fluxes *
c* F and G and the change in the state U at each cell *
| cx *

€k sk ok ok ok sk ok ok kR Rk ok kO Rk Rk ok ok ok ok Rk kR Rk kR Rk kR Rk ok k kN

subroutine delcell
implicit none

include °'TRI.INC’

integer CC Ipointers
integer N1, N2, N3 Incdes at corners of cells

129



real ui, u2, us, vi, va, v3 |values at nodes

real cost

real dx23, dx31, dx12 fchenge in x on cell edges
real dy23, d4y31, dyi12 Ichagne in y on cell edges

c* find change in state voctor for cell
do CC = 1, Cmax
K1 = cell(CC,4)
N2 = cell(CC,B)
HS = cell(CC,6)

ul = U(2,%1)/U(1,N1)
u2 = U(2,n12)/u(1,82)
uS = U(2,83)/U(1,N3)
v1l = U(3,M1)/U(i N1)
v2 = U(3,42)/u(1,N2)
v3 = U(3,N3)/uU(1,N8)

dy2s = y(N2) - y(N3)
dy31i = y(N3) - y(N1)
dy132 = y(¥1) - y(N3)
dx23 = x(N3) - x(N3)
dx31 = x(N3) -~ x(N1)
dx12 = x(N1) - x(¥2)

coet = 0.69deltC(CC)

dUc(1,CC) = coef*(-F(1,N1)*dy23 + G(1,N1)#*dx23

& -F(1,N2)=dy31 + G(1,H%)*»dx31
& -F(1,N3)*+dy12 + G(1,N3)*dx12)

dUc(2,CC) = coef*(-F(2,H1)+dy23 + G(2,N1)+dx23
& -F(2,N2)+dy31 + G(2,N2)»ax31
& -F(2,N3)*dy12 + G(2,N3)*dx12)

dUc(3,CC) = coef=»(-F(3,N1)*dy23 + G(3,N1)*dx23
& -F(3,N2)*dy31 + G(3,N2)¢x31
& -F(8,N3)+4y12 + G(3,N3)*dax12)

dUc(4,CC) = coe2»(-F(4,N1)*dy23 + G(4,N1)+dx23
& -F(4,N2)+dy31 + G(4,N2)dx31
& -F(4,N3)*dy12 + G(4,N3)+dx132)

c#x ghock smoothing
v01(CC) = ul*dy23 - vi1+dx23 +

& u2+dy31 - v2*dx31 +
& uS+dyi2 - v3+dxi2
enddo
c* implement wall boundary conditions
call bwall
return
end
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c* ¢
c* this subroutine applies the wall boundary condition *
c* *
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subroutine bwall
implicit none

include °'TRI.INC’

integer EF, FF, CC ipointer
integer N1, N3 Inodes on edge
real ui, u3, vi, v3 !values at nodes
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real coef

real d4yis, dxi3 Ichange in x and y
real presi, pras3 \pressure

integer EF1, EF2, col

¢* upper and lower boundary
EF2 =0

do col = 1, Elcolormax
EFy{ = EF2 + 1
EF2 = EF1 - 1 ¢+ NEcolor(ecol)

CVvD$ NODEPCHK
do EF = EF1, EF2
FF = eface(EF)
CC = 2ace(FF,1)
¥l = face(FF.4)
N3 = face(FF,3)

ut = U(2,N1)/U(1,N1)
u3 = U(2,N3)/U(1,N3)
vl = U(3,N1)/U(1,N1)
v3 = U(3,K3)/U(1,N3)

coef = 0.6+deltC(CC)

dy13 = y(N1) - y(N3)
4;13 - ;(Il) - ;(ua)

presl = gami*(U(4,N1) - 0.55(U(32,N1)422 + U(S,N1)%+2)/
U(1,N1))

& .
pres3 = gami«(U(4,N3) - 0.65%(U(2,H3)**2 + U(3,N3)#»2)/
& U(1,N8)
dUc(1,CC) = dUc(1,CC) + coaf#(
(F(1,N3) + F(1,N1))*ay13 -
& (G(1,N3) + G(1,N1))#*dx13)
dUc{2,CC) = dUc(2,CC) + coefx(
& (F(2,83) + F(2,N1) - presl - pres3)*dyi3 -
& (G(2,N3) + G(2,H1))*dx13)
dUc(3,CC) = dUc(3,CC) + coefx(
L (F(3,N3) + F(3,N1))*dy13 -~
& (G(3,N3) + G(3,¥1) - presl - pres3)*dxi3)
dUc(4,CC) = dUc(4,CC) + coef*(
& (F(4,N3) + F(4,N1))+dy18 -
& ‘ (G(4,N3) + G(4,N1))*dx13)

c** ghock smoothing
vol(CC) = vol(CC) - (ul + u3)*dy13 + (v1 + v3)=dx13

enddo
enddo

return
end
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c* *
c* this subroutine calculates the change at each node *
c* *
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subroutine delstate
implicit none
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C*

cHx
c

include ‘TRI.IKC’

integer #¥, CC, FF, EF lpointers
integer N1, E2, N3 Inodes at corners of cell
real rr, uu, vv, wel Ivalues at cell
real rdu, rdv |part of dFc and dGe
real HH,
real dFe(4), dGe(d)
real dy3i, 4y32, dyi13 Ichange in y on csll edgecs
real dx21, dx32, dxi3 fchange in x on cell edgas
real CON lcoefficient
integer CC1, CC2, col {pointers
integer EFi, EF2
real coef fcoefficient
resl onethird lone divided by three
do NN = 1, Nmax
4au(1,Ax) = 0.
dau(a,Nx) = 0.
4qu(3,NN) = 0.
4qU(4,8N) = 0.
enddo

onethird = 1./3.

cC2=0

do

col = {, Ccolormax

CCl = CC2 + 1
CC2 = CC1 - 1 + NCcolor(col)

NODEPCHK
do CC = CC1, CC2

N1 = cell(CC.4)
N2 = cell(CC,6)
NS = cell(CC,8)

rr = Uc(1,CC)

uu = Uc(2,CC)/rr

vy = Uc(8,CC)/rr

wv2 = 0.6*(uusuu + vvsvy)

dy21 = y(N2) - y(N1)
dy32 = y(N3) - y(N2)
dy13 = y(N1) - y(N3)
dx21 = x(N2) - x(N1)
dx32 = x(N3) - x(N2)
dax13 = x(N1) - x(N3)

find second ordar change in flux vector at cells

shock

HH = gam*Uc(4,CC)/Uc(1,CC) - gamlsww2

rdu = dUc(2,CC) - uu*dUc(1.CC

rdv = dUc(38,CC) - vv+dUc(1,CC)

dp = gami*(dUc(4,CC) - uu*dUc(2,CC) - vv*dUc(3,CC)
+ ww2+dUc(1,CC))

dFe(1) = due(2,CC)

dFc(2) = uux(dUc(2,CC) + rdu) + dp
dFc(8) = vv+dUc(2,CC) + uusrdv

dFc(4) = uu+*(duc(4,CC) + dp) + HH+rdu

dGe (1) = duc(3.CC)

4Ge(2) = uu*dUe(3,CC) + vv*rdu

4Gc(3) = vv*(dUe(8,CC) + rdv) + dp
dGe(4) = vv*{aUc(4,CC) + dp) + HH*rdv

smoothing

CON = 0.25*min(0.,v0l(CC))*vol(CC)*ww2/areaC(CC)

v01(CC) = vel(CC)/sqrt(2.+areaC(CC))

CON = epsicoef+0.5+max(-0.1,ain(0.,v01(CC)))*vol(CC)+wv2
v01(CC) = -vo0l(CC)/sqrt(2.sareaC(CC))

CON = epsicoef+0.5+max(-0.1,04in(0.,v01(CC)))*vol(CC)*ww2
dFc(2) = dFc(2) + CoM .
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dGe(3) = aGe(3) + CON
coaf = opethird/deltC(CC)

du(1,H1) = 4U(1,H1) + coef*dUc(1,CC)

- 0.26+(dFc(1)+dy33 - dGe(1)+dx32)
du(1,X2) = 4U(1,N2) + coef*dUc(1,CC)

- 0.46+(dFc(1)+dy13 - dGec(1)+dx18)
dAU(1,N3) = 4U(1,43) + coef*dUc(1,CC)

- 0.26%(dFc(1)*dy21 - dGe(1)+dx21)

du(2,q1) = du(2,N1) + coef»dUc(2,CC)

- 0.26+(dFc(2)+dy32 - dGc(2)+aAx32)
du(2.42) = du(2,¥2) + coef*dUc(2,CC)

- 0.26+(dFc(2)+dy18 - dGe(2)+dx13)
4u(2,x8) = 4au(2,%3) + coef*dUc(2,CC)

- 0.26+(dFc(2)+dy21 - dGe(2)+dx2i)

4du(3,K1) = AU(S, N1) + coef*dUc(3,CC)

- 0.26+(dFc(3)+dy32 - dGc(8)+Ex33)
du(s,N2) = 4AU(3,N2) + coef*dUc(3,CC)

- 0.26+(dFc(3)+dy13 - 4Gc(3)+dx13)
4au(8.¥3) = dU(3,N3) + coef*dUc(3,CC)

- 0.26+(aFc(3)*dy21 - 4Gc(3)#+dx21)

du(4,N1) = dU(4,N1) + coef*dUc(4,CC)

- 0.26+(dFc(4)+dy32 - 4Ge(4)+dx332)
du(4,N2) = aU(4,N2) + coef*dUc(4,CC)

- 0.26%(dFc(4)*dy13 - aGe(4)+dx13)
Aau(4,N3) = dU(4,N3) + coef*dUc(4,CC)

- 0.26+(dFc(4)+dy21 - dGec(4)+dx21)

enddo
enddo
EF2 = 0
do col = |, E2colormax
EFl = EF2 + 1

EF2 = EF1 - 1 + Necolor(col)
do EF = EF1, EF2

FF = ¢face(EF)

CC = face(FF,1)

N1 = face(FF,3)

N2 = face(FF,4)

dy21 = y(N2) - y(N1)
dx21 = x(N2) - x(N1)

uu = Uc(2,CC)/Uec(1,CC)
vy = Uc(3,CC)/Uc(1,CC)
ww2 = 0.6*(uu*uu + vvsvv)

dp = gami#*(dUc(4,CC) - uu*dUe{2,CC) - vv*dUc(3,CC)
+ ww2*dUe(1,CC))

dFc(2) = dp
dGe(3) = dp

du(2,N1) = du(2,N1) - 0.26+dFc(2)*dya1
du(2,N2) = du(2,N2) - 0.26+dFc(2)*dy2s

du(38,N1) = aU(3,N1) + 0.26*dGc(3)*dx21
dU(3,N2) = dU(3,N2) + 0.26%dGc(3)*+dx21

anddo
enddo

do NN = 1, Nmax
dU(1,NN) = au(1,NN)sdeltN (NN)
du(2,NH) = du(2,NN)*deltN(KN)
dU(3,NN) = dU{3,NH)*deltN (NN)
dU{4,NK) = dU(4,NN)*deLltN(NN)
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return
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c*

ce oubroutine to calculate forth difference smoothing -

cs
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subroutine smooth
implicit noze

include °*TRI.INC’

integer K1, N2, X3

integer ¥, CC1, CC2, col, CC
integer EF, EF1, EF2
ipteger FF, FF1, FF2, PN
integar P1, P2

real 4x31, dxi2 6 dx23

real dy31, dyi12, d4ya3

real dxCi, dxC2, dxC3, dxC4
real dyCl, dyC2, dyC3, dyC4
roeal delN(4,Maxnodes)

real coef, coefl, coef2

do NKk = 1, Nmax
delN(1,NN) = O.
delli(2,NH) = 0.
delH(3,HK) = 0.
dell(4,NN) = 0.
enddo

cCCa2=0

do col = 1, Ccolormax
CC1 = CC2 + 1
CC2 = CC1 - 1 + HCcolor(col)

CvD$ NODEPCHK
do CC = CC1, CC2
N1 = cell(CC,4)
N2 = cell(CC,B)
N3 = cell(CC,6)

dx31 = x(N3) -~ x(N1)
dx12 = x(N1) - x(X2)
ax23 = x(N2) - x(N3)
dy31 = y(H3) - y(N1)
ay12 = y(N1) - y(N2)
dy28 = y(¥2) - y(N8)

coef = ((max(0.,min(1.,(1.410.%vol(CC))))-1.)*epalcoef +1.)

inodes at corners of csll
tpointers

'periodic aodes
Ichange in x

Ichange in y

lcaange in x in cell
Ichange in y in cell
igradient at node
lcoefficlent

(U(1,N1)+dy23 + U(1,N2)+dy31 + U(1,N3)+dy12)
(U(2,N1)+dy23s + U(2,N2)*dy31 + U(2,N3)+*dy12)
axc3 = (U(3,N1)+dy23 + U(3,N2)=dy31 + U(3,N3)*dy12)
daxC4 = (U(4,N1)*dy23 + U(4,N2)+dy31 + U(4,N3)»dy12)

dyCi = (U(1,N1)#dx23 + U(1,N2)*dx31 + U(1,N3)=*dx12)

& *(0.6/areaC(CC))
dxCl =

& *coe?f
dxC2 =

& *coof

& *coef

& *coef

& scoef

dyCc2 = (U(2,N1)+dx23 + U(2,N2)*dx31 + U(2,N3)*dx12)
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scoef

dyCS = (U(3,¥1)+dx23 + U(3,N2)*dx31 + U(3,K3)*dx12)

scoef

dyC4 = (U(4,N1)+dx28 + U(4,N2)+dx31 + U(4,N8)+dx12)

scoef

delN(1,N1) = delN(1,N1) + (AxC1+dy23 + AyC1+dx23)
GelN(1,N2) = dell(1,42) + (dxClsdy31 + dyC1sdx31)
delN(i,N3) = delN(1,N3) + (dxCl#dy12 + dyCi+dx13)

delN(2,W1) = delN(2,N1) + (AxC2+dy3S + dyC2+dx23)
delN(2,N2) = delN(2,H2) + (dxC2+dyS1 + dyC2+dx31)
delN(32,N3) = dalN(2,N3) + (dxC2+dy12 + dyC2+dx12)

delN(3,.¥1) = del¥(8,N1) + (dxC3+dy23 + GyC3+dx2s)
dalN(3,N2) = QelN(3,N2) + (dxC3+dyS1 + dyC3+dx31)
Cel¥(3,K3) = delN(S,NS) + (dxC3+dy12 + dyC3+dx12)

delN(4,N1) = delN(4,H1) + (axC4+dy23 + dyC4+dx28)
delN(4,H2) = delN(4,N2) + (dxC4+dy31 + dyC4+dx31)
del¥(4,N3) = delN(4,N3) + (dxCd»dy12 + dyC4d#dx12)

enddo
enddo

c* upper and lower boundary

cvpns

® N & N

r N N N

EF3 =0

do ccl = 1, Elcolormax

EF1 = EF2 + 1
EF2 = EF1 - 1 + NEcolor(col)
NODEPCHK

do EF = EF1, EF2
FF = eface(EF)
CC = face(FF,1)
K1 = face(FF,3)

face(FF,4)

face (FF,5)

N2 =
N3 =
dx31
dx12
dx23
dy3i
dy12
dya3s

coef

dxC1
daxC2
dxC3
daxC4

dyci1
dyca
dyc3
dyC4

x(N3) - x(N1)
x(N1) - x(N2)
x(N2) x(N3)
y(N3) - y(N1)
y(N1) - y(N2)
y(N2) - y(N3)

((max(0.,ain(1.,(1.+10.4v01(CC))))-1.)+epsicoef +1.)
*(0.5/areac(cC))

(U(1,N1)*ay23 + U(1,N2)*dy31 + U(1,N3)+dy132)

(u(z.n:§:;§23 + U(2,N2)*dy31 + U(2,H3)+dy12)

(u(a.u:§:;§23 + U(3,N2)*dy31 + U(3,H3)+*dy13)

(u(4.u;§::;23 + U(4,K2)*dy31 + U(4,N3)*dy12)
*coef

(U(1,N1)*dax23 + U(1,N2)+dx31 + U(1,N3)+*dx12)

(u(:.u:ggziza + U(2,N2)*dx31 + U(2,N3)*dx12)

(u(s,uzgzains + U(3,N2)*ax31 + U(3,N3)+*dx12)

(u(4.u;§:;izs + U(4,N2)+dx31 + U(4,N3)*dxi2)
scoef

delN(1,N1) = delN(1,N1) + (dxCi*dyi2 + dyCi*dx12)
delN(1,N2) = delN(1,N2) + (dxC1+dy12 + dyCi+dx12)

delN(2,H1) = delN(2,N1) + (dxC2+dy12 + AyC2+dx12)
delN(2,H2) = delN(2,N2) + (AxC2+dy12 + AyC2+*dx12)
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delN{3,H1) = AelN(3,Ni) + (dxC3+dy12 + dyC3+dx13)
delX(3,¥2) = dolN(3,H2) + (dxC3+dyi2 + dyC3+dr12)

dolM(4,N1) = delH(4,H1) + (AxC4+»dyl12 + dyC4d#dx12)
delN(4,N2) = dalN(4,N2) + (dxC4*dy12 + dyC4+dx13)

enddo
enddo

CcvD$ NODEPCHK

do PN = 1, Pmax
P1 = pnode(PN,1)
P2 = pncde(PX,2)
dell(1,P1) = delN(1,P1) + delN(1,P2)
dell(2,P1) = delN(2,P1) + delN(2,P2)
delN(3,P1) = delN(3,P1) + delN(3,P2)
dolN(4,P1) = delN(4,P1) + delN(4,P2)
delN(1,P2) = delN(1,P1)
delli(2,P2) = dell(2,P1)
delN(3,.P2) = AaelK(3,P1)
delk(4,P2) = dell(4,P1)

enddo

FF2 =« 0

deo col = |, Fcolormax
FF1 = FF2 + 1
FF2 = FF1 - 1 + NFcolorf{col)

CvD$ NODEPCEHK
do FF = FF1, FF2
N1 = face(FF,3)
N2 = face(FF,4)

coefl = 0.6+eps2*(1./deltN(N1) + 1./daltk(N2))+*deltN(N1)
coef2 « 0.65+eps2+(1./deltN(N1) + 1./del N(N2))*deltN(N2)

4au(1,N1) = dU(1,N1) + coef1*(delN(1,N2) - delN(1,N1))
4au(1,N2) = dU(1,N2) + coef2*(delN(1,N1) - delN(1,N2))

du(2,N1) = aU(2,N1) + coef1*(delN(2,K2) - delN(2,Ni))
du(2,N2) = AaU(2,N2) + coef2+(delN(2,N1) - delN(2,N2))

dU(3,H1) = dU(3,N1) + coef1%(delN(3,§2) - delN(3, N1))
du(3,K2) = dU(3,N2) + coef2+(delN(3,H1) - delN(3,N2))

dU(4,N1) = du(4,N1) + coef1x(delN(4,N2) - delN(4,N1))
du(4,¥2) = du(4,N2) + coef2+(delN(4,N1) - d2lN(4,K2))
enddo
enddo

return
end
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c* *
c* thia subroutine accounts for periodic nodes *
c* *
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subroutine bperiodic
implicit none

include °TRI.IKRC®

integer PN !pointer
integer P1, P2 Iperiodic nodes
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CVD$ NODEPCHK

do P = |, Pmax
P1 = pnode(PN,1)
P2 = pnode(PX,32)
du(1.P1) = 4au(i,P1) + 4au(t, P2)
4au(a,P1) = du(2,P1) + 4U(2,P32)
4au(s,.P1) = 4u(s,P1) + 4u(s,P2)
du(4,P1) = 4au(4,P1) + Aau(4,P2)
du(1,P2) = du(1,P1)
au(2,P2) = 4au(2,P1)
du(s,P2) = &U{3,P1)
du(4.P2) = au(e,P1)

snddc

retura
end
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cs *
cs* adjust inlet state vector for boundary condition *
c* *

CHARAMBANAANAAARREEBININSSREETRA NSNS R KRR AR R AR ER SRRk R

subroutine binlat
implicit none

include °'TRI.INC’
real rrinl, uuinl, vvinl, ppinl !average values at inlet
real wwlinl, aainl

resal r0int, aOint Istag. density and speed of sound
raal HOpres Istagnation enthalpy and pressure
resl spres lentropy

real coef

real asal, aazl, asa3, nap4d fcoef. of inverss of matrix

real bbbl, bbb2, bbb3, bbb4

real ceccl, cec2, cee3, cccd

real dddi, ddd2, dads, dda4

real wwl, uu, vv, pp, rr, ae fvalues at next interior node
real dHO, ds, dtan, dwd

rexl drr, duu, dvv_ dpp

integer IN, KN 'boundary face and its nodes

c** average values at inlet

rrinl = U(1,innode(Imax/2))

uuinl = U(2,innode(Imax/3))/rrinl
vvinl = U(3,innode{Imax/2))/rrinl
ww2inl = yuinl#*+2 + vvinl#++*2
ppinl = gami*(U(4,1innode(Imax/2))

[ 4 - 0.6*rrinl+ww2inl)

aainl = sqrt(gam+ppinl/rrinl)

c* subsonic inlet nodes
if ((eqrt(ww2inl)/aeinl).lt.1. .or. pitch.ne.0.) then
c+« prescribed velues
HOpres = 1./geml
spres = 0.

c*» coefficient of matrix
coef = 1./(uuinl*(aainl+uuinl) + vvinl*=*2)
asal = (rrinlsuuinl/sainl)*coef

40e2 = -(ppinl/aainl)#*(uuinl*gam/gamt + ww2inl/aainl)=coef
aae38 = -(rrinlsvvinl/aainl)=*coef

aaad = (ww2inl/aainl+»2)*coet

bbbl = uuinl*coef

bbb2 = -(uuini+ppinl/(gami*rrinl))+coet

bbb3 = -vvinl*coef

bbb4 = -(uuinl/rrinl)+coet

cccl = vvinlscoef
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cccl = -(vvinl+ppinl/(gami*rrinl))*coef
cce3 = (aninl + uuinl)=coef

cccd = -(vvinl/rrinl)=coet

dddi = zrinl+*aainlsuuinl=coef

ddd2 = -(ppinl*aainls*uuinl/gami)*coe?
ddd3 = -rrinl*aainl*vvinl:coef

ddd4d = vw2inl*coel

CvD3 NODEPCHX
do IN

NN

IT

1, Imax
innode(INj
13(1,4N)
uu = U(2,NX)/rr
vy = U(3,NN)/rr
w¥d = yuss2 ¢ wys*2
PP = gami*(U(4,RN) - 0.6+rr+wwi)
aa = sqrt(gam+pp/rr)
dHO = HOpres - ((gam/gem1)+*pp/rr ¢ 0.5+vw2)
ds = spres - (log(gam+*pp) - gam=log(rr))
dtan = (8inl - vv/uu)*uuinlss2
dwvd = AU(1,NN)*(aasuu ¢ gamlsww2)
- dU(2,NK)+(aa + gaml+*uu)
- dU(3,NN)*ganlsvy
+ AU(4,NN) *gami
drr = aaal+dHO + aaa2*ds + asa3+dtan + amad+*dvd
duu = bbb1*dHO + bbb2+ds + bbb3*dtean + bbbd*dw4
dvy = ccc1+dHO + ccc2*ds + ccc3+dtan + cccd*ded
dpp = ddd1+dHO + ddd2+ds + ddd3*dtan + 4dd4*dvd

4AU(1,NN) = drr

du(2,KN) = rr+duu + uu*drr

dU(3,NN) = rr*dvy + vv+drr

dU(4,NN) = dpp/gaml + O.6*ww2+drr + rr+(uu+duu + vv*dvv)
enddo

c* supearsonic inlet nodes
else 12 ((sqrt(wv2irl)/mainl).ge.1.) ther
c* state vector components far from body
rOinf = .
alinf = 1.

CVD$ NODEPCHK
do IN = i, Imex
NN = innode(IN)
rr = rOinf*(1.0+0.6+gam1*Minl**2)**(-1./ganm1)
aa = aOinit(l.0+0.5*gan1tM1n1**2)*t(-0.5§
uu = Minl*ae
PP = rr*aa*+2/gan

dU(1,NN) = rr - U(1,NN)
Au(2,NN) = rr*uu - U(2,NN)
dU(3,NN) = - U(3,NN)
dU(4,HN) = pp/gaml + .B*(uu**2)*rr - U(4,NN)
enddo
endif

return
end
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c* *
c* adjust outlet state vector for boundary condition *
c* *
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subroutine boutlet
implicit none

include ’'TRI.INC’
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real rrout, uuout, vvout, ppout laverage values at outct
regl asout, wv2out

real asai, aaad 'coef. of inverse of matrix
real bbb3, bbb4d

real ccel

real ddd4

real ww2, uu, ¥vv, pp, rr, eaea !values at next intarior node

Teal dvl, dv2, dv3, dp
real drr, duu, dvv, dpp
integer 0N, kN {boundary face and its nodes

rrout = U(1,outnoude(Ozex/2))

uuout = U(2,outnode(Omex/2))/rrout

vvout = U(3,outnode(Omax/2))/rrout

wv2out = uuout*s2 + vvoutss2

ppout = gami=»(U(4,outnode(Caax/2))
& - 0.5*rroutswwlout)

asout = sqrt(gam+ppout/rrout)

asai = ~1./anout**2
aaad = 1. /acouts»3

bbb3 = .1/(rrout+ascut)
bbb4 = -1./(rrout+*asout)
cce2 = .i/(rrout+ancut)
ddd4d = 1.

c* set boundary values cf state vector for nodes
CvD$ NODEPCHK
do ON = 1, Omax
HN = outnode(ON)
rr = U(1,HN)
uu = U(2,NH)/rr
vy = U(3,HN)/rr
WW2 = yusxl + yvss2
pp = sam1*(U(4,NN) - O.6+rr*wwl)
aa = gqrt(gam+pp/rr)
if (sqrt(ww2) .1t. aan) then
dvi = AU(1,NN)*(0.B*ww2+gaml - aa+%2)
du(2,NN)+gamlsuu
dU(3,NN)+gamisvv
dU(4,NN)*gen1
du(1,NN)*aa*vvy
dU(3,NN)*aa
dw3 = AU(1,NN)*(0.6*ww2*gaml - aa*uu)
- dU(2,NN)+(gami*uu - aa)
- dU(3,NN)+gamisvv
+ dU(4,NN)+gam1
dp = pout - pp
drr = aaal*dwi + aaad+*dp
duu = bbb3*dw3 + bbb4*dp
dvv = ccc2+dw2
dpp = ddddsdp
Aau(1,KN) = drr
du(2,NN) = rr+*duu + uusdrr
dU(S,NH) = rred7v + vvsdrr
dU(4,KN) = dpp/gaml + O.6+*ww2+drr ¢ rr*(uu*duu + vv*dvv)

dvl =

+ P+

endif
enddo

return
end
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c* *
c* this subroutine changes the momentum change to make *
c* flov tangent to wall *
c* *
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subreoutine tangent
implicit none

include °‘TRI.INC®

integer EN !pointer
integer MN Inode on wall
real drwn 'chango in momentum normal to wall

CVD$ NODEPCHX

do EN = 1, bnode
N = onode(EN)
drvn = -(U(2,NN) + dU(2,NK))#*senode(EN) +

& (U(3,NN) + 4AU(8,NN))*canode(EN)

Au(2,NN) = AU(2,HN) + drwn*senode(EN)
du(s,Ni) ~ dU(S,NN) - drwn*cenoda(EN)

anddo

return
end

A.1.4 Jameson Scheme
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cx* %
c* main program for triangular Jameson scheme *
o* *
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program triangle
implicit none

include 'TRI.IKC®

integer Niter 'number of iterations

real maxchange Imax change in statas vector
integer CC 'pointer

integer maxnods, maxeqn !wvhere max change occurs

c* read in data from file
call gridio(1)
call flowio(1)
call input

Niter = 0
durms = 9909.

c* atart L.story file from the top
open(urit=36,status='unknown’,form='fornmatted’)
write(36,2) Hinl
close(unit=35)

2 fornat(’ inlet Mach numbar = *,£6.3)

c* loop until converged
do while ((Niter.lt.Maxiter) .and. (durms.gt.2.e-7))
Niter = Niter + 1

call updaie(marchange, maxnode, maxeqn)

12 (mod(Niter,10).eq.0 .or. Niter.lt.iO) then
call flowio(0)
open(unit=50, status=‘unknown’, form='unformatted’)
write(60) Cmax, (vol(CC),CC=1,Cnax)
close(unit=60)

10 open(unit=36, status=’old’,access="appand’,err=10)
write(35,1) Niter, durms, maxchange, x{(maxnode),

140



& y(maxnode), maxeqn

close(unit=36)
write(8,1) Niter, durms, maxchange, x(maxnode),
& y(aaxnode), maxaqn
endit
1 format{’Niter=',14,' rms=’,79.7,’ mex=',£9.7,’ x=',£6.3,
& ‘ y=',£6.3,° eqn=',il)
enddo

c* write out data to file
call flowic(0)

stop
end
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c« *
c* update state vectors at next time step *
cx *
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subroutine update(maxchange, maxnode, maxeqn)

include "TRI.INC®

integer HN, 1 !pointer

real UO(4,Naxnodes) 'starting values of state vector
real alphai, alphal, alpha3 lcoefficients

real alphad

real maxchenge !max change in state vector

integer maxnode, maxeqn !where max change occurs

alphal = 0.26

alpha2 = 1./3.

alphad = 0.6

alphad = 1,

cx find timeatap at each node
cell timestep

c+* advance to next time step in four steps

c* gtep one
cell calcflux
call dissipation

do NN = 1, imax

UO(1,NN) = U(1,8N)

U0(2,NN) = U(2,KN)

UO(3,NN) = U(3,NN)

UO(4.KN) = U(4,KN)

du(1,NN) = U(1,KN)

du(2,¥K) = U(2,NN)

du(s,NN) = U(3,NN)

CU(4,NN) = U(4,KN)

U(1,KK) = UO(1,NN) - (alphaixdeltN(NN))
#(£1lux(1,NN) - dis(1,NN))

U(2,NN) = UO(2,NN) - (alphai*deltN(NN))
*(f£1ux(2,NN) - dis(2,NK))

U(3,RN) = UO(3,NN) - (alphal+*deltN(NK))
»(£1ux(3,KN) - dis(3,HN))

U(4,NN) = UC(4,NN) - (alphai*deltN(NN))
*(£1lux(4,NN) - dis(4,NNK))

du(1,NH) = U(1,NK) - AU(1,NN)

du(2,NN) = U(2,KK) - dU(2,NN)
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du(3,NN) = U(8,NH) - dU(8,NR)
Au(4,NN) = U(4,NN) - dU(4,NN)

enddo

call binlet
call boutlet
call tangent

c* atep two

r ® R

call caleflux
call dissipation

do NN = 1, Nmax

dU(1,HN) = U(i,NN)
du(2,5N) = U(2,NN)
dU(3,NN) = U(3,NR)
AU(4,NN) = U(4,NXN)

U(1,NN) = UO(1,NN) -

U{2,HN) = U0(2,NN) -

U(3,NN) = UO(3,NN) -

U(4,NK) = UO(4,HN) -

dU(1,NN) = U(1,NX)
du(2,NN) = U(2,NN)
AU(3,NN) = U(3,KRN)
dAU(4,NN) = U(4,NN)

enddo

call binlet
call boutlet
call tangent

c+* step three

® & P N

call calcflux

do NN = 1, Nmax

AU(1,NN) = U(1,NX)

4au(2,HK) = U(2,NX)
du(3,NN) = U(3,NN)
dU(4,NN) = U(4,NN)
U(1,NN) = UO(1,NN)

U(2,KN) = UO(2,NN)
U(8,NN) = UO(3,NN)

U(4,NN) = UO(4,KRN) -

du(1,NN) = U(1,NN)

du(a,NN) = U(2,KN) -
dU(3,NN) = U(3,NKR) -
du(4,NN) = U(4,NN) -

enddo

call binlet
call boutlet
call tangent

c* step four

call caleflux
do NN = 1, Nmax

du(1,NN) = U(1,HN)
au(2,NN) = U(2,NK8)
AU(8,NN) = U(3,NN)
dU(4.NN) = U(4,NN)

(alpha2+deltN (NN))
»(£1lux(1,KN) - dis(1,NN))
(alpha2+deltN(NN))
*(f1ux(2,NN) - dis(2,NN))
(alpha2*deltN(NK))
*(21ux(3,NN) - dis(3,NN))
(alpha2+deltN(NN))
*(flux(4,NN) - dia(4,NN))
dau(1,NN)

du(2,KN)

du(s,NN)

du(4,NN)
(alpha3+deltN(NN))
#*(£lux(1,HN) - dis(1,8N))
(alpha3+*deltN (NN))
*(£lux(2,NN) - dis(2,8N))
(alpha3+daltN(NN})
*(£1lux(3,NN) - dis(3,NN))
(alpha3+deltN(NN))

»(f1lux(4,NN) - dis(4,NN))
du(1,NN)
du(2,KN)
du{s,NN)
AU (4,KN)

U(1,HN) = UO(1,NN) - (alphad+deltN(NN))

*(flux(1,NN) - dis(1,NN))

U(2,NN) = UO(2,NN) - (alphad+deltN(NN))
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& *(flux(2,NN) - dis(2,NN))
U(3,HN) = UO(3,NN) - (elphad*deltN(N¥))

& *(21ux(3,HN) - d1s{3,NN))
U(4,HH) = UO(4,NN) - (alphad*deltN(NN))
& »(flux(4,NN) - dis(4,NN))

du(1,¥N) = U(1,NN) - AU(1,NN)

du(2,NB) = U(2,NK) - dau(z,NN)

du(3,NN) = U(3,NN) - AU(3,NK)

dU(4,H¥H) = U(4,NN) - dU(4,NN)
enddo

call binlet
call boutlet
call tangent

c+* find root mean square differance in state vectsnr
durms = 0.0
maxchange = O.

doi=1, 4
do NN = 1, Nmax
durms = durms + (U(i,NN) - UO(1,NN))*#+2
it (aba(U(1,NN)-UO(4,NK)).gt.abs(maxchange)) then
maxchange = U(i,NN) - UO(1,NN)
mexnode = NN
maxeqn = i
endif
enddo
enddo

durms = sqrt(ducms/(4.*Nmax))

return
end
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c* X
c* calculate time step for nodes *
c* *
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subroutine timestep
implicit none

include °‘TRI.INC®

integer EF, FF, NN 'pointer

integer CC, CC1, CC2

integer N1, N2, N3, N4 ‘nodes related to face
integer PN, P1, P2 !periodic nodes

real delx, dely Ix and y length of side

real delside ‘length of side

real uu, vv, aa, rr, ww2 'values at node
integer FF1, FF2, col fcolor pointers

integer EF1, EF2
real onethird

cx get values for false noda 0
U(1,0) = 1.
U(2,0) = 0.
U(3,0) = 0.
u(4,0) = 0.

c* zero out delt
do NN = i, Nmex
deltN(NK) = 0.
enddo

c* find time step for each node
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FF2 = 0

do col = §{, Fcolormax
FFl = FF3 + 1
FF2 = FF1 - 1 + NFcolor(ecol)
do FF = FF1, FF2
N1 = face(FF,3)
N2 = face(FF,4)
N8 = fece(FF,6)
H4 = face(FF,6)

delx = x(N2) - x(N1)
dely = y(N2) - y(¥1)
delside = sqrt(delx*s2 + dely**2)

rr = U(1,N3)

uu = U(2,N3)/er

vy = U(3,N38)/rr

w¥2 = Yus*2 + yy*s2

aa = sqrt(gam+gem1(U(4,N3)/rr - 0.6%wu2))

deltN(N3) = deltN(N3) + abs(uu*dely-vvidelx) + ae*delside

rr = U(1,N4)

uu = U(2,H4)/rr

vy = U(S8,N4)/rr

W¥2 = uu**2 + yy+*2

ea = aqrt(gam+*gan1*»(U(4,N4)/rr - 0.6+ww2))

deltN(N4) = deltN(N4) + abs(uu*dely-vvdelx) + aasdelside

enddo
enddo

¢* add to timestep for bLoundary nodes
EF2 = 0

do col = 1, E2colormax
EFl = EF2 + {
EF2 = EF1 - 1 + NEcolor(col)

do EF = EF1, FF2
FF = eface(EF)
N1 = face(FF,3)
N2 = face{FF.4)

delx = x(N2) - x(N1)
dely = y(N2) - y(N1)
deleide = gqrt(delx+*2 + dely++2)

rr = U(1,N2)

uu = U(2,N2)/rr

vy = U(3,82)/rz

w¥l = yuss2 + yys=2

aa = aqrt(gemsgami+*(U(4,N2)/rr - 0.6+ww2))

deltN(N2) = deltN(N2) + abs(uu+dely-vr*deix) + ae*delside

rr = U(i, N1)

uu = U(2,N81)/rr

vv = U(3,H1)/rr

w¥2 = yuss2 + yy*s2

aa = sqrt(gam+gami+(U(4,N1)/cr - O0.65%ww2))

daltN(N1) = deltN(N1) + abs(uu*dely-vv+delx) + aa*delaids

enddo
enddo

c+** find time step at periodic nodes

do PN = 1, Pmax
P1 = pnode(PN,1)
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c*xn

P2 = pnodae(PN,2)

deltN(P1) = deltH(P1) + deltk(P2)

deltN(P2) ~ deltH(P1)

enddo

delt is actually delt/areal

do NN = 1, Kmax

de1tN(NN) = CFL#*2./deltN(NN)

enddo

raturn
end
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cx*
C*
cx

*

calculate flux vaector values at nodes *

*
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Cx*

c*

subroutine calcflux
implicit none

inciude °TRI.INC’
integer CC, CC1, CC2
real dx23, dx31, 4x12
real dy23, dy3i, dyi2
integer EF, NN, FF, 1
real delx, dely

real WW

integer N1, N2, N3, N4
real dflux

integer FF1, FF2, col

do NN = {, Nmax

set flux to zero

flux(1,NN) = O.
f1lux(2,NN) = 0.
flux(3,KNN) = 0.
flux(4,NN) = 0.

calculate £ and g at nodes

ichange in x on cell edges
!chagne ir y on cell edges
ipointers
Ichange in x and y on face
Ikinetic enargy
'nodes around adge
Ifluxes throuth face
{color pointers

W = 0.6+(U(2,NN)#+2 + U(3,NN)*%2)/U(1,NN)

F(1,NN) = U(2,NK)

F(2,NN) = U(2,KN)*#2/U(1,NH) + gam1+(U(4,KN) - WW)
F(S,NH) = U(2,KK)*U(3,KN)/U(1,HN)
F(4,NK) = (U(2,NN)/U(1,NN))*(gamsU(4,NN) - gamlswd)

G(1,NN) = U(3,NN)

G(2,NN) = U(2,NN)*U(3,NN)/U(1,NX)
G(3,NN) = U(3,KR)**2/U(1,NN) + gami#*(U(4, KN) - ww)
G(4,NH) = (U(3,NN)/U(1,NK))*(gam*U(4,KN) - gamlsww)

enddo

do CC = 1, Cmax
H1 = cell(CC,4)
N2 = cell(CC,b)
N3 = cell(CC,6)

dy2s = y(N2) - y(N3)
dy31 = y(N3) - y(N1)

dy12 = y(N1) - y(N2)
dx23 = x(N2) - x(N3)
dx31 = x(N3) - x(X1)
dx12 = x(N1) - x(N2)

aUc(1.CC) = 0.6%(-F(1,N1)*dy23 + G(1,N1)*dax23
-F(1,N2)+dy31 + G(1,N2)*dx31
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[ -F(1,N3)*dy12 + G(1,N3)=*dx12)
due(2,CC) = 0.6+%(-F(2,N1)+dy23 + G(2,N1)+*dx23

& -F(3,N2)*dy31 + G(2,N2)*dx31
3 -F(2,N3)*dy12 + G(2,N3)+*dx13)
dUc(8,CC) = 0.5%(-F(3,N1)*dy23 + G(3,H1)*dx23
& -F(3,N2)*dy31 + G(3,H2)*dx31
& -F(3,N3)*dy12 + G(3,K3)*dx12)

dUc(4,CC) = 0.5%(~F(4,N1)*dy23 + G(4,N1)+*dx23

& -F(4,N2)*dy31 + G(4,N2)+*dx31
& -F(4,N83)*dy12 + G(4,N3)+dx12)
enddo
c* implement wall boundary ccnditionsa
call bwall
CC2=0

do col = 1, Ccolormax
CClL = CC2 + ¢
CC2 = CC1 - 1 + NCcolor(col)

CVD% NODEPCHK
do CC = CC1, CC2
N1 = cell(CC,4)
N2 = cell(CC,5)
N3 = cell(CC,6)

flux(1,N1) = £lux(1,N1) - dUe(1,CC)
flux(1,82) = flux(1,N2) - dUc(1,CC)
flux(1,N8) = flux(1.N3) - dUc(1,CC)

flux(2,¥1) = flux(2,N1) - dUc(2,CC)
f1lux(2,N2) = flux(2,K2) - 4aUc(2,CC)
f£lux(2,N¥3) = flux(2,N3) - dUc(2,CC)

flux(3,N1) = flux(3,N1) - dUc(3,CC)
f1lux(3,N2) = flux(8,N2) - dU=(3,CC)
£1lux(3,N8) = f1ux(3,H3) - dAUc(3,CC)

flux(4,N1) = f£lux(4,N1) - dUc(4,CC)
£1ux(4,N2) = flux(4,N2) - aUc(4,CC)
flux(4,N3) = flux(4,H3) - aUc(4,CC)

enddo
enddo

return
end
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cx *
c* this subroutine applies the wall boundary condition *
c* "
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subroutine bwall
implicit none

include °‘TRI.IKNC*

integer EF, FF, CC 'pointer

integer N1, N3 |nodes on edge
real coef

real dyi3, dxi3 ichange in x and y
real pi, p3 Ipressure

integer EF1, EF2, col
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¢* upper and lower boundary

EF2 =0
do col = |, Elcelermax
EFl = EF2 + 1
EF2 = EF1 - 1 + NEcolor(col)
CVD$ NODEPCHK
do EF = EF1, EF2
FF = eface(EF)
CC = faca(FF,1)
N1 = face(FF.4)
HS = face(FF,3)
dy13 = y(N1) - y(N3)
dx13 = x(N1) - x(N3)
pl = gami»(U(4,N1) - 0.6*(U(2,N1)**2 + U(3,N1)#*%2)/
& U(1,N1);
p3 = gam1*(U(4,N3) - 0.5+(U(2,N3)#+2 + U(3,K3)5+2)/
& U(1,N8))
dUc(1,CC) = dUe(1,CC) + 0.6%(
& (F(1,N43) + F(1,N1))*dy13 -
& (G(1,H3) + G(1,N1))=*dx13)
dUc(2,CC) = aUc(2,CC) + 0.65%(
& (F(2,43) + F(2,N1) - p1 - p3)=dyis -
L (G(2,43) + G(2,N1))*dx13)
dUc(3,CC) = dUc(3,CC) + 0.56x%(
& (F(3.N3) + F(3,N1))*dy13 -
& (G(3,N3) + G(3,N1) - pl - p8)+dx13)
dUc(4,CC) = 4aUc(4,CC) + 0.6+(
& (F(4,N3) + F(4.N1))*ay13 -
& (G(4,N8) + G(4,N1))*dx13)
enddo
enddo
return
end
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c* *
ck calculate the dissipation at each of the nodes for *
cx the current values of the state vector *
cx* *
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subroutine 4dissipation
implicit none

include °‘TRI.IKC’

integer N1, W2, N3 'nodes at end of face

integer PN, P1, P2

real change

integer NN, FF, 1

real dx31, dx12, dx23

raal dy31, dyi2, dya3

real dxCi, dxC2, dxC3, dxC4
real dyC1, dyC2, dyC3, dyC4
real del2(4,Naxnodes)

reel pres

real delp

real epsi(Naxnodes)

!periodic nodes
Ichange in dissipation
!pointers

Ichange in x

Ichange in y

Ichange in x in cell
Ichange in y in cell
!second order changes
!pressure at nodes
Ichange in pressure
!dissipation coeficients
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real coef, coef2 fcombination ¢f epsi
integar FF1, FF2, col fcolor pointers
integer CC1, CC2, CC Ipointers

integer EF, EF1, EF2

de UR = 1, Npmax
dig(1,HN) = 0.
dis(2,HN) = 0.
dig(3,NN) =0
dis(4,NN) =0
del2(1,NN) = 0.
del2(2,¥N) = 0.
del2(3,HN) = 0.
del2(4,NN) = 0.

epsi (NN) = 0.
enddo

c¢* undivided Laplacian of pressure for epsi coefficient
FF2 = 0

do col = 1, Fcolormax
FF1 = FF2 + |
FF2 = FF1 - 1 + NFeolor(col)

CVD$ NODEPCEK
do FF = FF1, FF2
N1 = face(FF,3)
N2 = face(FF.4d)

delp = gami*(U(4,N1) - U(4,N2)
X + .5 (U(2,N2)+%2 + U(3,H2)**2)/U(1,N2)
& - .5»(U(2,N1)»+2 + U(3,N1)=*%2)/U(1,¥1))
epsi(N1) = epsi(N1) - epsicoef*delp
epsi(N2) = epsi(li2) + epsicoefxdelp

enddo
enddo

c** find epsi and del2 at periodic nodes
do PN = 1, Pmax
P1 = pnode(PN,1)
P2 = pnode(PN,2)
eps1(P1) = epr1(P1) + epsi(P2)
eps1(P2) = epsi(P1)
enddo

do KN = i, Nmax
pres = gami*(U(4,HN) - 0.6%(U(2,NN)*+2 +
& U(3,HN)*+2)/U(1,8N))
eps1(NN) = abs(epsi(NN)/pres)
enddo

c** low-accuracy smoothing
it (sigE .eq. 0.) then

FF2 = 0
do ¢ol = 1, Fcolormax
FFi = FF2 + 1
FF2 = FF1 - 1 + KFcolor(col)
CYD$ NODEPCHK
do FF = FF1, FF2
Ni = face(FF,3)
N2 = face(FF.4)

del2(1,N1) = de12(1,N1) - U(1,N2) + U(1,N1)
del2(1,52) = de12(1,N2) - U(1,N1) + U(1,N2)

del2(2,N1) = del2(2,N1) - U(2,42) + U(2,K1)
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cxx

CvD$

cx

del2(2,H2) = del2(2,N2) - U(2,N1) +

del2(S,H1) = del2(8,H1) - U(3,N2) +
del2(3,H2) = de12(3,N2) - U(3,N1)

del2(4,Ht) = del2(4,N1) - U(4,N2) +
de12(4,H2) = de12(4,N2) - U(4,N1) +

enddo
enddo

high-accuracy smoothing
else if (sigE .eq. 1.) then

CC2 =0

do col = 1, Ccolormax

CCl = CC2 + 1

CC2 = CC1 - 1 + NCcolor{col)

NODEPCHK

do CC = CC1, CC2

Nl =
N2 =
N3 =

dx31
dxi2 =
dx23 =
dy31l =

-

= x(N3)
x(N1)
x(N2)
y(N3)
y(N1)
y(N2)

dy12
dy23

coef =
axll =
dxC2 =
dxC3 =
dxC4 =

ry & R R

dayCl =
ayC2 =
dyC3 =
dyC4 =

N & & o

deli2(1,K1) =
del2(1,H2) =
del2(1,H3) =

del2(2,H1) =
del2(2,82) =
de12(2,43) =

del2(3,N1) =
del2(3,N2) =
del2(3,N3) =

del2(4,N1) =
del2(4,N2) =
del2{(4,N3) =
enddo
enddo

cell(CC,.4)
cell(CZ,5)
cell(cC,8)

- x(N1)
- x(N2)
- x(N3)
- y(N1)
- y(r2)
- y(N8)

*coefl
*coef
*coef

*coef

*coef
*coef
*coef
*coef

del2(1,N1)
del2(1,N2)
del2(1,X3)

¢el12(2,K1)
del2(2,N2)
de12(2,K3)

del2(3,N1)
del2(3,N32)
del2(3,N3)

de12(4,N1)
de12(4,N2)
del12(4,KN3)

upper and lower boundary

EF2 =0

(U(1,N1)*dy23 + U(1,N2)*dy31

(U(3,N1)+day23 + U(3,N2)*dy31
(U(4,H1)+dy23 + U(4,N2)*dy3t

(U(1,N1)+dx23 + U(1,N2)*dx31

(U(3,N1)*dx23 + U(3,K2)*dx31

+
+
+

+
+
+

+
+
+

+
+
+

0.5/abs (-dx12+dy31 + dy12+dx3i)

(U(2,N1)+dy23 + U(2,N2)*dy31 +

(U(4,N1)*dx28 + U(4,N2)*dx31 +

(dxC1*dy23 +
(dxC1*ay31 +
(dxCi*dy12 +

(dxC2#dy23 +
(axc2+dy31 +
(dxC2+dy12 +

(dxC3+ay2s3 +
(dxC3+dy31 +
(axC3+dy12 +

(dxC4+ayas3 +

(dxCd»dy31 +
(dxC4*ay12 +
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U(2,N2)

U(3,n1)
+ U(3,N32)

U(4,n1)
U(4,N2)

+ U(1,N3)*dy12)
U(2,N3)*dy12)
+ U(3,N3)*dy12)
+ U(4,N3)*dy12)

+ U(1,N3)+*ax12)
(U(2,N1)»dx23 + U(2,N2)+dx31 + U(3,K3)*dx12)
+ U(3,N3)*ax12)

U(4,N3)*Ax12)

dyC1+dx23)
dyC1#dx31)
dyC1*dx132)

dyC2+Ax23)
dyC2+dx31)
dyC2+dx12)

dyC3#dx23)
ayC3+dx31)
ayC3+dx12)

dyC4*Adx283)
dyC4*ax31)
dyC4+dxi2)



do col = 1, Eicolormax
EFf = EF2 + }
EF2 = EF1 - 1 + NEcolor(col)

CVD$ HODEPCHK
do EF = EF1, EF2
FF = ofaca(EF)

CC = face(FF,1)
N1 = face(FF,.3)
H2 = face(FF,4)
N3 = faca(FF,6)
dx31 = x(N3) - x(N1)
dx12 = x(N1) - x(N2)
dx23 = x(N2) - x(N3)
dy31 = y(N3) - y(N1)
dy12 = y(N1) - y(N2)
dy23 = y(N2) - y(N3)

coe? = 0.65/abs(-dx12+dy31 + dy12+dx31)

axC1 = (U(1,¥1)+dy2s + U(1,N2)*dy31 + U(1,N3)*dy12)
dxC2 (u(z.uzggzizs + U(2,N2)*dy31 + U(2,N3)+*dy12)
dxC3 = (u(a.uzggzzzs + U(3,N2)*dy31 + U(3,N3)*dv12)
dxC4

*coetl
(U(4,N1)*dy23 + U(4,N2)=dy31 + U(4,N3)*dy12)
*coef

(u(:.uzg;::aa + U(1,N2)+dx31 + U(1,¥3)+dx12)

(U(2,§1)*ax23 + U(2,N§2)*dx31 + U(2,N3)+dx12)

(u(a.nlggzizs + U(3,N2)*dx31 + U(3,K3)*dx12)

(u(4,n:§3;§23 + U(4,N2)+dx31 + U(4,N3)*aAx12)
*coef

» o o
g 83
| DR R |

dyC4A

1012(1,N1) = del2(1,N1) + (dxCi*dy12 + dyCi*dx12)
del2(1,K2) = 4el12(1,N2) + (dxCi*dy12 + dyCl*dx12)

del2(2,N1) = de12(2,K1) + (dxC2+dy132 + dyC2+dx12)
d912(2,N2) = de12(2,N2) + (dxC2+dy12 + dyC2+dx132)

del2(3,N1) = 4e12(3,N1) + (dxC3#dy12 + dyC3+dx12)
de12(3,N2) = de12(3,N2) + (AxC3+dy12 + dyC3+dx12)

del2(4,N1) = del2(4,N1) + (dxC4*dy12 + dyC4a*dx12)
del2(4,N2) = del2(4,N2) + (dxC4i+dy12 + AyC4*dx12)

enddo
enddo

endif

CVD$ KODEPCHK

do Pi = {, Pmax
P1 = pnode(PN,1)
P2 = pnode(PH,2)
del2(1,P1) = del2(1,P1) + del2(1,P2)
del2(2,P1) = del2(2.P1) + dal2(2,P2)
del2(38,P1) = del2(3,P1) + del2(3,P2)
de12(4,P1) = del2(4,P1) + del2(4,P2)
del2(1,P2) = del2{1,P1)
del2(2,P2) = del2(2,P1)
ds12(3,P2) = del2(3,P1)
del2(4,P2) = del2(4,P1)

enddo

FF2 = O
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do col = 1, Fcolormax
FF1 = FF3 + 1§
FF2 = FF1 - 1 + HFcolor(col)

CvD$ NCDEPCHE
do FF = FF1, FF2
N1 = face(FF,3)
N2 = face(FF,4)

coef = 0.6+(epsi(N1) + epsi(N2))
coef2 = 0.6*max(0.,eps2-coef)*(1./deltN(N1) + 1./deltH(N2))

change = coef2+(del2(1,N2) - del2(1,N1)) +
& coets(U(1,42) - U(1,N1))

dis(1,N1) = d1s(1,Ni) + chenge

dis(1,H2) = dia(1,N2) - change

change = coef2+(del2(2,N2) - del2(2,N1)) +
& coof*(U(2,N2) - U(2,N1))

dis(2,N1) = A1s(2,N1) + chenge

dis(2,42) = dis(2,N2) - change

change = coef2+(del2(3,N2) - del2(3,H1)) +
& coef»(U(3,N2) - U(3,N1))

die(3,H1) = dis(3,N1) + changa

dis(3,N2) = d1s(3,N2) - chanzge

change = coef2+(del12(4,N2) - del2(4,N1)) +
coef*(U(4,N2) - U(4,N1))
dis(4,H1) = dis(4,N1) + change
dis(4,N2) = dis(4,N2) - change
enddo
enddo

c*+ 1ind epsl and del2 at periodic nodes

do PHi = 1, Pmax
P1 = pnode(PN,1)
P2 = pnode(PN,2)
dis(1,P1) = dis(1,P1) + dais(1,P2)
dis(2,P1) = ais(2,P1) + dis(2,P2)
dis(3,P1) = dis(3,P1) + a1s(3,P2)
dis(4,P1) = d1s(4,P1) + dis(4,P2)
dis(1,P2) = dis(1,P1)
die(2,P2) = d1s(2,P1)
dis(3,P2) = dis(3,P1)
dis(4,P2) = ai8(4,P1)

enddo

retura
end

CERLARUARSRABARBRERER AR AR AR BN ARk R Rk ARk KRR Rk k&

c% *
c* adjust inlet state vector for boundary condition *
c* *

CHAXMRARIMERE AR ER AR IR EB AR RS TR KRR ARk Rtk kR Bk

gubroutine binlast
implicit none

include °TRI.IKRC’
real rrinl, uuinl, vvinl, ppinl !'average values at inlet
real wv2inl, eainl

real rOinf, aOinf !stag. density and aspeed of sound
real HOpres lstagnation enthalpy and pressure
real spres tentropy

raal coef
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real asal
real bbbl
real cccl
real d4ddi
real ww3l,
real 4HO,
reel drr,

, ana2, saa3, anad lcoef. of inverse of matrix
. bbb2, bbb3, bbb4
, ccel, cce3, cccd
, ddd2, 4443, ddd4

uu, vv, pp, rr, as Ivaluee at next intaerior node
ds, dtan, dw4
duu, dvv, dpp

integer IN, NN 'boundary face and its nodes

c*#* average values at inlet
rrinl = U(1,innode(Imex/2)) - 4U(1,innode(Imax/2))
uuinl = {U(2,innode(Imax/2)) - dU(2,innode(Imex/2)))/rriunl
vvinl = (U(S,innode(Ixax/2)) - AU(3,innode(Imax/2)))/rrinl
ww2inl = uyuinl*#*2 + vvinla*»2
Ppinl = gami*((U{4.innode(Imax/2)) - dU(4,innode(Inax/2)))

- 0.6*rrinl*vw2inl)

aainl = sqrt(gam+ppinl/rrinl)

c* subsonic inlet nodes
1f ((sqrt(wv2ipl)/aeinl).lt.1. .or. pitch.ne.0.) then
c** prescribed values

HOpres

= 1./gaal

spres = 0.

cs*x coefficient of matrix

coef =
aaal =
aeal =
aEa3 =
aaed =
bbbl =
bbb2 =
bbb3 =
bbb4 =
ccel =
cceld =
ceec3 =
cccd =
dddl =
dddl =
ddd3 =
ddaq =
CVD$ NODEPCRK
do IN
NN
rr
uu
144
wwl

1./(uuinl*(aainl+uuinl) + vvinl*x2)
(rrinl*uuinl/aainl)*coef
-(ppinl/aainl)+*(uuinl*gan/gem1 + ww2inl/aainl)*coef
-(rrinl*vvinl/aainl)*coef
(vw2inl/aninl**2)*coef

uuinl+*coef
-(uuinl*ppinl/(gam1*rrinl))*coet
-vvinl*coef

=(uuinl/rrinl) *coet

vvinl*coef
-(vvinlsppinl/(gami*rrinl))*coef
(aainl + uuinl)+coef
-(vvinl/rrinl)*coef
rrinl*sainl+uuinl+coef
-(ppinl*aeinl*uuinl /gami)*coef
~-rriprl+saainlsvvinl*coef
ww2inl*coef

1, Imax

innode (IN)

U(1,RN) - Aau(1,NN)
(U(2.NN) - Au(2,8N))/rT
(U(3,N¥) - AU(3,NN))/rr
= yu**d + yyx*2

PP = gami*((U(4,NN) - dU(4,NN)) - O.G6*rrxww2)
aa = sqrt(gam*pp/rr)

dHO
ds

= HOpres - ((gam/gam1)+pp/rr + O.b6*ww2)
= gpres - (log(gam+pp) - gamslog(rr))

dtan = (8inl - vv/uu)*uuinl=**2

drd

drr
duu
344

dpp

u(1
u(a
u(s
U4

enddo

LNN) = U(1,NN)
,NN) = U(2,NN)
,NN) = U(3,NN)
JNN) = U(4,KN)

=  AU(1,NN)+*(as*uu + gaml*ww2)
- aU(2,KN) *(aa + gami*uu)
- dU(3,NN)+gami*vv
+ du(4,NN)*gan1
aaai*dHO + aaa2+ds + aaa3=dtan + aaad*dwd
bbb1*dHO + bbb2+ds + bbb3*dtan + bbbd*dud
+
+

ccelndHO + ccc2+ds + ccc3+dtan + cccd*dwd
ddd1+dHO + ddd3*ds + ddd3*dtan + ddd4=*dwd

dU(1,NN) + drr

Au(2,NN) + rr*duu + uu*drr
AU(8,NN) + rr+dvv + wyv+drr
du(4,NN) + dpp/gamt + O.B6*ww2+drr
+ rr+(un*dun + vv+dvy)

c* superaonic inlet nodes
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else if ((sqrt(wwainl)/aainl).ge.1.) then
c* state vactor components far from body

rOinf = 1.
a0inf = 1.
CcVD$ NODEPCHK
do IN = 1, Imax
NN = innode(IN)
rr = rOinf*(1.0+0.6*gam1*Minl**2)*x(-1./gum1)
aa= lOintt(l.0+0.5tgnn1tMin1*t2)tt(-0.5§

uu = Ninl+*aa
PP = rr*aa**2/gam

U(1,NN) = rr
U(2,NN) = rr*uu
U(3,.NN) = 0.
U(4,NN) = pp/gam1 + .6*(uux*2)*rr
enddo
endif

return
end
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c* *
c* adjust outlet state vector for boundary condition *
c* *

CREkkkkddkRtk kA kAR KkRAREA SRR RE IRk kR kR ko ko kkkdokkkkk ki dkk k&

subroutine boutlet
implicit none

include °*TRI.IKNC’
real rrout, uuout, vvout, ppout !average values at outet
rezl saout, wwlout

real asal, aaad lcoef. of inverse of matrix
real bbb3, bbb4d

rsal cccl

real dddd

real ww2, uu, vv, pp, rr, aa !values at next intarior node

real dwl, dw2, dv3d, dp
real drr, duu, dvv, dpp
integer ON, NXK !boundary face and its nodes

rrout = U(1,outnode(Omax/2)) - dU(1,outnode(Omax/2))

uuout = (U(2,outnode(Omax/2)) - duU(2,outnode(Omax/2)))/rrout

vvout = (U(3,outnode(Omax/2)) - dU(3,outnode(Omax/2)))/rrout

ww2out = uuout**2 + vvout**2

ppout = gam1*({U(4,outnode(Omax/2)) - dU(4,ouvtnode(Omax/2)))
& - 0.6*rrout*ww2out)

asout = sqrt(gem*ppout/rrout)

asal = -1 /asout*+2
asad = 1. /anout**2

bbb3 = .1/(rrout*amout)
bbbd = -1./(rrout*asout)
ccc2 = .1/(rrout*aaout)
ddd4 = 1.

cx set boundary values of state vector for nodes
CVD$ NODEPCHK

do ON = 1, Omax
KN = outnode(ON)
rr = U(1,NN) - AU(1,KN)
uu = (U(2,KN) - du(2,NN))/rT
vv = (U(3,NN) - AU(3,NN))/rr

Ww2 = yusx*2 + yv*2
PP = gam1*((U(4,NN) - dU(4,NN)) - O.b*rrrwwl)
aa = aqrt(gam+pp/rr)
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if (eqrt(ww2) .1t. aa) then
dwl =  dU(1,NN)*(0.b*wwlxgaml - aa**2)
- dU(2,NN)*gami*uu

dU(S,NN)*gani*vy
au(4,NN)*gaml
dU(1,NN)*aa*vv
dU(3,NN)+*aa
de3 =  AU(1,NN)+*(0.6*ww2+gaml - am*uu)

- dU(2,NN)*(gami*uu - aa)

- dU(3,NN)*gami*vy

+ dU(4,NN)*gan.
dp = pout - pp
drr = aaal*dwl + maad*dp
duu = bbb3*dw3 + bbb4*dp
dvy = ccc2*dwl
dpp = ddd4+dp
U(1,NN) = U(1,NN) - AU(1,NN) + drr
U(2,NN) = U(2,NN) - dU(2,KN) + rr+duu + uusdrr
U(8,N8) = U(3,NN) - AU(3,NN) + rr*dwvv + vvedrr
U(4,NN) = U(4,NN) - dU(4,NN) + dpp/gami + O.B*ww2+drr
& + rr*(uu*duu + vv*dvy)

endif

enddo

dv2 =

+ 0+

PN & RE®

return
ond
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c* *
c* this subroutine changes the momentum change to make *
c* flow tangent to wall *
c* *
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subroutine tangent
implicit none

include ’'TRI.INC®

integer EN 'pointer
integer NN ‘node on wall
real drwn !change in momentum normal to wall

do EN = 1, bnode
NN = enode(EN)
drwn = -U(2,NN)*sencde(EN) + U(3,NN)*cerodae(EN)
U(2,NN) = U(2,NN) + drwn*senode(EN)
U(3,NN) = U(3,HN) - drwn*cenode(EN)
enddo

return
end

A.1.5 Plotting Package

prograx plotgen
implicit none

include °'TRI.INC®

integer NN, EN, CC 'pointers
integer N1, N2, N3
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cx

Cx

1

c*

11
111

c*

integer ptype

integer ctype

integesr styps

character»80 TITLE, ITITLE
integer NTITL

external gipltg, gipltc
integer indgr

integer ad, ab, 28, a7, a8, w9,
real uu, vv, pp, rr, aE, mm2
real pt, ptinf

real zz, z(Maxnodes)

reel zmex, zmin

integer NCONT

real CBASE, CSTEP

real Cinc

characters68 KUN

integer NLINE, IOPT(2)
integer points, npts(2)

real xline(Muxedges)

real yline(Maxedges)

read data from file
call gridio(1)
call flowioc(1)

initializa GRAFIC
write(ITITLE, 1) Minl

Itype of plot

Itype of contour

1type of surface distributions
1title for plots

'number of leters in title
{plotting subroutines

a10!dumny variables
ifrom state vectors
!total pressure
!contour values

‘max and min of z array
!contour level info

!contour increment

!same as CSTEP but character
!indicators for line plots
{number of points on lina
'pointa on line to plot

foraat(’INLET MACH NUMBER = * F6.3)

call grinit(6,6,ITITLE)
do while (1)

prozpt user for type of plot
type*, °‘Type of plot °

COMPUTATIONAL GRID'

types, *  0) STOP *

typesx, * 1) grid °

type*, ' 1) contour’

types, ° 3) surface distribution’

types, ° 4) data’

type 11

format($,’ selection = °)

accept 111, ptype

format(I)

if (ptype.eq.0) then
ntop

elas 1f (ptypo.eq.1) then
TITLE= * X Y
indgr = 23

call gr_control(g2pltg. indgr, TITLE, x, y, Nmax, a4,

ab, a6, a7, a8,

else if (ptype.eq.2) then
choose type of contour plo%

e9, aio)

do vhile (1)

Cinc = 0.

types*, ‘Type of contour’

type*, ° 0) TOP LEVEL’

type*, *° 1) density’

type*. ° 2) Mach number’

type*, ° 3) normal velocity'
type*, ° 4) pressure’

type*, ° 05) total pressure loss’
type*, ° 6) speed of sound’
type+, ° 7) entropy’

type*, ° 8) stagnaticn enthalpy’
types, ° 9) vol’

types, ° 10) CONTOUR INCREMENT®
type 22
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22
222

c*

21

221

cx

fornat($,’ selection = °*)
accept 222, ctype
format(I)

exit from contour locp
if (ctype.eq.0) goto 999

if (ctype.eq.10) then

type 21

format($, ' CONTOUR INCREMENT = *)
accept 23!, Cinc

format(F)

t’P.‘; " s

goto 2

endif

set up nodal contour values
it (ctype.eq.5) then

ptinf = 1./gam

endif

zmin = 1. 820
zmax = -1.@20

do NN = 1, Kmex

rr = U(1,NN)
uu = U(2,NN)/rr
vy = U(3,K¥)/rr

if (ctype.eq.1) then
Iz = ¢r
else if (ctype.eq.2) then
PP = gam1*(U(4,NN) - O.6srr*(uus»2 + vy**2))
mm = sqrt(rr*(uus*2 + vv++2)/(gam«pp))
zZz = um
else if (ctype.eq.3) then
zz = aqrt(uus*2 + vv*#2)
else if (ctype.eq.4) then
PP = gam1*(U(4,NN) - O.6*rr*(uu**2 + yys*2))
zZz = pp
else if (ctype.eq.5) then
PP = gami*(U(4,NN) - O.B*rr*(uu**2 + vy*x2))
mn2 = rr+(uus*2 + vv+*2)/(gam+pp)
pt = ppt(l.+.6*gam1*mm2)t*%gnn/gall)
zz = (1. - pt/ptint)+*100.
elsa it (ctype.eq.8) then
PP = gami*(U(4,NN) - O B+rr*(uu*+*2 + vyvy*%2))
zz = sqrt(gaa*pp/rr)
else if (ctype.eq.7) then
PP = gami*(U(4,NN) - O.B6+rr*(uus*2 + yv++3))
zz = ?log(gnltpp) - gam*log(rr))#*100.
else if (ctype.eq.8) then
PP = gaml1*(U(4,KN) - O.6*rr+*(uus+2 + yy**2))
Zz = ?(gnl/gtll)*(pp/rr) + 0.5%(uus*2 + vv*%2))*100.
endif

znax = max(zmax,zz)
zain = min(zain,zz)
z(NN) = zz

enddo

17 (ctype.eq.9) then

open{unit=50, status=’'unknown’, form='urformetted’)
road(60) Cmax, (vol{(CC),CC=1,Cmax)
close(unit=60)
zmia = 1 .20
zmax = -1.20
do NN = {, Nmax
z(NN) = 0O,
enddo
do CC = 1, Cmax
Ni = cell/CC,4)
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N2 = cel1(CC,6)
N3 = cell{CC,6)
zz = vol(CC)
zmax = nex(zmex,zz)
zaip = min(zmin,zz)
z(H1) = z(N1) + 2z/3.
z(N2) =~ z(N2) + 2z/3.
z(N3) = z(N3) + zz/3.
enddo
endif

c* set title and extra variables needed for GRAFIC
iz (ctypo eq. 1) then

TITLE = * Y DENSITY °*
NTITL = 24
NCONT = 20
else if (ctype. cq 2) then
TITLE = °* Y MACH NUMBER °*
NTITL = 28
NCONT = 20
else if (ctype.eq.3) then
TITLE= * X Y NORMAL VELOCITY °
NTITL = 32
NCONT = 20
alse if (ctype. eq 4) then
TITLE = °* Y PRESSURE °*
NTITL = 26
NCONT = 20
olse if (ctype.eq.5) then
TITLE= * X Y % TOTAL PRESSURE LOSS °*
NTITL = 38
NCONT = 20
else if (ctyre.eq.6) then
TITLE = °* X Y SPEED OF SQUND °*
NTITL = 31
NCONT = 20
else if (ctype.eq.7) then
TITLE~ * X Y % ENTROPY °*
NTITL = 24
NCONT = 20
else i? (ctype.eq.8) then
TITLE= ° X Y % STAGNATTON ENTHALPY °*
NTITL = 38
NCONT = 20
eolse if (ctype.eq.9) then
TITLE= ° X Y voL *
NTITL = 20
NCONT = 20
endif

c* find contour levels
if (Cinc.ne.0.) then
NCONT = int((zmax-zmin)/Cinc + 2.)

CSTEP = Cinc

CCASE = (real(int((zain/Cinc)-1.)))*Cinc
else

call GR_SCALE(zmir, zmax, NCONT-{, CBASE, CSTEP)
endif

z(Nmax+1) = NCONT
z(Nmex+2) = CBASE + 0.01*CSTEP
z(Nnux+3) = CSTEP

cx finish up title
TITLE(NTITL+1:NTITL+24) = 'CONTOURS WITH INCREMENT °*
vrite(NUM,10) CSTEP
10 Zoramat (F6.4)
TITLE(NTITL+26:80) = NUM

c* plot the contour lines

indgr = 23
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cH

33

call gr_control(g2pltc, indgr, TITLE, z, Nmax, x, y,
ab, a6, a7, a8, a9, al))

enddo

pPlot surface diatribution
elge 1if (ptyfo.cq.s) then

333

C*

c*

exlt from

do while (1)

type*, 'Typa of surface distribution’

types, ° 0) TOP LEVEL'

type*, ° 1) density’

type*, ° 2) Nach number’

type*, ° 3) normal velocity’
type*, ° 4) surface flov angle’
type*, ° 5) analytical surface flow angle’
type*, ° 6) pressure’

types, ° 7) entropy’

type», ° 8) stagnation enthalpy®
type+, ° 9) total pressure loas’
type 33

format($,’' selection = °)
accept 333, stype
format (I)

contour loop
it (etype.eq.0) goto 999

set up array with pointa on line for upper surface

i? (stype.eq.9) then
ptinf = 1./gam
endif

pointa = O

de EN = 1, tnods
points = points + 1
NN = enode(EX)
rr = U(1,NN)
uu = U(3,NN)/rr
vy = U(3,NN)/rr

if (stype.eq.l) then
zz = rr
elsa if (stype.eq.2) then
PP = gemis(U(4,NN) - O.6+rr*(uu**2 + wy*#2))
an = sqrt(rr~(uus»2 + vv++2)/(gaa*pp))
zZz = ma
else if (ntype.eq.3) then
zz = gqrt(uuss2 + yv*s2)
else if (stype.eq.4) then
zz = atan(vv/uu)
else if (stype.eq.5) then
zz = atan(senode(EN)/cenode (EN))
else if (stype.eq.6) then
PP = gem1*(U(4,NN) - O.Bxrr*(uu+*2 + vy+*2))
zz = pp
else if (stype.eq.7) thea
PP = gami(U(4,NN) - O.5%rr+«(uus*2 + vyss2))
zz = (log(gam*pp) - gam*log(rr))=100.
else if (stype.aq.8) then
PP = ?lll*(U(4,NN) - 0.6*rr*(uu¥*2 + vvs»2))
zz =
else if (stype.eq.9) then
PP = gami*(U(4,NHN) - O.6*rr*(uu+*2 + vv*s2))
nn2 = rrx(uu**2 + yv=*2)/(gan*pp)
pt = pp*(1.+.6*gaml*m2)++(gam/gani)
zz = (1. - pt/ptint)*100.
endif

x1line(points) = x(KN)

yline(points) = zz
enddo
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npta(l) = points

c* set up array with points on line for lowver surface
points= 0
do EN = tnode+1, bnode
points = points + 1
NN = enode(EN)
rr = U(1,KN)
uu = U(2,¥N)/rr
vy = U(3,NK)/rr

12 (stypa.eq.1) then
zz = rr
olsa if (stype.eq.2) then
PP = gami*(U(4,NN) - O.6*rr*(uu**2 + yv*%2))
R = aqrt{rr+(uus+*2 + vv++2)/(gam+pp))
zz = mm
alse if (stype.eg.3) then
2z = sqrt{uus*2 + yy+*32)
else if (stype.eq.4) then
zz = atea(vv/uu)
else if (stype.eq.6) then
zz = atan(senode(EN)/cenode(EN))
else if (stype.eq.6) then
PP = gami*(U(4,KN) - 0.6*rr*(uus+2 + vv+*2))
Zz = pp
elee if (stype.eq.7) then
PP = gami*(U(4,NN) - O0.6+rr=*(uucs2 + vy+%2))
zz = ?log(gnl*pp) - gam*leg(rr))+100.
elae if (stype.aq.8) then
PP = gami*#(U(4,NN) - O.6*rr+(uu+*2 + vy**2))
zz = %(su/gul)*(pp/tr) + 0.6*%(uu**2 + yv*%2))*100.
else if (stype.eq.9) then
PP = gemi*(U(4,NN) - O0.6*rr*(uus+2 + vv*x2))
ma2 = rr+(uu*+2 + vv++2)/(geam*pp)
Pt = pp*(1.+.6+gami*mn2)**+(gam/gan1)
zz = (1. - pt/ptinf)*100.
endif

x1ine(npts(1)+points) = x(NN)
yline(npta(1)+points) = zz
enddo

npts(2) = pointa

c+* get plot indicators
NLINE = 2
IOPT(1) = 14
IOPT(2) = 14

c+** pget title for plot
1t (stype.¢q.1) then
TITLE= * X DENSITY DENSITY'
olse if (stypa.eq.2) then
TITE= * X MACH NO.MACH NUMBER'
else if (stype.eq.3) then
TITLE= * X VELCCITYNORMAL VELOCITY'
else if (stype.eq.4) then
TITLE= * X ANGLE SURFACE FLOW ANGLE®
else if (stype.eq.6) then
TITLE= * X ANGLE ANALYTICAL SURFACE FLOW ANGLE’
elss if (stype.eq.6) then
TITLE= * X PRESSUREPRESSURE*
else if (stype.eq.7) then
TITLE= = X ENTROPY™% ENTROPY’
else if (stype.eq.8) then

TITLE =
& X “STAGNATION ENTHALPY™% STAGNATION ENTHALPY'
else if (stype.aq.9) then
TITLE =
& X “TOTAL PRESSURE L0S3-% TOTAL PRESSURE L03S*
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endif

c* plot the line
indgr = 21
call gr_linu(IOPT,NLINE.TITLE,INDGR.xlino.ylina.nptﬂ)

enddo
else if (ptype.eq.4) then

c+ calculate mesn of total pressure loss
ptinf = 1./gam

zz = 0.

zmax @ O.

do HN = 1, Hmax
rr = U(1,HN)
uu = U(2,KN)/rr
vy = U(3,NN)/rr

pp = gamis(U(4,KH) - O.Bsrrs(uus*l + vv**2))
pu2 = rrs(uus*2 + vys+2)/(gam+pp)
pt = pp*(1.+ G+gamismn2)*+ gam/gami)
zz = zz + (1. - pt/ptint)»*2
zmax = max(zmax,abs(i.-pt/ptinf))
enddo
zz = sqrt(zz/real(Naax))

type*, ' °*
type+, ‘inlet Mach number = *, Minl
type*, 'rms total pres. loss = °, 1z, * (*,log10(zz),")’
type+, °'max total pres. loss = ‘', Zmax, * (*,logi0(zmax),’)’
type*, ‘cells = *, Cnax
types, 'faces = *, Fpax
type*, 'nodes = ', Nmax
type*, 'inlet nodes » ', Imax
type*, ’outlet nodes a *, Omax
type*, 'periodic nodes = ', Pmax
type*, "edge nodes = ‘', Enax
type*, ‘face colors = ’, Fcolormax
type+*, ‘cell colors = *, Ccolormex
type+*, ‘edge colors = ', E2colormax
type*, ° °
999 endif
enddo
end

subroutine g2pltg(ifun, indgr, TITLE, alirits, info_string,
& al, a2, a3, a4, ab, a6, a7, 8B, a9, all
implicit none

include °TRI.INC’

integer FF, EF, NN

integer indgr

character*80 TITLE

integer ifun

real alimits(4)

integer al, a2, a3, a4, ab, a6, a7, a8, a9, al0
character»80 info_string

resl x1, x2, yi, y2

i1f (ifun.eq.0) then
raturn
elseif (ifun.eq.i) then
call gr_get_limits(x, y, Nmex, alimits)
if (pitch.ne.0.) then
alimits(4) = alizits(4) + pitch
endif
alseif (ifun.eq.2) then
info_string = *' °’
elpeif (ifun.eq.3) then
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do FF = 1, Fmax
NN = face(FF,3)
x1 = x(NN)
yi = y(uN)
NH = face(FF,4)
x2 = x(NN)
y2 = y(HN)
call gr_move(xi, yi, O)
call gr_draw(x2, y2, 0)
if (pitch.ne.0.) then
y1 = y1 + pitch
¥2 = y2 + pitch
call gr_zove(xi, y1, 0)
call gr_draw(x3, y2, 0)
endif
enddo
endif

return
end

subroutine g2pltc(ifun, indgr, TITLE, alimits, info_string,
& Z, a2, a3, ad, ab, a6, a7, as, a9, al0)
implicit none

include °'TRI.INC’

integer FF, EF, NN, CC, NC !pointera
intager node {pointer
integer indgr

character+*80 TITLE

integer ifun

real alimits(4)

real z(Maxnodes)

integer a2, a3, a4, ab, a6, a7, a8, ap, all
character+80 info_string

reel yi, y2, y3 Ilocation of cell nodas

integer ncont !{determine contour levels

real cbase, cstep

real zn12, zn32, zn31 fcontour crossing on sides
integer N1, N2, N3 inodes at end of edge face

real xn(3), yn(3), zn(3) !x, y, and contour value at nodes
real xpoint, ypoint !x, y of pointer

real atriangle 'area of triangle

real value !value of contour at pointer
real cn(2,8) !x, y at cell nodes

integer IIN !is pointer in cell?

real aal, aa2, aa3, aa lareas

real zcont, cont(80) lcontour levels

real zmex, zmin !max & min contour velues in cell

if (ifun.eq.0) then
raturn
elgeif (ifun.eq.1) then
call gr_get_limits(x, y, Nmax, aliaits)
if (pitch.ne.0.) then
alimita(4) = alimits(4) + pitch
endif

elseif (ifun.aq.2) then

c* find contour value at point
xpoint = alimits(1)
ypoint = alimits{32)

c* look for cell (x,y) is in
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do CC = 1, Cmax

N1 = cell(CC,4)

K2 = call(CC,B)

¥3 = cell(cC,6)
en(1,1) = x(N1)
en(1,2) = x(N2)
en(1,3) = x(N3)
en(2,1) = y(¥1)
en(2,2) = y(K2)
cn(2,3) = y(N3)
call gr_ineide(IIN,cn,3,xpoint,ypoint)
if (IIN.eq.1) then

c* linear interpolation for value
ea2 = atriengle(z(N1),y(N1),x(N3),y(N3), xpoiat,ypoint)
aa3 = atriangle(x(N2),y(N2),x(N1),y(N1),xpoint,ypoint)
sal = atriangle(x(N3),y(N3),x(N2),y(N2),xpoint, ypoint)
ea = atriangle(x(N3),y(N3),x(N2),y(N2),x(N1),y(N1))
if (aa.eq.0) then
arl = 1.
a2 = 1.
aas = 1.
aa = 3.
endif
value = (aa1*z(N1) + an2*z(N2) + ex3*z(N3))/ea
goto 80
endit
cn(2,1) = cn(2,1) + pitch
cn(2,2) = cn(2,2) + pitch
en(2,3) = ¢n(2,3) + pitch
call gr_inside(IIN,cn,3,xpoint,ypoint)
12 (IIN.eq.1) then

c* linear interpolation for value
y1 = y(N1) + pitch
y2 = y(N2) + pitch
y3 = y(N3) + pitch
aa2 « atriangle(x(N1),y1,x(N3),y3,xpoint,ypoint)
aa3 = atriangle(x(N2),y2,x(N1),y1,xpoint,ypoint)
eal = atriangle(x(N3),y3,x(N2),y2,xpoint,ypoint)
an = ntrinnglo(x(ns).ys.x(nz),y:.x(Hl),yig
if (aa.eq.0) then
aal = 1.
aal = 1,
aa8 = 1.
aa = 3.
endif
value = (aa1+z(Ni) + aal2+*z(N2) + aa3+z(N3))/aa
goto 30
endif
onddo
30 write (INFO_STRING,31) value
31 format(’ function velue = ’,216.6)

elseif (ifun.eq.3) then

c* plot boundary
do EF = 1, Emax
FF = oface(EF)
N1 = face(FF,3)
N2 = face(FF,4)
call gr_move(x(N1), y(¥1}, 0)
call gr_draw(x(¥2), y(¥2), 0)
enddo

if (pitch.ne.0.) then
do EF = 1, Enax
FF = gface(EF)
N1 = faca(FF,3)

N2 = face(FF.,4)
y1 = y(N1) + pitch
y2 = y(N2) + pitch
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call gr_move(x(N1), y1, O)
call gr_drav(x(N2), y2, 0)
enddo
andif

c+* set up contour levela
ncont = z(Nmax+1)
cbase = z(Nmax+2)
catep = z(Nmax+3)
do NC = 1, ncont
cont (NC) = cbasa + (NC-1)+*cstep
enddo

¢+ loop through cells
do CC = 1, Cpax

do NN = 1, 38
node = cell(CC,HNN+3)
xn(NN) = x(node)
yn(N¥) = y(node)
zn(NN) = z(nodae)
enddo
znax = max(zn(1), zn(2), zn(3))
zain = min(zn(1), zn(2), zn(3))

c+x find contour crossing on triangle for each contour level
do HC = 1, ncont
zcont = cont (NC)
1i (zcont.lt.zmin .or. zcont.gt.zmax) then

c* no need to compute
alse
c* find contour croasing in triargla

call gr_cross(zn(1),zn(2),zcont.zn12)
call gr_crosa(zn(3),zn(2),zcont,zn32)
call gr_cross(zn(8),zn(1),zcont,zn31)

c* plot contour levels in triangle
call gr_ctriangle(xn(1), yn(i),

& xn(2), yn(2),
& xn(3), yn(3),
X zn31, zn32, zn12)

if (pitch.re.0.) then
y1 = yn(1) + pitch
y2 = yn(2) + pitch
y3 = yn(8) + pitch
call gr_ctriangle(xn(1), yi,

& x(2), y2,
& xn(3), y3,
& zn31, zn32, zn12)
endif
endif
enddo
enddo

endi?

retum

end

CHhkabk bR pdkhdhbhkhbbh kbbb kk ko khkkkkhh bk kg kb hr k%

c* &
c* function to find the area of a triangle *
c* L3

CHEXAXNFXRRRRXERRAREER N KA EE B AR RN RN R R Rk kR kR kAR R AR kR Ak Rk
function atrlangle(x1,yl,x2,y2,x3,y3)

real x1,y1,x2,y2,x3,y3
real*8 distance,a,b,c,s
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distance(xe,ya,xb,yb) = dsqrt(dble(xa-xb)*+*2 + dble(ys~-,b)*+2)

a = distance(xi,y1,x2,y2)
b = distance(x3,y3,x2,y2)
¢ = distance(x1,y1,x3,¥3)

8= .65(a+Db+c)
o = deqrt(s*(s-a)*(s-b)*{s-c))
atriangle = a

return
and

A.2 Quadrilateral Schemes

A.2.1 Common Files

This is file QUAD.INC which includes many declarations and common block state-

ments and is included in all subroutines for the quadrilateral schemes.

parameter Maxnodes = 65000
paraneter Maxfaces = 10000
paraneter Maxcells = 5000

paramater Naxedges = 400

integer Kmax !number of aodes

integer Fmax 'number of faces (including edges)
integer Caex ‘number of cells (inciuding edge cells)
integer Imax, Omax 'number of inlet and outlet nodes
integer Wmax 'number of well faces

integer Emax 'number of edges

integer tedge, bedge, iedgae !wvhere different types of edges are
intoger Pmax !number of periodic nodes

integer ENmax 'number of edge nodes

integer tnodae, bnode, inode llocation of diff. types of edge nodes
real pitch !blade pitch

real pout loutlet pressure for blades

real 8inl Itan of inlet flow angla

real x(Maxnodes) !x values of nodes

real y(Naxnodas) 'y values of nodes

integer eface(Maxedges) tarray of edge faces

integer enode(Maxedges) larray of edge nodes

real senode(Maxadges) !sin end cos at edge nodes

real cenode(Maxedges)

integer faco(Maxfaces,8) larray of faces

integer cell(Maxcells,8) tarray of cells

integer innode(Kaxedges) !inlet nodes

intazer outnode(Maxedges) ‘outlet nodes

integer pnods(Naxedges,2) !periodic nodes

intager NCcolor(60) 'nupber of cells colored each color
integer Ccolormax !max number of colors used

integer NFcolor(60) 'number of faces colored each color
integer Fcolormax Imex number of colors used

integer MEcolor(10) 'number of edges colored each color

integer Elcolormax, E2colormax Imax number of colors used
common /quad/ Imax, Omax, Wmax, Pmax

common /quad/ Nmax, Fmex, Cmax, Emax, tedge, bedge, iadge
common /quad/ ENmax, tnode, bnode, inode
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common /quad/ pitch, pout, Sinl

coamon /quad/ x, y, eface, enode, renode, cenode, face, cell
common /quad/ innode, outnode, pnode

comaon /color/ NCcolor, Ccolormax, HFcolor, Fcolormax
common /color/ NEcolor, Elcolormax, E2colcrmax

real Ninl !inlet Mach number

integer Maxiter !max number of iterations

real CFL !CFL number

real epsicoef, eps2 !smoothing coaf

real sigE, sigVv !smoothing coef

real vol{Nexcells) !for vorticity smoothing

real durms irms difference in state vector
real U(4,0:Naxnodes) tstate vector

real dU(4,Naxnodes) Ichange in state vaector at nodes
real Uc(4,Mexcells) !atate vector at cells

real dUc(4,0:Maxcells) Ichange in state vector at cells
real F(4,Maxnodes) !flux vectors at nodes

real G(4,Maxnodes)

real areaN(0:Nexnodes) !control aree around each node
raal areaC(0:Naxcells) ‘area of aach cell

real deltC(0:Naxcells) 'time step at each cell

real deltN(O:Maxnodes) !time step at each node

real dis(4,Maxnodes) 'dissipation at aach node

real flux(4,0:Maxnodes) !flux at each node

common /flo/ Minl, durms, Maxiter, CFL

common /flo/ epsicoef, eps2, sigE, sigV, vol
common /flo/ U, dU, Uec, dUc

common /flo/ F, G

common /flo/ deltC, deltN, areaC, areal, dis, flux

parameter gan = 1.4
parameter gami = 0.4

This file contains the subroutines for input and output and is linked with all the

quadrilateral schemes.

€k ok o ook ok ok oo o e ok ok o o ok o oo o ok ok okl ok ko Kk K Ok ko sk ok ok koK ok ok k ok

c* *
c* write or read grid deta from file *
c* *

€ % o ok ko o o ok ok ok ok o e ok o ok o o ok ool ook ok o ok ol ok ok ok o ook o ool sk Ok ke AOK o ok ook ok ok kok ok

subroutine gridio(process)
implicit none

include ‘QUAD.INC’

integer process !read or write?
integer i, NN, FF, CC, EN, EF, col !pointers
integar IN, ON, WN, PN

it (process.eq.1) then

c4* read in data from file
open(unit=30, status='unknown’, form=‘unforaatted’)

read(30) Nmax, (x(NN), NN=i Nmax), (y(NN),NN=1,K Nmax)
read(30) Fmax, ((face(FF,1),i=1,8),FFul, Fmax)

read(30) tedge, bedge, iedge

read(30) Wmax, Emax, (eface(EF),EF=1,Emax)

read(30) tnode, bnode, inode, ENmax, (enode(EN),EN-=1,ENmax)
read(30) (senode(EN) ,EN=1 ENmax), (cenode(EN),EN=1,ENmax)
read(30) Imax, (innode(IN),IN=i,Imax)

165



C*

read(30) Omax, (outnode(ON),0N=1,0max)

read(30) Pmax, ((pnods(PN,1i),1i=1,2),PN=1,Pnax)
read(30) Cmax, ((cell(CC,i),i=1,8),CCn1, Cmax)
read(30) Ccolormax, (NCcolor(col),col=1,Ccolormax)
resd(30) Fcolormax, (NFcolor(col),col=1,Fcolormax)
read(30) Elcolormax, E2colormax

r2ad(30) (NEcolor(col),col=1,E2colormax)

read(30) pitch

close{unit=30)

else if (procaess.eq.0) then
write data to file

open(unit=30, status=’upknown’, form='unfcrmatted’)

write(30) Nmax, (x(NN),NN=1,Nmex), (y(NN), NN=1, Nmax)
write(30) Fmex, ((face(FF,1),i=1,8),FF=1,Fmax)

vrite(30) tedge, bedge, iedge

wrice(30) Wmax, Emax, (eface(EF),EF=1,Emax)

write(30) tnode, bnode, inode, ENmax, (enode(EN),EN=1,ENmax)
write(30) (senode(EN) ,EN=1,ENmax), (cenode(EN),EN=1,ENmax)
vrite(30) Imax, (innode(IN),IN=1,Imax)

vrite(30) Omax, (outnode(ON),ON=1,COmax)

write(30) Pmax, ((pnode(PN,i),i=1,2),PN=1,Pnax)

write(30) Cmax, ((cell(cC,i),i=1,8),0C=1,Cmax)

write(30) Ccolormax, (NCcoclor(col),col=1,Ccolormax)
write(30) Fcolormax, (NFcolor(cal),col=1,Fcolormax)
write(30) Eicolormax, E2colormax

write(30) (NEcolor(col),col=1,E2colormax)

write(30) pitch

close(unit=30)

endif

return
end

ok vk ok ok ok ko ko kol ok ok ok ko ok ok ik o o ok ek ko ok ak ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok o ok ok ok ok

C*
C*
c*

E ]

write or read flow data from file *

*

€% ok ok ok ok ok ool ook okl ok o ok oo o e o o o ke ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ook ok s ok sk ok ok ok ok ok

subroutine flowio(process)
implicit none

include °‘QUAD.INC’

integer process 'read or write?
integer i, NN !pointers

it (procers.eq.1) then

cx» read in data from file

c*

open(unit=26, status=’unknown’, form=‘unformatted’)

read(26) Minl
read(26) Nmax, ((U(i,NN),i=1,4) ,NN=1,6Nmax)

close(unit=26)

else if (process.eq.0) then

write data to file

open(unit=25, stetus='unknowa’, form='unformatted’)

write(26) Minl

166



write(25) Heax, ((U(i,NN),i=1,4),NN=1, Nmax)
close(unit=25)
endif

return
«nd

CRAEFKk ANk ko dhon b sk ok ook o ok o ook o 2 o o o o oo o o o ook R kR ok kR

c* *
c* read input data froa file *
c* *

CRAkkBAkuBhARb sk bbb bbbtk ad kb kb kb kR ko ko

subroutine input
implicit none

include °QUAD.INC’
real pi !the one and only

pi = 3.14159
open(unit=20, status=‘o0ld’)
read(20,*) Maxiter, CFL

read(20,*) Minl, Sinl, pout
read(20,*) sigE, sigV, cpslcoef, eps2
close (unit=20)

pout = pout/gam
8inl = tan(pi%8inl/180.0)

return
end

A.2.2 Mesh Generator

This is file GRID.INC which includes many declarations and common block state-

ments for the mesh generator.

paramaster Naxdim = 200

real xx(0:Naxdim,0:Maxdim) !x coordinate of grid points

real yy(0:Naxdim,O:Naxdim) !y coordinate of grid pointe
integer Nx Inumber cells on x axis

integer Ny [ “. % gy

integer ILE, ITE !leading and trailing edge of blade

common /grid/ xx, yy. Nx, Ny
common /grid/ ILE, ITE
parameter IBX-261

real GSINL, GSOUT, CHINL, CHOUT

integer I1I, JJ
real XB(IBX), XPB(IBX), YB(IBX), YPB(IBX), S8B(IBX)
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integer IIB, IBLE

real SBLE, SBLULD, SS, 8P

real XMIN, XMAX, YMIN, XLE, YLE, XPOS(Maxdim), YPOS(Maxdim)
integer NINL, NOUT, NELD

common /cO1/ GSINL, GSOUT, CHINL, CHOUT, II, JJ,
XB, XPB, YB, YPB, SB,
IIB, IBLE, SBLE, SBLOLD, SS, SP,
XNIN, XMAX, YMIL, XLE, YLE, XP0S, YPOB,
NINL, NOUT, MBLD

RN

Chudkkkksndsxuushhtnndsd FACE ARRAY ##tsksxshnhusdkmkkskss

N6

o
=
[

face(F,1) = C1
| face(F,2) = C2
| face(F,3) = N1
| face(F,4) = N2
I face(F,6) = N3
|

|

face(F,8) = N4
faca(F,7) = Nb
face(F,8) = H6

D——————

HB--=--=== N

*kkkkkhkbkdbkknikkkkdks CELL ARRAY %k shkhhkkdkhnhkkhks

N2 cell(C,1) = F1
| cell(C,2) = F2
| cell(C,3) = F3
|F2 cell(C,4) = F4
| cell(C,5) = N1
| cell(C,8) = N2
N1 call(C,7) = N3
F1 cell(C,8) = N4

kkkkdkhrankhknnkkhnsst EDGE ARRAY *hdsmsmksskdknkathnis

N

C1

4
|
= F(edge)
|
|

=
-

c
¢

c

c

c

c

c

c

c

c

c

c

c

c

c

c

¢

c F4
c

c

c

c

c

c

c

c

c

c

c

c

c

c

c N3
c eface(EF) = F
c

c

koK ol R ol ol ol o o o ok o o ok ok ok ok o o ok ok ok ok ok ko ko KK K o kR Sk KKk Rk Rk ok ok

program gridgen
implicit none

include ‘QUAD.INC’

include °'GRID.INC'

integer gtype ftype of grid
integer EN, EF, FF, KN, CC, col !pointers
integer ON, IN, PX

integer 1, jJ 'pointers
integer JJJ

c+* determine geometry

type*, ‘Type of grid °’
type*, ° 1) Hi bump °*
type*, ' 2) blade’
type 100

100 format($,’ selection = *)
accept 110, gtype

110 format(I)

write(6,x) * *
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31

cH*

cHx

C*»

cHx

cka

C* %

Ck%

cx4

wvrite(6,+) 'Generating grid ...

write(6,s)

if (gtype.eq.1) then
create rectanguler aesh
call rectangla
pitch = 0.

elas if (gtype.eq.2) then

Read in, normalize and spline blade data

call reedin

Initialize grid
call grinit

Fix up grid

call ellip(Maxdim, Maxdim,II,JJ,JJJ,XX,YY,YPOS,XPOS)

call improv

change pointers
doi =1, ii
do § = 1. §)
xx(1-1,§-1) = xx(1,])
yy(i-1,3-1) = yy(1,])
enddo
enddo
Nx = ii-1
Ky = j3-1
endif

change rectangular nesh to triangular mesh

call pointers
call bpointers

rearrange node numbers on edges
call edgenumber

color cells and fazes
call cellcolor
call facecolor
call edgececlor

write out data to file
call gridio(0)

stop
end

subroutine rectangle
inplicit none

include °GRID.INC’

roal+*4 yymax, xxmax, xxmin
real»4 delta x

roal*4 delta_ y

integer n, 1, j, kk, n
real#4 num

real*4 delta_xbot

real*4 omega

real»4
realx4
realxd
real*»4
real#4
real*d
reals4
real*4

pi

tau

rr

ye

ang, delte_ang
angplus

delx, dely

!coordinates of grid boundaiies
1grid spacing in x direction
Igrid spacing in y direction
Icountaers

!relaxation constent for

!interior point SLOR

'the one and only

theight of bump

Iradius of bump

Irr-tau

langle of buap,angle between nodes

lhelp define initial conditions

alpha(Naxdim), beta(Maxdim) lcoef. in modefied equation
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real*d gamna(Naxdim)

real*4 AA(Naxdim), BB(Naxdim)
real#+#4 CC(Maxdim), DD(Naxdim)

real*4 EPS
integer VYiter
real+«4 error

!values for syatem of equations

!allowable errox
!number of iterations so far
!largest error for an iteration

realsd x_xi(Maxdim), x_ota(Maxdim) Iderivetives on boundary
realsd x_xi_xi(Maxdim), x_eta_eta(Maxdim)

resl*qd x_ete_xi(Naxdim)
recl#*4 y_xi(Mexdim),

_eta(Maxdinm)

real+*4 y_xi_xi(Mexdim), y_eta_eta(Maxdinm)

real*4d y_eta_xi(Maxdim)
real*4 theta, AR
real*4 R1, R2

real*4 G1(Maxdim), P1(Maxdim)
real*4 al(Maxdim), b1 (Maxdim)

real#+d ci(Maxdim)
real+4 omega_P, omega_Q
real*4 Jacobi(Naxdim)
reals4 Jacobi2(Maxdim)

real*4 «xi, yxi, xeta, yeta

real*{ a, b

'angle and aspr.t ratio of edge cells

!part of source tera

!part of source term, functiopo of xi
!alpha, beta, gamma on lower boundary

'ralexation conts. for source terms

!Jacobian on the lower boundery
!Jacobian squared in region
'derivatives in region
'exponenta in source terma

Pl = 3.14160

c** number of nodes on x and y axes

oO0O0OnNDOOD

c** 5@t

xxmax = 32,
xxmin = -1,
yymax = 1.

Nx*,Kx)

Ny’ .Ny)
tau’,tau)
omega’, omega)
omega_P’, omega_F)
onaga_Q°,omega_Q)
a’,a)

b’,b)

An. IA'R)

EPS’ ,EPS)

call Irequest(’
call Irequest(’
call Rrequest(’
call Rrequast(’
call Rrequest(’
call Rrequsst(’
call Rrequest(’
call Rrequest(’
call Rrequest(’
call Rrequeat(’

omega = 1.
a=0.8
b=0.8

AR = 0.6

EPS = 0.0006

it (tau.eq.0.) then
omega_P = 0,
omegs_Q = 0.
else if (tau.lt.0.) then
AR = 1.
omega_P = 0.02
omega_Q = 0.02
else
omega_P = 0.02
omega_Q = 0.C2
endif

theta = .6*pi
delta_x = (xxmax-xxmin)/real(Nx)

initial and boundary conditions for x and y
if (tau.gt.0.) then
yc = 0.6%(-taus*2 + 0.26)/tau
rr = 8qrt(0.25 + yc#»*2)
ang = aain(.6/rr)
it (mod(Nx,3) .ne.0) then
num = real(Nx - mod(Nx,3))
delta_xbot » (xxmax-xxmin)/num
angplus = 2.*ang/(num/3. + real(mod(¥Nx,3)))
elae
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angplus = 2.*ang<delta_x
dalta_xbot = delta_x
endift
delte_ang = 0.
do i =0, Nx
yy(1,.4y) = yymex
xx(1,Ny) = xxmin + i+*delta_x
if (xx(1i,Ny).le.0.) then
xx(1,0) = xxmin + isdelte_xbot
yy(1.0) = 0.
elge 12 (xx(1,Ny).gt.0. .and. xx(1i,Ny).1lt.1.) then
delta_ang = delta_ang + angplus
xx(1,0) = 0.5 -~ rr+sin(ang-delta_ang)
yy(1,0) = rr+cos(ang-delta_ang) - yc
else if (xx(i,Ny).ge.1.) then
xx(1,0) = xxmin + (i-med(lx,3))*delta_xbot
yy(1,0) = 0.
endif
delx = (xx(1,Ny) - xx(1,0))/real(Ny)
dely = (yy(i,Ny) - yy(1,0))/real(liy)
do j = 1, Ny-1
xx(1,]) = delx*j + xx(1,0)
yy(1.]) = delysj + yy(1,0)
enddo
enddo
else if (tau.lt.0.) then
delta_xbot = delta_x
doi =0, Nx
7y(1,Hy) = yymax
xx(1,8y) = xxmin + ixdelta_x
it <u¥1.uy).1..o.> then
xx(1,0) = xxmin + i*delta_xbot
yy(1,0) = 0.
else if (xx(i,Ny).gt.0. .and. xx(i,Ny).1lt.1.) then
xx(1,0) = xxmin + i*delta_xbot
y7(1,0) = -tau*(sin(pi*xx(i,0)))**2
else if (xx(i,Ny).ge.1.) then
xx(1,0) = xxmin + i*delta_xbot
yy(1,0) = 0.
endif
delx = (xx(i,Ny) - xx(1,0))/real(Ny)
dely = (yy(1.Ny) - yy(1,0))/raal(Ny)
do j = 1, Ny-1
xx(1,j) = delx*) + xx(1,0)
yy(1,§) = Aely*j + yy(1,0)
enddo
enddo
elsc if (tau.eq.0) then
delta_y = yymax/real(Ny)
do i = 0, Nx
do j = O, Ny
xx(i,j) = i*delta_x + xxmin
yy(1,§) = j+deltay
enddo
enddo
endif

c* Solve for source terms
don o, Hx-1

Pi(n) = 0.
Qi(n) = 0.
x_xi(a) = .6*+(xx(n+1,0) ~ xx(n-1,0))
y_xi(n) = .6+(yy(n+1,0) - 3y(n-1,0))

x_xi_xi(n) = (xx(p+1,0) - 2.+xx(5,0) + xx(n-1,0))
y_xi_xi(n) = (yy(n+1,0) - 2.*yy(n,0) + yy(n-1,0))

if (xx(n,0).eq.0. .or. xx(n,0).eq.1.) than
x_eta(n) = max(6.»tau,1.)*AR*(~-x_xi(n)*cos(theta)
& - y_xi(n)*sin(theta))
y_eta(n) = mex(6.+tau,1.)*AR*(-y_xi(n)*cos(theta)
+ x_x1i(n)*sin(theta))
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1
¢ .;_otl(n) o AR*(-x_xi(n)*cos(theta) - y_xi(n)*sin(thaeta))
y_ota(n) = AR*(-y_xi(n)*cos(theta) + x_xi(n)*sin(theta))
b 4

x_ota_xi(n) = 0.6+(x_eta(n+1)-x_eta(n-1))
y_eta_xi(n) = 0.64(y_eta(n+1)-y_eta(n-1))

Jacobi(n) = x_xi(n)*y_eta(n) - x_eta(n)*y_xi(n)

ai(n) = x_eta(n)**2 + y_ota(n)*+2
b1(n) = x_xi(n)+x_eta(n) + y_xi(n)+y_ata(n)
c1{n) = x_xi(n)+*2 » y_xi(nsttﬂ

anddo

c# SOR by lines
Kiter = O
error = 9999.
do wvhile (error.gt.EP8)
error = 0.
Niter = Niter + 1

c** solve for source terms
if (tau.ne.0.) thea
don =1, Nx-1
x_ota_eta(n) = 0.5*(-7.*xx(n,0) + 8.*xx(n,1) - xx(n,2))

& - 3.+x_eta(n)

y_ete_eta(n) = 0.6%(-7.*yy(n,0) + 8.syy(a,1) - yy(n,2))
[ - s.ty_otn(n;

Ri = (-ai(n)*x_xi_xi(n) + 2.+bi(n)*x_ese_xi(n)
X - c¢1(n)*x_eta_eta(n))/Jacobi(n)*+2

R2 = (-a1(n)+y_xi_xi(n) + 2.+bi(n)+*y_eta_xi(n)
& - c1(n)*y_eta_sta(n))/Jacobi(n)*+2

Pi(n) = P1(n) + omege_P+((y_eta(n)*R1 - x_ata(n)*R2)
X /Jacobi(n) - P1(n))

Qi(n) = Q1(n) + omega_Q+*((-y_xi(m)*R1 + x_xi(n)*R2)
& /Jacobi(n) - Q1(n))

enddo
endif

c* solve for each line
do kk = 1, Ny-1

c* evaluate alpha, beta, and gamme
do1 =1, Nx-1
elpha(i) » .26+ (xx(1,kk+1)-xx(i, kk-1))**2
+ .26%(yy(4,xk+1)-yy (1, kk-1))**2
bata(i) = .26#(xx(i+1,kk)-xx(i-1,kk))*(xx(i, kk+1)
-xx(1i,kk-1)) + .26*(yy(i+1,kk)-yy(i-1,kk))
*(yy(4,kk+1)-yy (41 ,kk-1))
gamma(i) = .26*(xx(i+1,kk)-xx(i-1,kk))*+*2
+ .26+ (yy(1+1,kk)-yy(i-1,kk))*+2
Jacobi2(4) = (.26*(xx(i+1,kk)-xx(i-1,kk))*
(yy(1,kk+1)-yy(1,kk-1))
- .26*(yy(i+1,kk)-yy(i-1,kKk))*
(xx(1,kk+1)-xx(1,kk-1)))*»2

enddo

c* Solve for x
c* get up matrix for tridiagonal systeam of equations
doi =1, Nx-1
AA(1) = omega*alpha(i)
DD(1) = -2.+(gamma(i) + alpha(i))
BB(i) = omega*alpha(1i)
enddo

c* set up vector of constants for tridisgonal system of equations
doil =1, Nx-{
xxi = xx(i+1,kk) - xx(i-1,kk)
xeta = xx(i,kk+1) - xx(i,kk-1)

CC(1) = -omega*gamma(i)*(xx(1,kk+1) + xx(1,kk-1})
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+ omega*0.6+beta(1)*(xx(1+1,kk+1)

- xx(i+1,kk-1) - xx(i-1,kk+1} + xx(i-1,kk-1))
+ 2.%(omega-1.)*(alpha(l) + gamma(i))#*xx(di,kk)
- Jncobi2%:)*(Pl(i)*xxi*exp(-t*kk) +
Q1(1)*xeta*exp(-b*kk))

R RN

enddo
cc(1) = CC(1) - BB(1)*xx(0,Xkk)
CC(Nx-1) = CC(Nx-1) - AA(Nx-1)*xx(Nx, kk)

¢* solve tridiagonal systom of equations
call tridiag(i, ¥x-1, BB, DD, AA, CC)
dom =1, Nx-1
if (abs(CC(m)-xx(m,kk)).gt.error) then
error = abs(CC(m) - xx(m, kk))
endif
xx(m,kk) = CC(m)
enddo

c* Solve for y
cx get up matrix for tridiagonal aystem of equations
do i = 1, Nx-i
AA(1) = omega*alpha(i)
DD(1) = -2.*(gamma(i) + alpha(i))
BB(i) = omega*alpha(i)
enddo

cx get up vector of constants for tridiagonal system of equations
do 1 = 1, Nx-1
yxi = yy(i+1,kk) - yy(1-1,kk)
yota = yy(i,kk+1) - yy(i,kk-1)

CC{1) = -omega*gamma(1i)+(yy(1,kk+1) + yy(i,kk-1))
+ 0.Btouega*beta({¥*(yy(i+1.kk+1)
-yy(4+1,kk-1) - yy(i-1,kk+1) + yy(i-1,kk-1))
+ 2.*(omega-1.)*(alpha(i)+gamma(i))+yy(1i,kk)
- Jacobi2(i)*(P1(1)*yxi+exp(-a*kk) +
Qi (1) *yeta*exp(-b*kk))

rRERRR

enddo
cc(1) = CC(1) - BB(1)+*yy(0,kk)
CC(Nx-1) = CC(Nx-1) - AA(Nx-1)+*yy(Nx, kk)

¢+ solve tridiagonal system of equations
call tridiag(i, Nx-1, BB, DD, AA, CC)
dom=™ 1, Nx-1
it (abs(CC(m)-yy(m,kk)).gt.error) then
error = abs(CC(m) - yy(m,kk))
endif
yy(m,kk) = CC(m)
enddo

enddo

c* set x=xxmax and x=xxmin boundary conditions to next interior point
do kk = 1, Ny-1
yy(0,kk) = yy(1,kk)
yy(ix, kk) = yy(Nx-1,kk)
enddo

type®, °‘iteration number = ‘' Hiter,’ error = °,error
enddo

*
*

write out data to data file
write(10,*) Nx+1, Ny+i
do 1 = 0, Nx
do j = 0, Ny
write(10,+) xx(4,§), yy(4.1)
enddo
enddo
close(unit=10)

[t eNeNeNe N NNt

(2]
»*
*

plot the grid
call plot

Q

173



return

Qo oo o oo o oo o o o o e e ok oo e ool ok ok oo o o oo o ok o ok ok bk ok ok

cs

c* Subroutine to solve a tridiagonal system of equations.

c* Taken from "Computationel Fluid Kechanics and Heat Transfor”®
c* by Anderson, Tannehill and Pletcher.

c*

CEEBAREARARRALRR NS RRRSS SRR ARSAA kbbb bbbk R a bk Rk a bkt ko kkk R

SUBROUTINE TRIDIAG(IL,IU,BB,DD,AA,RR)

INPLICIT HONE
include °‘GRID.INC®

INTEGER IL
INTEGER IU
REAL*4 BB(Maxdim)
REAL*4 DD(Maxdim)
REAL*4 AA(Nexdim)
REAL*4 RR(Nazdim)
INTEGER LP
INTEGER I, J
REAL#*4 R

1SUBSCRIPT OF FIRST EQUATIOH
'SUBSCRIPT OF LAST EQUATION
ICOEFFICIENT BEHIND DIAGONAL
ICOEFFICIENT ON DIAGONAL
ICOEFFICIENT AHEAD OF DIAGONAL
'ELEMENT OF CONSTANT VECTOR

'POINTERS

Cix ESTABLISH UPPER TRIANGULAR MATRIX

LP = IL + 1
DO I =LP, IU

R = BB(1)/DD(I-1)

DD(I) = DD(I)-R*AA(I-1)

RR(I) = RR(I)-R*RR(I-1)
ENDDO

CH» BACK SUBSTITUTION
RR(IU) = RR(IU)/DD(IU)

DOI =LP, IV
J=IU-1I+IL

RR(J) = (RR(J)-AA(J)*RR(J+1))/DD(J)

ENDDO
Cx» SOLUTION STORED IN RR

RETURN
END

¥
*
*
*
*
]

CHANR ARG b Aok ook o oo ko0 oo o o oo ool o oo o o oo o ok o R OK KK

c*

cx this subroutine requests the user to input the value of a
c* real variable

c*

*

*

o o o oo oo o oo o o oo e oo o o o o o oo o o o o ok o ok ok kK

subroutine Rrequest (name,var)

character+10 name
roal*4 var

vrite(6,1) name

1 formet($,° *,A,° = *)
accept 11, var

11 format (F)

return

174



end

(222222121122 2R R 23 RS2 R 2R RS R S22 Rt 222 R0 1824322222221

(1] *
c* this subroutine requests the user to input the value of a *
cx* integer variable *
c* *

CHAXRXERBFABE SR BEI SR ARbh R IRk b m kb bk kb kAR nk ko ko kb kkkk kX
subroutine Irequest (name,var)
character*10 name
integer var

wvrite(6,1) name

1 format($,’ ’,A,’ = *)
accept 11, var

11 format (I)
return
end

SUBROUTINE READIN
C---- Read in, normaliza and spline blade data

INCLUDE ‘QUAD.INC’®
INCLUDE °GRID.INC*®

CHARACTER#*32 NAMEXT
CHARACTER+B80 NANE

C---- Read in blade data
OPEN(UNIT=3,8TATUS='0LD")
1000 FORMAT(A32)
READ(3,1000) NANE
READ(3,+) GSINL, GSOUT, CHINL, CHOUT, PITCH

WRITE(6,1001) NAME
1001 FORNAT(/,® Blade name: *,A60)

READ(3,*) XB(1), YB(1)
XNIN = XB(1)
XMAX = XB(1)
YMIN = YB(1)
DO 1 IB = 2, 123486
READ(S, * ,END=11) XB(IB),YB(IB)
XMAX = ANAX1(XMAX,XB(IB))
IF(XMIN.GT.XB(IB)) THEN
XMIN = XB(IB)
YNIN = YB(IB)
ENDIF
1 CONTINUE
11 IIB=IB - 1
CLOSE(UNIT=3)

IF(IIB.GT.IBX) STOP 'Array overflow: IBX too small’

C---- Normalize blade and calculate surface arc length array
PITCH = PITCH/(XNAX-XMIN)
DO 21IB =1, IIB
XB(IB) = (XB(IB)-XNIN) / (XMAX-XMIW)
YB(IB) = (YB(IB)-YNIN) / (XMAX-XMIN)
2 CONTINUE

C---- close t.e. if open

IF( XB(1) .NE.XB(IIB) .OR. YB(1).NE.YB(IIB) ) THEN
ASOUT = ATAN( (Yo(2) -YB(1)) / (xB(2) -XB(1)) )
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APOUT = ATAN( (YB(IIB)-YB(IIB-1)) / (XB(IIB)-XB(IIB-1)) )
DSTE = 8QRT( (XB(1)-XB(IIB))**2 + (YB(1)-YB(IIB))*%2 )
AOUT = 0.6*(APOUT+ASOUT)

XOUT = 0.6*(XB(1)+XB(IIB)) + 3.0*D3TE*COS(AOUT)

YOUT = 0.65(YB(1)+YB(IIB)) + 3.0*DSTE%SIN(AQUT)

X81 = (XB(1)-XOUT)+*COS8(ACUT) + (YB(1)-YOUT)*BIN(AOUT)

Y81 = -(XB(1)-XOUT)=*SIN(AOUT) + (YB(1)-YOUT)*COS(AOUT)
YP81 = TAN(ASCUT-AOUT) * XS1

XP1 = (XB(IIB)-XOUT)*COS(AQUT) + (YB(IIB)-YOUT)=*SIN(AOUT)
YP1 = -(XB{IIB)-XOUT)*SIN(AOUT) + (YB(IIB)-YOUT)*COS(AOUT)
YPP1 = TAN(APOUT-AQUT) = XP1

WRITE(6, 1002)

1002 FORMAT(/,' Input flap deflection angle (degrees): °,$)
READ(6,*) AFLAP
YPFLAP = TAN(3.14169*AFLAP/180.0)

WRITE(NAMEXT,1003) AFLAP

1003 FORMAT(® (flap deflection angle =',F4.1,°')’)
LENSTART = INDEX(NAME,’ ‘)
NAME(LENSTART : LENSTART+31) = NAMEXT

IIB = IIB+%0
IF(IIB.GT.IBX) STOP °'Array overflow: IBX too amall’

DO 3 IB = IIB-20, 1, -1
XB(IB+10) = XB(IB)
YB(IB+10) = YB(IB)

3 CONTINUE

PO 4 IB=1§, 10
ETA = 0.1%(IB-1)
XXS = XS1+ETA
YYS = YS1*ETA*ETA%(3.0-2.04ETA) + YPS14ETA*ETA*(ETA-1.0)

& - YPFLAP#XS1#0.5%(ETA-1.0)%*2
XB(IB) = XQUT + XXS*COS(AOUT) - YYS*SIN{AGUT)
YB(IB) = YOUT + XXS*SIN(AOUT) + YYS*COS(AQUT)
4 CONTINUE

DO 6 IB = I1IB-9, IIB
ETA = 0.1*(IIB-IB)
XXP = XP1*ETA
YYP = YP1+ETA*ETA*(3.N-2.0+ETA) + YPP1+ETA*ETA*(ETA-1.0)

& - YPFLAP*XP1%0.6%(ETA~1.0) %2
XB(IB) = XOUT + XXP*COS(AOUT) - YYP*SIN(AOUT)
YB(IB) = YOUT + XXP*SIN(AOUT) + YYP*COS(AOUT)
b CONTINUE

ENDIF
C---- Spline blade surface(s) and find leading edge position
SE(1) = 0.

DO 6 IB = 2, IIB
ALF = FLOAT( MIN(IB-1,IIB-IB) ) / FLOAT(IIB/2)
8B(IB) = SB(IB-1) +
& SQRT( (XB(IB)-XB(IB-1))*#2 + (ALF*(YB({IB)-YB(iB-1)))*%2 )
(] CONTINUE

CALL SPLINE(XB,XPB,SB,IIB)
CALL 8PLIKE(YB,YPB,SB,IIB)

D0 7 1B=2, IIB
DP1 = XPB(IB-1) + GSINL*YPB(IB-1)
DP2 = XPB(IB) + GBINL*YPB(IB)
IF(DP1.LT.0.0 .AND. DP2.GE.0.0) GO TO 71
7 CONTINUE

8TOP °Leading edge not found’
71 DSB = BB(I:? - 8B(IB-1)
8BLE = 8B(IB-1) + D8B+DP1/({DP1-DP2)
XLE = SEVAL(SBLE,XB,XFB,8B,IIB)
YLE = SEVAL(SBLE,YB,YPB,8B,1IB)
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C----

c----
1000

C----

C-==~-

C----

C----

C----

C----

SUBROUTIMNE GRINIT

Fix grid points on boundary of domain, and initielize interior

INCLUDE °QUAD.INC’
INCLUDE °GRID.INC*®

Input and check grid size
WRITE(S, 1000)

FORMAT(/,® Input II, JJ: *.9)
READ(6,*) II,JJ

IF(II.GT.Naxdim) STOP ’'Array overflow:
IF(JJ.GT.Nexdim) STOP ‘Array overflow:

Set various parameters

SLEN = CHINL + 0.5+8B(IIB) + CHOUT
NINL = INT( FLOAT(II)*CHINL/SLEN )
NOUT = INT( FLOAT{II)sCHOUT/SLEN )
NBLD = II - HOUT - NINL + 2

ILE = NINL

ITE = II - NOUT +

Set inlet stagnation streamline
DO 1 K=1, KINL

Maxdim too small’
Maxdim too small’

XX(K,1) = XLE + CHINL * FLOAT(K-NINL) / FLOAT(NINL-1)

YY(K.1) = YLE + (XX(K,1)-XLE) * GSINL

XX(K,JJ) = xx(K,1)
YY(K,JJ) = YY(K,1) + PITCH
CONTINUE

Set outlet stagnation streamline
XTE = XB(1)
YTE = YB(1)

DO 2 K= 1, NOUT
I = II-NOUT+X

XX(I,1) = XTE + CHOUT * FLOAT(K-1) / FLOAT(NOUT-1)
YY(I,1) = YTE + (XX(I,1)-XTE) * GSOUT

Xx(I,JJ) = xx(I,1)
YY(1,JJ) = YY(I,1) + PITCH
CONTINUE

Set points on blade suction surface
DO 3 K=1, NBLD
I = NINL + K - 1

8 = S8BLE - SBLE+FLOAT(X-1)/FLOAT(NBLD-1)

XX(I,1) = SBEVAL(8,XB,.XPB,SB,IIB)
YY(I,1) = SEVAL(8,YB,YPB,8B,1IB)
CONTINUE

Set points on blade pressure surface
DO 4 K=1, NBLD
I=¥FINL+ K -1

8 = SBLE + (8B(IIB)-8BLE)*FLOAT(K-1)/FLOAT(NBLD-1)

XX(I,JJ) = SEVAL(S,XB,XPB,6B,IIB)

YY(I,JJ) = SEVAL(8,YB,YPB,8B,IIB) + PITCH

CONTINUE

set up metrics
DO 6 I=1, II

XP08(I) = FLOAT(I-1)/FLOAT(II-1)
CONTINUE

p0oeJ=1,JJ
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RJ = FLOAT(J-1)/FLOAT(JJ-1)
YP08(J) = RJ - 1.8 *+ ( (R3-0.6) * ((RJ-0.5)*+2-0.26) )
6  CONTINUE

---- Initialize interior grid
DO71Ie=1, II
DO 71 J =2, JJ-1
Xx(1,J) = xx(I,1) + YP0OS(J)=*(XXx(I,JJ)-XX(I,1))
YY(I,3) = YY(I,1) + YPOS(J)*(YY(I,JJI)-YY(I,1))
71 CONTINUE
7 CONTINUE

RETURK
END

SUBROUTINE IMPROV

C---- Improves grid after elliptic grid gensration

INCLUDE °QUAD.INC’
INCLUDE °GRID.INC’

DIMENSION SUM(Maxdim), XT1(Maxdim), YT1(Maxdim)
DINENSION XT2(Maxdim), YT2(Maxdim)

DO 1I=1, II
IN = I-1
IP = I+)
IF(I.EQ 1) IN=i
IF(I.EQ.II) IP=II

SUM(L) = 0.

DO 11 J =1, JJ-1
Jp = J+1
X8 = XX(IP,J)+XX(IP,JP) - XX(IM,J)-XX(IM, (JP)
Y8 = YY(IP,J)+YY(IP,JP) - YY(IM,J)-YY(IM,JP)
88 = SBQRT(XS*XS + YS*YS)

X8 = XS/88
Y8 = Y3/88
SUM(JP) = 8UM(J) + ABS( (XX(I,J)-XX(I,JP))*YS
& - (YY(I,J)-YY(I,JP))*X8 )
11 CONTINUE
J=1

DO 12 JO = 2, JJ-1
SUMJ = FLOAT (JO-1)/FLOAT(JJ-1) * SUM(JJ)
121 IF(8UMJ.GT.SUM(J+1)) THEN
J = J+1
GOTO 12%
ENDIF
ALPHA = (S8UMJ-8SUM(J)) / (SUM(J+1)-8UM(J))
XT2(JO) = XX(I,J) + ALPHA#*(XX(I,J+1)-X((I,J))
YT2(JO) = YY(I,J) + ALPHA=(YY(I,J+1)-YY(I.J))
12 CONTIXUE

DO 13 J =» 2, JJ-1
IF(1.NE.1) THEN
XX(IM,J) = XT1(J)
YY(IM,J) = YT1(J)
ENDIF
XT1(J) = =T2(J)
YT1(J) = YT2(J)
IF(I.EQ.II) THEN
xx(1,J) = xT1(J)
YY(I,J) = YT1(J)
EHDIF
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13 CONTINUE
1 CONTIRUE

RETURN
END

Crakdkdddbd bRt SRS SRakhd Rt hb btk hhkdh ke n ks kk4C

Cc
C ISES - an Integrated Steamtube Euler Solver C
c (o]
C V¥ritten by M. Giles and N.Drela Cc
C [
C Copyright M.I.T. (1986) c
Cc [
Cttit*rt‘tttt##ttttttttttt‘tttttttttt!tttit#ttitttc
C
SUBROUTINE ELLIP(IMAX,JNAX,II,LJJ,JJJ,X,Y,YPOS,XPOS)
DIMENSION X(0:IMAX,0:JMAX), Y(O:IMAX,0:JMAX)
DIMENSION YPOS(JMAX), XP0S(IMAX)
CHARACTER*1 ANS
Cc
DIMENSION C(400),D(2,400)
IF(I1.GT.400) STOP °ELLIP dimensicns must be increased’
C
ITMAX = 60
Cc
DSET1 = 1.0E-1
DSET2 = 5.0E-3
DSET3 = 2.0E-4
Cc
RLX1 = 1.30 1 DMAY. > DSET1
RLX2 = 1.60 t DSET1 > DMAX > DSET2
RLX3 = 1.60 t DSET2 > DMAX > DSET3
CCC  STOP ! DSET3 > DMAX
Cc
RLX = RLX1
c
DO 1 ITER = 1, ITMAX
c
DMAX = 0.
DO 6 JO=2, JJ-1
JM = JO-1
JP = JO+1
c
IF(JO.EQ.JJJ) THEN
DO 2 IG=2, II-1
X(I0.JC) = X(I0,JM)
2 CONTINUE
GO TO 6
ELSE IF(JO.EQ.JJJ+1) THEN
DO 3 I0=2, II-1
X(10,J0) = x(I10,JP)
3 CONTINUE
GO TO 6
ENDIF
Cc
DO 6 I0=2, II-1
IN = 1I0-1
IP = I0+1
C

XX = X(IN,JN)
XON = X(I0,JM)
XPM = X(IP,JN)

XM0 = X(IN,JC)
X00 = x(I0,J0)
XPQ0 = X(IP,JO)
XMP = X{IN,JP)
X0P = x(I0,JP)
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XPP =~ X(IP,JP)
YNN = Y(IN,JIN)
YON = Y(I0,JN)
YPN = Y(IP,JIN)
YNO = Y(IN,JO)
Y00 = Y{I0,J0)
YPO = Y(IP,J<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>