
Viscous Airfoil Optimization Using Conformal
Mapping Coefficients as Design Variables

by

Thomas Mead Sorensen

B.S. University of Rochester (1989)

SUBMITTED TO THE DEPARTMENT OF

AERONAUTICS AND ASTRONAUTICS
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Master of Science
at the

Massachusetts Institute of Technology

June 1991

@1991, Massachusetts Institute of Technology

Signature of Author
rP gtmnent of Aeronautics and Astronautics

May 3, 1991

Certified by

Accepted by

Professor Mark Drela
Thesis Supervisor, Department of Aeronautics and Astronautics

-.- I

.. , . rrgga Y. Wachman
Chairman, Department Graduate Committee

MASSACriUSErfS iNSTITUTE
OF TFIýrtev-.- l

JUN 12 1991
LIBRARIES

Aetu

L

~PYj~H(rL-~L.. ~V

Viscous Airfoil Optimization Using Conformal Mapping

Coefficients as Design Variables

by

Thomas Mead Sorensen

Submitted to the Department of Aeronautics and Astronautics

on May 3, 1991

in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

The XFOIL viscous airfoil design code was extended to allow optimization using

conformal mapping coefficients as design variables. The optimization technique em-

ployed was the Steepest Descent method applied to an Objective/Penalty Function.

An important idea of this research is the manner in which gradient information was

calculated. The derivatives of the aerodynamic variables with respect to the design

variables were cheaply calculated as a by-product of XFOIL's viscous Newton solver.

The speed of the optimization process was further increased by updating the Newton

system boundary layer variables after each optimization step using the available gradi-

ent information. It was determined that no more than 10 of each of the symmetric and

anti-symmetric modes should be used during the optimization process due to inaccurate

calculations of the higher mode derivatives. Both constant angle of attack and constant

lift coefficient optimizations are possible. Multi-point optimization was also developed,

although it works best for angle of attack design points. Four example optimizations

are documented at the end of this thesis.

Thesis Supervisor: Mark Drela,

Assistant Professor of Aeronautics and Astronautics

Acknowledgments

I would like to express my sincerest appreciation for the guidance and counsel of my

advisor, Mark Drela. His technical brilliance and selfless support have made a difficult

job easier. He never failed to shed light on a stumbling block. I look forward to the

chance of learning from him for several more years.

To everyone in the CFD lab - Thank you. Without the help and advice from everyone

in the cluster I might still be coding, or writing, or ...

On a personal side, my thanks to my parents for never pushing but always being

close enough to fall back on. And, for Dorene. For all you have endured for this day to

be possible, I love you.

To my best friend, Roger Osmun, I want to dedicate this work. Without Roger's help

I never would have finished my first fluids lab way back when. Due to circumstances

beyond our control he could not have a direct hand in this thesis. But, I know that if

he were nearby he would have done anything to help. For this, I thank him.

My thanks to the Department of Aeronautics and Astronautics' Fellowship and the

National Science Foundation's PYI Program for their financial support of this research.

Contents

Abstract 3

Acknowledgments 5

Nomenclature 12

1 Introduction 15

2 Optimization Theory 18

2.1 Constrained Problem Statement 18

2.2 Equivalent Unconstrained Problem 20

2.3 Iterative Optimization Technique 21

2.3.1 Optimtun Convergence (Stage 3) 22

2.3.2 Choosing the Search Direction (Stage 4) 24

2.3.3 Choosing a Step Parameter (Stage 5) 25

3 XFOIL Optimization 28

3.1 Design Variables 28

3.2 Constraints 30

3.3 Computing Gradients

3.3.1 Aerodynamic Quantities .

3.3.2 Geometry Gradient .

3.4 Updating BL Variables

3.5 Multi-point Optimization .

4 Results

4.1 Example 1 - Cd minimization, M = 0, a = 00.

4.2 Example 2 - Cd minimization, M = 0, C1 = 0.5

4.3 Example 3 - Constrained Area .

4.4 Example 4 - 5 Point Optimization .

5 Conclusions

Bibliography

A Derivation of 9 and

B Derivation of q and aq
aA, aB,

C Derivation of Gradients

D Computer Code

D.1 Code added to XFOIL for optimization

D.1.1 Added Declarations 68

D.1.2 Main Optimization Routines 71

D.1.3 User Modifiable Routines 105

D.2 Modified XFOIL Code 108

List of Figures

2.1 2 DOF Optimization Space, Contours of F(x~, X2).....

2.2 1 DOF Penalty Function Constraint Example

2.3 Schematic Diagram of Iterative Optimization Step.....

A, and B, Distributions for a DAE11 Airfoil

First Three Symmetric Design Modes

First Three Anti-Symmetric Design Modes

C, and m Over Upper Surface Ignoring Transition Point . .

C, and im Over Upper Surface Taking Transition Point Into Account

3.6 Convergence History With and Without Updating

3.7 Multi-point Design Function Schematic

Example 1 - Optimization Path

Example 1 - Optimization History

Example 1 - Airfoil Comparisons.....

Example 2 - Optimization History

Example 2 - Thickness Constraint History

4.6 Example 2 - NACA 3412 Cp Plot

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

4.5

49

50

50

. 51

51

4.7

4.8

4.9

4.10

4.11

4.12

Example 2 -

Example 3 -

Example 3 -

Example 3 -

Example 4 -

Example 4 -

B.1 Mapping Planes

Optimized Airfoil C, Plot

Optimization History

Constraint Histories .

Airfoil Comparisons . . .

Drag Polars

Airfoil Comparisons . . .

Nomenclature

Optimization Variables

F Objective function

x .General design variables

L Lagrange multiplier function

y Lagrange multipliers

P Penalty function

gj Inequality constraints

hk Equality constraints

Kj Inequality constraint switches

n Number of design variables

m Number of inequality constraints

1 Number of equality constraints

Cost parameter

r Optimization step index

E Optimization step parameter

s Optimization search direction

An XFOIL thickness design variables (synummetric)

Bn XFOIL camber design variables (anti-synmmetric)

n Mode number

NA Last symmetric design mode used in optimization

NB Last anti-syrmnetric design mode used in optimization

eA Unit vector in A, direction

ef Unit vector in B, direction

[J] Newton system Jacobian matrix

Addition to Jacobian matrix

Newton system unknown vector

Addition to unknown vector

Residual vector

Aerodynamic variables derivative matrix

Number of optimization design points

Weighting function of mt h design point

Local penalty function of mth design point

Aerodynamic Variables

C,

Cd

Cm

M

Re

N

fi, gi, hi

C-

0

m

dkj

Ue

6*

Xtran

C

Cn = An + iB,

Ete

U00

Coefficient of lift

Coefficient of drag

Coefficient of moment

Mach number

Reynolds number based on airfoil chord

Number of airfoil nodes

Number of wake nodes

Node i boundary layer equations

Most-amplified Tollmien-Schlichting wave (laminar regions)

Maximnun shear stress coefficient (turbulent regions)

Momentumn thickness

Boundary layer mass deficit

Mass influence matrix

Viscous edge velocity

Displacement thickness

Transition point location

Airfoil chord

Complex mapping coefficients

Trailing edge angle parameter

Freestream velocity

[A]
{6}

{A}

{R}

[D]

Np
wm

Pm

a

q

c c

r rei
w

F(C)

r
w*

U~, Uy

H

Angle of attack

Inviscid surface speed

Complex airfoil-plane coordinate

Complex circle-plane coordinate

Complex circle-plane potential

Circulation

Conjugate velocity in circle-plane

Velocity components in airfoil-plane

Shape parameter

Superscripts and Subscripts

) Lower design variable bound

)" Upper design variable bound

)r Current optimization step

)r+1 New optimization step

Miscellaneous Symbols

Es Small quantity

V Gradient with respect to design variables

A Difference operator

6() Newton system perturbation

92() Real part of the quantity in the parenthesis

2() Imaginary part of the quantity in the parenthesis

NOTE: bold face denotes vector quantities

.

Chapter 1

Introduction

The design of efficient two-dimensional airfoils is important to the aerospace industry

because the aerodynamic performance of most aircraft is strongly influenced by the

airfoil section characteristics. Airfoil design is an iterative process: the designer suc-

cessively modifies the design until it can no longer be improved. Accurate high speed

computer codes have made it possible to design exceptional airfoils by allowing designers

to experiment with various ideas and to test them immediately. This is a time consum-

ing process, however, and the number of trials necessary to arrive at the final design is

dependent upon the expertise of the designer.

The object of optimization is to replace the designer with a routine that will take a

given airfoil (the seed airfoil) and modify it such that a specified characteristic (called

the Objective Function) will be driven as small as possible while satisfying several

constraints. The need for the designer is not eliminated by the optimizer, instead the

designer is freed from having to do the tedious design iterations. With the optimizer

doing the repetitive process the designer can concentrate on more important questions,

such as: What should be optimized? and, What constraints should the airfoil satisfy?

Also, the experience of the designer can reduce the time requirement of the optimization

process by choosing the seed airfoil wisely. Obviously, if the seed airfoil is almost optimal

the optimizer will not have much work to do.

Airfoil design is a complex problem requiring a host of compromises between con-

flicting requirements [2]. There are also off-design performance considerations to take

into account. In such a situation a truly optimal airfoil is difficult or impossible to

define, therefore the role of the optimizer will not be to produce the perfect airfoil, but

to reduce the Objective Function on a more simply constrained airfoil. In this manner

the designer can evaluate the trends that develop for reducing the Objective Function

on this simple airfoil and apply these trends, when warranted, to the real airfoil. The

optimizer will become just another tool available to the designer rather than rendering

the designer obsolete.

Several optimization packages are on the market. This author has experience with

COPES/ADS [4, 10]. This particular code is utilized as a black box and is extremely

general, allowing many problems to be optimized by linking an analysis code, that

evaluates the Objective Function, to the optimization code. This has distinct advantages

for one time only optimizations, but is highly inefficient for problems that will be done

often. A better solution in these cases is to write a dedicated optimizer that utilizes

the unique traits of the analysis code to increase optimization efficiency. For example,

COPES/ADS uses finite difference techniques to calculate gradient information to be

used in the optimization process. If the analysis code calculates this gradient information

concurrently with the Objective Function, it should be used by the optimizer. To the

author's knowledge this is something that COPES/ADS does not do.

G. N. Vanderplaats has tried many optimization problems and techniques, includ-

ing optimizing airfoils by building optimal airfoils from combinations of several "Basis

Airfoils" (9, 11]. A possible shortcoming of this technique is that, to a certain extent,

the designer assumes the shape of the optimal airfoil by the choice of basis airfoils. In

other words, a completely general airfoil cannot be constructed by this technique.

The object of the present research is to modify an existing 2D airfoil design code to

perform optimization using a general set of design variables. The code used is Drela's

XFOIL code [1]. XFOIL has several design routines, and includes both viscous and

inviscid analysis routines. Principles from both the design and viscous analysis routines

were combined to allow fully viscous optimizations. The optimizer was written explicitly

to make the most of XFOIL's attributes to speed the optimization process, however,

the emphasis was on developing the ingredients for the optimization: design variables

and gradient information. To this end, the actual optimization technique was chosen to

be simple and robust, but not necessarily efficient. Combining the ingredients with an

efficient optimization technique is a good topic for follow-up work.

The outline for the remainder of this thesis is to first present general optimization

theory and terminology, with emphasis placed on those techniques used in the XFOIL

optimizer. An excellent reference on the theory of optimization is the book by G. N.

Vanderplaats [11]. Once the prerequisite tools are in place, the adaptation to XFOIL

will be discussed. Results of several test cases will then be presented, followed by the

conclusions of this research.

Chapter 2

Optimization Theory

2.1 Constrained Problem Statement

Airfoil optimization is classified as a constrained optimization problem. The equations

governing such a problem are listed in Table 2.1 [11].

F(x)

el < mi < Ui

gj(x) 0o
hk(x) = 0

x =

i = 1,n

j = 1,m

k = 1, 1

Objective Function

Side Constraints

Inequality Constraints

Equality Constraints

Design Variables

Table 2.1: Constrained Optimization Equations

The Objective Function is the function that the optimizer will drive to the lowest pos-

sible value, subject to the stated constraints. For airfoil optimization the Objective

Function could be simply the drag coefficient or a combination of several airfoil charac-

teristics such as the negative of the range parameter, -MCI/Cd.

The constraints come in three fundamental forms and serve to limit how the airfoil

can be changed. Side constraints are the least restrictive; their sole purpose is to

Minimize:

Subject to:

Where:

put bounds on the design variables. This type of constraint is enforced directly onto

the design variables and, in effect, cuts a block out of the n-dimensional space within

which to search for the optimum. Inequality constraints are the next least restrictive

constraint. Vanderplaats [11] defines inequality constraints as gj(x) _< 0 but in this

thesis the definition will be gj(x) > 0. The difference in terminology was used to ensure

that specified quantities remain positive. For example, an airfoil cannot have negative

thickness. In this case the airfoil thickness is the quantity that must remain positive.

This type of constraint cannot in general be enforced directly onto the design variables

but is instead a function of the design variables. Notice that the side constraints are

degenerate inequality constraints. Each side constraint can be written as two inequality

constraints. An inequality constraint is analogous to a fence separating areas in the

design space which allow permissible designs from those areas where the constraint is

violated. Equality constraints are the last and generally most restrictive constraints.

These constraints restrict the location of the optimnnu to only those regions of the design

space where the constraint is satisfied.

Figure 2.1 shows how a general two degree of freedom (DOF) constrained optimiza-

tion space might look [11]. The unconstrained optimum is located at the cross. However,

assume that in this example the two inequality constraints prevent solutions above the

dotted lines while the equality constraint forces the optimum to be located along the

dashed line. Then the solution to this optimization problem is the lowest point along

the dashed line, but which is also under the two dotted lines. This point is marked by

the square.

A constraint is referred to as satisfied if the constraint equation is true at the current

design iteration. For an optimum to be found all constraints must be satisfied. If

a constraint is not satisfied it is referred to as unsatisfied or violated. A constraint

is considered active if it affects the optimization process. By definition, all equality

constraints are active since they must always be satisfied. An inequality constraint is

only active if it is less than or equal to zero.

2.2 Equivalent Unconstrained Problem

Any constrained optimization problem can be converted into an unconstrained prob-

lem. This is beneficial because, in general, optimization is simpler to perform on an

unconstrained problem. Two methods of conversion were investigated: the Lagrange

Multiplier Method [7] and the Penalty Function Method [11]. Both methods involve

defining a new optimization function that combines the Objective Function with the

constraints.

Lagrange Multipliers work well when optimizing an analytic quadratic function con-

strained only by linear equality constraints. The new function to be optimized is defined

as

L(x, y) = F(x) + y . h(x), (2.1)

where y are referred to as the Lagrange multipliers. The optimum of the constrained

function can be found by taking the derivatives of L with respect to x and y, and

setting them equal to zero. By doing this a system of equations is obtained for x and

y, however, this system is linear only if L is quadratic. For higher-order problems

the resulting system of equations is non-linear and would be solved numnerically using

a Newton-Raphson scheme. Generating the Newton system can be computationally

expensive for non-analytic problems since second derivative information will be needed.

A further drawback of the Lagrange Multiplier Method is that only equality constraints

can be treated.

In contrast, Penalty Functions work better for numerical problems and either in-

equality or equality constraints can be handled. Using this technique it is necessary

to write all side constraints as inequality constraints, which as mentioned previously

creates no difficulties. The penalty function is defined as

1 1
P(x) = F(x) + •• ~ (g•(x)) 2 + (hk(x)) 2 , (2.2)

j=1 k=1

where,

Kj gjx (2.3)
Sgj(x) < 0

is the switch that turns inequality constraints off if they are not active. The cost

parameter, r., is a large positive quantity, the purpose of which is shown below.

The one dimensional function depicted in Fig. 2.2 can be used to illustrate this

technique. Consider the inequality constraint, g(x) = 2 - a > 0. Notice that the

unconstrained optimum (the optimum of the Objective Function) cannot be allowed

because the constraint is not satisfied. To the left of x = 2, K = 0, thus the optimizer

works on the Objective Function. To the right of x = 2, K = n, therefore the optimizer

works on the Objective Function with an added quadratic term. This added term

forces the optimum of the Penalty Function to lie between the true optimum and the

unconstrained optimum. The problem with this procedure is obvious: as long as r $ oo

the calculated optimum will always violate the constraint. However, for this case it

was found that 100 < ri < 1000 provides an acceptable constraint violation. Of course,

different values of r will be appropriate for different problems.

From here on it will be assumed that the optimization process uses the Penalty

Function. It will also be referred to as the optimization function.

2.3 Iterative Optimization Technique

The optimization technique employed in the present development is iterative. The

design variables of each new airfoil are calculated from the current airfoil using

X r + 1 = x' + ES r. (2.4)

In Eq. (2.4), x' are the current airfoil design variables, xr+ 1 are the new airfoil design

variables, Er > 0 is the step parameter, and s' is the search direction (thus, Er's is the

step size). The optimization iteration index is r, where r = 0 for the seed airfoil. From

Eq. (2.4) it is obvious that for an iterative optimization approach there are only two

parameters, E' and s*, that need to be calculated for each optimization step. Figure 2.3

schematically represents the terms in Eq. (2.4) in a 2 DOF optimization space.

Using the iterative optimization approach, the following 7 stages constitute one

optimization iteration (or step):

1. Start with a known airfoil geometry (x' known).

2. Do the design analysis.

3. Has an optimum been found? If yes, then stop.

4. Choose a search direction, s'.

5. Choose a step parameter, El.

6. Calculate x' + 1 from Eq. (2.4).

7. Increment r and return to Stage 1.

The stages are repeated until the optimum has been found. Stages 1, 6, and 7 are self-

explanatory. Stage 2 is performed by the analysis portion of the code and is unaffected

by the optimizer. All information related to the current design is calculated in this

stage; for example, calculation of the Objective Function and any gradient information

is done here. The remaining stages will be explained in more detail in the following

paragraphs.

2.3.1 Optimum Convergence (Stage 3)

It is not possible to know whether or not a global optimum has been found, the best

that can be done is to determine if a local optimum has been found. Vanderplaats [11]

has outlined a routine to check for convergence using three criteria. The optimizer in

XFOIL is stopped if any of the following are satisfied:

r > 50,

P(x') - P(x'- 1) 0.001P(xO), (2.6)

or

P(x') - P(x- _) < 0.001P(xr). (2.7)

Equation (2.5) puts a ceiling on how many iterations are allowed to prevent the possibil-

ity of an infinite loop if a problem occurs with the optimization process. Equation (2.6)

stops the optimizer if the change in P between the last iteration and the current iteration

slows to a small fraction of the starting value of P. Equation (2.7) stops the optimizer

if the change in P is smaller than a small fraction of the current P. The former is

referred to as the absolute convergence check and the latter as the relative convergence

check. For the optimization to be stopped a convergence criteria must be triggered on 3

consecutive iterations. This is to prevent the optimizer from being punished if, on any

one cycle, it slows down but then speeds up again.

A fourth condition that Vanderplaats suggests using is the Kuhn-Tucker Condition.

This is nothing more than checking that VP(x) 5 e, at the optimumn, where E, is a value

sufficiently close to zero. This condition was not used as it was deemed unnecessary.

However, a fourth condition was found to be needed due to the nature of XFOIL's

viscous solver. This condition required the optimization to be stopped at the end of

any iteration in which the Newton solver did not converge. This was necessary due to

the ever present possibility of creating an airfoil that XFOIL for one reason or another

could not evaluate. Usually when the Newton system did not converge for one iteration

it would disrupt further iterations until the code crashed. By stopping the optimizer

before this happened the results up to the current iteration could be saved.

(2.5)

2.3.2 Choosing the Search Direction (Stage 4)

Many techniques are available to pick sr [5, 11]. Optimization efficiency can be greatly

improved with a wise choice of search direction. The method utilized in XFOIL to find

sr is the Steepest Descent approach. It was chosen for its simplicity, but any method

consistent with an iterative, unconstrained optimization technique could be used. The

Steepest Descent method picks

s' = -VP(x,), (2.8)

i.e. the direction opposite to which the function is experiencing the greatest change.

A reduction in the optimization function is guaranteed since the change in P due to a

change in x is

AP = VP -Ax, (2.9)

where, A() = ()r+1 - ()r. Substituting Eqs. (2.4 & 2.8) into Eq. (2.9) implies

AP = -ErIVPt 2 . (2.10)

A sufficiently small positive Er thus ensures a reduction in P. Referring to Fig. 2.3,

E 'sr would be perpendicular to the contour through x' when using the Steepest Descent

technique.

Flowing water follows the path of least resistance, i.e. the path of steepest descent.

As it flows, water is at every point flowing in the steepest descent direction. This is not

practicable in an optimization problem, since this would require the step parameter to

be infinitesimal. For a real problem the hope is to find the optimum with the lowest

expenditure of resources, therefore, the optimizer should take as large a step as possible

before picking a new search direction. The size of the step is controlled by the step

parameter, Er and is discussed below.

2.3.3 Choosing a Step Parameter (Stage 5)

As stated above the step parameter should be as large as possible. The literature

[5, 7, 11] suggests that once a search direction is picked, the step parameter should

be chosen to minimize the optimization function in that direction. This requires that

a one-dimensional optimization be performed along the search direction. The XFOIL

optimizer does not do this, instead a constant step parameter is used. There were

two distinct advantages with letting Er = constant. The first was simplicity. Since

the emphasis was not on the optimization technique, it was deemed unnecessary to

write and debug a 1D optimization routine. The second and more important advantage

involves program robustness. XFOIL is not very forgiving of non-realistic airfoils which

are possible when trying to find 1D minima. However, if the steepest descent direction

is chosen after each small step rather than after a large minimizing step, the airfoil will

have a better chance to remain in a region of XFOIL compatible airfoils.

A constant step parameter implies that the step size will be directly proportional

to the gradient of the Penalty Function. When the gradient is large the step size is

large, when the gradient is small (as it is when an optimum is neared) the step size

is small. This system is very inefficient in terms of the number of steps to find the

optimum. In fact the exact optimum will never be obtained due to the slow response

as the optimum is neared. However, this system has proven to be more robust than

when using the accepted procedure of changing the search direction only after the 1D

optimum is found. In addition, as stated in the introduction, the exact optimum is

relatively unimportant so the slow response as it is neared is inconsequential.

Since the step size was directly related to the gradient, in regions of large slopes the

step size could become quite large. To prevent extremely large changes in the airfoil

that might cause XFOIL to crash, the changes in the symmetric design variables were

limited to 10% of their values at the current airfoil by reducing E'. Only the symmetric

modes were considered since the the anti-symmetric design variables can be very small

and will thus trigger this restriction unnecessarily.

'2

Constraints:
. Equality
.-. Inequality

... Inequality

21 2 l1

Figure 2.1: 2 DOF Optimization Space, Contours of F(zx, Z2)

n = 0.0
PC = 10.0
. = 100.0

. = 1000.0
00 = co

Figure 2.2: 1 DOF Penalty Function Constraint Example

02u=

2

'(21)

Figure 2.3: Schematic Diagram of Iterative Optimization Step

Chapter 3

XFOIL Optimization

3.1 Design Variables

The first step in modifying XFOIL to perform optimizations is to specify the optimiza-

tion design variables, x. This is not an easy task. Completely general airfoils should

be able to be created with the minimum number of design variables. As more design

variables are used the optimization problem will tend to become ill-posed [11]. Typically

fewer than 20 design variables is best.

XFOIL uses a panel method for its analysis, so the first idea that may come to mind

is to use the airfoil's y-coordinates at the paneling nodes as the design variables. This is

soon rejected due to the number of nodes involved in a typical problem (usually between

80 and 100). A second idea is to choose a small number (5 to 10) of standard airfoils

and to use these shapes, or modes as they are sometimes called, as the design variables.

This was done by Vanderplaats as already mentioned. In this way the optimal airfoil is

constructed by a weighted sum of the standard airfoils. This has the advantage of using

only a small number of design variables but these cannot be added up to construct a

completely general airfoil.

The design variables employed in XFOIL's optimizer are the real and imaginary

parts of the complex coefficients of the mapping function

= (1 1)(1~ -) exp { Cn(0-n (3.1)

where,

where,

Cn = An + iB,, n = 0, 1,2, . (3.2)

The trailing edge angle is 7ret,. The unit circle is mapped from the C-plane to an airfoil

in the z-plane by this transformation [3, 6, 8]. The design variables are,

x = {A 2, A 3 ,... ANa, B 2, B 3 , ... BNB}T, (3.3)

and are similar to the latter technique described in the above paragraph, since they

too can be thought of as separate shapes, or design modes, summed to produce the

optimal airfoil. Each design variable corresponds to a single design mode. A particular

convenience of using these design variables is that the An's control the thickness distri-

bution of the airfoil (symmetric modes) and the Bn's control the camber distribution

(anti-symmetric modes). The first usable design modes are A 2 and B 2 since A0, A1 , B 0o,

and B 1 are constrained by Lighthill's constraints [6] and therefore are not available as

design variables. The last symmetric design variable mode number is NA and the last

anti-symmetric design variable mode number is NB.

The An and B, coefficients completely control the airfoil geometry with the ex-

ception of the trailing edge angle and gap. For a typical airfoil only the first twenty

or so Cn's are required to define the airfoil. The value of the design variables for a

DAE11 airfoil are plotted in Fig. 3.1 as an indication of their magnitudes for a typ-

ical airfoil. Notice how quickly the higher frequency modes become unimportant. In

both cases, only approximately the first 15 modes are important. The higher modes,

however, become important for airfoils with small leading edge radii. An attempt was

made to reduce the higher modes by placing the factor, (1 - LO), in Eq. (3.1). The

idea was to better model the leading edge mapping before using the correcting terms,

exp{' C,C-n}. Unfortunately, this did not work. In fact it would either reduce the

values of the lower modes to the point where all modes were of the same order of mag-

nitude, or it would magnify the higher modes while reducing the lower modes. Due to

these results, no other attempts to dampen the higher frequency modes were made.

The first 3 symmetric and anti-synunetric design modes are shown in Figs. 3.2 and

3.3, respectively. The solid lines in Fig. 3.2 indicate the airfoil surface for one value of

A,. The dashed lines show how the surface (i.e. the thickness) changes as another value

of An is used. In Fig. 3.3, the lines are not the airfoil surface, but the camber lines.

3.2 Constraints

The XFOIL implementation allows optimizations to be carried out either with a constant

angle of attack or a constant lift coefficient. These are actually unwritten equality

constraints. They are not included in the constraint summations of Eq. (2.2) because

they are an integral part of the Objective Function.

To the designer C1 is more relevant than a, however, the optimization process is

more efficient for constant a problems. The reason is that a is independent of the

design variables while CI is not. Thus, when holding CI constant the steepest decent

technique picks the search direction based on the current a and after stepping to the

new point a is adjusted to keep CI constant. This adjustment will, in effect, change

the optimization space at the new point, therefore, the direction traveled will no longer

be the Steepest Descent. However, in practice both methods can be used without any

serious discrepancies.

3.3 Computing Gradients

3.3.1 Aerodynamic Quantities

Use of the Steepest Descent method to calculate the search direction requires that

gradient information be calculated. The gradient information will also prove useful in

making the analysis procedure run faster as will be shown shortly. The manner in which

the aerodynamic gradients are calculated without resorting to costly finite differencing

is the most novel feature of this research.

Before continuing, a matter of notation must be addressed. Considering the design

S30

variables in two groups, symmetric and anti-symmetric, makes the following definition

of the gradient operator with respect to the design variables useful

V()N - 1" (B e) ,B (3.4)
n=2 n=2

where, eA and eB are unit vectors in the appropriate directions. When is used

alone it will imply the partial derivative of the function in parenthesis with respect to

the single design variable An where n can take on any integer value between 2 and NA.

Similarly for U/2. In the remaining text, all gradients will refer to Eq. (3.4).

In its unmodified configuration XFOIL solves a viscous flow around an airfoil by

constructing 3 linearized boundary layer (BL) equations at each airfoil and wake node

(N airfoil nodes, N, wake nodes) and solving the resulting system using a Newton solver.

For a viscous airfoil analysis all aerodynamic quantities of interest are functions of the

five BL variables: C,, 0, m, ue, and 6*. In this text C, will represent two quantities:

in laminar regions it will be the amplitude of the most-amplified Tollmien-Schlichting

wave, and in turbulent regions it will be the maximum shear coefficient. The Newton

system only solves for three of these variables, C,, 0, and m, since Ue and 6* are related

to the first three variables. For more details of XFOIL, see Drela [1].

As an example of the kind of information needed and how it is obtained consider

the expression for Cd,

Cd = -000, (3.5)
C

where 0oo is the momentum thickness of the wake far downstream and c is the airfoil

chord. Therefore, the gradient of Cd with respect to the design variables is

VCd = - 00o, (3.6)

where, Eq. (3.4) is employed. The gradients of all other aerodynamic quantities can be

obtained in a similar manner if the gradients of the five BL variables are known.

To calculate the required BL variable gradients, consider the Newton System used

in XFOIL

[J] {6}= - (R} (3.7)

This equation is a block matrix equation where the ith-row, jth-column block of the

Jacobian Matrix is

[Ji,j] =

The corresponding ith-row block of the vectors are

{6O} =

6CT,

60i

6mi

Many of the terms in the Jacobian Matrix are zero, but

important here.

the detailed structure is not

Equation (3.7) is constructed using 3 BL equations at each node with the functional

forms

fi = fj(GCi--ll C-ril Oi-il O, Ml "129 ... 5 nN+Nwr)i

gi = fi(Cr.,1 , Cl, 6 i-11 GO, in, 7n,2 , -*9, Nw)i

hi = hi(Cri_, Cr , 0 i.i, 0 i, in7., M 2,... fl1N+Nw),

(3.10)

where the subscripts indicate which node is being considered. However, recognizing that

fi, gi, and hi are geometry dependent implies that they must also be functions of A,,

and B,. Consequently, a new Newton system is obtained in the form

Of Ofi Of

fga$Aij 3

Oh Oh Oh

(3.8)

{Ri} = (3.9)

[J A]n a = - {R}

The ith-row block of the Jacobian addition, [A], is

[Ai] =

Of,

Oh Oh.
XO 12A 2

of,
UNa

Oh.
oaf

eli
8B2

The added vector term contains the changes in the design variables

{A} = { AA 2, AA 3, ... AANA , AB 2, AB 3, ... ABNB

where, A() = ()r+1 - ()r. The modified Jacobian matrix, [J I A], is no longer square,

but during normal viscous calculations the geometry is fixed and thus the AA, and

ABn's are known (i.e. they are zero). Therefore, rewriting Eq. (3.11) with all knowns

on the right hand side and then pre-multiplying both sides by [J]-' the system reduces

to

6} = - [J]-1 {R} + [D] {A}, (3.14)

where,

[D] = - [J]-' [A]. (3.15)

The viscous solution is obtained when the residual, {R}, is zero. Thus, at conver-

gence Eq. (3.14) will have the same form as a first order Taylor series expansion of the

3 BL equations in terms of the design variables. For example, the Taylor expansion for

Cr, 0, and m at the i th node is

(3.11)

• -
UBNB

(3.12)

Oh Oh Oh.

T (3.13)

Jei C NA

n=2
1 6m;C7

ac

NB

a& +EABn
n=2

BIn"

The Taylor coefficients are the BL variable derivatives being sought and after close

examination it can

block of [D] is

be seen that they are the columns of [D]. For example, the ith-row

ac. ec.

T2 9 Bin"

aC,. aOr.. aCl.

8. 86" 8e.

• Bin Bn Bi

The components of VO6,

and elements for

the gradient required

i= N + N,.

for calculating VCd, are therefore the

The elements of this matrix are found not by carrying out the matrix multiplication

as indicated in Eq. (3.15) but by solving the original Newton system with the columns

of [A] added as extra right hand sides. Since a direct matrix solver is used, very little

extra work is needed to calculate the required sensitivities. In addition, the extra right

hand sides only have to be included after convergence of the system, not every time the

system is solved.

The above derivation presents a scheme to compute the BL variable gradients if

the gradients of the BL equations, Eqs. (3.10), are known (i.e. if the terms of [A] are

known). The derivation of the terms in [A] is relatively straight forward and is therefore

relegated to Appendix A. The results are

(3.18)

ac.

L .
(3.16)

ac.

a&
Be

B7in
N g•,I.

o e e • 80"

(3.17)
[Di3 = i

aRi
Oqi-l OA t9qi 49A49A?% n

OaR = () + faRj) (_ , (3.19)B Oqn_ i-1 \ 8B /q OB,'

where,

ORi; Ri ORi mi-1

Oq Ou, i , 061L, u ' (3.20)

ORi _ ORi ORi mi (321)
Oq Ou,, u,(3.21)

In the above four equations Ri can be fi, gi, or hi. At node i the derivatives depend

only on the information at that node and the upstream node i - 1. All the terms in

Eqs. (3.20 & 3.21) are already available once XFOIL constructs the Newton system.

The only remaining unknown sensitivities in Eqs. (3.18 & 3.19) are the derivatives of

q. These can be calculated analytically from the expression for q obtained after the

complex potential is mapped from the circle-plane to the airfoil-plane. At any point, C,

in the circle-plane, the physical speed is

q = exp ~ in - + ei) - Cn(-n]. (3.22)
n=0

The derivatives of this equation are remarkably easy and cheap to compute:

= -qR, ,) (3.23)B An ((

B, = +q2 (. (3.24)

The detailed derivations of the previous three equations are contained in Appendix B.

The gradients of several other aerodynamic variables of interest are derived in Ap-

pendix C. The gradients of the lift coefficient, the moment coefficient, and the airfoil

area were calculated using the discrete equations. These derivatives are not formally

derived in the text, but the final forms can be found in the subroutines 'FinddCl' and

'FindArea' of Appendix D.

3.3.2 Geometry Gradient

Now, all aerodynamic variables that depend on the flow solution have been differenti-

ated, and only one further piece of gradient information is necessary; the geometry sen-

sitivity. In theory, this can be found analytically using the integrated form of Eq. (3.1),

however, in practice there is a complication. The difficulty arises due to the need for the

geometry gradient for the unit chord airfoil. Equation (3.1), when integrated, does not

produce a unit chord airfoil and therefore its gradient will not be for a unit chord. The

geometry is subsequently normalized, however this is not completely satisfactory for

the gradient due to movement of the leading edge. This is not a concern for symmetric

airfoils and is a relatively small effect for cambered airfoils. Therefore, the movement

of the leading edge point was ignored in calculations of Vz. The gradient of z was

derived by differentiating the discrete geometry equations in XFOIL. This derivation is

not included in the text, but the final results can be found in the subroutines 'ZAcalc'

and 'ZAnorm' in Appendix D. The first routine calculates the gradient and the second

of these routines normalizes the results to a unit chord airfoil.

3.4 Updating BL Variables

The Newton system of XFOIL uses the BL variables of the previous solution as the

starting point of the new solution, therefore, the speed of the optimization can be

increased by simply approximating the BL variables of the new airfoil. This can be

done by adding the following perturbations to the BL variables at the old optimization

step:

{6} = [D] {A}. (3.25)

The AAn's and ABn's in the {A} vector of Eq. (3.25) are the changes in the design

variables between the current and new optimization steps, and are calculated from

Eq. (2.4). The remaining two perturbations, 6ue and 66*, can be found using

NA NB Ot,

6ue =-Ij - A-AAn + BAB, (3.26)
n=2 n=2 n

and NA 96* NB 06*
66* = Z AA + AB (3.27)

n=2 n=2

For a reasonable optimization step size this linear extrapolation will give a good ap-

proximation to the new BL variables. Thus, the Newton system constructed during the

analysis of the new design point will converge faster than if no updating were done since

it will have a better initial condition.

There is, however, a difficulty with this simple approach. Movement of the upper and

lower surface transition points from one panel to another will cause such severe changes

in the BL variables that this linear extrapolation will not work near the transition points.

Figure 3.4 shows C, and m plotted versus the BL nodes (the leading edge is on the left,

the trailing edge on the right) along the upper surface of the airfoil. The solid lines

are the functions at the current optimization step and are included for reference. The

dotted lines are the functions for the new optimization step. The functions approximated

using Eq. (3.25) are plotted as dashed lines. Notice how accurate the approximation

is, except near the transition point. If not considered separately, the poor transition

point approximations would be enough to negate the gains in efficiency promised by the

updating.

The solution is to approximate the new location of the transition points and then

to 'fudge' the BL variables at each panel the transition points have passed over. This

'fudging' process will only affect the rate at which the Newton system converges, it

will not affect the converged solution. For C,, 0, and ue the approximation across

the transition point shift is a linear extrapolation from the previous two approximated

points. The equations for C, are

Cri = 2C_, - C,_2, (3.28)

where i is a BL node the transition point has passed over. The equations for 0 and ue

are similar. For the remaining two BL variables, m and 6*, it was found to be a better

approximation not to extrapolate over the transition point shift using a tangent to the

two previous points, but instead to set mi = mi-1_ and 6j = 6E_. The success of these

updating procedures are evident in plots of C, and m as shown in Fig. 3.5. All that

remains to be able to use these transition point approximations is to determine how far

the transition point has shifted. This is done using

d tran a6tran + tran 6 tran
6ztran Ot C, + 60 + 66* + 6u.. (3.29)cI, 00 86* 8U,

All the derivative terms in the above are calculated in XFOIL to construct the Newton

system, so the derivation is complete.

The convergence histories for a simple test case with and without updating the BL

variables is shown in Fig. 3.6. The number of iterations for the Newton solver to

convergence is plotted versus the optimization step numnber. The amount of time saved

is not extensive, but the low cost of updating makes it worthwhile. Notice that as the

optimization continues the savings will be smaller since the step sizes are small.

3.5 Multi-point Optimization

The development so far has assumed a single point optimization, i.e. optimizing for one

flight condition. However, the equations derived are general enough to allow multi-point

calculations. The only addition necessary is to modify the function being optimized (the

Penalty Function) to be a weighted sum of the Penalty Functions at individual design

points. Let P be the global Penalty Function, p, be the local Penalty Functions, w,,

the weighting function, and Np the number of design points. The optimization function

is

Np

P = W wmP,,. (3.30)
m=1

The local penalty functions are computed in the same manner as before. The global

penalty must use either constant angle of attack local penalty functions, or constant lift

coefficient local penalty functions. There are no other restrictions, however, constant lift

coefficient multi-design point optinizations did not perform as well as constant angle of

attack optimizations. A schematic representation of a multi-point design with Np = 7

is shown in Fig. 3.7. This multi-point modification was included since optimizing an

airfoil with only one design point in mind may lead to poor off-design performance. One

unanswered question is how to choose the weighting function. This will be left to other

investigators, but to show the idea of multi-point optimization an example that uses an

arbitrary weighting is included in the next chapter.

+

++ +

+

+

+

+ + +++4- -+++++• : : 4 I ,:, ::: :,:' :

+

++

10 20
I I I I I I

30 40 50 60

I I I I I I I I

0.2 0.4 0.6 0.8

Figure 3.1: A,, and B,7 Distributions for a DAE11 Airfoil

40

I I I I I I I I I I I

0.20-

0.00-

A-0.20-

-0.20-

0.

0.00-

-0.

0.Z2

0.1-

0.0-

-0l 1

0.0

H1

-U.40-1

20-

n20 - - -

I
-- U.1 I|0.0

I

.f
'Au

ft ftIzu

n 0) -n-7

0.0 0.2 0.4 0.6
x/c

0.8

Figure 3.2: First Three Symmetric Design Modes

0.2 0.4 x 0.6
X/C

0.8

Figure 3.3: First Three Anti-Symmetric Design Modes

41

Az

A3

B2 --------

B 3

B 4

I I I I I I

Current

- - -Approximation

..... New

Current
S-_ -Approximation

.New

BL node index

Figure 3.4: C, and m Over Upper Surface Ignoring Transition Point

Current

Approximation
New

Current

_ - Approximation

.... New

BL node index

Figure 3.5: C, and m Over Upper Surface Taking Transition Point Into Account

I

I.I.

[ewton
eration

]Without Updating
,With Updating

Optimization Step

Figure 3.6: Convergence History With and Without Updating

Seed Airfoil
S__ Optimal Airfoil

Figure 3.7: Multi-point Design Function Schematic

Nt
Ite

I I I

Chapter 4

Results

Four examples will be presented in this section. These examples were chosen to show

the various properties of XFOIL's optimizer, they are not designed to be realistic design

problems.

4.1 Example 1 - Cd minimization, AT = 0, a = 00

The first test case was designed as a simple example to build faith in the optimization

code. A NACA 0015 airfoil was used as the seed airfoil with Cd used as the Objective

Function. The only constraint was to keep the angle of attack constant at 00. The

Reynolds Number based on the chord was 106. The two design variables used were

A 2 and A 3 . Using only two design variables will allow a pictorial representation of the

optimization path to be constructed.

Figure 4.1 portrays the optimization space for this test case. The contours are of

constant Cd and a local minimum is located in the upper left corner. The seed airfoil is

located out of the picture in the lower right corner and the path taken by the optimrizer

is marked by the crosses. Convergence took 24 iterations and approximately 12 minutes

on an 80 MFLOP machine. Figure 4.1 clearly shows the larger step sizes in the first

five steps, i.e. in the region of large slope. The step directions are perpendicular to the

contours, as they should be, where the gradients are large. As the optimum is neared

the step directions start to parallel the contours. This is due to the appIroximations

made in the gradient calculations. This is not a detriment since the exact mathematical

optimum is relatively unimportant.

From Fig. 4.2 it is obvious that the largest drag reductions are produced in the first

few iterations. This is a recurrent observation. Figure 4.3 compares the optimal airfoil

to the seed airfoil. Because only two design modes were utilized, the possible change in

the airfoil is small. However, large changes were made in Cd by modifying the airfoil

such that the transition points were moved further aft.

4.2 Example 2 - Cd minimization, M = 0, Ci = 0.5

The second example optimized the Cd of an airfoil using 7 symmetric and 5 anti-

symmetric design modes. The seed airfoil was an NACA 3412 and was constrained

for a constant lift coefficient and a minimum allowed thickness at 95% of the chord.

This constraint was necessary to prevent negative thickness airfoils. The cost parame-

ter and the Reynolds number were r = 100 and Re = 5 x 106.

This example was stopped after a viscous Newton system was unconverged at the

3 8th optimization iteration. The Penalty Function and constraint histories are shown in

Figs. 4.4 and 4.5. The drag reduction slows slightly after 20 iterations but is definitely

still headed down when the optimizer was stopped. This indicates that the airfoil

was not yet close to the optimum so the optimizer was restarted using the last airfoil

generated before the Newton system failed as the seed airfoil. Optimization convergence

was achieved after an additional 15 iterations. The drag was further lowered from

Cd = 0.00389 to Cd = 0.00380. The reason for the unconverged Newton system is

unexplained but it does not invalidate the results of the optimizer.

The inequality constraint history clearly shows the overshoot inherent in the Penalty

Function technique. The small overshoot can easily be absorbed by adding a small

amount of slack to the constraint.

The pressure plots of the seed and optimized airfoils are shown in Figs. 4.6 and

4.7, respectively. The dashed lines in the Cp curves are the inviscid solutions and the

solid lines the viscous solutions. The waviness apparent in the Cp curve of the optimized

airfoil is due to the fact that higher design modes were not used during the optimization.

4.3 Example 3 - Constrained Area

The third example uses both inequality and equality constraints. The optimization

conditions are the same as Example 1 except that 10 symmetric design modes were

used. The constraints were a minimum thickness near the trailing edge and a specified

area. The area specified was 0.1 which is slightly less than the area of NACA 0015. The

solution was obtained after 28 iterations.

The reduction in P is similar to the previous examples (see Fig. 4.8). The slowdown

starts after the tenth iteration. Figure 4.9 shows how quickly the area equality constraint

is satisfied. The thickness constraint remains inactive throughout the optimization

process. The airfoils are compared, with the y/c-coordinate expanded, in Fig. 4.10.

With the area constrained, and only the thickness modes used, there is not much room

for change in the airfoil. However, the optimizer produces an airfoil with a "laminar-

airfoil" shape, thus reducing the drag.

4.4 Example 4 - 5 Point Optimization

The final example was the optimization of an airfoil for minimum Cd at 5 angles of

attack with M = 0.4 and Re = 5 x 106. The seed airfoil was an NACA 3412 with 7

symmetric and 5 anti-symmetric design modes being utilized. The angle of attacks and

weighting used were arbitrary and are listed in Table 4.1.

m a wmr

1 -1.00 0.5

2 0.00 0.5

3 1.00 1.0

4 3.00 3.0

5 4.00 0.5

Table 4.1: Multi-point Optimization Weighting Distribution

For comparison, a one-point optimization was performed using the same conditions

except that a single angle of attack of 3 degrees was used. The C1 vs. Cd polars are

shown in Fig. 4.11 for the seed airfoil, the 5 point optimized airfoil, and the 1 point

optimized airfoil. The only constraint used was a minimum thickness near the trailing

edge. A pronounced low drag bucket has formed in both optimizations, however, the

bucket is larger for the 5 point design, indicating better off-design performance for the

multi-point design. The bucket formed in the region of the heaviest weighting, i.e. at

a = 30. The multi-point optimization ended after a Newton system convergence failed

at t he 14th optimization step. The single point design converged after 20 iterations. All

three airfoils are shown in Fig. 4.12. The two optimized airfoils are very similar, but

this is very much dependent upon the weighting functions, which, in these cases, were

both chosen to be heavy at a = 30

Figure 4.1: Example 1 - Optimization Path

A3

0054

0056

0058

.0060

0062

0064

0066

Fobj =

Figure 4.2: Example 1 - Optimization History

0.2

Y/c

-0.2
0.0

* I I I I I

0.2 0.4 0.6 0.8 1.0

X/c

Figure 4.3: Example 1 - Airfoil Comparisons

50

Optimized
-- Seed

-

~-

!-f
!

Figure 4.4: Example 2 - Optimization History

0.005

0.003-

Constraint -

0.001-

-0.001-

Figure 4.5: Example 2 - Thickness Constraint History

10 20 30

-------------- -----------

Karnr ?u11

MACH = 0.000

RE = 5.000×106

RLFR = 1.272

CL = 0.500
CM = -0.078
CD = 0.00569
L/D = 87.82

Figure 4.6: Example 2 - NACA 3412 Cp Plot

-1.5

Cp

-1.0

-0.5

0.0

0.5

I n

FX.. flPT7

MACH = 0.000
RE = 5.000x06
RLFR = 1.324
CL = 0.500
CM = -0.080
CO = 0.00378
L/D = 132.13

Figure 4.7: Example 2 - Optimized Airfoil Cp Plot

XFOIL
V 5.L

-2.0

-1.5

Cp

-1.0

-0.5

0.0

0.5

1.0

Figure 4.8: Example 3 - Optimization History

0.010-

0.006-

Constraints

0.002-

-0.00

Thickness
Area

Figure 4.9: Example 3 - Constraint Histories

2

-/ - - ----

I I

4y/c

-0.5-
I I I I I I I

0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 4.10: Example 3 - Airfoil Comparisons

Optimized
Seed

J'

~

50 100 150 200

10"x Co

Figure 4.11: Example 4 - Drag Polars

56

1.5

CL

1.0

0.5

0.0

RIRFOIL

NACAI 3L112
......... 5 PT. OPTZ

1 PT. OPTZ-- .--. -.-.. .

, ,~I--·~· ·

,·t·· .

I·

/

-~---~-··C

I I I I

· '·I·-·~~··r·--I·

~~··L ··(
·)

-- ·. ·- ·,--·.·--.· .J

..... ,...,.. .~. ',

.6

.1

--r.4 .A'

..
-. ·- ·, -, , ,

..........

o ,· ~ · · · ·.-

"f,... ...

--- ;---;·-

...... ~........

-r-·-~-

.............. ~...

-·~-·-;··-,···

.................

· · ·

.'... r...,.

.. ,...e

x/c

Figure 4.12: Example 4 - Airfoil Comparisons

NACA 3412
5 Pt. OPTZ

---. 1 Pt. OPTZ

4y)

Chapter 5

Conclusions

Modification of an airfoil design code to use mapping coefficients as the design variables

was successfully implemented. Gradient information was calculated within the analysis

portion of the code with a minimum of extra effort. The gradient information was shown

to be accurate except as the optimum is neared. The low accuracy near the optimum is

not considered to be vital since pushing an optimization to the mathematical optimum

is probably fruitless due to the overconstrained nature of airfoil design.

When used in the proper way, the XFOIL optimizer can become a valuable design

tool. The optimizer should not be used as a 'black box' to create perfect airfoils but as

a designer's tool that will free the designer to become more creative and productive by

reducing the time spent in iterative design modifications. The 'optimal' airfoils obtained

should be used to give the designer ideas for what characteristics the real airfoil should

have.

There were also several areas in which the XFOIL optimizer did not live up to ex-

pectations. The first is the limited number of design variables that could be utilized.

It was found that the optimizer should be restricted to NA _ 12 and NB < 12 because

the higher mode derivatives became inaccurate. This does not allow the generation of

completely general airfoils with the chosen design variables. This is a disappointment,

however the cheap gradient calculations made possil)le by using the mapping coeffi-

cients as design variables make up for this deficiency. Another disappointment was the

temperamental nature of XFOIL's Viscous Newton solver. This does not destroy the

promise of the optimizer it only enforces that some care needs to be exercised when

using the optimizer.

The multi-point optimization ability of the XFOIL optimizer may prove to be a

valuable addition. However, the one piece of information needed to determine its value

was not addressed in this thesis. The multi-point optimization is only as good as the

weighting function used. This may be as simple as weighting the design points on the

percentage of time the airfoil will be flying at each design point, or it may be a function

based on a complex statistical scheme, or it may be based on the designers experience.

The development of a systematic weighting function is an area requiring future research.

Another area for future research is the development of design variables that can also

control the trailing edge angle and gap, and if possible, be completely general.

Bibliography

[1] M. Drela. XFOIL: An analysis and design system for low Reynolds number airfoils.

In T.J. Mueller, editor, Low Reynolds Number Aerodynamics. Springer-Verlag, Jun

1989. Lecture Notes in Engineering, No. 54.

[2] M. Drela. Elements of airfoil design methodology. In P. Henne, editor, Applied

Computational Aerodynamics, AIAA Progress in Aeronautics and Astronautics.

AIAA, 1990.

[3] R. Eppler and D. M. Somers. A computer program for the design and analysis of

low-speed airfoils. NASA TM 80210, Aug 1980.

[4] L. E. Madsen and G. N. Vanderplaats. COPES - A FORTRAN control program

for engineering synthesis. NPS69-81-003 Naval Postgraduate School, March 1982.

[5] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical

Recipes. Cambridge University Press, Cambridge, 1986.

[6] M. S. Selig and M. D. Maughmer. A multi-point inverse airfoil design method

based on conformal mapping. In 29th Aerospace Sciences Meeting, Reno, Nevada,

Jan 1991.

[7] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,

Wellesley, 1986.

[8] J. L. Van Ingen. A program for airfoil section design utilizing computer graphics.

In A GARD- VKI Short Course on High Reynolds Number Subsonic Aerodynamics,

AGARD LS-37-70, April 1969.

[9] G. N. Vanderplaats. Efficient algorithm for numerical airfoil optimization. Journal

of Aircraft, 16(12), Dec 1979.

[10] G. N. Vanderplaats. A new general-purpose optimization program. In Structures,

Structural Dynamics and Materials Conference, Lake Tahoe, NV, May 1983.

[11] G. N. Vanderplaats. Numerical Optimization Techniques for Engineering Design:

with Applications. McGraw-Hill, New York, 1984.

Appendix A

Derivation of t-RiOAn and "
OBn

The BL equations, Eq. (3.10), can also be written in the form

Ri = Ri (Oi-1,,i-, 6 Ue,_i , C-.r,zi-_1,Oi- 6, uei, C,,i) , i (A.1)

where, Ri can be fi, gi, or hi. Using this functional formulation, a first-order Taylor

series expansion of Ri is

+= (i _i-
+ us

+ i6,0)

+ 6uei)

+ R w Sb,1
+ . CR ,+--

+ .9;6C,

Using the definitions of uLe and 6*:

Uek =k 4

the following perturbations can be derived=

the following perturbations can be derived

SZdki mj,

?n.k
2Ue

6uk = 6k + S dkjbmj +
I

6mk
66; = m

Uek

k
Sue

ek

(A.5)mjddkj,
3

+ dkj6j .•1

I .

In the above, k can be i or i - 1. The last term of Eq. (A.5) is insignificant compared

MR

(A.2)

(A.3)

(A.4)

6Mk 7k qek "2 qk
U2ek

(A.6)

+ ~t6)

to the other terms, so it is ignored. Substituting Eqs. (A.5 & A.6) into Eq. (A.2) and

following only those terms with a 6q, the equation has the form

6Ri = -uiR

(eR

ORi mi-1) (ORi6q9_ + , OR mi
Og6uj , U2~

Therefore,

(ORi
OUei-I

ORi O(R,
Oqi • Otte i

ORi mi-1
06*1 u2 I

OR; mi

Using the chain rule the terms of [A] are

=(Oqi)

(Oqi)

±(Ri)+ (Oqi

+ qi

As a reminder, Ri can be fi, gi, or hi.

(A.7)

(A.8)

(A.9)

ORi
OA,

ORi

OB,

Iqi
OAn

-OB'i.o~

OBn A

(O~)

(A.10)

(A.11)

Appendix B

Derivation of a and A-
8An OBn

The derivation of q is presented in several of the references [3, 6, 8], but is included here

for completeness. Refer to Fig. B.1. The complex potential for an inviscid flow around

the unit circle in the C-plane is:

F(C) = e-ia" + ei'•(- In (, (B.1)
2ni

where, 4sina=
r = 4rsina = T e ie -a) . (B.2)

Differentiating Eq. (B.1) gives:

dF
=*d(Fd

The complex velocity conjugate is:

where,

W* dF dF/d _qe-i
dz dz/d(

q= u + = Iw.

Taking the natural logarithm of the last two parts of Eq. (B.4) gives

InDq - iO = IndF) - In d
d(dC(Tý

Substituting in Eqs. (B.3 & 3.1) gives

(B.3)

(B.4)

(B.5)

(B.6)

In q - iO = te n (1 + In (e - ia + i a

To isolate q, first take the real part of Eq. (B.7) and then the inverse logaritlun of both

sides. The result is

q = exp {SIn ((1 -
Ct (e-i, + a-)) -E C-" .

n=O

(B.8)

This result is valid everywhere in the flow field, and reduces on the airfoil, where (= ei ,

to

q = 2 cos(- a) 2 sin e (B.9)

00

P+iQ= + C(-. (B.10)

The derivatives are most easily computed by differentiating the real part of Eq. (B.6).

Doing the An derivatives:

d
dA (In q) =dAn

'9
OAn

O
OAr,[n(d) [fIn ()d((B.11)

The first term is zero, so that

1 0q
q OA,

1 0
-- OA,W27

(dz)
dC (B.12)

Since =(dz/dC) -- d!(-" this reduces to

89q
OA,- (B.13)

A similar process for 9 will give

=OB
0B--- =~ n q' ¢"

(B.14)

o00

-1) -E cn(-
n=O

(B.7)

where,

1

-qR •{(-}.

C-plane

(CIRCLE)

z-plane

(AIRFOIL)

Y/c

1et'E,

X/c

r-- 4

Uoo

Figure B.1: Mapping Planes

Appendix C

Derivation of Gradients

The displacement thickness, 6*, and the shape function, H, are calculated using

6* =
Ue

and,

6*
H =0.

Therefore, the derivatives are:

06*
OA,

OH
OB,

The derivatives of the Cl/Cd ratio are:

0
OA,

8

DB,

(C)
(Ci)CdCI

(C.1)

(C.2)

1 am
Ue OA,

06* 1 m9
OB, ue OB,

OH 1 06*
OA, 0 OA,

m Oue

u? OA,'

Un OuB,,

6* 08
02 OA,)'

6* 08
02 OB,"

(C.3)

(C.4)

(C.5)

(C.6)1 06*
0 B,,

C1
Cd

Cl
Cd

1 OCzC1 OA,

(1 aCt
C1 OBn

1 OCd
Cd OA,1 '

1 OCd
Cd OB)

(C.7)

(C.8)

Appendix D

Computer Code

D.1 Code added to XFOIL for optimization

D.1.1 Added Declarations

The variables added to XFOIL for the optimization process are contained in 'xfoil.inc'

and 'xbl.inc'. The following blocks of code are additions to the file 'xfoil.inc':

parameter (NumOut
parameter (MaxIt
parameter (maxAn
parameter (ifirstAn
parameter (maxRHS

real
complex
complex
logical
character*5S

common/dAn/
&
&
&
&
&

&

common/dBn/
&

&
&

&

= 26,
= 50,
= 30,
= 2,
= 2 +

NumMin = 88, NumDump = 30)
MaxPts = 10, maxConst = 10)
maxBn = 30)
ifirstBn = 2)

maxAn + maxBn)

kost, MinAbs, Mpts
za, za_an, za_bn, paq, paq_an, paqbn
eaw, zle, zeta
Lthick, Lcamber, Loptz, LReStart, LTheEnd, Lconv

SOptzName

cl_an (ifirstAn:maxAn),
cd_an (ifirstAn:maxAn),
cm_an (ifirstAn:maxAn),
za_an (izx,ifirstAn:maxAn),
ue_an (izx,ifirstAn:maxAn),
ds_an (izx,ifirstAn:maxAn),
qa_an (izx,ifirstAn:maxAn),
paq_an (izx,ifirstAn:maxAn),
area_an (ifirstAn:maxAn),
Fobj_An (ifirstAn:maxAn),
Fcost_An(ifirstAn:maxAn)

clbn
cd_bn
cm_bn
za_bn
ue bn
ds_bn
qabn

(ifirstBn:maxBn),
(ifirstBn:maxBn),
(ifirstBn:maxBn),
(izx,ifirstBn:maxBn),
(izx,ifirstBn:maxBn),
(izx,ifirstBn:maxBn),
(izx,ifirstBn:maxBn),

paqbn (izx,ifirstBn:maxBn),
areabn (ifirstBn:maxBn),
FobjBn (ifirstBn:maxBn),
FcostBn(ifirstBn:maxBn)

common/gem/ za(izx), wa(izx), paq(izx), eaw(izx,O:imx),
zeta(izx), wcle, zle, snorm(izx)

common/tof/ Lthick, Lcamber, Loptz, LReStart, LTheEnd, Lconv

common/sup/

common/cst/

common/add/

** Parameters

NumOut
NumMin
NumDump
MaxIt
MaxPts
maxConst
maxAn, Bn
maxRHS
ifirstAn,Bn

NumPts, weight(MaxPts), Apts(MaxPts),
CLpts(MaxPts), Mpts(MaxPts), REpts(MaxPts)

kost, Nconst, OnOff(MaxConst), Const(MaxConst),
Constan(MaxConst,ifirstAn:maxAn),
Constbn(MaxConst,ifirstBn:maxBn)

ilastAn, ilastBn, numAn, numBn, numRHS,
IterConv, TheArea, TheLength, MinAbs,
Fcubic, Fstart, grad2F(2), PercentMax,
Fobj, Fcost(0:2), epsilon(0:2), jEnd(2:3),
deltaAn(ifirstAn:maxAn), deltaBn(ifirstBn:maxBn),
SdirAn (ifirstAn:maxAn), SdirBn (ifirstBn:maxBn),
OptzName

file unit number of Optimization output file
dump file with minimum geometry
BL dump variable file

maximum allowed number of Optimization iterations
maximum " design points
maximum " constraints
maximum " An, Bn design variables
maximum " RHS's in Newton System
= 2, first n value for all sensitivities

** Sensitivities

cl_an, bn(.)
cdan, bn(.)
cm.an, bn(.)
area_an, bn(.)

viscous

It

"

d(Cl)/dAn, dBn
d(Cd)/dAn, dBn
d(Cm)/dAn, dBn
d(Area)/dAn, dE

of the airfoil
tI

(n = 2,3,4...)

c za_an, bn(..) dz/dAn, dBn at each AIRFOIL PLANE node (n = 2,3,4...)

bn(..)
bn(..)
bn(..)

d(UEDG)/dAn, dBn at AIRFOIL PLANE nodes
d(DSTR)/dAn, dBn "
d(QC)/dAn, dBn "

Fobj_An, Bn(.) d(Objective Function)/dAn, dBn
Fcost An, Bn(.) d(Penalty Function)/dAn, dBn

(n = 2,3,4...)

(n = 2,3,4...)
oI

** Geometry-mapping AT AIRFOIL NODES
za(.) complex(x,y) at AIRFOIL nodes
wa(.) CIRCLE plane w at AIRFOIL node mapped to a CIRCLE

ue-an,
dsan,
qa_an,

1

paq(.) P + iQ at AIRFOIL nodes
eaw(..) exp(inw) at AIRFOIL nodes

** Logical variables
Lthick .true. if An terms to be used during optimization
Lcamber .true. if Bn terms to be used during optimization
Loptz .true. if in OPTZ routine (i.e. .true. if optimizing)
LReStart .true. if Fletcher-Reeves Method is to be restarted
LTheEnd .true. if optimum has been found
Lconv .true. if ALL design point viscous sol'ns are converged

** Multi-design point Optimization variables
NumPts number of design points
weight(.) relative weight of each design point
Apts(.) angle of attack "
CLpts(.) Cl "
Mpts(.) Mach number "
REpts(.) Reynolds number "

c ** Constraint variables
c kost

Nconst
OnOff(.)
Const(.)
Constan,bn(.

. c
** Miscellaneous

ilastAn, Bn
numAn, Bn
numRHS
zeta(.)
wcle
zle
snorm(.)
IterConv
TheArea
TheLength
MinAbs
Fstart
grad2F(.)

OptzName
PercentMax
Fobj
Fcost(1,2)

epsilon(.)
jEnd(.)
deltaAn,Bn(.)
SdirAn, Bn(.)

cost parameter
number of constraints (set by user)
0 => Active constraint, 1 => Inactive constraint
array of current constraint values

.) d(Const(.))/dAn, dBn (n = 2,3,4...)

= ifirstAn + numAn OR = ifirstBn + numBn
number of An, Bn terms to use during optimization
= 2 + numAn + numBn (i.e. number of RHS in BL solver)
zeta at each CIRCLE PLANE node
CIRCLE plane w of LE
Complex coordinates of leading edge
array holding normalized panel spacing
number of newton iterations for viscous convergence
Airfoil area
Length of search direction vector before normalized
Absolute error for termination of optimization
Objective function value of seed airfoil
grad(Fcost).grad(Fcost), I => previous iteration

2 => current iteration'
Name of objective function, listed in output
Maximum allowed change in Cn's between optz iterations
Objective Function
Penalty Function, i => previous iteration

2 => current iteration

Step parameters
Number of consecutive matched end conditions
An, Bn changes between optimization steps (n = 2,3,4...)
Components of Search Direction Vector

The following block of code is an addition to the file 'xbl.inc':

COMMON/XTRAN/ XT, XTA1I
& , XTX1, XTT1, XTDi, XT_U1
& , XTX2, XTT2, XTD2, XTU2
& , xtt(2), xtral(2), xtrxl(2)
& , xtrt1(2), xtrdi(2), xtr.ul(2)

D.1.2 Main Optimization Routines

The main optimization routine is contained in the new file 'xoptz.f' and is listed below,

except for the data output routines:

subroutine Optz

* Written by Tom Sorensen, May 1991. *
*

* Inls suD-program or AFuiL allows airioil optimization to be
* performed. A seuerate sub-urozram called 'XUSER' contains two
* user modifiable routines (for the objective function and
* constraints). *
**

INCLUDE 'xfoil.inc'

call SetOptz(2)
call XMDESinit

! initialize optimization variables
! calculate Cn's & circle plane geometry

500 CALL ASK ('.OPTZv-',i,COMAND)

IF(COMAND.EQ.' ')

IF(COMAND.EQ.'RE ')
IF(COMAND.EQ.'MACH')

IF(COMAND.EQ.'ALFA')
IF(COMAND.EQ.'CL ')
IF(COMAND.EQ.'OBJ ')
IF(COMAND.EQ.'OUT ')
IF(COMAND.EQ.'DOIT')

IF(COMAND.EQ.'OVAR')
IF(COMAND.EQ.'? ')
IF(COMAND.EQ.'? ')

WRITE(6, 1000) COMAND
GO TO 500

c ** Return to Top Routine
10 call SetOptz(1)

GO TO 10
GO TO 20
GO TO 30
GO TO 40
GO TO 50
GO TO 60
GO TO 70
GO TO 80
GO TO 90
WRITE(6,1050)

GO TO 500

! nullify optimization variables

· rrr~ · r u-·-·-- -- · - ·-

close (unit = NumOut)
close (unit = NumMin)
do 17 ipt = 1, NumPts

! close output file
! close min geometry file

close(unit = (NumDump+ipt)) ! close dump files

17 continue

return
c
c

c ** Enter Reynolds Number
20 do 25 ipt = 1, NumPts

call ask ('Enter chord Reynolds number
REpts(ipt) = REinf

25 continue

LVCONV = .FALSE.

GO TO 500

^',3,REINF)

** Enter Mach Number
30 do 35 ipt = 1, NumPts
31 CALL ASK ('Enter Mach number "',3,]

Mpts(ipt) = Minf
IF(MINF.GE.I.0) THEN

WRITE(6,*) 'Supersonic freestream not allowed'
GO TO 31

ENDIF
CALL COMSET
IF(MINF.GT.O.0) WRITE(6,1300) CPSTAR, QSTAR/QINF

35 continue
LVCONV = .FALSE.
GO TO 500

MINF)

c ** Enter Angle of Attack
40 call ask ('Enter number of design points

if (NumPts.gt.MaxPts) then
WRITE(6,*) 'Must use fewer points'
go to 40

endif

^',2,NumPts)

do 45 ipt = 1, NumPts
call ask ('Enter angle of attack (deg) ^',3,Apts(ipt))
call ask ('Enter weighting function ^',3,weight(ipt))
open (unit = (NumDump+ipt), status = 'scratch')
if (REpts(ipt).le.1.0) REpts(ipt) = Reinf

45 continue
LALFA = .TRUE.
GO TO 500

c ** Enter Lift Coefficient
50 call ask ('Enter number of design points

if (NumPts.gt.MaxPts) then
WRITE(6,*) 'Must use fewer points'
go to 50

^',2,NumPts)

C

endif

do 55 ipt = 1, NumPts

call ask ('Enter lift coefficient "',3,CLpts(ipt))
call ask ('Enter weighting function "',3,weight(ipt))
open (unit = (NumDump+ipt), status = 'scratch')
if (REpts(ipt).le.1.0) REpts(ipt) = Reinf

55 continue
LALFA = .FALSE.
GO TO 500

c ** Enter Objective Function
60 write (6,3000)

call ask ('Enter Optimization choice

if (iType.eq.1) OptzName = 'Cl'
if (iType.eq.2) OptzName = 'Cd'
if (iType.eq.3) OptzName = 'C1/Cd'
if (iType.eq.4) OptzName = 'other'
GO TO 500

c
c **

70

^',2,iType)

Enter output file names
call ask ('Enter Optz data output file name"',4,fname)
open (unit = NumOut, name = fname, type = 'new', err =

c
75 call

open
GO TO

ask ('Enter min geometry file name ^',4,fname)

(unit = NumMin, name = fname, type = 'new', err =

500

70)

75)

c
c
c ** Pick Optimization Method and start optimization
80 call Dolt

GO TO 500
c
c

c ** Enter Optimization Variables
90 call ask ('Enter number of An"s to use

call ask ('Enter number of Bn''s to use
call ask ('Enter maximum value of epsilon

call ask ('Enter cost variable

"',2,numAn)
^',2,numBn)

^', 3,epsilon(2))
^', 3,kost)

Lthick = .false.
Lcamber = .false.

if (numAn.gt.0) Lthick = .true.

if (numBn.gt.0) Lcamber = .true.
ilastAn = ifirstAn + numAn - 1

ilastBn = ifirstBn + numBn - I

GO TO 500
C...

C

1000 FORMAT (1X,A4,' command not recognized. Type a "?" for list')
1050 FORMAT (/' <cr> Return to TOP LEVEL'

& /' RE Enter Reynolds Number'

& MACH Change Mach number'
& ' ALFA Prescribe alpha'
& CL Prescribe CL'
& OBJ Choose Object Function'
& OUT Choose Output file names'
S / DOIT Start Optimization'
& OVAR Change Optimization Variables'/)

c

1300 FORMAT (/' Sonic Cp =', F12.2, ' Sonic Q/Qinf=', F12.3/)
c
3000 format (/' Optimize:'

& /' 1.) Cl'
& /' 2.) Cd'
&/' 3.) Cl/Cd'
&/' 4.) Other'/)

c
end !subroutine Optz

subroutine SetOptz (icontrol)
c
c **
c * This routine initializes variables needed for optimization. *
c * icontrol = 1 => zero out variables for non-optimization use of XFOIL *
c * icontrol = 2 => assign variables values for optimization *
c **
c

INCLUDE 'xfoil.inc'
c

if (icontrol.eq.1) then
numRHS = 2
numAn = 0
numBn = 0
Lthick = .false.
Lcamber = .false.
Loptz = .false.

else
GREEK = .FALSE.
LReStart = .true.
Lconv = .true.

C
c ** set default values of airfoil parameters

if (REinf.le.1.0) reinf = 1.0e6
Apts(i) = adeg
Lalfa = .true.

c

c ** set default values of optimization control variables
numAn = 2
numBn = 0

epsilon(2) = 0.1
kost = 10000
ilastAn = ifirstAn + numAn - 1
ilastBn = ifirstBn + numBn - I
PercentMax = 0.1
Loptz = .true.
NumPts = 1
iType = 2
OptzName = 'Cd'

c

if (numAn.gt.0) Lthick = .true.
if (numBn.gt.0) Lcamber = .true.

c

c ** zero delta's

do 26 iAn = ifirstAn, ilastAn

deltaAn(iAn) = 0.0
26 continue

c

do 88 iBn = ifirstBn, ilastBn
deltaBn(iBn) = 0.0

88 continue
c
c ** normalize aifoil paneling spline

do 100 i = 1, N
snorm(i) = s(i) / s(N)

100 continue

endif

c

return
end !subroutine SetOptz

subroutine XMDESinit

C

c **
c * This routine computes Cn and other complex stuf from MDES. *
c ***
C

INCLUDE 'xfoil.inc'
INCLUDE 'xdes.inc'

C

C---- see if current Qspec, if any, didn't come from Mixed-Inverse
IF(NSP.NE.NC) LQSPEC = .FALSE.
IF(.NOT.LSCINI) CALL SCINIT

C
C---- set initial Gamma for current alpha

ALFGAM = ARAD
CALL MAPGAM(1)

c

return
end !subroutine XMDESinit

subroutine Dolt

* This routine performs the iterative optimization loop. *
***************SStS~S**SS+~tS**************** *** ********

INCLUDE 'xfoil.inc'

iter = 0

jEnd(2) = 0
jEnd(3) = 0
LTheEnd = .false.

! Optimization iteration counting variable
! number of iterations End Cond#2 satisfied

! number of iterations End Cond#3 satisfied
! .true. => Optimization finished

c ** Evaluate SEED airfoil at all design points

do 10 ipt = 1, NumPts

if (Lalfa) then ! optimize with constant angle of attack

adeg = Apts(ipt)
arad = dtor * adeg

else
arad = 0.0
CLSPEC = CLpts(ipt)

endif

REinf = REpts(ipt)

Minf = Mpts(ipt)

c

call Analiz (ipt)
10 continue

Fstart = Fobj

call OutData (iter)
call EndCheck (iter)

! optimize with constant lift coefficient

! set Re at each design point

! set M at each design point

! compute viscous solution

! save initial value of objective function

! print out relevant data
! check ending conditions

c ** Main optimization iteration loop
26 if (.not.LTheEnd) then

iter = iter + I
c

call Search
call NextPt
call OutData
call MinGeom
call EndCheck

(iter)

(iter) !

choose search direction

choose and analize new optimization point

print out relevant data

print out current optimal geom. to a file

check ending conditions

go to 26
endif

return
end !subroutine Dolt

subroutine Analiz (ipt)

* This subroutine groups the routines needed to compute a viscous *
* solution for a given geometry. In addition, it calls the *
* routines that find the sensitivities of the various variables. *
++******$$***

INCLUDE 'xfoil.inc'

call Initializ
call FindZeta
call FinddQA
call FinddZ
call VISCAL
call FinddUe
call FinddCl
call FinddCd
call FinddArea
call constrain
call dFobj
call dFcost (ipt)
call DumpOut(ipt)
CALL QVX

return
end !subroutine

calculate wake coordinates
calculate zeta's at airfoil nodes
calculate dq/dAn, Bn at airfoil nodes
calculate dz/dAn, Bn at airfoil nodes
calculate viscous solution
calculate dUe/dAn,Bn & dds/dAn,Bn
calculate dCl/dAn,Bn & dCm/dAn,Bn
calculate dCd/dAn,Bn
calculate dArea/dAn,Bn
calculate constraints
calculate Fobj and dFobj /dAn,dBn
calculate Fcost and dFcost/dAn,dBn
dump BL variables to a scratch file
plot Cp distribution

Analiz

subroutine Initializ

* This routine initializes airfoil and wake inviscid GAM and PSIO *
* arrays. *
**

INCLUDE 'xfoil.inc'
INCLUDE 'xdes.inc'

c ** computes wake coordinates
LVISC = .true.

LVCONV = .FALSE.

QINF = 1.0
C

C---- calculate surface vorticity distributions for alpha = 0, 90 degrees
IF(.NOT.LGAMU .OR. .NOT.LQAIJ) CALL GGCALC

c

if (.not.Lalfa) then
C---- Newton loop for alpha to get specified inviscid CL

DO 100 ITAL=I, 20

COSA = COS(ARAD)

SINA = SIN(ARAD)
C

C---- superimpose suitably weighted alpha = 0, 90 distributions

DO 50 I=1, N
GAM(I) = COSA*GAMU(I,i) + SINA*GAMU(I,2)

50 CONTINUE
PSIO = COSA*GAMU(N+I,1) + SINA*GAMU(N+1,2)

C

C------ get corresponding CL and CL.alpha

CALL CLCALC

C
DARAD = (CLSPEC - CL) / CL_ALF

ARAD = ARAD + DARAD

C

IF(ABS(DARAD).LE.I.0E-6) GO TO 110
100 CONTINUE

WRITE(6,*) 'SPECCL: CL convergence failed'
110 CONTINUE

endif

c
C---- set final distribution (or distribution at specified alfa)

COSA = COS(ARAD)
SINA = SIN(ARAD)
DO 40 I=1, N

GAM(I) = COSA*GAMU(I,1) + SINA*GAMU(I,2)
40 CONTINUE

PSIO = COSA*GAMU(N+I,I) + SINA*GAMU(N+1,2)
C

IF(ABS(ARAD-AVAKE) .GT. 1.0E-5) LWAKE = .FALSE.
IF(ABS(ARAD-AVISC) .GT. i.OE-5) LVCONV = .FALSE.

c

call XYWAKE
c

return

end !subroutine Initializ

subroutine findZeta
c

c **

c * This subroutine computes zeta at the airfoil plane nodes *
c * added 4/26/90
c **

C

c complex CnOHOLD, zleHOLD, zHOLD
INCLUDE 'xfoil.inc'

c
c ** change Cn(O), Zle, and chordz only for finding zeta!

CnOHOLD = Cn(O)
zleHOLD = zle
zHOLD = chordz

c

Cn(O) = Cn(O) + cmplx(1.0 / (4.0 - real(zle)), 0.0)
zle = cmplx(0.0,0.0)
chordz = cmplx(1.0,0.0)

c

c **.assign zetas at trailing edge
zeta(i) = cmplx(1.0,0.0)
zeta(N) = cmplx(1.0,0.0)

c
c ** compute zetas corresponding to airfoil nodes
c ** do NOT compute zetas at trailing edge

zeta(2) = cmplx(0.0,0.0) ! initial guess for node 2
do 26 ia = 2, N-i ! ia = airfoil node number

call zetaf (cmplx(x(ia), y(ia)), zeta(ia), ia)
zeta(ia+l) = zeta(ia) ! initial guess for next point

26 continue
c

c ** compute zetas corresponding to wake nodes
zeta(N+i) = cmplx(0.0,0.0) ! initial guess for node N+i
do 88 ia = N+1, N+Nw ia = airfoil node number

call zetaf (cmplx(x(ia), y(ia)), zeta(ia), ia)
zeta(ia+i) = zeta(ia) ! initial guess for next point

88 continue
c
c ** change values back (these are global and used elsewhere as they were)

Cn(O) = CnOHOLD
zle = zleHOLD
chordz = zHOLD

c

return
end !subroutine findZeta

subroutine finddQA
c

c **

c * This subroutine computes dq/dAn and dq/dBn at the airfoil & wake *
c * nodes added 4/19/90 *
c ***

c
INCLUDE 'xfoil.inc'
real qa(izx)
complex CnSum, zetaInv, eAlfa, terml

c
C---- set alpha in the circle plane

ALFCIR = ALFgam - AIMAG(CN(O))
eAlfa = cexp (cmplx(O.0, ALFCIR))

c
c ** calculate q at airfoil nodes, ia = airfoil node number

do 26 ia = 1, N + Nw

zetalnv = 1.0 / zeta(ia)

terml = ((1.0 / eAlfa) + eAlfa * zetaInv)
& * (1.0 - zetaInv)**AGTE

c
CnSum = Cn(mc)

do 100 m = mc-1, 0, -1
CnSum = Cn(m) + CnSum * zetaInv

100 continue

c
if ((ia.eq.1).or.(ia.eq.N)) then

c ** q is zero at trailing edge

qa(ia) = 0.0

else

qa(ia) = exp(real(clog(termi) - CnSum))

endif

26 continue

c
c ** fudge TE q's to more closely approx. OPER answers

call fudgeTE (qa(1), qa(2), qa(3), qa(N-2), qa(N-1), qa(N))
c
c ** calculate dq/dAn,Bn at airfoil nodes, ia = airfoil node number

do 88 ia = 1, N + Nw
zetalnv = 1.0 / zeta(ia)

c

do 826 iAn = ifirstAn, ilastAn

qa_an(ia,iAn) = -qa(ia) * real(zetaInv**iAn)
if ((iAn.eq.2).and.(ia.eq.2)) print*, qa_an(ia,ian)

826 continue

c
do 888 iBn = ifirstBn, ilastBn

qa_bn(ia,iBn) = qa(ia) * aimag(zetalnv**iBn)
if ((iBn.eq.2).and.(ia.eq.2)) print*, qabn(ia,ibn)

888 continue
88 continue

c
return

end !subroutine finddQA

subroutine fudgeTE (qal, qa2, qa3, qaN2, qaN1, qaN)

* This routine approximates the value of q at the trailing edge
* by a linear extrapolation of q near the trailing edge. This *
* is done to make q agree more closely with the XOPER results. *

t###

INCLUDE 'xfoil.inc'

** compute approximate qTE for suction side

m = (qa3 - qa2) / (x(3) - x(2))

qTEs = qa2 - m * (x(2) - x(i))

** compute approximate qTE for pressure side
m = (qaN2 - qaNl) / (x(N-2) - x(N-i))

qTEp = qaN1 - m * (x(N-1) - x(N))

** average qTEs and qTEp and assign to a(i) and q(N)
qal = 0.5 * (qTEs + qTEp)

qaN = qal

return

end !subroutine fudgeTE

subroutine FinddZ

* This routine groups the routines needed to compute *
* dz/dAn, Bn at the AIRFOIL nodes.

##

include 'xfoil.inc'

call eawSET

call PaFilt(O.0)
call zacalc

call zanorm

return

end

! calculate exp(-inw) at airfoil nodes
! calculate d(P+iQ)/dAn, Bn at airfoil nodes
! calculate dz/dAn, dBn at airfoil nodes
! scale dx/dAn, Bn to a unit chord

!End FinddZ

subroutine eawSET
c

c **
c * This routine saves exp(inw) for the AIRFOIL nodes to an array. *

c

include 'xfoil.inc'
c

wa(i) = 0.0
wa(N) = 2.0 * pi

C

c ** compute w valuse at AIRFOIL nodes (not evenly spaced in circle plane)
do 10 ia = 2, N-i

wa(ia) = aimag(clog(zeta(ia)))
if (wa(ia).lt.0.0) wa(ia) = wa(ia) + 2.0 * pi

10 continue
c
c ** calculate exp(inw)

do 20 m = 0, mc
do 30 ia = 1, N

eaw(ia,m) = cexp(cmplx(O.0, float(m) * wa(ia)))
30 continue
20 continue

c
return
end ! eawSET

subroutine paFILT(FFILT)
c
c ***
c * This routine calculates d(P+iQ)/dAn, dBn at the AIRFOIL nodes *
c * (with filtering). *
c ***

c
include 'xfoil.inc'

c

real cwtx(0:imx)
C

C---- cut down higher transform coefficients with modified Hanning filter
do 10 m = 0, mc

freq = float(m) / float(mc)
c

if (ffilt.gt.0.0) then
cwtx(m) = (0.5 * (1.0 + cos(pi * freq)))**ffilt

else
cwtx(m) = (0.5 * (1.0 + cos(pi * freq)))

endif

10 continue

C
C---- Inverse-transform to get back modified speed function and its conjugate

do 300 ia = 1, N
paq(ia) = (0.0,0.0)
do 310 m = 0, mc

paq(ia) = paq(ia) + cwtx(m) * CN(M) * CONJG(eaw(ia,m))
310 continue

c
do 26 iAn = ifirstAn, ilastAn

paq-an(ia,iAn) = cwtx(iAn) * conjg(eaw(ia,iAn))
26 continue

c
do 88 iBn = ifirstBn, ilastBn

paqbn(ia,iBn) = cwtx(iBn) * conjg(eaw(ia,iBn))
& * cmplx(0.0,1.0)

88 continue
300 continue

C
return
end ! paFILT

SUBROUTINE ZAcalc
c
c ***
c * This routine calculates dz/dAn, dBn at AIRFOIL nodes for *
c * the airfoil of chord almost 4. *
c +************************** ***

c

INCLUDE 'xfoil.inc'
COMPLEX dwa, DZDWI, DZDW2, DZpaqi, DZpaq2

C
c ** compute d(za)/dAn,Bn (i.e. at airfoil plane nodes)

ia = i

za(ia) = (4.0,0.0)
C

c ** zero out d(za)/dAn,Bn
do 126 iAn = ifirstAn, ilastAn

zaan(ia,iAn) = (0.0,0.0)
126 continue

c
do 188 iBn = ifirstBn, ilastBn

zabn(ia,iBn) = (0.0,0.0)
188 continue

c
SINW = 2.0*SIN(O.5*wa(ia))
SINWE = 0.
IF(SINW.GT.O.0) SINWE = SINW**(1.0-AGTE)

C

Hwa = 0.5*(wa(ia)-PI)*(1.0+AGTE) - 0.5*PI
DZDW1 = SINWE * CEXP(paq(ia) + CMPLX(O.0,Hwa))

c

DO 20 ia = 2, N
SINW = 2.0*SIN(0.5*wa(ia))
SINWE = 0.

IF(SINW.GT..O.0) SINWE = SINW**(I.0-AGTE)

C

Hwa = 0.5*(wa(ia)-PI)*(1.0+AGTE) - 0.5*PI

DZDW2 = SINWE * CEXP(paq(ia) + CMPLX(O.0,Hwa))

C
dwa = wa(ia) - wa(ia-1)

za(ia) = 0.5*(DZDWI+DZDW2)*dwa + za(ia-i)

DZ_paql = 0.5*(DZDW1)*dwa

DZpaq2 = 0.5*(DZDW2)*dwa

C

do 226 iAn = ifirstAn, ilastAn
za_an(ia,iAn) = DZ_paql * paq_an(ia-l,iAn)

& + DZpaq2 * paq_an(ia ,iAn)

& + za_an(ia-l,iAn)
226 continue

c

do 288 iBn = ifirstBn, ilastBn
za_bn(ia,iBn) = DZ_paql * paq_bn(ia-l,iBn)

& + DZ_paq2 * paq_bn(ia ,iBn)
& + za_bn(ia-l,iBn)

288 continue
C

DZDW1 = DZDW2
20 CONTINUE

C
RETURN
END ! ZAcalc

SUBROUTINE ZAnorm

c

c ***

c * This routine computes dz/dAn, dBn at the AIRFOIL nodes for the *
c * normalized airfoil. *
c ***

c

INCLUDE 'xfoil.inc'
c

COMPLEX zaNEW, ZTE, zaZTE
complex zle_an(ifirstAn:maxAn), zle_bn(ifirstBn:maxBn)

complex zte_an(ifirstAn:maxAn), zte_bn(ifirstBn:maxBn)
C
C---- find leftmost point

XMIN = REAL(za(1))
DO 30 ia = 1, N

IF(REAL(za(ia)).LE.XMIN) THEN

XMIN = REAL(za(ia))
iaLE = ia

ENDIF

30 CONTINUE

C

C---- set restricted spline limits around leading edge
iai = iaLE - 16

ia2 = iaLE + 16
Nia = ia2 - iai + 1

XTE = 0.5* REAL(za(1) + za(N))
YTE = 0.5*AIMAG(za(1) + za(N))
waLE = WCLE

C
c ** compute effect of dAn on the LE

do 126 iAn = ifirstAn, ilastAn
do 26 ia = ial, ia2

i = ia - ial + 1

wi(i) = real(za_an(ia,iAn))

w3(i) = aimag(za_an(ia,iAn))
26 continue

c
c ** calculate spline near leading edge

call spline (wi, w2, wa(ial), nia)

call spline (w3, w4, wa(ial), nia)
c
c ** calculate leading edge zle_an derivative

TheReal = seval(wale, wl, w2, wa(ial), nia)

TheImag = seval(wale, w3, w4, wa(ial), nia)

c

zlean(iAn) = cmplx(TheReal, TheImag)
126 continue

c
c ** compute effect of dBn on the LE

do 188 iBn = ifirstBn, ilastBn
do 88 ia = ial, ia2

i = ia - ial + 1

wli(i) = real(za_bn(ia,iBn))

w3(i) = aimag(zabn(ia,iBn))
88 continue

c
c ** calculate spline near leading edge

call spline (wl, w2, wa(ial), nia)

call spline (w3, w4, wa(ial), nia)
c

c ** calculate leading edge zle_bn derivative

TheReal = seval(wale, wi, w2, wa(ial), nia)

TheImag = seval(wale, w3, w4, wa(ial), nia)

c

zlebn(iBn) = cmplx(TheReal, TheImag)

188 continue
c

C---- place leading edge at origin
DO 60 ia = 1, N

za(ia) = za(ia) - ZLE

do 226 iAn = ifirstAn, ilastAn
za_an(ia,iAn) = za_an(ia,iAn) - zle_an(iAn)

226 continue
c

do 288 iBn = ifirstBn, ilastBn
za_bn(ia,iBn) = za_bn(ia,iBn) - zlebn(iBn)

288 continue
60 CONTINUE

C
C---- set normalizing quantities and sensitivities

ZTE = 0.5*(za(i) + za(N))
do 326 iAn = ifirstAn, ilastAn

zte_an(iAn) = 0.5*(zaan(l,iAn) + za_an(N,iAn))

326 continue

do 388 iBn = ifirstBn, ilastBn
zte_bn(iBn) = 0.5*(za_bn(1,iBn)

388 continue
+ za_bn(N,iBn))

C---- normalize sensitivities
do 500 ia = 1, N

zaNEW = CHORDZ*za(ia)/ZTE
za_ZTE = -zaNEW/ZTE
za(ia) = zaNEW

c

do 426 iAn = ifirstAn, ilastAn

za_an(ia,iAn) = chordz * za_an(ia,iAn) / zte

+ za_zte * zte_an(iAn)

426 continue
c

do 488 iBn = ifirstBn, ilastBn
za_bn(ia,iBn) = chordz * za_bn(ia,iBn) / zte

+ za_zte * zte_bn(iBn)
488 continue
500 continue
C

RETURN
END ! ZAnorm

subroutine FinddUe
c

c **
c * this subroutine computes due/dAn, due/dBn, ddstar/dAn,Bn and *
c * dH/dAn,Bn at the airfoil & wake nodes added 7/26/90 *
c **

c
INCLUDE 'xfoil.inc'

c

do 15 is = 1, 2
do 20 ibl = 2, nbl(is)

i = ipan(ibl,is)
iv = isys(ibl,is)
uei = uedg(ibl,is)
mdi = mass(ibl,is)
thi = thet(ibl,is)
dsi = mdi / uei

c

coeffl = mdi / uei**2
coeff2 = dsi / thi**2

c

c ** compute duedg/dAn at each airfoil node
do 26 iAn = ifirstAn, ilastAn

iRHS = 3 + iAn - ifirstAn
c

sum = 0.0
do 30 js = 1, 2

do 40 jbl = 2, nbl(js)

j = ipan(jbl,js)
jv = isys(jbl,js)
sum = sum + vti(ibl,is) * vti(jbl,js)

& * dij(i,j) * vdel(3,iRHS,jv)
40 continue
30 continue

c
ue_an(i,iAn) = qa_an(i,iAn) + sum
ds_an(i,iAn) = -vdel(3,iRHS,iv) / uei

& - coeffl * ue_an(i,iAn)
26 continue

c
c ** compute duedg/dBn at each airfoil node

do 88 iBn = ifirstBn, ilastBn
iRHS = (3 + numAn) + iBn - ifirstBn

c

sum = 0.0
do 90 js = 1, 2

do 100 jbl = 2, nbl(js)

j = ipan(jbl,js)
jv = isys(jbl,js)
sum = sum + vti(ibl,is) * vti(jbl,js)

& * dij(i,j) * vdel(3,iRHS,jv)
100 continue
90 continue

c

ue_bn(iiBn) = qa-bn(i,iBn) + sum
dsbn(i,iBn) = -vdel(3,iRHS,iv) / uei

& - coeffl * ue_bn(i,iBn)
88 continue
20 continue
15 continue

c
- return

end !subroutine finddUe

subroutine FinddCl
c
c **
c * this subroutine computes dCl/dAn, dCl/dBn AND dCm/dAn, dCm/dBn at
c * the airfoil & wake nodes added 7/26/90

Cc

INCLUDE 'xfoil.inc'

real CPG1_an(ifirstAn:maxAn), CPG1_bn(ifirstBn:maxBn)
c

SA = SIN(ARAD)
CA = COS(ARAD)

C

BETA = SQRT(1.0 - MINF**2)
BFAC = 0.5+MINF**2 / (1.0 + BETA)

C
I=1
CGINC = 1.0 - (GAM(I)/QINF)**2
denom = beta + Bfac * CGINC
CPG1 = CGINC / denom

C
do 126 iAn = ifirstAn, ilastAn

c ** zeroing out sensitivities added 7/26/90
cl_an(iAn) = 0.0
cm_an(iAn) = 0.0
CGINC_an = -2.0 * ue-an(i,iAn) / qinf**2
CPGian(iAn) = CGINC_an * (1.0 - CPGI * Bfac) / denom

126 continue
c

do 188 iBn = ifirstBn, ilastBn
c ** zeroing out sensitivities added 7/26/90

clbn(iBn) = 0.0
cm_bn(iBn) = 0.0
CGINCbn = -2.0 * uebn(i,iBn) / qinf**2
CPG1_bn(iBn) = CGINC_bn * (1.0 - CPG1 * Bfac) / denom

188 continue
C

DO 10 I=1, N
IP = I+1

IF(I.EQ.N) IP = 1

CGINC
denom
CPG2

1.0 - (GAM(IP)/QINF)**2
beta + Bfac * CGINC
CGINC / denom

= (0.5*(X(IP)+X(I)) - 0.25)*CA + 0.5*(Y(IP)+Y(I))*SA

= (0.5*(Y(IP)+Y(I)))*CA - 0.5*(X(IP)+X(I))*SA

(X(IP) - X(I))*CA + (Y(IP) - Y(I))*SA

= (Y(IP) - Y(I))*CA - (X(IP) - X(I))*SA

AG = 0.5 * (CPG2 + CPGI)

c ** compute An
do 226 iAn
CGINCan
CPG2_an

AG_an
DG_an

xlan
x2 an

yl_an

y2_an

AX_an

AY_an

sensitivities
= ifirstAn, ilastAn

= -2.0 * ue_an(ip,iAn) / qinf**2
= CGINC_an * (1.0 - CPG2 * Bfac) / denom

= 0.5 * (CPG2_an + CPG1_an(iAn))
= CPG2_an - CPG1_an(iAn)

= real(za_an(i ,iAn))
= real(za_an(ip,iAn))
= aimag(za_an(i ,iAn))
= aimag(za_an(ip,iAn))

= 0.5 * (x2_an + xl_an) * CA

+ 0.5 * (y2_an + yl_an) * SA

= 0.5 * (y2_an + yl_an) * CA

- 0.5 * (x2_an + xl_an) * SA

cl_an(iAn)

cm_an(iAn)

= cl_an(iAn) + dx* AG_an

= cm_an(iAn) - dx*(AG_an

- dy*(AG_an

- ag*(AX_an

* ax - DGan * dx / 12.0)

* ay - DGan * dy / 12.0)

* dx + AYan * dy)

CPG1_an(iAn) = CPG2_an
226 continue

c ** compute Bn
do 288 iBn

CGINC_bn
CPG2_bn

AG_bn
DG_bn

xl_bn

x2_bn

yl_bn

y2_bn

sensitivities

= ifirstBn, ilastBn

= -2.0 * ue_bn(ip,iBn) / qinf**2
= CGINC_bn * (1.0 - CPG2 * Bfac) / denom

= 0.5 * (CPG2_bn + CPGi_bn(iBn))

= CPG2_bn - CPGi_bn(iBn)

= real(za_bn(i ,iBn))

= real(za_bn(ip,iBn))

= aimag(za_bn(i ,iBn))
= aimag(za_bn(ip,iBn))

AXbn

AYbn

cl_bn(iBn) =
cmbn(iBn) =

0.5 * (x2_bn
0.5 * (y2_bn
0.5 * (y2_bn
0.5 * (x2_bn

cl_bn(iBn) +

cm_bn(iBn) -

+ xl_bn) *
+ yl bn) *
+ ylbn) *
+ xi_bn) *

dx* AG-bn

dx*(AG.bn *
dy*(AGbn *
ag*(AXbn *

ax - DG-bn * dx / 12.0)

ay - DGbn * dy / 12.0)
dx + AYTbn * dy)

CPGiLbn(iBn)
288 continue

= CPG2_bn

CPG1 = CPG2
10 CONTINUE

return
end !subroutine finddCl

subroutine FinddCd

$*##***#*** *$$##***************************************

* this subroutine computes dCd/dAn, dCd/dBn for the airfoil *
* added 7/26/90
********$##****#**********##**#****###***** *** *** *** **

INCLUDE 'xfoil.inc'

c ** compute dCd/dAn and dCd/dBn, w/o using Squire-Young relation
do 268 iAn = ifirstAn, ilastAn

iRHS = 3 + iAn - ifirstAn
cd_an(iAn) = -2.0 * vdel(2, iRHS, N+Nw)

268 continue
c

do 888 iBn = ifirstBn, ilastBn
iRHS = (3 + numAn) + iBn - ifirstBn
cd_bn(iBn) = -2.0 * vdel(2, iRHS, N+Nw)

888 continue
c

return
end !subroutine finddCd

subroutine FinddArea

c
c ***

c * This routine computes the airfoil area and area sensitivties *

c * assuming counterclockwise ordering. *
c ***
c

INCLUDE 'xfoil.inc'

c

TheArea = 0.0

c

do 5 iAn = ifirstAn, ilastAn

area_an(iAn) = 0.0

5 continue

c
do 7 iBn = ifirstBn, ilastBn

area_bn(iBn) = 0.0
7 continue

c

do 10 ia = 1, N-i

rx = x(ia+l) + x(ia)

ry = y(ia+l) + y(ia)
dx = x(ia+1) - x(ia)

dy = y(ia+i) - y(ia)

da = 0.25 * (rx * dy - ry * dx)

TheArea = TheArea + da

c
c ** compute sensitivities w.r.t An

do 26 iAn = ifirstAn, ilastAn
rx_an = real (za_an(ia+l,iAn)) + real (zaan(ia,iAn))
ry_an = aimag(za_an(ia+l,iAn)) + aimag(za_an(ia,iAn))
dx_an = real (zaan(ia+l,iAn)) - real (zaan(ia,iAn))

dy_an = aimag(za_an(ia+l,iAn)) - aimag(za_an(ia,iAn))
c

da_an = 0.25 * (rx_an * dy + rx * dy_an

&- ry_an * dx - ry * dxan)

area_an(iAn) = area_an(iAn) + da_an

26 continue
c
c ** compute sensitivities w.r.t Bn

do 88 iBn = ifirstBn, ilastBn
rx_bn = real (za_bn(ia+l,iBn)) + real (za_bn(ia,iBn))
ry_bn = aimag(za_bn(ia+l,iBn)) + aimag(zabn(ia,iBn))
dx_bn = real (zabn(ia+l,iBn)) - real (za_bn(ia,iBn))
dy_bn = aimag(za_bn(ia+l,iBn)) - aimag(zabn(ia,iBn))

c

da_bn = 0.25 * (rx_bn * dy + rx * dy_bn

& ry_bn * dx - ry * dx_bn)

area_bn(iBn) = area_bn(iBn) + da_bn

88 continue

10 continue

C

return

end !subroutine FinddArea

subroutine dFcost(ipt)
c

c ***

c * This routine computes Fcost = Fobj + sum of constraints. It also *

c * computes the gradient of Fcost.

c

INCLUDE 'xfoil.inc'
c

if (ipt.eq.i) then
c ** zero global Fcost and grad(Fcost)

Fcost(2) = 0.0
c

do 126 iAn = ifirstAn, ilastAn
Fcost_an(iAn) = 0.0

126 continue
c

do 188 iBn = ifirstBn, ilastBn
Fcost-bn(iBn) = 0.0

188 continue
endif

c
c
c ** compute global Fcost based on fcost at each design point

fipt = Fobj + 0.B * kost * SumConst(1, 0)

Fcost(2) = Fcost(2) + Weight(ipt) * fipt

c
c
c ** compute gradient of global Penalty function (Fcost)

do 26 iAn = ifirstAn, ilastAn
c ** determine dFobj/dAn

fipt_an = Fobj_An(iAn) + kost * SumConst(2, iAn)
Fcostan(iAn) = Fcost_an(iAn) + weight(ipt) * fipt_an

26 continue
c

do 88 iBn = ifirstBn, ilastBn
c ** determine dFobj/dBn

fiptbn = Fobj_Bn(iBn) + kost * SumConst(3, iBn)
Fcostbn(iBn) = Fcost_bn(iBn) + weight(ipt) * fiptbn

88 continue
c

return
end !subroutine dFcost

function SumConst (i, m)
c

C *********************** ***

c * This function:
c * i.) Sums constraints if i = 1

c * 2.) Sums d(constraints)/dAn if i = 2

c * 3.) Sums d(constraints)/dBn if i = 3

c
include 'xfoil.inc'

c
SumConst = 0.0

c

if (i.eq.1) then
do 10 j = 1, Nconst

SumConst = SumConst + OnOff(j) * Const(j)**2
10 continue

c
elseif (i.eq.2) then

do 20 j = 1, Nconst

SumConst = SumConst + OnOff(j) * Const(j) * Const_An(j,m)

20 continue
c

elseif (i.eq.3) then

do 30 j = 1, Nconst

SumConst = SumConst + OnOff(j) * Const(j) * Const_Bn(j,m)

30 continue
endif

c
return

end !function SumConst

subroutine Search
c

c * This subroutine picks a search direction (SdirAn,Bn). *
c ***

c

INCLUDE 'xfoil.inc'
c

TheLength = 0.0
c

c ** Steepest Descent Methods (Sdir = -grad(Fcost))

do 268 iAn = ifirstAn, ilastAn

SdirAn(iAn) = -Fcost_An(iAn)

TheLength = TheLength + SdirAn(iAn)**2
268 continue

c

do 288 iBn = ifirstBn, ilastBn
SdirBn(iBn) = -Fcost_Bn(iBn)
TheLength = TheLength + SdirBn(iBn)**2

288 continue
c

TheLength = sqrt(TheLength)
c

return
end !subroutine Search

function dot(Ani, Bnl, An2, Bn2)
c

c * This function computes the dot product of two vectors in which the
c * the components are grouped in terms of An's and Bn's. *

c **
c

INCLUDE 'xfoil.inc'
real Anl(ifirstAn:maxAn), Bni(ifirstBn:maxBn)
real An2(ifirstAn:maxAn), Bn2(ifirstBn:maxBn)

c
dot = 0.0

c

do 26 iAn = ifirstAn, ilastAn
dot = dot + Anl(iAn) * An2(iAn)

26 continue
c

do 88 iBn = ifirstBn, ilastBn
dot = dot + Bnl(iBn) * Bn2(iBn)

88 continue
c

return
end !function dot

subroutine NextPt

* This routine computes the next optimization point based on the old *
* current optimization point, epsilon, and the search direction. *

INCLUDE 'xfoil.inc'

real dFdE(0:2)
logical EndIt

c ** steepest descent with epsilon

call PickEpsilon
call NewCn
call coords

c
do 5 ipt = 1, NumPts

call guessBL (ipt)
call Analiz (ipt)

5 continue

constant
! prevent epsilon from being too big
! compute new An's and Bn's
! compute new geometry

! update BL variables
! compute viscous solution

return
end !subroutine NextPt

subroutine PickEpsilon

* No matter what epsilon should be used, prevent it from being too large.*

INCLUDE 'xfoil.inc'

epsilon(1) = epsilon(2)

do 26 iAn = ifirstAn, ilastAn
delta = epsilon(1) * SdirAn(iAn)
deltaMax = PercentMax * real(Cn(iAn))
epsilonMax = abs(deltaMax / SdirAn(iAn))

c

if (abs(delta).gt.abs(deltaMax)) then
epsilon(1) = amini(epsilonMax, epsilon(1))

endif
26 continue

c

return
end !subroutine PickEpsilon

! delta w/ const. epsilon
! max. allowed delta
! epsilon for max delta

subroutine EndCheck(iter)

C

c ***
c * This routine determines if an ending condition has been reached. *

c * Routine liberated from (with small modifications):
c * 'Numerical Optimization Techniques for Engineering Design: with *

c * Applicationis', Garret N. Vanderplaats, McGraw-Hill Book Company,
c * page 102. *

c

parameter (RelMin = 1.Oe-3, Nstar = 3)
c

INCLUDE 'xfoil.inc'
c

if (iter.eq.O) then
c ** cannot check changes before Ist iteration
c ** compute absolute min. limit only

AbsMin = 0.001 * Fcost(2)
c

else
c ** CONDITION # i: stop if number of iterations exceed a maximum

if (iter.ge.MaxIt) then
LTheEnd = .true.
write (6,*)

& 'OPTZ: stopped due to excessive number of iterations.'
return

endif
c
c
c ** CONDITION # 2: stop if absolute change in Fcost <= AbsMin
c ** must occur Nstar times in a row

dFabs = abs(Fcost(2) - Fcost(1))
c

if (dFabs.gt.AbsMin) then
jEnd(2) = 0

else
jEnd(2) = jEnd(2) + 1

endif
c

if (jEnd(2).ge.Nstar) then
LTheEnd = .true.
write (6,26)

& 'OPTZ: stopped due to absolute change in Fcost <= ', AbsMin
return

endif
c
c
c ** CONDITION # 3: stop if relative change in Fcost <= RelMin
c ** must occur Nstar times in a row

dFrel = dFabs / amax1(abs(Fcost(2)),1.Oe-10)
c

if (dFrel.gt.RelMin) then
jEnd(3) = 0

else
jEnd(3) = jEnd(3) + 1

endif
c

if (jEnd(3).ge.Nstar) then
LTheEnd = .true.
write (6,26)

& 'OPTZ: stopped due to relative change in Fcost <= ', RelMin
return

endif
c

C
c ** CONDITION # 4: stop if any design point viscous solution unconverged

if (.not.Lconv) then
LTheEnd = .true.
write (6,*)

& 'OPTZ: stopped due to non-convergence of viscous solution.'
return

endif
endif

C

c ** Assign previous Fcost values and reinitialize Lconv
Fcost(1) = Fcost(2)

c
26 format (a, f9.7)

return
end !subroutine EndCheck

subroutine NewCn
c

c * This routine computes the Cn's at the new optimization point. *
c ***

c
INCLUDE 'xfoil.inc'

c

if (Lthick.or.Lcamber) then
c ** compute changes needed in An's and add to Cn's

do 126 iAn = ifirstAn, ilastAn
deltaAn(iAn) = epsilon(i) * SdirAn(iAn)
Cn(iAn) = Cn(iAn) + cmplx(deltaAn(iAn), 0.0)

126 continue
c
c ** compute changes needed in Bn's and add to Cn's

do 188 iBn = ifirstBn, ilastBn
deltaBn(iBn) = epsilon(1i) * SdirBn(iBn)

Cn(iBn) = Cn(iBn) + cmplx(O.0, deltaBn(iBn))
188 continue

endif
c

return
end !subroutine NewCn

subroutine coords

c

c ***
c * This routine computes the coordinates of an airfoil geometry given *
c * the Cn distribution.
c ***

c
INCLUDE 'xfoil.inc'

c
c ** calculate new airfoil geometry

call mapgen
C
c ** convert new geometry to real coords and store in buffer

NB = NC

DO 95 I=1, NB

XB(I) = REAL(ZC(I))
YB(I) = AIMAG(ZC(I))

95 CONTINUE
C
C---- spline new buffer airfoil

CALL SCALC (XB,YB, SB,NB)
CALL SPLINE(XB,XBP,SB,NB)
CALL SPLINE(YB,YBP,SB,NB)

c
c ** repanel airfoil using old normalized arc length

do 26 ia = 1, N
x(ia) = seval(snorm(ia) * sb(NB), xb, xbp, sb, NB)
y(ia) = seval(snorm(ia) * sb(NB), yb, ybp, sb, NB)

26 continue
c
c ** spline new current airfoil

CALL SCALC(X,Y,S,N)
CALL SPLINE(X,XP,S,N)
CALL SPLINE(Y,YP,S,N)

CALL LEFIND(SLE,X,XP,Y,YP,S,N)
C
C---- set various flags for new airfoil

LGAMU = .FALSE.
LQINU = .FALSE.
LWAKE = .FALSE.
LQAIJ = .FALSE.

LADIJ
LWDIJ

LSCINI

LQSPEC
LIPAN

LBLINI

LVCONV

.FALSE.

.FALSE.

.FALSE.

.FALSE.

.true.

.true.

.true.

C

C---- calculate panel angles for panel routines

CALL APCALC

C
CALL NCALC(X,Y,S,N,NX,NY)

return
end !subroutine coords

subroutine guessBL(ipt)

* This routine approximates the new BL variables values with a linear *
* approximation using the BL variable sensitivities. *

INCLUDE 'xfoil.inc'

INCLUDE 'xbl.inc'

call dumplN (ipt)

DO 5 IS=i, 2

DO 50 IBL=2, NBL(IS)

I = IPAN(IBL,IS)

IV = ISYS(IBL,IS)

c ** calculate change in BL variables
dctau = 0.0

dthet = 0.0

dmass = 0.0

duedg = 0.0
ddstr = 0.0

c ** add changeE

do 26 iAn =
iRHS =

dctau =

dthet =

dmass =

duedg =

ddstr =

due to deltaAn

ifirstAn, ilastAn
3 + iAn - ifirstAn

dctau - deltaAn(iAn)

dthet - deltaAn(iAn)

dmass - deltaAn(iAn)

duedg + deltaAn(iAn)

ddstr + deltaAn(iAn)

* vdel(l,iRHS,iv)
* vdel(2,iRHS,iv)
* vdel(3,iRHS,iv)
* ue_an(i,iAn)
* dsan(i,iAn)

26 continue

add changes due to deltaBn
do 88 iBn = ifirstBn, ilastBn

iRHS = (3 + numAn) + iBn -
dctau = dctau - deltaBn(iBn)
dthet = dthet - deltaBn(iBn)
dmass = dmass - deltaBn(iBn)
duedg = duedg + deltaBn(iBn)
ddstr = ddstr + deltaBn(iBn)

continue

ifirstBn
* vdel(i,iRHS,iv)
* vdel(2,iRHS,iv)
* vdel(3,iRHS,iv)
* uebn(i,iBn)
* ds-bn(i,iBn)

c

C

c ** calculate movement of transition point
if (ibl.eq.(itran(is)-1)) then

dxtr = xtr_al(is) * dctau + xtr.tl(is) * dthet
& + xtrdl(is) * ddstr + xtr.ui(is) * duedg

c

xtrNEW = xtr(is) + dxtr
ijump = 0 ! number of panels xtran has shifted

determine which BL panel new trans. pt. lies on
if (xtrNEW.ge.xtr(is)) then

search in downstream direction
iNew = ipan(ibl + ijump + i,is)

if (xtrNEW.gt.x(iNew)) then

ijump = ijump + 1
go to 100

endif

ilow = ibl
ihigh = ibl + ijump

else
search in upstream direction
iNew = ipan(ibl - ijump - i,is)

if (xtrNEW.lt.x(iNew)) then

ijump = ijump - 1
go to 200

endif

ilow = ibl - ijump
ihigh = ibl

endif
endif

compute estimates of new BL variables
if ((ibl.gt.ilow).and.(ibl.le.ihigh)) then

extrapolate over transition point movement area
linear extrapolation for CTAU, THET, and UEDG
CTAU(IBL,IS) = 2.0 * CTAU(IBL-1,IS) - CTAU(IBL-2,IS)
THET(IBL,IS) = 2.0 * THET(IBL-1,IS) - THET(IBL-2,IS)

100

C

C **

88

c **

c **
100

c **

200

c

c
C **

c **

UEDG(IBL,IS) = 2.0 * UEDG(IBL-1,IS) - UEDG(IBL-2,IS)
c

c ** straight across approximation for MASS and DSTR
mass(ibl,is) = mass(ibl-1,is)
DSTR(IBL,IS) = DSTR(IBL-I,IS)

else
c ** no change in panel of transition pt.

CTAU(IBL,IS) = CTAU(IBL,IS) + DCTAU
THET(IBL,IS) = THET(IBL,IS) + DTHET
UEDG(IBL,IS) = UEDG(IBL,IS) + DUEDG
mass(ibl,is) = mass(ibl,is) + dmass
DSTR(IBL,IS) = DSTR(IBL,IS) + DDSTR

endif
50 CONTINUE
5 CONTINUE

c

return
end !subroutine guessBL

subroutine dumpIN(ipt)
c

c **

c * This routine reads in all variables from the scrathc file that *
c * may haved changed between design points. *
c ***

c
INCLUDE 'xfoil.inc'

INCLUDE 'xbl.inc'

c

num = NumDump + ipt
rewind (unit = num)

c

c ** read in variables for OUTDATA
read (num,*) adeg, Cl, Cm, Cd, xtr(1), xtr(2), IterConv

c
c ** read in single variables

read (num,*) SST, SST_GO,SST_GP,ALFGAM,CLGAM,CMGAM,AGO,IST,
& SSPLE,SMAX,IQI,IQ2,ALFQSP,CLQSP,CMQSP,CIRC,
& ARAD,AWAKE,AVISC,MINF,TKLAM,CPSTAR,QSTAR,WAKLEN,

& GAMTE,SIGTE,DXTE,DYTE,DSTE,ANTE,ASTE,
& CVPAR,CTERAT,CTRRAT,XSREFI,XSREF2,XPREF1,XPREF2,
& RETYP,REINF, Cn(O), Cn(1), nbl(1), nbl(2), clspec

c
c ** read in BL variables

do 10 is = 1, 2
read (num,*) XTR1(is), XTR(is), XSSITR(is),

& IBLTE(is), NBL(is), ITRAN(is),TFORCE(is),
& xtrai(is), xtrti(is), xtrdli(is),

101

& xtr.ul(is), xtr-xl(is)
c

do 20 ibl = 2, nbl(is)
read (num,*) XSSI(ibl,is), CTAU(ibl,is), UEDG (ibl,is),

& THET(ibl,is), MASS(ibl,is), DSTR (ibl,is),
& TAU (ibl,is), UINV(ibl,is), UINV_A(ibl,is),
& IPAN(ibl,is), ISYS(ibl,is), VTI (ibl,is)

c

iv = isys(ibl,is)
do 30 iRHS = i, numRHS

read (num,*) vdel(1,iRHS,iv), vdel(2,iRHS,iv),
& vdel(3,iRHS,iv)

30 continue
20 continue
10 continue

c
c ** read in sensitivity stuf

do 40 ia = 1, N+Nw
do 50 iAn = ifirstAn, ilastAn

read (num,*) ue_an(ia,iAn), ds_an(ia,iAn)
50 continue

c
do 60 iBn = ifirstBn, ilastBn

read (num,*) ue_bn(ia,iBn), dsbn(ia,iBn)
60 continue
40 continue

c
return
end !subroutine dumpIN

SUBROUTINE ZETAF(ZO, ZETO, ia)
c
C---
C Airfoil-to-circle mapping function.
C
C ZO airfoil plane point
C ZETO circle plane point
C
C ZETO is assumed to initially contain the
C circle-plane position of a neighboring point.
C This is used as an initial guess for efficient
C iteration to the new point.
C
C If ZETO is passed in as (0,0), then a fresh
C guess is made here.
C---
c

INCLUDE 'xfoil.inc'

102

COMPLEX ZO, ZETO, zetinv, ZO_ZETO, DZETO, ZOITER, ZPLATE
C
C---- make initial guess for Zeta if passed in as (0,0)

ZETABS = REAL(ZETO)**2 + AIMAG(ZETO)**2
c

IF(ZETABS .EQ. 0.0) THEN
C----- find position relative to a plate of chord 4 replacing the airfoil

ZPLATE = 4.0*(ZO-ZLE)/CHORDZ - 2.0
C
C----- set initial guess with inverse Joukowsky transform

ZETO = 0.5*(ZPLATE + SIGN(I.0,REAL(ZPLATE))
& * SQRT(ZPLATE**2 - 4.0))
ENDIF

C
C---- solve z(ZETO) - ZO = 0 by Newton-Raphson

DO 10 ITER=1, 200
zetinv = 1.0 / zeto

c

CALL ZF(ZETO, ZOITER, ia)
CALL ZFD(ZETinv, ZO_ZETO)

C

DZETO = (ZO-ZOITER)/ZO_ZETO
ZETO = ZETO + DZETO

C

IF(CABS(DZETO) .LE. 1.0E-5) RETURN
10 CONTINUE

C

WRITE(6,*) 'ZETAF: Convergence failed. Continuing ...'
RETURN
END

SUBROUTINE ZF(ZETO, ZO, ia)
c
C---
C Circle-to-airfoil mapping function.
C
C ZETO circle plane point
C ZO airfoil plane point
C
C The airfoil plane point ZO is calculated by
C integrating dz/dZeta radially out in the circle
C plane, starting on the circle where z(Zeta)
C is already known.
C---

c
INCLUDE 'xfoil.inc'

c

103

COMPLEX ZETO, ZO, ZLOG, ZETINV, ZETi, ZET2, ZZETA
C

C---- angle and log(r) of point in circle plane

ZLOG = CLOG(ZETO)
WCZ = AIMAG(ZLOG)
GCZ = REAL(ZLOG)

C

C---- make sure angle is between 0 and 2pi

IF(WCZ.LT.O.0) WCZ = WCZ + 2.0 * 3.14159265
C

C---- set z on airfoil at the point with same circle plane angle as ZETO

ICO = INT(WCZ/DWC) + I
WCO = DWC*FLOAT(ICO-1)

IF(ICO.GE.NC) ICO = 1

ZO = ZC(ICO) + (ZC(ICO+I)-ZC(ICO))*(WCZ-WCO)/DWC
C

C---- number of radial integration intervals uniform in log(r)
C (i.e. exponential stretching in Zeta is used)

NR = IABS(INT(GCZ/0.05)) + I

C
C---- log(r) increment for radial integration

DG = GCZ/FLOAT(NR)
C

RRAT = EXP(DG)
C

C---- set Zeta on circle contour (airfoil surface) and first point off

ZETI = CMPLX(COS(WCZ) , SIN(WCZ))
ZET2 = ZETI*RRAT

C

C---- integrate radially out

DO 100 IR=I, NR

ZETINV = 2.0/(ZETI+ZET2)

call zfd(zetinv, z_zeta)
c
C------ perform integration

ZO = ZO + Z_ZETA*(ZET2-ZETI)
C
C------ increment zeta

ZETI = ZET2

ZET2 = ZET1*RRAT

100 CONTINUE
C

RETURN
END

104

SUBROUTINE ZFD(ZETINV, ZOZETO)
C

C---

C Circle-to-airfoil mapping derivative function.
C
C ZETINV 1.0/circle plane point
C ZOZETO mapping derivative
C---

c

INCLUDE 'xfoil.inc'

COMPLEX CNSUM, ZETINV, ZOZETO

CNSUM = CN(MC)
DO 10 M=MC-1, 0, -1

CNSUM = CN(M) + CNSUM*ZETINV
10 CONTINUE

ZOZETO = CEXP(CNSUM) * (1.0 - ZETINV)**(1.0-AGTE)"

RETURN
END

D.1.3 User Modifiable Routines

Certain routines require that the user modify the code. These subroutines are contained

in the file 'xuser.f' and are listed below:

C

* The following sensitivities are calculated and stored. They can *
* used as building blocks: *
*F *

Quantity

Lift Coefficient
Moment Coefficient

Drag Coefficient

Airfoil geometry

Inviscid velocity on airfoil

Edge Velocity

Displacement Thickness

Friction Coefficient

Momentum Thickness

Mass Defect
Airfoil Area

Variable Names in XFOIL

clan, clbn
cman, cmbn
cdan, cd-bn
zaan, za-bn
qa_an, qabn
ue_an, ue-bn
ds_an, ds_bn
-vdel(1,iRHS,iv)
-vdel(2,iRHS,iv)
-vdel(3,iRHS,iv)
area_an, area-bn

105

subroutine constrain
c

c * This routine calculates sensitivities of the constraints *

c *

c * USER MODIFIABLE ROUTINE *
c ***
c

INCLUDE 'xfoil.inc'
c

Nconst = 0 ! Total number of constraints
Iconst = 0 ! Current constraint index

c
c
c
c ** CONSTRAINT # 1: minimum thickness at x/c = 0.95 (inequality)

tcmin = 0.01 ! minimum thickness
Nconst = Nconst + 1

Iconst = Iconst + 1

c
c ** the following is a crude algorithm to find the
c ** nodes surrounding x/c = 0.95

xconst = 0.95

c

do 10 ia = 2, N
if ((x(ia).lt.xconst).and.(x(ia-i).ge.xconst)) then

iaa = ia-i
iab = ia

elseif ((x(ia).gt.xconst).and.(x(ia-i).le.xconst)) then
iad = ia-1
iae = ia

endif

10 continue
c

coeffl = (xconst - x(iaa)) / (x(iab) - x(iaa))
coeff2 = (xconst - x(iae)) / (x(iad) - x(iae))

c
c ** compute thickness at xconst

yu = coeffi * (y(iab) - y(iaa)) + y(iaa)
yl = coeff2 * (y(iad) - y(iae)) + y(iae)
tc = yu - yl
print*, 'tmin = ', tc

c
c ** define constraint

Const(Iconst) = tc - tcmin
c

c ** compute constraint gradient
do 26 iAn = ifirstAn, ilastAn

yu_an = coeffl *
& (aimag(zaan(iab,iAn)) - aimag(zaan(iaa,iAn)))
& + aimag(za-an(iaa,iAn))

c

ylan = coeff2 *
& (aimag(zaan(iad,iAn)) - aimag(za_an(iae,iAn)))

106

+ aimag(zaan(iae,iAn))
c

ConstAn(Iconst,iAn) = yuan - yl-an
26 continue

c

do 88 iBn = ifirstBn, ilastBn
yubn = coeffl *

& (aimag(za_bn(iab,iBn)) - aimag(za-bn(iaa,iBn)))
& + aimag(za-bn(iaa,iBn))

C

yl-bn = coeff2 *
& (aimag(za_bn(iad,iBn)) - aimag(zabn(iae,iBn)))
& + aimag(za_bn(iae,iBn))

c

ConstBn(Iconst,iBn) = yubn - yl-bn
88 continue

c

c ** is Constraint active?
if (const(Iconst).lt.0.0) then

print*, '******* CONSTRAINT VIOLATED ******'
OnOff(Iconst) = 1.0 ! 1.0 => active constraint

else
OnOff(Iconst) = 0.0 ! 0.0 => inactive constraint

endif
c
c
c
c
c ** CONSTRAINT # 2: constrained area (equality)

Aconst = 0.1 ! allowed area
Nconst = Nconst + 1
Iconst = Iconst + I

c
c ** define constraint

Const(Iconst) = TheArea - Aconst
c
c ** compute constraint gradient

do 126 iAn = ifirstAn, ilastAn
Constan(Iconst,iAn) = Areaan(iAn)

126 continue
c

do 188 iBn = ifirstBn, ilastBn
Const-bn(Iconst,iBn) = Area_bn(iBn)

188 continue
c
c ** is Constraint active?

OnOff(Iconst) = 1.0 ! equality constraints always active
print*, 'AREA = ', TheArea

c
c
c ** CONSTRAINT # 3:
c

return
end !subroutine constrain

107

subroutine dFobj

$8#*******###****2$**
* This routine fills the Fobj (for local design point) *

* array with the objective function *

* USER MODIFIABLE ROUTINE *
SSS~***S******t~************************************

include 'xfoil.inc'

c ** Assign Fobj the function
if (OptzName.eq.'Cl')

if (OptzName.eq.'Cd')

if (OptzName.eq.'Cl/Cd')

if (OptzName.eq.'other')

to be optimized

Fobj = -cl

Fobj = cd

Fobj = -(cl/cd)

Fobj = cd ! User supplied

c ** compute gradient of Fobj
do 26 iAn = ifirstAn, ilastAn

if (OptzName.eq.'Cl') Fobj_An(iAn) = -clan(iAn)
if (OptzName.eq.'Cd') FobjAn(iAn) = cdan(iAn)
if (OptzName.eq.'Cl/Cd')

& FobjAn(iAn) = -(Cl/Cd) * (cl-an(iAn)/Cl - cdan(iAn)/Cd)
if (OptzName.eq.'other') FobjAn(iAn) = cd_an(iAn) ! User supplied

26 continue

do 88 iBn = ifirstBn, ilastBn
if (OptzName.eq.'Cl') Fobj_Bn(iBn) = -clbn(iBn)
if (OptzName.eq.'Cd') Fobj_Bn(iBn) = cdbn(iBn)
if (OptzName.eq.'Cl/Cd')

& FobjBn(iBn) = -(Cl/Cd) * (clbn(iBn)/Cl - cdbn(iBn)/Cd)
if (OptzName.eq.'other') Fobj_Bn(iBn) = cdbn(iBn) ! User supplied

88 continue
c

if (OptzName.eq.'other') OptzName = 'Cd'
return

end !subroutine dFobj

! User supplied

D.2 Modified XFOIL Code

The following routines from XFOIL's file 'xbl.f' have minor additions marked by '##':

c
C ***

*

Copyright 1989

* Massachusetts
Institute

of Technology

* All Ri

ghts
Reserved

*

* Commercial use and/or reproduction without *

108

...... Rift Reserved

C * license prohibited. Licensing agent: *
C * *
C * MIT Technology Licensing Office *
C * (617) 253-6966 *
C * *

C * Academic and research use unrestricted by *
C * verbal permission from: *
C * *
C * Mark Drela (617) 253-0067 *
C *
C
C

c ## NOTE: modifications for optimization routine are marked with: ##
c

SUBROUTINE SETBL
C..

C Sets up the BL Newton system coefficients
C for the current BL variables and the edge
C velocities received from SETUP. The local
C BL system coefficients are then
C incorporated into the global Newton system.
C........

INCLUDE 'xfoil.inc'
INCLUDE 'xbl.inc'
REAL USAV(IVX,2)
REAL UIM(2*IVX), U2_M(2*IVX)
REAL DIM(2*IVX), D2_M(2*IVX)
REAL ULEI1M(2*IVX), ULE2_M(2*IVX)
REAL UTEIM(2*IVX), UTE2_M(2*IVX)

C
C---- set gas constant (= Cp/Cv)

GAMBL = GAMMA
GMIBL = GAMMI

C
C---- set parameters for compressibility correction

QINFBL = QINF
TKBL = TKLAM

C
C---- stagnation density and i/enthalpy

RSTBL = (1.0 + 0.5*GMIBL*MINF**2) ** (1.0/GAMBL)
HSTINV = GMIBL*(MINF/QINFBL)**2 / (1.0 + O.5*GMIBL*MINF**2)

C
C---- Sutherland's const./To (assumes stagnation conditions are at STP)

HVRAT = 0.37
C
C---- set Reynolds number based on freestream density, velocity, viscosity

HERAT = 1.0 - O.5*QINFBL**2*HSTINV
REY = REINF * SQRT((HERAT)**3) * (1.0+HVRAT)/(HERAT+HVRAT)

C
C---- set the CL used to define Reynolds number

IF(LALFA) THEN
CLREY = CL
ELSE
CLREY = CLSPEC

109

ENDIF
C

IF(LALFA .AND. RETYP.GT.1 .AND. CLREY.LT.O.0S)
& WRITE(6,*) 'SETBL warning: CL < 0.05 ... Re(CL) may blow up.'

C
C---- set actual Reynolds number based on CL

IF(RETYP.EQ.1) REYBL = REY
IF(RETYP.EQ.2) REYBL = REY/SQRT(ABS(CLREY))

IF(RETYP.EQ.3) REYBL = REY/ABS(CLREY)
C

AMCRIT = ACRIT

C
C---- save TE thickness

DWTE = WGAP(1)
C

IF(.NOT.LBLINI) THEN
C----- initialize BL by marching with Ue (fudge at separation)

WRITE(6,*) ')
WRITE(6,*) 'Initializing BL ...'
CALL MRCHUE
LBLINI = .TRUE.
ENDIF

C

WRITE(6,*) '
C
C---- march BL with current Ue and Ds to establish transition

CALL MRCHDU
C

DO 5 IS=I, 2
DO 6 IBL=2, NBL(IS)
USAV(IBL,IS) = UEDG(IBL,IS)

6 CONTINUE

5 CONTINUE

C

CALL UESET
C

DO 7 IS=1, 2
DO 8 IBL=2, NBL(IS)
TEMP = USAV(IBL,IS)
USAV(IBL,IS) = UEDG(IBL,IS)
UEDG(IBL,IS) = TEMP
DUE = UEDG(IBL,IS) - USAV(IBL,IS)

8 CONTINUE

7 CONTINUE
C

ILE1 = IPAN(2,1)
ILE2 = IPAN(2,2)
ITE1 = IPAN(IBLTE(1),I)
ITE2 = IPAN(IBLTE(2),2)

C

JVTE1 = ISYS(IBLTE(1),i)

JVTE2 = ISYS(IBLTE(2),2)
C

DULEl = UEDG(2,1) - USAV(2,I)

110

DULE2 = UEDG(2,2) - USAV(2,2)

C
C---- set LE Ond TE Ue sensitivities wrt all m values

DO 10 Jt=i, 2
DO 110 JBL=2, NBL(JS)

J = IPAN(JBL,JS)
JV = ISYS(JBL.JS)

ULEIM(JV) = -VTI(2,1)*VTI(JBL,JS)*DIJ(ILEI,J)
ULE2_M(JV) = -VTI(2,2)*VTI(JBL,JS)*DIJ(ILE2,J)
UTEI_M(JV) = -VTI(IBLTE(I),I)*VTI(JBL,JS)*DIJ(ITEI,J)
UTE2_M(JV) = -VTI(IBLTE(2),2)*VTI(JBL,JS)*DIJ(ITE2,J)

110 CONTINUE
10 CONTINUE

C
ULE1_A = UINV A(2,1)
ULE2-A = UINV-A(2,2)

C
C**** Go over each boundary layer/wake

DO 2000 IS=1, 2
C
C---- there is no station "1" at similarity, so zero everything out

DO 20 JS=I, 2
DO 210 JBL=2, NBL(JS)

JV = ISYS(JBL,JS)

UIM(JV) = 0.
D1_M(JV) = 0.

210 CONTINUE
20 CONTINUE

UI_A = 0.

DI1A = 0.

C
DUEl = 0.
DDS1 = 0.

C

C---- similarity station pressure gradient parameter x/u du/dx
IBL = 2
BULE = 1.0

C
C---- set forced transition arc length position

CALL XIFSET(IS)
c

TRAN = .FALSE.
TURB = .FALSE.

C
C**** Sweep downstream setting up BL equation linearizations

DO 1000 IBL=2, NBL(IS)
C

IV = ISYS(IBL,IS)
C

SIMI = IBL.EQ.2

WAKE = IBL.GT.IBLTE(IS)
C

I = IPAN(IBL,IS)
C

111

C---- set primary variables for current station
XSI = XSSI(IBL,IS)
AMI = CTAU(IBL,IS) ! used if IBL .LT. ITRAN(IS)
CTI = CTAU(IBL,IS) ! used if IBL .GE. ITRAN(IS)
UEI = UEDG(IBL,IS)
THI = THET(IBL,IS)
MDI = MASS(IBL,IS)

C

DSI = MDI/UEI
c

c ## Modifications made for Optimization study, April 6, 1990
ii = ipan(ibl-l,is)
if (.not.simi) termi = mass(ibl-1,is) / uedg(ibl-1,is)**2,

term2 = mass(ibl ,is) / uedg(ibl ,is)**2
C

IF(WAKE) THEN
IW = IBL - IBLTE(IS)
DSWAKI = WGAP(IW)

ELSE
DSWAKI = 0.
ENDIF

C
D2_M2 = I.0/UEI

D2_U2 = -DSI/UEI

C

DO 30 JS=I, 2
DO 310 JBL=2, NBL(JS)
J = IPAN(JBL,JS)

JV = ISYS(JBL,JS)
U2_M(JV) = -VTI(IBL,IS)*VTI(JBL,JS)*DIJ(I,J)
D2_M(JV) = D2_U2*U2_M(JV)

310 CONTINUE
30 CONTINUE

D2_M(IV) = D2_M(IV) + D2_M2

C
U2_A = UINV_A(IBL,IS)
D2_A = D2_U2*U2_A

C
C---- "forced" changes due to mismatch between UEDG and USAV=UINV+dij*MASS

DUE2 = UEDG(IBL,IS) - USAV(IBL,IS)

DDS2 = D2_U2*DUE2
C

C---- check for transition and set TRAN, XT, etc. if found
IF((.NOT.SIMI) .AND. (.NOT.TURB)) CALL TRCHEK(IBL,IS)

C
C---- assemble 10x4 linearized system for dCtau, dTh, dDs, dUe, dXi
C at the previous "I" station and the current "2" station
C

IF(IBL.EQ.IBLTE(IS)+I) THEN
C
C----- define quantities at start of wake, adding TE base thickness to Dstar

TTE = THET(IBLTE(1),I) + THET(IBLTE(2),2)
DTE = DSTR(IBLTE(1),1) + DSTR(IBLTE(2),2) + ANTE
CTE = (CTAU(IBLTE(1),1)*THET(IBLTE(1),1)

112

& + CTAU(IBLTE(2),2)*THET(IBLTE(2),2)) / TTE

CALL TESYS(CTE,TTE,DTE)

TTETTE1 = 1.0
TTETTE2 = 1.0
DTEMTE1 = 1.0 / UEDG(IBLTE(1),I)
DTEUTE1 = -DSTR(IBLTE(1),I) / UEDG(IBLTE(1),I)
DTEMTE2 = 1.0 / UEDG(IBLTE(2),2)

DTEUTE2 = -DSTR(IBLTE(2),2) / UEDG(IBLTE(2),2)

CTECTE1 = THET(IBLTE(1),I)/TTE
CTECTE2 = THET(IBLTE(2),2)/TTE

CTETTE1 = (CTAU(IBLTE(1),I) - CTE)/TTE
CTETTE2 = (CTAU(IBLTE(2),2) - CTE)/TTE

C
C----- re-define Di sensitivities wrt m since Di depends on both TE Ds values

DO 35 JS=i, 2
DO 350 JBL=2, NBL(JS)
J = IPAN(JBL,JS)
JV = ISYS(JBL,JS)
DIM(JV) = DTE_UTE1*UTEI_M(JV) + DTEUTE2*UTE2_M(JV)

350 CONTINUE
35 CONTINUE

Di_M(JVTE1) = D(JVTE) = D1)(JVTEi) + DTEMTE1

DI_M(JVTE2) = DI_M(JVTE2) + DTEMTE2
C
C----- "forced" changes from UEDG --- USAV=UINV+dij*MASS mismatch

DUE1 = 0.
DDS1 = DTEUTEI*(UEDG(IBLTE(1),I) - USAV(IBLTE(1),1))

& + DTEUTE2*(UEDG(IBLTE(2),2) - USAV(IBLTE(2),2))
C

ELSE

CALL BLSYS
C

ENDIF
C
C---- Save wall shear for plotting output

TAU(IBL,IS) = 0.5*R2*U2*U2*CF2
C
C---- set XI sensitivities wrt LE Ue changes

IF(IS.EQ.1) THEN
XIULE1 = SSTCGO
XIULE2 = -SSTGP
ELSE
XIULE1 = -SSTGO
XIULE2 = SST_GP
ENDIF

C
C---- stuff BL system coefficients into main Jacobian matrix
C

DO 40 JV=i, NSYS
VM(1,JV,IV) = VSI(1,3)*DIM(JV)

+ VS2(1,3)*D2_M(JV)

+ (VS1(1,5) + VS2(1

+ VSI(1,4)*UI_M(JV)
+ VS2(1,4)*U2_M(JV)

,5))

113

& *(XI_ULEi*ULE1_M(JV) + XI_ULE2*ULE2_M(JV))

40 CONTINUE

C

VB(1,1,IV) = VS1(1,1)
VB(1,2,IV) = VS1(I,2)

C
VA(I,1,IV) = VS2(1,i)
VA(1,2,IV) = VS2(1,2)

C

IF(LALFA) THEN
VDEL(1,2,IV) = VSR(1)

ELSE
VDEL(1,2,IV) =

& (VSI(1,4)*UIA + VSI(1,3)*DIA)

& + (VS2(1,4)*U2_A + VS2(1,3)*D2_A)

& + (VSI(I,5) + VS2(1,5))*(XI_ULE1*ULEI_A + XIULE2*ULE2_A)
ENDIF

C

VDEL(I,1,IV) = VSREZ(1)
& + (VSI(I,4)*DUEI + VSI(I,3)*DDSi)
& + (VS2(1,4)*DUE2 + VS2(1,3)*DDS2)

& + (VS1(1,5) + VS2(i,5))*(XI_ULE1*DULE1 + XIULE2*DULE2)
C
c ## Modifications made for optimization study, April 6, 1990
c ** Ri below refers to RCtau

Ri_qil = vsl(1,4) - vsl(1,3) * termi !dRi/dQi-1
Ri_qi2 = vs2(1,4) - vs2(1,3) * term2 !dRi/dQi

c

c ## computation of dRCtau/dAn and dRCtau/dBn storage in RHS
call ExtraRHS (1, iv, ibl, il, i, Ri_qil, Ri_qi2)

C

DO 50 JV=i, NSYS
VM(2,JV,IV) = VS1(2,3)*DI_M(JV) + VS1(2,4)*UI_M(JV)

& + VS2(2,3)*D2_M(JV) + VS2(2,4)*U2_M(JV)
& + (VS1(2,5) + VS2(2,5))
& *(XI_ULE1*ULE1_M(JV) + XI_ULE2*ULE2_M(JV))

50 CONTINUE
C

VB(2,1,IV) = VSI(2,1)
VB(2,2,IV) = VS1(2,2)

C

VA(2,1,IV) = VS2(2,1)
VA(2,2,IV) = VS2(2,2)

C

IF(LALFA) THEN

VDEL(2,2,IV) = VSR(2)
ELSE

VDEL(2,2,IV) =
& (VSi(2,4)*UI_A + VSi(2,3)*Di_A)

& + (VS2(2,4)*U2_A + VS2(2,3)*D2_A)
& + (VS1(2,5) + VS2(2,5))*(XI_ULE1*ULEI_A + XI_ULE2*ULE2_A)
ENDIF

C

VDEL(2,1,IV) = VSREZ(2)

114

+ (VSI(2,4)*DUE1 + VSI(2,3)*DDSI)
+ (VS2(2,4)*DUE2 + VS2(2,3)*DDS2)
+ (VS1(2,5) + VS2(2,5))*(XIULE1*DULE1 + XI_ULE2*DULE2)

Modifications made for optimization study, April 6, 1990
Ri below refers to Rtheta

Riqil = vsl(2,4) - vsl(2,3) * termi !dRi/dQi-1
Riqi2 = vs2(2,4) - vs2(2,3) * term2 !dRi/dQi

c ## computation of dRtheta/dAn and dRtheta/dBn storage in RHS

call ExtraRHS (2, iv, ibl, ii, i, Ri_qil, Ri_qi2)

C
DO 60 JV=1, NSYS
VM(3,JV,IV) = VSI(3,3)*DI_M(JV) + VSI(3,4)*UI_M(JV)

& + VS2(3,3)*D2_M(JV) + VS2(3,4)*U2_M(JV)
& + (VSi(3,5) + VS2(3,5))
& *(XIULEI*ULEI_M(JV) + XI_ULE2*ULE2_M(JV))

60 CONTINUE

VB(3,i,IV) = VS1(3,1)
VB(3,2,IV) = VS1(3,2)

VA(3,1,IV) = VS2(3,1)
VA(3,2,IV) = VS2(3,2)

IF(LALFA) THEN
VDEL(3,2,IV) = VSR(3)

ELSE

VDEL(3,2,IV) =
(VSI(3,4)*UI_A + VSI(3,3)*DI_A)

+ (VS2(3,4)*U2_A + VS2(3,3)*D2_A)
+ (VSi(3,5) + VS2(3.5))*(XI ULE1*ULE1 A + XI ULE2*ULE2 A)

ENDIF

VDEL(3,1,IV) = VSREZ(3)
+ (VS1(3,4)*DUE1 + VS1(3,3)*DDS1)

+ (VS2(3,4)*DUE2 + VS2(3,3)*DDS2)

+ (VS1(3 5) + VS2(3 5))*(XLULE1*DULE1 + XI ULE2+DULE2)

Modifications made for optimization study, April 6, 1990
** Ri below refers to Rm

Ri_qil = vsl(3,4) - vsl(3,3) * terml !dRi/dQi-1

Ri_qi2 = vs2(3,4) - vs2(3,3) * term2 !dRi/dQi

c ## computation of dRm/dAn and dRm/dBn storage in RHS
call ExtraRHS (3, iv, ibl, ii, i, Ri_qil, Ri_qi2)

C

IF(IBL.EQ.IBLTE(IS)+1) THEN

C----- redefine coefficients for TTE, DTE, etc
VZ(1,1) = VS1(1,I)*CTE_CTE1

VZ(1,2) = VSI(1,i)*CTE_TTE1 + VSI(1,2)*TTETTE1
VB(1,1,IV) = VSI(1,1)*CTE_CTE2

VB(1,2,IV) = VSI(1,1)*CTE_TTE2 + VS1(1,2)*TTE_TTE2

115

_

_ _ _

VZ(2,1) = VSI(2,1)*CTE_CTE1
VZ(2,2) = VS1(2,i)*CTETTE1 + VS1(2,2)*TTE_TTEI
VB(2,1,IV) = VSI(2,1)*CTE_CTE2
VB(2,2,IV) = VSI(2,1)*CTE_TTE2 + VS1(2,2)*TTE_TTE2

C
VZ(3,1) = VS1(3,1)*CTE_CTE1
VZ(3,2) = VS1(3,1)*CTETTE1 + VS1(3,2)*TTE_TTE1
VB(3,i,IV) = VSI(3,1)*CTE_CTE2
VB(3,2,IV) = VS1(3,1)*CTETTE2 + VSi(3,2)*TTE TTE2

C
ENDIF

C
C---- turbulent intervals will follow if currently at transition interval

IF(TRAN) TURB = .TRUE.
TRAN = .FALSE.

C
IF(IBL.EQ.IBLTE(IS)) THEN

C----- set "2" variables at TE to wake correlations for next station
C

TURB = .TRUE.
WAKE = .TRUE.
CALL BLVAR(3)
ENDIF

C
DO 80 JS=1, 2

DO 810 JBL=2, NBL(JS)
JV = ISYS(JBL,JS)

UI_M(JV) = U2_M(JV)

DI_M(JV) = D2_M(JV)
810 CONTINUE

80 CONTINUE

C
UI A = U2 A

Di A = D2 A

C
DUEl = DUE2

DDS1 = DDS2

C
C---- set BL variables for next station

DO 190 ICOM=1, NCOM
COMi(ICOM) = COM2(ICOM)

190 CONTINUE
C
1000 CONTINUE ! with next streamwise station
C

IF(TFORCE(IS)) THEN
WRITE(6,9100) IS,XTR(IS),ITRAN(IS)

9100 FORMAT(IX,'Side',I2,' forced transition at x/c = ',F7.4,I5)
ELSE
WRITE(6,9200) IS,XTR(IS),ITRAN(IS)

9200 FORMAT(1X,'Side',I2,' free transition at x/c = ',F7.4,I5)
ENDIF

C

116

2000 CONTINUE ! with next airfoil side
C

RETURN
END ! SETBL

subroutine ExtraRHS (k, iv, ibl, il, i, ri-qil, riqi2)
c
c ## ***
c * This subroutine was added April 9, 1990 by Tom Sorensen. It *
c * provides the mechanism to fill RHS's with dR/dAn and dR/dBn.
c **

c

integer k, iv, ibl, ii, i
real ri-qil, riqi2

c
INCLUDE 'xfoil.inc'

INCLUDE 'xbl.inc'
c

c ## NOTE: k = I => Ctau, k = 2 => theta, k = 3 => m
c ** computation of dRi / dAn and storage in RHS# 2+(n+1)

if (Ithick) then
do 26 iAn = ifirstAn, ilastAn

iRHS = 3 + iAn - ifirstAn
c

if (ibl.eq.2) then
c ** must use stagnation quantities for stationi: dq/dAn(Stag) = 0.0

vdel (k,iRHS,iv) = Riqi2 * qa.an(i ,iAn)
else

vdel (k,iRHS,iv) = Riqil * qaan(il,iAn)
& + Ri-qi2 * qa.an(i ,iAn)

endif
26 continue

endif
c
c ** computation of dRi / dBn and storage in RHS# (2+numAn)+(n+1)

if (Icamber) then
do 88 iBn = ifirstBn, ilastBn

iRHS = (3 + numAn) + iBn - ifirstBn
c

if (ibl.eq.2) then
c ** must use stagnation quantities for stationi: dq/dBn(Stag) = 0.0

vdel (k,iRHS,iv) = Ri_qi2 * qa_bn(i ,iBn)
else

vdel (k,iRHS,iv) = Riqil * qa_bn(ii,iBn)
& + Ri_qi2 * qa_bn(i ,iBn)

endif
88 continue

endif
c

return
end ! End of subroutine ExtraRHS

117

SUBROUTINE TRCHEK(IBL,IS)
INCLUDE 'xfoil.inc'
INCLUDE 'xbl.inc'

C
X1 = XSSI(IBL-1,IS)
X2 = XSSI(IBL ,IS)

C
C---- calculate AMPL2 value

CALL DAMPL(HKi, Ti, RTI, AX, AXHKI, AXTI)
AMPL2 = AMPLI + AX*(X2-X1)
AMI = AMPL2

C
C---- test for free or forced transition

TRFREE = AMI.GE.AMCRIT
TRFORC = XIFORC.GT.X1 .AND. XIFORC.LE.X2

C
C---- set transition interval flag

TRAN = TRFORC .OR. TRFREE
C

IF(.NOT.TRAN) THEN
ITRAN(IS) = IBL+2
RETURN

ENDIF

C

C---- resolve if both forced and free transition
IF(TRFREE .AND. TRFORC) THEN
XT = (AMCRIT-AMPL1)/AX + Xl
TRFORC = XIFORC .LT. XT
TRFREE = XIFORC .GE. XT
ENDIF

C

IF(TRFORC) THEN
C----- if forced transition, then XT is prescribed

XT = XIFORC
XTAI = 0.
XT_X1 = 0.
XTTI = 0.
XTDi = 0.
XTUi = 0.

XTX2 = 0.
XTT2 = 0.
XTD2 = 0.
XTU2 = 0.
ELSE

C----- if free transition, XT is related to BL variables
XT = (AMCRIT-AMPL1)/AX + Xi
XT_AX = -(AMCRIT-AMPL1)/AX**2

C

XT_AI = -1.0/AX
XT_XI = 1.0
XT_TI = XTAX*(AXHKI*HK1_T1 + AXT1)

118

XTD1 = XTAX*(AXHKI*HKID1)
XTU1l = XTAX*(AXHK*HKHKU1)
XTX2 = 0.
XTT2 = 0.
XT-D2 = 0.
XTU2 = 0.

ENDIF
C
c ## XTT's added 8/16/90

XTT(is) = xt
XTRA1i(is) = xt-al
XTRXI1(is) = xtxl
XTRT1(is) = xt1tl
XTRDI(is) = xt-dl
XTRUlI(is) = xtu1l

c

C---- save transition location
ITRAN(IS) = IBL
TFORCE(IS) = TRFORC
XSSITR(IS) = XT

c
C---- save info for user output

IF(TFORCE(IS)) THEN
XTR(IS) = XTRI(IS)

ELSE
C----- interpolate airfoil geometry to find transition x/c

SB1 = SST - Xl
SB2 = SST - X2
IF(IS.EQ.2) THEN
SB1 = SST + Xl
SB2 = SST + X2

ENDIF
XBI = SEVAL(SBI,X,XP,S,N)
XB2 = SEVAL(SB2,X,XP,S,N)
XTR(IS) = XB1 + (XB2-XBi)*(XT-Xi)/(X2-X1)

ENDIF
C

RETURN
END ! TRCHEK

The modifications to allow multiple right hand side solutions of the Newton solver was

straight forward and so is not included here.

119

