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An analysis and design method is developed for subsonic and transonic propellers.

Finite element techniques are used to discretize the full potential equation on a three-

dimensional domain and the Newton-Raphson iteration method is used to solve the

nonlinear equations. Results are presented that demonstrate the analysis capability of

the present scheme including results for a marine propeller and for the SR-3 Prop-Fan.

The design method iteratively modifies an initial geometry and analysis solution to

obtain the best fit to a specified target pressure distribution. The goal in developing

the present method was to provide a fast way to make small changes to a propeller

geometry designed using two-dimensional methods to correct for three-dimensional ef-

fects. Modifications to the design surface are restricted to combinations of a fixed set

of geometric modes and the design surface displacement is modeled using wall transpi-

ration. The number of global unknowns introduced for the design method is a small

set of coefficients that multiply the geometric modes. Using the Newton method, mode

coefficient sensitivities can be computed in about the same time required for a full direct

calculation. Then, a linearly perturbed solution for a target pressure distribution can

be obtained in an order of magnitude less time than a single direct calculation.
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Nomenclature

A

B

Cp
Op
D

f
h

I

i,j, k

imax, imax, kmazx

kb

J

M

Merit

N

Q
R

rh

VW

Voo00

Vadu

w
W

X, Y, Z

Z, y, Z

W

geometric mode coefficient

number of blades

pressure coefficient

power coefficient

propeller diameter

geometric mode

local enthalpy

rothalpy

grid indexing coordinates (streamwise, blade-to-blade, radial)

grid size

number of radial stations on the blade

advance ratio (= Vo/nD, where n is rotations/sec)

Mach number

critical local Mach number for artificial dissipation

finite element shape function

Kutta condition residual

tip radius OR residual at a node. Usage is clear from context.

hub radius

transpiration velocity along design surface

translational speed of propeller (along x-axis)

advance velocity

finite element weight function

absolute coordinate frame

coordinate frame attached to rotating propeller

relative velocity (in (x, y, z) frame)



Nomenclature (continued)

p blade pitch

7 ratio of specific heats

r circulation

A normal displacement of design surface

I artificial dissipation coefficient

Ac constant in expression for 1

A advance ratio (= Voo/, IR)

A, wake advance ratio

w underrelaxation factor for slowing Newton changes

f angular velocity of propeller

0 perturbation potential

p density

p density normalized by freestream value

Supwinded density

7, i, ( natural coordinates of undistorted elements



Chapter 1

Introduction

This thesis presents a three-dimensional analysis and design method based on the full-

potential equation. The goal in developing the present method was to reduce the typ-

ically long computation times required for a three-dimensional design calculation in

which an initial geometry is modified to satisfy a specified target pressure distribution.

An excellent review of aerodynamic design methods is given in a paper by R.C. Lock

[10] in which two and three-dimensional direct and inverse methods are discussed for

transonic flow. The reader is referred to this paper for more information on previous

work in transonic design.

For any design method, considerable effort is required each design cycle to 1) specify

the new geometry for the flow solver (i.e. re-gridding) and 2) compute a direct solution

for the new shape. The first of these tasks can be avoided by modeling geometry changes

with a distribution of a wall blowing velocity along the original shape. This technique

is often used in viscous-inviscid interaction methods to model the displacement effect

of a boundary layer and has been used by other design methods to model geometry

perturbations. A grid is generated for the new shape only at the end of the design

procedure to verify the wall blowing approximation.

The second task, computing a new direct solution each time the geometry is modified,

is by far the most expensive step in a design method. In the present method, the

solution is updated without computing a full direct solution. Instead, updating the

solution requires inverting a small system of algebraic equations (, 20) and computing

a series of algebraic operations for each grid point. The geometry is restricted to move

according to a fixed set of distortion modes so that the resulting shape is completely

specified by a fixed number of mode coefficients. The mode coefficients are introduced



as global unknowns into a Newton-Raphson system for the full analysis solution. The

Newton-Raphson method efficiently provides sensitivities to global unknowns so that

the change in the analysis solution (to first order) is simply an algebraic function of the

changes to the mode coefficients. The details of this process are described in Chapter 6.

The purpose of the geometric modes is to permit rapid design changes to be made.

After an initial non-linear solution is obtained, a modified geometry and an approxi-

mate, linearly perturbed solution can be computed without regridding the domain or

recomputing the full non-linear analysis solution. The linearized perturbations can be

made exact by reconverging the non-linear solution when determined necessary. The

non-linear convergence step is quick, since the linearized perturbations provide a very

good initial guess for the non-linear algorithm.

The specific application investigated by the present research is the analysis of tran-

sonic propellers. One example is the Prop-Fan (a relatively highly loaded, multi-bladed

advanced turboprop) that has been proposed as an alternative to turbofans for modern

transport aircraft. Interest in the design of Prop-Fans increased drastically in the mid

to late 1970's due to increasing costs of aviation fuel. Its projected fuel savings on an

aircraft cruising at Mach 0.8 is 15 to 30 percent over an equivalent technology turbofan

[12]. The operating conditions of the Prop-Fan guarantee that the flow around the outer

portions of the propeller blades will be transonic. The compressibility effects near the

tip must be considered by any analysis/design tool aimed at this application in order

for the method to be effective.

A very different example of propeller driven aircraft designed for transonic flow is

a series of high altitude research aircraft being developed to conduct experiments on

the upper atmosphere [11, 2]. Theseus is one such aircraft and is being designed for an

operating altitude of 100,000 feet. The density of air at these extreme altitudes is so low

that these planes will fly at transonic speeds simply to produce enough lift to sustain

level flight. Fuel economy is a primary concern since flight times as high as 44 hours

will be required to conduct the atmospheric research. Designing efficient propellers for

these aircraft will require paying attention to minimizing losses from transonic effects



near the tip.

This thesis develops an analysis/design method aimed at the design of transonic

propellers like the examples given above. The analysis algorithm is independent of the

design procedure, the latter being only a modification to the boundary conditions. The

description of the overallmethod therefore begins with the analysis method alone. Chap-

ter 2 discusses the full potential equation and its application to transonic propeller flow.

The full potential equation is discretized on a computational grid using finite element

techniques. The discretization is described in Chapter 3 including special treatment for

nodes on the boundaries. Chapter 3 also discusses the solution of the non-linear system

of discrete equations using the Newton-Raphson iteration method. Chapter 4 presents

some results that demonstrate the analysis capability of the presented scheme. A brief

introduction to the design philosophy and the intended use of the present method is

given in Chapter 5 before the details of the design procedure are described in Chapter 6.

Finally, the design method is demonstrated in Chapter 7 and concluding remarks are

given in Chapter 8.



Chapter 2

Physics/Governing Equations

Consider a propeller rotating with angular velocity d and translating in a direction

parallel to its axis of rotation with speed Vo. Since the axis of rotation is aligned to

the oncoming freestream, the resulting flow through the propeller is periodic in rotation

with period equal to the blade spacing angle. Two coordinate systems are useful and

these are illustrated in Figure 2.1.

X,x

VO
o

Figure 2.1: Coordinate systems for propeller problem.

In the absolute coordinate system (X, Y, Z) the propeller advances through the air with

velocity Vadu = V. i + d x '. The second coordinate system (X, y, z) is attached to the

rotating propeller. In this coordinate frame, the propeller 'sees' an oncoming velocity

field given by --$dv . The governing equations for the propeller flowfield are presented

in the frame of reference attached to the propeller.

The total relative velocity at any point in the flowfield 1V is the sum of the oncoming



stream and the perturbations caused by the propeller. The perturbation velocity is

assumed to be governed by a potential so that W can be expressed as

W V - adv

The assumption of potential flow places limitations on the type of flow for which the

present model is applicable. In the strictest sense, potential flow is inviscid and isen-

tropic and has constant total enthalpy (or constant rothalpy for the rotating flowfield

through a propeller). In general, entropy increases across a shock wave so the potential

approximation is not strictly valid for shocked transonic flows. However, for transonic

flows where the supersonic region is terminated by weak shock waves, the flow can be

reasonably well approximated by neglecting the increase in entropy. In practice, the

full potential equation is used routinely to get satisfactory results for many transonic

flow problems. For design purposes, since strong shock waves are not a desirable feature

for good propeller performance, the isentropic assumption should be entirely adequate.

Large viscous effects are confined to a thin boundary layer and a thin wake trailing

behind the propeller blade, provided no separation occurs on the blade. Although the

outer flowfield can be closely approximated by inviscid flow, the effect of the boundary

layer can be significant. Propeller sections tend to be very thin and cambered near the

blade tip. The boundary layer tends to uncamber the trailing edges of these sections

and thus affect the radial load distribution and the overall propeller performance. The

viscous effects are not considered by the current method, so results must be interpreted

carefully.

For a rotating flowfield, the rothalpy (I) is defined as

Ih 2 + 2 2r2
I= h+

2 2

In the above definition, h is the local enthalpy of the flow. The assumption of constant

rothalpy does not introduce errors into the approximation but limits the applicability

to flows with uniform freestream rothalpy.



When the flow is assumed to be inviscid and isentropic and to have constant rothalpy,

the momentum equation reduces to a statement that the perturbation velocity is irro-

tational and is therefore governed by a potential. Conservation of mass can be written

as

V. [p(VO - Vadv)] = 0 (2.1)

Equation 2.1 is the familiar full potential equation. An expression for the density (p)

can be derived using the definition of rothalpy and the assumption of isentropic flow.

P = [1 + M021 (1 - +

PoThe full potential equation is noninear due to the dependence of on .

The full potential equation is nonlinear due to the dependence of To on 4



Chapter 3

Discretization and Solution of Equations

This chapter discusses the procedure used to solve the full potential equation on a

discrete domain for the propeller problem. The analysis problem is discussed to present

the basic application of the finite element method to discretize the governing equations.

The discussion includes the treatment of the boundary conditions, implementation of

the Kutta constraints, and the solution of the resulting nonlinear discrete equations

with a Newton-Raphson iteration procedure.

3.1 Grid System

The propeller domain is represented by a discrete number of grid nodes and the contin-

uous full potential equation (Equation 2.1) is discretized over these nodes. For all flows

considered in this thesis, the flowfield is periodic in the blade-to-blade direction with

period equal to 21r/B where B is the number of propeller blades. All grids used in this

thesis are structured grids. The finite element method can be applied very naturally to

an unstructured grid system, however the generation of unstructured grids for complex

geometries is itself the subject of much current research in computational fluid dynam-

ics and is not within the scope of this thesis. The grid indexing coordinates are such

that i is in the streamwise direction, j is in the blade-to-blade direction, and k extends

radially outward from the hub. The grid coordinates are referenced to the coordinate

system attached to the propeller (x, y, z). The grid is generated as follows.

Two dimensional (constant radius, constant k), H-type grids are generated for kb

radial stations along the blade. Each two-dimensional grid describes the local cascade

domain at radius rk. The blade upper surface (suction side) is the j = jm,, boundary



and the lower surface is the j = 1 boundary. The wake advance ratio (or, equivalently,

the pitch of the trailing helical wake) is prescribed by the user and is usually obtained

from a lifting line model for a propeller at a given loading. All streamwise grid lines (j =

constant) are parallel to the wake at the outflow boundary. A sample two-dimensional

grid is illustrated in Figure 3.1.

The last two-dimensional grid on the propeller defines the blade tip. The blade

section at the tip is collapsed to zero thickness so that the entire j = 1 and j = jma

grid lines are periodic. The camber of the tip section is retained. The two-dimensional,

constant radius grids are simply stacked radially to form the three-dimensional com-

putational grid. The two-dimensional grid at the propeller tip is copied (after scaling

for larger radius) to radial stations off the tip of the propeller to some prescribed tip

farfield radius. The three-dimensional grid is mapped into (z, y, z) space to complete

the grid generation. A sample grid is shown in Figure 3.2.

rO

nee ratio

-'D x

U -'U,^

Figure 3.1: Constant radius cascade grid.

i

/



yI

V.,gul r. .U- sIu byb i LLu I uCe-unIUeIniUnaa propener proomem.

3.2 Application of Finite Element Method

The grid divides the domain into hexahedral elements with 8 nodes each. The pertur-

bation potential (0) is represented functionally within an element by

8

i=1

N = (1 + )(1 + )(+ 77i)(1 + CC)

where the superscript e indicates a given element. The trilinear shape functions Ni are

defined in the natural coordinate system ((, 77, C) of an undistorted element as illustrated

in Figure 3.3. The shape function for a given node is 1 at that node and varies linearly

z

J
x



8

5

z

7
5

1 2 I
x distorted undistorted

Figure 3.3: Natural coordinate system of undistorted element.

The concept of isoparametric elements is adopted so that the physical coordinates

(X, y, z) are represented functionally in the same manner as 0.

8 8 8

i=1 i=1 i=1

Application of the Galerkin weighted residual method to the full potential equation

(2.1) consists of volume integrals of the form

W V [(V - dV = 0. (3.1)

The discrete equation for each node in the domain is obtained by choosing a separate

weight function W for each node. The weight function is chosen to be the same trilinear

shape function described above to represent 0. For a given node 1, Wt = 1 at I and

varies linearly to zero for all immediately neighboring nodes. W = 0 for all other nodes

in the domain. With this choice of weight function, Equation 3.1 for node I can be

expressed as

8

E-- N; V - [P(VO - ad) dV = 0 (3.2)e=1 Ve

to 0 at each neighboring node. At each point in the element, the sum of the 8 nodal

shape functions is 1 so the approximation is consistent. The variation of 0 within an

element, then, is a weighted average of the values of 0 at the nodes of the element.



where the sum is taken over the 8 elements that share node 1. N; is the shape function

for the node of element e that corresponds to node I in the global node numbering

system.

The next step is to substitute the functional form of 4 into Equation 3.2. The

equation, however, has second derivatives that cannot be represented with linear shape

functions. This problem is avoided by integrating the integrals of Equation 3.2 by parts,

giving

8

e VN [p(V - Vdv)] dV - Ne p(V - Vd) . h dS = 0 (3.3)

where A is the outward pointing normal for the element. At this point, the density is

assumed to be constant over a given element so that Equation 3.3 becomes

8

{e f VN; - (Vq - ad) dV -ef N; I -f dS =0 (3.4)
e=1 S

where W (= V - Vadv) is the relative velocity as before.

Substituting the functional form of into Equation 3.4 gives

pe VN "-
e { [ VNeNe -Nad,] dV - N I .- f dS= 0

which can be written as

8 8
p Ok - pe, - p N; . A d S  =0 (3.5)

e=1 j=1

where

k• vVNi - VNj dV

S JV VN; -Vadv dV



In practice, the 8 x 8 matrix of integrals ki1 and the 8 integrals f, are precalculated

and stored for each element in the domain. The integration is performed over the natural

cell using 2 x 2 x 2 point numerical Gaussian integration. Note that kij is symmetric.

The sum of the surface integrals in Equation 3.5 is zero when I is an interior node

because N1 = 0 on the surface of the supercell for node 1. The supercell is the volume

formed by the 8 cells that share node 1. Contributions for surfaces where Nt is nonzero

sum to zero due to internal surface cancellations. In general, the surface integral in

Equation 3.5 is nonzero only when node t lies on a boundary of the domain. Therefore,

Equation 3.5 for a general interior node reduces to

8 8{ Pe - e =0 (3.6)
e=1 j=1

Equation 3.6 is the discretized form of Equation 3.1. It is a nonlinear equation in 4
due to the dependence of density on €. Equation 3.6 is expressed from the viewpoint

of visiting a node and summing over the 8 elements surrounding the node. In practice,

each element of the domain is visited once and computed quantities are distributed to

the nodes of that element.



neriodic

blade surface

periouic

Figure 3.4: Computational domain and boundaries.

3.3 Boundary nodes

Figure 3.4 shows the computational domain for a generic propeller. The different types

of domain boundaries are indicated in the figure. Table 3.1 presents a summary of the

discrete equations used for nodes on the various domain boundaries. The different types

of boundaries are discussed following the table.

The 'natural', or mass flux, boundary condition for a node on a domain boundary

is applied through the surface integral term of Equation 3.5 (....pe is. Nj 1 - A dS).

Recall that for all interior nodes this term is identically zero because Nt is zero on the

supercell surface. However, for a node on a domain boundary, NI is non-zero across

the domain surface. If there is mass flux across this surface, then the surface integral

will contribute to the residual for the surface node. The natural boundary condition is

illustrated for a two-dimensional domain in Figure 3.5.



Table 3.1: Summary of Discrete Equations for Boundary Nodes.

Boundary Type Discrete Equation

<4 8
solid surface E pe ( k) - pe } = 0

e=1 I j=1

<8 8
periodic, j = 1 {e ( ek) - pef, } = 0

e=1 (j=1

periodic, j = jma, .. - €1 = 0 (general)

o. - - rk = 0 (on wake)

inflow (farfield) q - Of = 0

<4 8
tip (farfield) E pe ( ek,) - pef. _ pe N Wff . ft dS = 0

e=1 ( j=m1 S

outflow Oi,. - €im,.-1 = 0



I

Figure 3.5: The natural boundary condition for a two-dimensional domain.

Not all domain boundaries are correctly treated by applying the natural boundary

condition. The nodes on these boundaries require special treatment to enforce some

other physical condition besides a specified mass flux.

3.3.1 Solid Surfaces

Nodes that lie on the propeller hub and blade are solid surface nodes. The physical

boundary condition for these nodes is that the relative velocity must be tangent to the

surface, which implies that * -A = 0. The natural boundary condition correctly treats

nodes on the solid surfaces since the condition of no mass flux across the solid boundary

is specified when the surface integral in Equation 3.5 is identically zero. Note that the

supercell for a boundary node includes at most 4 cells and as few as 1 (e.g. in domain

corners). The discrete equation for solid surface nodes, then, is the same as for an

interior node (3.6) but with the sum taken over at most 4 elements.

3.3.2 Periodic Boundaries

The flow through the propeller is periodic in the blade-to-blade direction. Only one pe-

riod of the domain is represented by the grid and periodic boundary conditions are ap-

plied at the j = 1 and j = jma, boundaries illustrated in Figure 3.6. The periodic bound-

aries are not physical boundaries of the flow so the surface integral tp f • I . f A dS

.Nt



J == JIma

j=l

' ' I

Figure 3.6: Periodic domain boundaries.

is not generally zero. However, the value of the integral for a face on the j=1 boundary

is equal and opposite to the value for the corresponding face on the j = jmaz boundary

since (* i)__ = - (V .••) . . Physically, what flows out of the j = 1 face mustj=1 1 acemus

flow into the j = j,,ma face if the boundaries are periodic.

When the discrete equation for a node at j = jmaz is added to the equation for the

corresponding node at j = 1, the surface integrals for faces on the periodic boundaries

exactly cancel each other. The new discrete equation at j = 1 is the same as Equation 3.6

for an interior point. A statement of periodicity (0j... = 1) replaces the equation at

j = Jaz. The treatment of periodic boundaries is summarized below.

before applying periodic condition:

<4 8

e=11 =1 i j=1

<4 8i = im. E I k -pe pe- N, -4 dS =0e=1 I S. j , = ..0



after applying periodic condition:

3-=1a / k --qf 1 ==e=1 iJ=1

~jm.. - q -• k = 0 (on propeller wake)

Note that nodes which lie on the wake sheet are periodic with a jump in 0 equal to

the circulation on the propeller blade. The circulation at each radial station on the

propeller blade is a global unknown rk, k = 1,..., kb where kb is the number of radial

stations on the blade. The details of finding Pk are discussed in Section 3.5.

3.3.3 Inflow and Tip

The inflow and tip computational boundaries are farfield boundaries. Physically, all

perturbations are zero far upstream and far off the tip of the propeller. Because the

computational domain is finite, the physical condition of zero perturbation is not an

accurate boundary condition for the farfield boundaries. Instead, an analytic model

for the leading effect of the propeller is used to calculate perturbations at the farfield

boundaries.

A loaded propeller has some distribution of circulation along the propeller blade. As

the circulation changes along the blade, vortex filaments are formed that trail behind

the propeller in helical paths. The system of helical vortex filaments forms the wake of

the propeller. In the present method, the circulation F is defined at a discrete number

of stations along the propeller blade. The wake is modeled as a discrete number of

vortex filaments corresponding to the discrete changes in circulation along the blade as

illustrated in Figure 3.7.
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Consider the trailing vortex filament at station k. Neglecting the axial component of

vorticity, the helical filaments can be approximated as a system of vortex rings extending

streamwise to z = +oo. Figure 3.8 illustrates that in 2rAR of wake, there are B vortex

rings of strength rk - rk-1 as well as a corresponding system of image vortex rings at

r = ! to account for the effect of the solid hub of radius rk. The farfield effect ofrh

this system of vortex rings is the same as for a semi-infinite cylinder with circulation

density V = - at r = rk and a conjugate semi-infinite vortex cylinder withM2
the same circulation density (opposite sign) at r = . In his Ph.D. thesis, Scully (13,rh

pages 149-151] developed the following approximation for the potential induced by a

semi-infinite vortex cylinder:

OP 1or( r- -(3.7)4 x r2 + (zc - aP)2

P vortex cylinder

Tp

XP

xc

Equation 3.7 can be used directly to specify a Dirichlet boundary condition at the

farfield (i.e. Off = p) or the equation can be differentiated to obtain an expression

for the axial and radial components of the velocity induced by the vortex cylinder.

The induced velocity at the farfield can be used to apply a natural boundary condition

for nodes on farfield boundaries. The actual conditions at the farfield boundary are

a simple superposition of the effects from the trailing vortex cylinder at each discrete

radial station.

It should be noted that the distribution of circulation along the propeller blade

changes as the solution develops. The farfield boundary conditions are updated at the

end of each Newton iteration cycle (see Section 3.5). The dependence of the residual



equation for farfield boundary nodes on the circulation distribution is known, so solution

convergence is not slowed by updating the farfield boundary conditions.

3.3.4 Outflow

The physical boundary condition in the wake downstream of a propeller is that all

perturbations along helicoidal lines vanish. The grid system used in this research has i-

lines which coincide with helicoidal lines near the outflow boundary. Thus, the condition

of helical symmetry is obtained numerically by simply setting ,0in.-1 = qif.



3.4 Artificial Compressiblity

The discretization discussed thus far works only in subcritical flows. When the local

Mach number exceeds unity, some sort of artificial dissipation is necessary to guarantee

a unique solution. Since potential flow is fully isentropic, non-physical expansion shocks

are valid solutions to the equations along with the usual compression shocks. Physi-

cally, the requirement that entropy must always increase eliminates the possibility of

expansion shocks in real flows. This physical condition is not satisfied automatically by

the full potential equation. The consideration of artificial dissipation for finite element

methods in transonic flow is well presented in a paper by Deconinck and Hirsch [3].

Several methods for introducing the necessary dissipation into discrete equations

have been successfully adopted. For finite element methods, a modified form of the

density can be introduced that allows the standard Galerkin treatment to be applied

in both subsonic and transonic flow regions [3]. In [6], Habashi and Hafez discuss

several techniques for introducing viscosity into a finite element discretization of the

full potential equation in two dimensions. These authors suggested modifying the full

potential equation as follows:

V - Vadv)

as

After numerical experimentation with the operator i, Habashi and Hafez concluded

that the following form produced the best results for the two-dimensional full potential

flow

I = max(0, pi, ui- 1 )

1
i=1- MP

Yj = 1



where i is an index in the stream direction.

A slightly modified form of the above scheme is used in this thesis. First, the grid

coordinates in the stream direction (i) are assumed to be an adequate approximation

to the actual streamlines of the flow in order to simplify the expression for J.

Next, the operator pi is defined as

14 = YC(1.0 MiltM2)

The factors Pc and M it adjust the amount of artificial dissipation being introduced

into the solution as shown in Figure 3.9. In [5], Giles presents an analytic argument

for choosing the proper value for y, so that numerical stability is obtained without

excessive total pressure errors for Euler solutions in smooth supersonic regions. Giles

demonstrated analytically and confirmed numerically that for the Euler equations, 1c

should be about -' . In this thesis, adequate dissipation is achieved with Pc = 1.0 and

M,.it = 0.95. For analysis solutions, the dissipation requirements can be much lower

depending on the severity of the discontinuities in the flow.

Section 3.5 discusses the solution of the discrete equations using the Newton-Raphson

method. In Section 3.6, solution strategies for shocked flow are discussed that include

using the parameters Mc and Mcit to not only provide numerical stability but to also

aid in the convergence rate of the Newton iteration method.
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3.5 Solving the Discrete Equations

Equation 3.6 and the equations in Table 3.1 form a set of non-linear discrete equations

for the unknown nodal values of q. These equations are solved iteratively using the

Newton-Raphson method (this method will be referred to as Newton's method). At

any given iteration, the current values of 0 and r do not satisfy the discrete equations,

so for each node there is some residual. In general, the residual at node I is a function

of 0 and r everywhere in the domain.

R1 = RI(o,r) (3.8)

(Note that only residuals for nodes on farfield boundaries or on the wake at j = jma,

depend on r.) The system of equations expressed by Equation 3.8 is linearized around

the current values of 0 and r so that the residuals at the next iteration are approximated

by

BR; "OR; n

R+1 = R + A + Ar (3.9)Rt = oo+-5- or

where n is an iteration counter.

Since the goal is to drive R1 to 0, setting R*+ 1 = 0 in Equation 3.9 gives a linear

system of equations for A and AR :

-8 nA0+ OR r= -Rn (3.10)

Equation 3.10 is deceptively simple. The term is an N x N matrix (called

the Jacobian matrix) where N is the number of nodes in the domain. For a three-

dimensional problem, N can easily become very large (, 10s). Also, the convergence

rate of the Newton iteration scheme depends heavily on how accurately the Jacobian

matrix is calculated. If the system of equations is exactly linearized, Newton's method

exhibits quadratic convergence when € and r are sufficiently close to the correct values.

Small errors in the linearization of the equations can slow convergence considerably. The



details of the linearization are placed in Appendix A. In general, each nodal residual

(Rt) depends on 36 nodal values of 0 (contributions from 12 cells) with the extra 9

nodes (4 cells) due to the upwinding of the density in supersonic regions.

Newton's method can be summarized as follows:

1. Initialize 4, P (= 0 is adequate)

2. Calculate -R' based on current 4 and r

3. Calculate derivates OR OR

4. Invert the resulting linear system to obtain Aq, Ar

5. Update o, r (i.e. 0n+1 = •n + AO)

6. If Ao, Ar are less than a prescribed tolerance, then system is converged; else,

return to step 2 and continue iteration

Steps 2-6 are referred to as a Newton cycle or step.

3.5.1 Treatment of Global Unknowns, P

One detail that remains to be discussed is the determination of the circulation along

the blade (r). The circulation distribution introduces kb - 1 global unknowns into

the Newton system where kb is the number of radial grid stations on the blade (the

circulation at the tip is zero). The equations necessary to close the system are provided

by expressing the Kutta condition at kb - 1 stations along the blade. The Kutta-

Joukowsky condition implies that the pressure loading at the trailing edge of the blade

must be zero. For the full potential formulation in this thesis, this condition is satisfied

by enforcing that the magnitude of the velocity at the trailing edge is the same on the

upper and lower surfaces. Figure 3.10 illustrates how the velocity is extrapolated near

the trailing edge to get an approximation for the trailing edge value. Note that the

velocity is not interpolated across the trailing edge stagnation point.



1Qk 1 tej=i- lV1e2_i... (3.11)

When discretized, Equation 3.11 is also a non-linear equation in 0 since I = V V- adv*.

Each Newton cycle, Qk is linearized (Equation 3.12) to close the algebraic system of

equations.

upper surface

(3.12)

shown

-LE

k
- TE

IrTE,+,/ 2 extrapolated from WA and WB

Figure 3.10: Calculation of velocity at trailing edge.

OQk n
84AO = -Qn
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The Kutta residual (Qk) is expressed as

1



3.5.2 Solution Details

Equations 3.10 and 3.12 form a complete, linear system of equations that determine

the nodal unknowns A0 and the global unknowns Ark for one Newton step. In matrix

form, the system is written

aR I OR A0IAT=1-R1

_Qn

(3.13)

Although Equation 3.13 represents a large system of equations, the Jacobian matrix
[R ] is very sparse. The following procedure is used to compute A0 and AT at each

Newton cycle.

Equation 3.13 is written as

OR A}1kb-1
-R + EAk -OR

I k=1
(3.14)

The Jacobian matrix is effectively inverted and multiplied through Equation 3.14 to

give

{A4

Ir

I kb-1r + E Ark
k=1

OR

1- (3.15)

-R I

where

aQ n
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Figure 3.11: SLOR sweep directions for 1 iteration.

The j-sweeps quickly communicate the solid wall boundary conditions at j = 1

and j = jmaz into the domain. Also, since the periodic condition for nodes at j =

imax (kj,.u - 4~1 = -Rj,,.) upsets the diagonal dominance of the overall system, the

implicitness in the j-direction is necessary for the system to converge.

In general, a propeller grid will have a large number of points in the streamwise

direction (i) so that shock waves are sharply defined. The number of points in the

blade-to-blade direction (j) is less important and spacing in this direction can be quite

large. Near the tip, these different spacing requirements can result in elements with an

extremely high aspect ratio. The implicit-i sweeps help to overcome possible stiffness

problems that result from the extreme aspect ratio of the distorted elements.

Equation 3.15 expresses each AO as a function of Ar so there are kb - 1 unknowns

remaining. However, there are kb - 1 remaining equations of the form

--1
Since • is large and sparse, its inverse is not computed directly. Instead, an

iterative method (succesive line over relaxation or SLOR) is used to find rl and 1  .
Implicit i relaxation sweeps are alternated with implict j-sweeps as shown in Figure 3.11

to help speed convergence of the matrix inversion.

i=1

i I



A{ = -Q
Substituting Equation 3.15 into Equation 3.16 gives

r 1
which can be written as

SiI IA = I-: -1

Si3 = [ OQU/8¢
J {~I

r (3.17)

Equation 3.17 is a simple linear system for the unknowns Ark. The matrix [ S ] is,

in general, a full matrix. The system, however, is small since in practice kb - 10. The

system for AT is solved directly using Gaussian elimination.

A more detailed summary of the steps in one Newton cycle is outlined below.

1. Calculate -R' for current iteration based on current o, F

2. Calculate derivatives OR OR
5T , or,,

3. Calculate{r} [ 2- ]-{- R using SLOR

4. Calculate I = oR -R oR for k = 1,..., kb-1 using SLOR
5. Compose [ S ] and right hand side of Equation 3.17 1

5. Compose [ S] and right hand side of Equation 3.17

(3.16)

kb-1

k=1

aQ
a; I

ILQI



6. Solve for Ar using Gaussian elimination

7. Use Ar to calculate A0 (Equation 3.15)

8. Update , r (e.g. 0n+1 = on + AO)

9. Check for Aq, Ar < tolerance

3.6 Discussion of Newton's Method

It was mentioned earlier that Newton's method for solving non-linear differential equa-

tions converges quadratically when sufficiently near the correct solution. This feature of

Newton's method is especially useful in a design environment where small changes are

made to an initial geometry and a new solution is computed to investigate the effects of

the design change. The converged solution for the initial geometry is a very good guess

for the new solution.

In practice, obtaining a solution for a highly non-linear case (strong or rapidly

moving shock waves) requires some extra care during the solution process. Each Newton

step represents a linear perturbation from the current solution. When the actual changes

are highly nonlinear, the linear approximation tends to overshoot the solution and give a

new distribution of 0 that is non-physical (i.e. negative densities). This problem is very

evident when the difference between an initial solution and the converged solution is a

large change in shock position. For example, if a particular geometry is being analyzed

for a series of Mach numbers, each converged solution at a given Mach number represents

a good initial guess for the solution to the next Mach number in the series (assuming

reasonable changes like M = .4, .45, .5, ... ). Once a shock wave develops on the blade,

however, any further increase in Mach number typically moves the shock downstream

on the blade. Since each Newton step is a linear perturbation to the previous iteration,

the shock can only be moved reliably about one shock width per cycle. Figure 3.12

presents an example of the problems associated with large shock movement.

For the case presented in the figure, a shock wave formed near the leading edge of
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Figure 3.12: The problem with shock wave movement.

the blade at M = 0.5. The next desired analysis point was at M = 0.6, and the symbols

show the actual converged solution at M = 0.6. The dotted line shows the solution after

one Newton cycle. Convergence from this first step was impossible. A better strategy

for the above example is to first smear the M = 0.5 solution by increasing the amount

of artificial dissipation. With the shock wave effectively smoothed, moving the shock

does not create the severe problems shown in Figure 3.12. Once the new shock position

is established, the dissipation can be reduced to the usual level and the analysis solution

for M = 0.6 can be 'cleaned up' to the solution shown by the symbols in the figure.

One other technique is useful for keeping especially large changes under control. At

the end of each Newton cycle, the predicted solution is checked for non-physical features.

An under-relaxation factor is computed based on the most non-physical update in the

solution. This under-relaxation factor is then applied to all the Newton changes.

€n+1 on +. +
r n1 = n- + wAr

w<1



The above technique is extremely useful for cases difficult to converge. The amount of

under-relaxation can be monitored as an indicator of large changes taking place in the

field. A very small w indicates that artificial dissipation should be increased until the

solution starts to settle down. Table 3.2 summarizes the Newton convergence history

for the case shown in Figure 3.12. The values in the table are representative values for

the convergence parameters used in the present method.

One final remark. When large changes are taking place in the flow, the matrix

inversion by SLOR to find the Newton changes does not have to be completely converged.

Typically 10 to 20 SLOR sweeps are applied to the inversion each Newton cycle until the

solution begins to settle. Several hundred SLOR sweeps may be necessary to converge

the matrix inversion completely.

Table 3.2: Summary of Newton Convergence for M = 0.5 to M = 0.6.

w A0 Meit y, SLOR sweeps comments

1 0.997 0.75 x 10-2 0.90 1.75 10 shock moving

2 1.000 0.49 x 10-2 0.90 1.75 10

3 1.000 0.51 x 10-2 0.90 1.75 50

4 1.000 0.19 x 10- 2  0.90 1.75 50 shock stable

5 1.000 0.44 x 10- 3  0.90 1.75 150

6 1.000 0.42 x 10- 4  0.90 1.75 200

7 1.000 0.73 x 10-6 0.90 1.75 250

8 1.000 0.66 x 10- 2 0.95 1.00 10 sharpening shock

9 1.000 0.16 x 10-2 0.95 1.00 10

10 1.000 0.47 x 10 - 3  0.95 1.00 10

11 1.000 0.58 x 10- 3  0.95 1.00 10

12 1.000 0.93 x 10- 4  0.95 1.00 50

13 1.000 0.93 x 10-6 0.95 1.00 300



3.7 Final Comments

The solution procedure requires the calculation of [ -' 1 for k, - 1 stations
on the blade for each Newton cycle. At first glance these large matrix inversions may

seem to be prohibitively expensive for a practical solution method. However, several

features significantly reduce the time required to converge a solution. First, the r

sensitivities ( ) do not change much from cycle to cycle (even though the circulation

on the blade may change a large amount). In practice relatively few SLOR sweeps are

required to converge each r sensitivity for all but the first Newton step. Second, the

SLOR operations to find the r sensitivities for all the radial stations along the blade are

completely independent of each other and can therefore be computed in parallel. This

research was conducted on a Stellar GS2000 computer with 4 vector processers running

in parallel. Hence, 4 r sensitivities were computed simultaneously on this computer

resulting in great time savings. Finally, it may be possible to initialize the r sensitivites

using an analytic model. Each r sensitivity represents the perturbation of € throughout

the domain for a trailing helical vortex doublet filament of unit strength at each radial

station. An analytic solution based on this model could be used to initialize 9 and

thereby reduce the significant computer time required to invert the matrix for each

radial station for the first Newton cycle.



Chapter 4

Analysis Results

This chapter presents some results that demonstrate the analysis capability of the pre-

sented scheme. Three test cases are presented: 1) the transonic flow through a cascade,

2) a marine propeller in incompressible flow, and 3) the SR-3 Prop-Fan operating in

transonic flow. In all cases, a converged solution is one in which the Newton updates

(Ao, Ar) are less than 10-6.

4.1 Two-Dimensional Cascade Flow

The purpose of this first test case is to verify that the basic analysis algorithm of

the present method is correct. The geometry is an unloaded cascade composed of

NACA 0024 sections spaced 1.5 chords apart. The computational domain is sketched

with the type of boundaries indicated in Figure 4.1. The domain is three-dimensional

but the flow through the cascade is two-dimensional because the geometry is constant

in the z-direction.

Solutions from the present method are compared to results from a two-dimensional

Euler solver [4, 5] in Figures 4.2-4.4 for subcritical and supercritical flows. The agree-

ment is very good for the subcritical case as expected since the flow is fully isentropic.

For the supercritical case, Figure 4.3 shows the expected trend for a full-potential solu-

tion. A shock has formed on the cascade at about 45 percent chord. The full potential

solution agrees very well with the Euler solution except in the prediction of the shock

location. At the shock, errors are introduced into the momentum equation because the

flow is assumed to be isentropic. The shock wave acts like a distribution of momentum

sources so that no rotational flow exists downstream of the shock. In practice, the full



potential approximation is acceptable for shocked flows where the normal Mach number

upstream of the shock is less than 1.3. For the supercritical flow presented in Figure

4.3, the Mach number is 1.31 upstream of the shock. Mach contours (with levels from

0 to 1.0) are shown in Figure 4.4.

Converged solutions for the cascade flow required 7 to 8 Newton cycles. Each cycle

was lengthy because of the fine grid (120 x 15 x 3) used to obtain solutions. The SLOR

method was very slow at eliminating large wavelength errors on the fine grid so that

300 to 400 iterations were required for each order of magnitude reduction in residual

error during the Jacobian matrix inversion. An acceleration scheme such as multigrid

would greatly reduce the number of relaxation iterations required each Newton cycle,

especially on very fine grids.
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4.2 Marine Propeller in Incompressible Flow

This second test case was chosen because of the availability of high quality numerical

data for the selected propeller [8, 7]. The propeller geometry [1] is plotted in Figure 4.5.

The numerical results were obtained using panel methods which, for incompressible

flow, should be equivalent to the full potential analysis of the present method.

Obtaining a solution for this case presented some difficulties because of the tip

geometry of the marine propeller. The propeller has a rounded tip that is pitched only

18 degrees. The computational grid contained highly skewed, high aspect ratio cells in

the tip region that were unavoidable with the structured grids used in this thesis. The

rapid decrease in chord seemed to present the most difficulty, so the tip was squared

off to obtain the results presented in this section. The difference between the actual

propeller and the computational model is plotted in Figure 4.5. The results presented

here were obtained using a 60 x 25 x 20 grid with 40 chordwise points and 15 radial

stations on the blade. For incompressible flow, the only nonlinearity in the equations is

the Kutta constraints on the trailing-edge velocities. A converged solution was obtained

in 3 Newton cycles.

Pressure distributions at several radial stations are plotted in Figure 4.6. The agree-

ment is quite good with the largest differences occuring at the leading edge of the pro-

peller near the outer portion of the blade. There are some differences in the numerical

models for the two methods that should be mentioned. First, the present method uses

a constant radius hub extending to infinity upstream and downstream of the propeller.

The panel method results are for a propeller with a nacelle that extends to infinity

upstream but extends only 0.65 radii downstream of the propeller. Second, the panel

method was developed for marine propellers and could more accurately represent the

rounded tip geometry. Finally, the pressure distribution near the leading edge could be

better resolved with more grid points resulting in better agreement especially for the

lower surface. Overall, the agreement is entirely satisfactory.
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4.3 Prop-Fan in Transonic Flow

This testcase is representative of the type of propellers for which the current method

was developed. The propeller is an 8-bladed Prop-Fan designed for an operating Mach

number of 0.8 at an altitude of 35,000 ft. Reference [12] contains a detailed description

of the propeller geometry as well as a summary of wind tunnel data obtained during

testing in 1982. The wind tunnel data does not include detailed measurements of the

blade pressure distributions but does contain complete power coefficient and efficiency

data for a range of Mach numbers and advance ratios.

Several data points were obtained using the current method at Mach numbers 0.45,

0.6, and 0.8. All results were obtained using a 60 x 21 x 20 grid with 40 chordwise and

15 spanwise stations on the blade. The data points are plotted with the wind tunnel

data in Figures 4.8, 4.9, and 4.10. The plots show power coefficient I (Cp =,- )

versus advance ratio (J = -) for each of the 3 Mach numbers analyzed. Comparisons

between the numerical results and the wind tunnel data must be made carefully. For

M = 0.6 and J between 3.7 and 4.1, the numerical results show the same trend as the

experimental data but are shifted as if a constant pitch increment of ~- 2.5 degrees were

added to each section of the blade. For advance ratios below 3.7, the trend indicated

by the numerical results is quite different from the experimental data. As the advance

ratio decreases below 3.7, the character of the flow around the Prop-Fan prevents the

full potential equation from being a good approximation to the real flow.

The problem is illustrated in Figure 4.11. The figure compares the pressure distri-

butions at r/R = 0.94 for J = 4.0 (symbols) and J = 3.4 (solid line). At the higher

advance ratio, the local section is close to its design lift condition. For the lower advance

ratio, a severe expansion occurs around the small leading edge radius and is terminated

by a strong shock wave. The peak Mach number in this expansion is , 1.8. The as-

sumption of isentropic, inviscid flow results in a very poor approximation to the real

flow near the leading edge. The comparison in Figure 4.11 is typical for sections in the
1All presented data are nondimensionalized by the reference diameter of the SR-3 to be consistent

with published data. See [12, page 9] for more information.



outer 30% of the Prop-Fan blade for M = 0.6, J = 3.4.

The power coefficient is underpredicted when the leading edge flow becomes severe

because the present scheme is inviscid. The real flow most likely forms a separation

bubble at the leading edge and may include shock induced separation from the strong

shock wave. The resulting increase in profile drag would increase the power coefficient

substantially above that predicted by any inviscid method. This argument also applies

to the other two cases presented.
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Chapter 5

Philosophy of Design Method

The goal in developing the design capability of the present method was to provide a

quick way to modify a propeller blade that has been designed in a two-dimensional sense

to correct for three-dimensional effects. Design methods for 2d airfoils and cascades have

become very mature in recent years. In [4], Drela presents a 2d design method based

on the Euler equations coupled with interactive boundary layer analysis. The method

has demonstrated an impressive ability to calculate airfoil shapes from specified surface

pressure distributions in viscous subsonic, transonic, or supersonic flows. An initial

propeller design, then, could be composed by stacking together a set of 2d cascades that

have been developed in this manner for the local flow at several radial stations along the

blade. Such a design would predict the propeller loading as a similarly stacked set of 2d

pressure distributions. Presumably, the designed loading would satisfy some constraints

on propeller efficiency and noise characteristics.

When the design developed by 2d methods is analyzed in fully 3d flow, the actual

pressure distribution on the blade will not, in general, agree with the stacked 2d solu-

tions. The initial design, though, should be reasonably close. The scheme developed in

this research handles the problem of making small adjustments to the initial design to

correct for 3d effects. An effective pressure distribution obtained from the 2d methods

would be specified as the target pressure distribution for the 3d design method.

The importance of the above methodology is that the 3d design capability needs to

quickly make small changes to a 'near-optimum' propeller blade. Consistent with this

philosophy, a quick, approximate inverse method is described in the next chapter which

will drive a given seed propeller blade to satisfy a given target pressure distribution. Of

course, many flows can be conceived in which a small geometry change has a dramatic

/



effect on the global flowfield (i.e. the difference between a choked and an unchoked

cascade). Strategies for these more severe cases will be considered after the design

method is described.



Chapter 6

Description of Design Method

Three points are important in developing the current design method.

1. The geometry changes in a reasonably small number of smooth modes which define

movements of surface points in a direction normal to the surface.

2. The normal surface movement is modeled as an effective wall transpiration.

3. The target pressure distribution is not satisfied exactly but in a 'best-fit' or least

squares sense.

6.1 Perturbation in Modes

The most general geometry redesign method would allow each point on the design sur-

face to move independently of the other points and in any of the 3 coordinate directions.

This freedom would introduce 3 global unknowns (Az, Ay, Az) for each point on the

design surface. For a medium sized transonic flow grid containing - 1200 surface points

(80 around the blade, 15 stations radially), the number of unknowns introduced makes

such generality very expensive.

When geometric design modes are used, each surface point is restricted to move

normal to the surface and in set combinations with all other surface points. The concept

is illustrated for a two-dimensional section in Figure 6.1. The mode shown in the figure

tends to change the thickness of the section since the upper and lower surfaces move in

opposite directions.

When designing with modes, the number of global unknowns introduced into the

/
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Figure 6.1: Illustration of the concept of design modes.

basic system is reduced to one coefficient (At) that multiplies each geometric mode. For

a given set of modes and coefficients, the normal displacement of a point on the design

surface is simply

L
6, = A_, Aft

l=1

The coordinates of the new position of the grid point can be expressed as

(X, y, z).Cw = (I, y, z)...d + Ai (6.1)

where ft is the unit outward normal for the design surface.

The geometric mode concept has other advantages over unrestricted point move-

ment in addition to great reduction of global unknowns. The perturbed geometry is

guaranteed to remain smooth if smooth design modes are used. Also, a design region is

easily specified by simply using modes that are identically zero outside the design region.

Finally, design constraints can be imposed by using modes that themselves satisfy the

design constraints (i.e. fixed leading-edge, fixed mean line).

The geometric mode concept may seem somewhat restrictive. However, a general

two-dimensional airfoil can be satisfactorily described by , 15 Fourier modes except

in the most extreme cases. In three dimensions the appropriate number of geometric

modes is higher since radially varying modes must be included as well as the chordwise



Figure 6.2: Basic set of geometric modes.

modes. However, the generality with which spanwise variations need to be included is

not clear. Perhaps only 4 or 5 spanwise modes may be sufficient. It is clear, though,

that the choice of geometric modes will affect how well a target pressure distribution

can be satisfied.

Figure 6.2 is a plot of the 7 basic mode shapes used in the present method. Each

three-dimensional geometric mode is a combination of any two of the basic shapes (1

spanwise and 1 chordwise). An additional shape that is not plotted in Figure 6.2 is a

spanwise mode that is constant along the span except very near the tip where it varies

rapidly to zero.

6.2 Modeling the Displacement Effect

In order for a design method to properly redesign a blade shape to satisfy a given pres-

sure distribution, the method must have information on how the solution will change

when the geometry is perturbed. For non-linear problems, these sensitivities cannot

be obtained analytically. The sensitivities can be obtained by actually perturbing the

0



geometry by a small but finite amount, and calculating new solutions for each of the

perturbed shapes, although this technique is very expensive in three-dimensional flows.

In the present method, calculation of the sensitivities is greatly simplified by approxi-

mating the displacement of the design surface with wall transpiration. This approach

is often used in interacting boundary layer methods where the displacement effect of

the boundary layer is modeled by a distribution of wall blowing. The amount of wall

blowing (V,) for a given normal displacement (A) of a solid surface can be expressed as

pV, = V -(p1A) (6.2)

Equation 6.2 can be conveniently reduced as follows:

pV. = V (p ) A + (PpW) . VA

= pW.(VA)

By combining the above wall transpiration with the current inviscid stream, a new flow

is obtained that, to first order in A, is equivalent to the flow around the displaced

surface. The influence of the wall blowing on the basic system of equations is applied as

a natural boundary condition via the surface integral term in Equation 3.5. Recall that

the residual for a node on a domain boundary included the following surface integrals:

<4

R1 = E ... W J#.Ad (6.3)

For an analysis solution, (p i) . f = 0 on a solid surface to enforce flow tangency.

However, in the design method, (p ) . h = -pV, whenever there is wall blowing to

model a geometry perturbation (the minus sign results from f being defined outward

for the element). Thus, the residual for points on design surfaces depends on the design

mode coefficients through A. Note that the geometry distortion modes define motion of

the design surface normal to the surface, which is precisely the displacement needed to

calculate the wall blowing distribution. Equation 6.3 is simplified by assuming that the

wall blowing is constant over any given element face on the design surface and equal to



the value at the face centroid. The surface integrals in Equation 6.3 are taken over all

6 faces that form each element. The only faces that actually contribute to RI are those

faces on the design surface for which W~. f is non-zero. (The contribution from the other

faces of the elements that share node I is zero because of internal surface cancellations

or because the weight function NI is zero on supercell surfaces.) For node d on a design

surface, Equation 6.3 simplifies to

<4

Rd = ... E (pVWr)ef Se Nd dS (6.4)
ef=1 Sa

where ef indexes over the element faces that share node d.

6.3 Finding the Best Fit Pressure Distribution

The goal of any inverse method is to find a geometry that will result in a given tar-

get pressure distribution. This problem is ill-posed, however, when the target pres-

sure distribution is non-physical or otherwise mathematically impossible. Lighthill [9]

derived three explicit integral constraints for the surface pressure distribution in two-

dimensional, incompressible flow. These contraints enforce that the resulting shape is

closed (no trailing edge thickness, no trailing edge streamwise mismatch), and that the

surface pressures are consistent with the freestream pressure. Although similar con-

straints must exist for three-dimensional compressible flow, they are not likely to be

expressible in closed form. An inverse method, then, must deal with the possibility that

a target pressure distribution is not mathematically possible.

Since the surface movement in the present method is not completely arbitrary but is

restricted to move based on a finite set of design modes, there are limits on which target

loadings can be satisfied by perturbing the geometry. The target surface pressures are

satisfied in a least squares sense, and since the perturbed geometry is always physical,

the resulting surface pressures are physical. Specifically, the present design method

perturbs the current geometry via the geometric design modes so as to minimize



1'
I1=' ( C-pta g)2 dS (6.5)

blade 2

where Cp is the current pressure and Cptag is the specified target pressure. This ap-

proach completely sidesteps the issue of Lighthill's well-posedness constraints on the

target pressure distribution.

6.4 Details of Design Procedure

The design process begins with a converged solution for a given propeller blade (referred

to as the seed geometry). For each geometry mode, the movement of the surface is

completely specified by setting the mode coefficient Al. The first step, then, is to

obtain the solution sensitivity ( 0) to movement of the design surface in each of the

geometric modes. A modification of the Newton cycle described in Section 3.5.2 allows

to be computed from R

Equation 3.14 is modified to include the dependence of R on At.

kb-1 L
OR Ai i Ark -R +i AAI oR (6.6R

k=41 1=1

Note that the residual (-R) is zero since the analysis solution is converged. When the

matrix ] is inverted and multiplied through Equation 6.6, the resulting expression

contains the desired sensitivities a.

kb-1 L
Ao L: A}k r9- +-AAj O (6.7)

k=1 =1 OA

Computing aR involves a straightforward differentiation of the discrete equation resid-

uals. The details are placed in Appendix A.



Equation 6.7 is a bit deceiving. The change in the solution (A0) for a given change

in the mode coefficient (AAI) cannot be computed with a simple application of Equa-

tion 6.7. Changes in r are coupled to changes in A, since the Kutta conditions (Equa-

tion 3.16) must hold after any change in A:

AJ ={-Q}

When Equation 6.7 is substituted into the above Kutta conditions, the result is a linear

system of equations relating Ar to AA.

tI AAe
L=1 (6.8)

where Sij is defined as before and Q is zero because the starting point is a converged

solution. For a given change in AA, Equation 6.8 can be solved to get At, and then

Ar and AA are substituted into Equation 6.7 to update the solution.

Once the relation between the solution and the mode coefficients is known, the next

step is to formulate a set of equations to constrain the mode coefficients. Recall that

the goal is to minimize the function defined as

I ( C1
I = 1 (Cp - Cp,..g)2dS

isbade 2
The set of equations that constrain At is simply

Rt- 81
R A 

- sblade
(cP - cPtarg) dS = 0

aA1

acis easily computed from known sensitivities by applying the chain rule.is easily computed from known sensitivities by applying the chain rule.

(6.9)

&Q
a I
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An expression for 2 is given in Appendix A.

The non linear system represented by Equation 6.9 is solved iteratively using the

Newton-Raphson method. The non-linear residual Rt is a function of the unknown

mode coefficients At. Each design Newton cycle, Rt is linearized around the current

levels of At to obtain a system of linear equations for the Newton update AAt. In
OC

the present method, the quantity a is assumed constant when the Newton system is

being updated. This approximation does not significantly slow the convergence of the

iteration scheme. The resulting linear system of equations is

E 5 ] AAm}{ R} (6.10)

8 ( ) e ) OCP OC~dS
OAm • Sbade, 8Am OAt

The design process is summarized below:

1. For each design mode ft, construct the sensitivities

2. Read in a target pressure distribution Cpag

3. Use Newton-Raphson method to compute updates to the geometry mode coeffi-

cients to minimize f (Cp - COpa,) 2 dS
'blade2

4. Compute AP from AA

5. Use AP and AA to update solution

6. Check for convergence (AA < tolerance)



6.5 Discussion

The expensive step in the design process is the calculation of ". This step, however,

is only required once for each initial condition. Once the mode coefficient sensitivities

are computed, any number of target pressure distributions can be specified with little

additional cost. The iterative design cycle that drives the current solution to satisfy

the target loading does not require regridding the perturbed geometry or computing a

full non-linear analysis solution at each iteration. Only after the design Newton cycle

is converged should a new geometry be computed and run through a complete analysis

solution to verify predicted results. For small geometry perturbations (consistent with

the design philosophy discussed in Chapter 5), the approximations made within the

design cycle should be reasonable.

A design strategy can be developed in which 3 design levels must be satisfied. This

chapter discussed the details of design level 1 (DL1) in which the solution is changed to

satisfy a target blade loading without actually moving the design surface or recomputing

full analysis solutions. This 'linearly perturbed' solution is one Newton step towards the

converged new geometry. In DL2, the mode coefficients output from DL1 are used to

compute the effective wall transpiration along the design surface and a direct solution

is computed with the new boundary condition. Note that even though DL2 requires a

full analysis solution, the initial guess for 0 and I' given by DL1 should be extremely

close to the converged solution. When the analysis solution is reconverged for the wall

blowing boundary condtion, DL1 is repeated to get the next Newton step towards the

new geometry.

The final design level (DL3) involves actually computing a new grid for the modified

blade shape. DL3 verifies the approximation made when assuming geometry pertur-

bations can be modeled as a wall transpiration. Again, a good initial guess to the

converged solution is given by the solution from the inner design levels, so convergence

should be quick.

DL1 satisfies the goals set when developing the present inverse method. DL1 pro-



vides an extremely quick (after computing a) way to make small changes to an initial

geometry to satisfy a given blade loading. The next chapter presents some examples

of how the developed design method works in practice. In the examples given in this

thesis, DL2 was not implemented. The mode coefficients output from DL1 were used to

compute a new geometry for DL3 in which the predicted modified solution was checked

with a full direct calculation for the new shape.



Chapter 7

Design Results

The purpose of this chapter is to present some demonstrations showing the design

capability of the present scheme. When designing for transonic flow conditions, some

strategy is necessary in order for the method to be useful. These issues are discussed

below.

7.1 Subcritical Mode Coefficient Sensitivities

The purpose of this demonstration is to test the quality of the computed solution sensi-

tivites (9) in subcritical flow. The initial geometry is an 8-bladed 'invisible' propeller

that is twisted so that when the advance ratio is 1, each local section is aligned to the

flow. The blades are constant chord with an aspect ratio of 10. The blade cross section

is the NACA 0012 airfoil. The simplified geometry is designed to help illustrate the

concepts presented in the previous chapter.

Two distortion modes are defined: 1) a thickness mode that increases the section

thickness ratio by 2 percent (resulting in a NACA 0014 thickness distribution), and 2)

a camber mode defined such that the distorted shape represents a NACA 3312 airfoil.

An initial solution is computed for the basic propeller at Mach 0.5 and then the

design modes are input and the solution sensitivities are calculated for each mode.

Figure 7.1 shows comparisons between the predicted change in the solution (based on

aa9 with A = 1.0) and the actual fully computed solution for the distorted shapes.

The comparison is quite good. The results from this test verify that the wall blowing

approximation is a valid method for representing geometry changes. Note that the

camber mode represents a very large distortion of the initial geometry and yet the effect

on the solution is predicted remarkably well.
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Figure 7.1: Comparison of linearly perturbed solution and exact solution for two geom-

etry perturbations.
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7.2 The Trouble with Shock Waves

Figure 7.2 shows a potential problem when using the present design method for shocked

transonic flows. The initial geometry is a non-rotating, 8-bladed propeller with constant

chord and constant NACA 0012 section. The propeller blade is twisted 4 degrees so

that lift develops on the blade. A converged solution is obtained for the initial blade

at Mach = 0.7. The pressure distribution shows a shock wave at about 25 percent

chord. The thickness mode described in the previous example is input and a solution

sensitivity is computed. Again, the mode coefficient is set explicitly to 1.0 to investigate

the predicted changes to the flow. Also plotted in the figure (symbols) is the converged

solution for the thicker blade. Here, the predicted solution is quite poor.

The problem is that the correct effect of the geometry distortion is an aft movement

of the shock wave. The issue of moving shock waves with a Newton iteration scheme was

discussed in Section 3.4. The points made in that section apply in the inverse method

as well. An effective design strategy is also very similar to the solution strategy for cases

where highly non-linear changes are taking place in the flow. A converged solution for

the initial geometry is obtained using a high level of dissipation. With the shock wave

substantially smoothed, the design method works as intended. Figure 7.3 repeats the

excercise of Figure 7.2 with this strategy implemented and gives much better results.

The shock wave can always be sharpened when a final solution is required.
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7.3 A Simple Example in Redesign

Figure 7.5 presents analysis results for a sample propeller designed for high altitude

transonic operation. A lifting line approximation provided the initial analysis to choose

a planform and twist distribution to give a constant spanwise loading so as to minimize

induced losses. Analysis results were computed for M = 0.6 and A = 0.7. Under these

operating conditions, the relative oncoming Mach number for the tip of the propeller

is 1.1. In Figure 7.5, the solid line represents the analysis results from the present

method for the initial propeller geometry. The dashed line represents results for the same

planform and twist distribution but with the blade swept to help relieve compressiblity

losses. In addition, a two-dimensional Euler solution [4, 5] is plotted for r/R = 0.77 for

comparison to the three-dimensional results. In this particular example, the effects of

the three-dimensional relief are dramatic. For the two-dimensional solution, the shock

on the upper surface is at the trailing edge of the section and the lower surface is

supersonic from about .25c to .6c where the supersonic flow is terminated by a shock

wave. In the three-dimensional solution the upper surface shock is at the midchord and

the lower surface is entirely subsonic. Spanwise dilation of the streamtubes provides the

three-dimenional relief while lower inboard Mach number (local relative Mach number

varies with radial position) also contributes significantly to the differences in the flow.

The Euler solution was obtained at the same local relative Mach number (= 0.89) and

lift coefficient (= 0.49) as the three-dimensional solution.

For the inner sections of the unswept blade (solid line), the flow compresses isentrop-

ically from a mildly supersonic suction peak. At r/R = 0.61, the peak Mach number at

the leading edge is 1.33 and a shock wave appears to be forming at about 30% chord.

The flow at r/R = 0.66 confirms the existence of a shock wave on the upper surface of

the blade. The shock wave spans the outer 45% of the propeller.

Figure 7.4 compares the planform and leading edge sweep of the unswept and swept

propellers. Note that the inner sections are swept forward. For structural reasons

the forward sweep is desirable so that centrifugal forces do not cause unacceptably

high stresses at the propeller hub. The sweep has a significant effect on the pressure



distribution that cannot be predicted with a two-dimensional method. Again referring

to Figure 7.5, Near the propeller hub, the leading edge suction peak is slightly higher for

the swept blade (peak Mach number = 1.24). This increase is the result of the influence

of the trailing helical vortex sheet. Because the propeller sweeps forward at the root,

the trailing vortex sheet and the image vortex sheet (inside the hub) interact to create

an upwash at the root section. Away from the hub section, the increased sweep provides

more three-dimensional relief for the local sections so that the suction peak is reduced.

At r/R = 0.61, the swept blade is still shock free. The increased blade sweep delays

the formation of the shock spanwise to about r/R = 0.72. For the outer sections of

the blade, even though the shock is displaced forward, the local lift is not significantly

reduced.
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Figure 7.4: Comparison of swept and unswept planforms.
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Figure 7.5: High altitude propeller analysis results, unswept vs swept; M = 0.6, A = 0.7.
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The swept propeller blade was used to test the design method described in the

previous section. Three-dimensional geometric modes were created from the basic mode

shapes presented in Figure 6.2. The design region was restricted to the upper surface

and 7 chordwise modes were combined with 4 spanwise modes to make a set of 28 total

mode shapes.

Figure 7.6 presents the results from a sample redesign. In the spanwise region where

the shock begins to form (between 60 and 75% span), the target pressure distribution

was specified to extend the sonic region and very gradually compress to subcritical flow.

For the outer sections, the target was not to eliminate the shock wave but to move it

aft so as to increase the local section lift coefficient. The agreement between the design

and target pressure distributions is quite good. The section mid-chord thickness was

increased between 60 and 70% span to smooth out the recompression of flow. Note

also that the suction peak was lowered slightly in this region. This result suggests that

lowering the suction peak would help in smoothing out the recompression to subcritical

flow. Of course this approach will only help in the spanwise regions where the oncoming

relative Mach number is low enough to permit an isentropic recompression. Outboard

of 70% span, the increase in thickness tends to move aft as the shock wave moves aft.

Calculating a for the 28 design modes required slightly less CPU time than the

direct analysis solution for the unswept blade (the calculation for the swept blade was

initialized with the solution for the unswept blade and therefore required little additional

time to reconverge). Once the solution sensitivities were calculated and the target

pressures specified, the linearly perturbed solution was obtained in about 1/10 the time

of a direct calculation.
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Chapter 8

Conclusions and Recommendations

This thesis has presented an analysis and design method for transonic propellers based

on the full potential equation. The method is based on a finite element discretization of

the full potential equation and solution by the Newton-Raphson method for non-linear

equation systems. The design method makes use of the Newton solution approach to

obtain sensitivies to global unknown mode coefficients that describe perturbations to

the initial geometry. The technique can quickly obtain the solution to the linearly per-

turbed geometry within each design cycle without solving the full non-linear equations.

The result is a design method that, for the first target pressure distribution, requires

approximately the same amount of time as a single direct calculation. The linearly per-

turbed solution for subsequent target pressure distributions can be obtained in much

less time (at least 1 order of magnitude) than a direct calculation.

Results were presented that verify the analysis capability of the present method

within the limits of the approximations made in using the full potential equation. Re-

sults presented for the design method showed that the linearly perturbed solution is a

good approximation to the full direct calculation even for relatively large geometry per-

turbations. A simple redesign was presented for a propeller designed for a high altitude

atmospheric research aircraft that included sweeping the blade to reduce compressibility

losses. The propeller sweep had a significant effect on the local section loading that can-

not be predicted with a two-dimensional cascade algorithm. The swept blade was also

used in the design method to make small modifications to the pressure distribution.

A set of 28 geometric modes (7 chordwise modes combined with 4 spanwise modes)

provided an effective set for redesigning the upper surface of the blade.

Several ideas were mentioned for increasing the capability of the present method.



First, the most time-consuming task involves the inversion of a large (, 105) algebraic

system of equations using SLOR. Great time savings could be realized by incorporating

an acceleration technique such as multi-grid.

Second, an unstructured grid would increase the geometry capabilities of the present

code. Although all cases presented in this thesis were adequately modeled using a struc-

tured grid, many more complicated propellers could not be analyzed with the present

code simply because a satisfactory grid cannot be constructed. Geometric complica-

tions such as excessive blade sweep and very low blade pitch result in structured grids

with highly skewed cells or cells with negative volumes. The finite element method is

by nature an unstructured approach to discretizing equations. The present code could

be easily modified to handle an unstructured grid. Of course, there are performance

penalties (in both memory requirements and computational requirements) when using

an unstructured grid. However, such a grid may be necessary for more complicated

geometries.

Finally, the design method presented minimizes a function that effectively results

in the best fit pressure distribution to a given target. Other functions are possible and

could be useful. Any function that can be expressed as a function of the unknown

potential in the domain can be minimized. In particular, one useful function would

be one that results in the best fit of radial circulation distribution. Such a function,

coupled with a set of design modes that effectively modified the radial variation of pitch

could be very useful in designing the twist distribution for a propeller blade.
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Appendix A

Linearization of Discrete Equations

This appendix is a summary of equations useful in the development of the present

method. Analytic and discrete expressions are listed as well as derivatives that are used

in linearizing the discrete equations as required by the Newton-Raphson method. It is

important to remember that q is stored at the grid nodes while any quantity based on

the gradient of 4 (e.g. W, p) is calculated at the centroid of the hexahedral elements.

Gradients can also be calculated at the centroid of element faces if the component of

the gradient normal to the face is known.

A.1 Velocity at Element Centroid

8

i= re i=oE F VN.70s - aovj='

Iffzl2 - N1 1qS1 - Vadv,() 2 S¢-Vd,,

= 2 VN
2 7 0 . N YOj V dv,



Evaluating VNJ at the element centroid is done as follows:

N.F [ ye ze Nj,
VNj= Y, = N, y, z, N (A.1)

NJ. ze¢ ye z¢ Nic

where 8

ze = Njxj, etc.
j='

and

Nj = (1 + 7777j)(1 + CC)8

Nj =7 1(1 + W(l ( + CO)8

Njc = j (1 + ((j)(1 + 77j)
8=

At the element centroid (•, t/, C) = (0, 0, 0) so

8

N j,71 17
8

N -c



A set of bilinear shape functions is defined for the two-dimensional face as

N(2)= (1+
N; =(l +

The problem is to find V4 given that V4 - f is known. A matrix equation analogous to

Equation A.1 for the two-dimensional problem is

0=17
4

.=1
4

E"N (2)

j=1 ll O

where 4

i=l
(2)

etc.

A.2 Velocity at Face Centroid

The 3 components of velocity can be determined from 4 nodal values of 4 for an element

face if the component of velocity normal to the face is known. For a face that lies on

a solid surface, the condition of flow tangency provides the required normal component

of velocity. A general face is illustrated below.

A)(I 4+ r79) j = 1,..., 4



N = (1 + 'q7)

N(2) : (7 •G+3. 4
3;17 43

and <z,~, y,, za> are simply the z, y, z components of the unit normal vector h. Writing

out the equation for 0. gives

4 4
(2) (2)

j=1 j=1

4 (N;, NO)j .+ 7-ENj + h•.(Vo •
j=1

Let

N(2) (2) (2)N1  - " -" + N1 1v qz

(2) (2) (2)

N(2) (2) (2)

Then

Ox 4 1fix qSzn4with k Te v t a t c o):O : VN; Oj + 5Y VOb. A

Oz j=1 I

with V .. h known. The velocity at the centroid of an element face, then, is simply

and
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A.3 Mach Number

M2  = 2 J 1M 2 + M1 ( ii + 22M V 1+  2 M 1---V2 V2
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A.4 Density

Density is upwinded in regions where the flow is supersonic. The amount of upwinding

is controlled by the factor p which itself takes on three different forms depending on

the local flow conditions. The exact equation for density and its derivatives, then, has

three different forms. In the following equations, j indexes over the nodes of the current

element and k indexes over the nodes of the upstream element. The current element is



/ p =
S - P - 1
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Three cases must be considered to evaluate

m+
V2 +
Vc0

Vr2)]

Pc (1 -

k
00.

Case 1: flow is subsonic in current and upstream elements.

io~j 80j

=ý 0849k

Case 2: flow is supersonic and accelerating

_ Op 2  - olr POqS [ Oq5_

+ pi1]

Case 3: flow is supersonic and decelerating

90
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2--
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labeled i and the upstream element, i - 1.

P = A- P(/i - pi-1)

+V2
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A.5 Pressure Coefficient

Calculation of the pressure coefficient and its derivatives is necessary in the design

procedure of the current method. Two different reference velocities for the pressure

coefficient are useful. The local pressure coefficient (Cp) uses the advance velocity at

the current radius as the reference velocity. Cp is useful for comparing section loads

to two dimensional airfoil data. The global pressure coefficient (Cp,) uses Vo as the

reference velocity. Cp, is useful in calculating total blade data (thrust, torque, etc) since

all pressures are referenced to the same velocity. In the following expressions, Vref can

be replaced by Voo or Vadv•, as required.

Cp _ poo p I-Poo 7 Poo

ac, pc, _ V p 1 w7

CP8 1po 7 M •2
P ~ 1(I i W2r2'~

__ Po 7 -1 1 r (1  I,!2 w2r\ pII1

2!VYef 100 2 + 2 J0

A.6 The Discrete Equations

For a general interior node, the discrete equation as presented in Chapter 3 is

e= ( I (j=}



The discrete equation is linearized so that

R+1 = Rn +O A0

Expressions for are listed below. In these expressions, j indexes over the 8 nodes of

the current element in the summation and k indexes over the element upstream of the

current element. In general, R, depends on 36 nodal values of 0.

8{
= __

e=18 e0

E 190

0('I ke )+ pek e e

if=1( b 4 i) - _ f } e
The discrete equations for boundary nodes were presented in Table 3.1. These

equations are linearized by calculating simple derivatives as shown above for the interior

discrete equation. The only difference is that there is an added dependence on P for

nodes on the wake and nodes on the farfield boundaries.

ORt
orOn the wake

On the inflow farfield boundary ORt
or

_ 8¢soor

On the tip farfield boundary
S•4 eN dSOI= -1 e N; A)f dS

or e=1 or
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For the design method, the derivative is required. As presented in Section 6.2,

the residual equation for nodes on the design surface is modified so that

<4

Rd = E... !(PVW)ef NddS
ef =1Sf

Then

ORd 4 O(pVW)ef Nd dS= -•Nd dS
ef=1 A ,
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