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A solution method for the three-dimensional Euler equations is formulated and im-
plemented. The solver uses an unstructured mesh of tetrahedral cells and performs
adaptive refinement by mesh-point embedding to increase mesh resolution in regions
of interesting flow features. The fourth-difference artificial dissipation is increased to
a higher order of accuracy using the method of Holmes and Connell. A new method
of temporal integration is developed to accelerate the explicit computation of unsteady
flows. The solver is applied to the solution of the flow around a sharp edged delta wing,
with emphasis on the behavior of the leading edge vortex above the leeside of the wing at
high angle of attack, under which conditions the vortex suffers from vortex breakdown.
Large deviations in entropy, which indicate vortical regions of the flow, specify the re-
gion in which adaptation is performed. Adaptive flow calculations are performed at ten
different angles of attack, at seven of which vortex breakdown occurs. The aerodynamic
normal force coefficients show excellent agreement with wind tunnel data measured
by Jarrah, which demonstrates the importance of adaptation in obtaining an accurate
solution. The pitching moment coefficient and the location of vortex breakdown are
compared with experimental data measured by Hummel and Srinivasan, with which
fairly good agreement is seen in cases in which the location of breakdown is over the
wing. A series of unsteady calculations involving a pitching delta wing were performed.
The use of the acceleration technique is validated. A hysteresis in the normal force is
observed, as in experiments, and a lag in the breakdown position is demonstrated.
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Chapter 1

Introduction

We never see the beginning. We come in after the lights have gone down
and try to make sense of what we have seen.

Neil Gaiman
The Sandman

The latest generation of high performance fighter aircraft are being designed to be

capable of extreme maneuvers, which require the aircraft to fly at very high angles of

attack that previous aircraft were designed to avoid. At these extreme angles of attack,

the leading edge vortex that forms above the aircraft's delta wing suffers breakdown,

which degrades the aircraft's handling characteristics. In this section, the delta wing

leading edge vortex, and the phenomenon of vortex breakdown are described, and a set of

wind tunnel experiments of a pitching delta wing are summarized. In addition, previous

numerical simulations involving leading edge vortex flows, and vortex breakdown, are

mentioned.

1.1 Background

The aerodynamics of delta wing flows is of great interest for two main reasons. The

first is that when a symmetric and stable set of vortices forms, the wing experiences an

increase in lift and aerodynamic moments, leading to enhanced aircraft maneuverability.

The second is that an asymmetric or unstable set of vortices can cause a loss in lift and
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Figure 1.1: Classification of delta wing flow regimes [53]

a strong rolling moment, even with no angle of yaw. Either of these consequences can

lead to disaster for a maneuvering aircraft.

Stanbrook and Squire [76], and later Miller and Wood [53], classified the various

regimes of flow behavior around a delta wing. The classification system of Miller and

Wood is summarized in figure 1.1, in terms of the Mach number and angle of attack

normal to the leading edge of the wing. These quantities are defined to be

MN = Moo cos A 1 + sin 2 ata 2  (1.1)

aN = tan- tana (1.2)
cos A

in which A is the sweep angle of the leading edge of the wing. The regime at low normal

Mach number and moderate angle of attack is that which involves separation at the

leading edge, and is the regime in which the flows of interest in this thesis occur.
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Figure 1.2: Leading edge vortex structure

1.1.1 Leading Edge Vortex Structure

At sufficiently high angle of attack, the fluid flow will separate at the leading edge of

a delta wing, resulting in the formation of a large pair of primary vortices above the

lee side of the wing. A large body of experimental investigations of the leading edge

vortex structure indicates that the vortex can be divided into three parts, each with its

own distinctive properties. The structure is shown in figure 1.2. The feeding sheet, or

umbilical shear layer, is a viscous thin shear layer emanating from the leading edge of

the wing. The vortex itself has two parts. The outer core is a nearly inviscid, rotational

region of mostly conical flow. Towards the center of the core the axial velocity is seen

to increase dramatically. At the center of the core is the viscous subcore, at the outer

edge of which the swirl velocity reaches a maximum, and the axial velocity continues

to increase to a maximum at the axis. At the center of the viscous subcore the swirl

velocity must vanish. The difference between maximum swirl velocity at the edge of the

subcore and zero on the axis causes viscous dissipation which is largely independent of

Reynolds number. In addition, Lee [42] describes a model, based on experimental data

gathered by Verhaagen and van Ransbeeck [84], in which the rotational core is separated

from the external, irrotational flow by a viscous shear layer called the viscous sheath,

I______ __ ~ ___
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Figure 1.3: Fine mesh conical flow solution from Powell [64], possibly showing the
viscous sheath.

which is formed as the feeding sheet rolls up and intersects with itself. Conical flow

Euler solutions by Powell [64], one of which is shown in figure 1.3, also provide evidence

for the existence of the viscous sheath. Due to the use of the Euler model, the effects

of viscosity upon the solution in figure 1.3 are due only to the artificial dissipation and

truncation error.

The flow on the leeward surface of the wing is accelerated due to the proximity of

the vortex, resulting in a region of lower pressure which increases the lift and pitching

moment of the wing. A secondary vortex forms due to boundary layer separation in

the adverse pressure gradient as the fluid moves outboard from the pressure minimum

directly beneath the primary vortex. Similarly, a tertiary vortex can also appear due

to separation beneath the secondary vortex. Simulation of the secondary and tertiary

vortices requires the inclusion of viscous effects. The characteristics of the secondary

vortex has been shown to affect the structure of the primary vortex in transonic flow

conditions [54], but not in supersonic flow [50].

Some experimental investigations into the characteristics of delta wing flow were per-

formed by Earnshaw [16], Hummel [28], Verhaagen and Kruisbrink [85] and Verhaagen



and van Ransbeeck [84], who measured velocity and pressure in the region of the vortex,

and Fink and Taylor [19], who studied the variation of total pressure. More recently,

Kjelgaard and Sellers [37, 36] and Roos and Kegelman [70] performed exhaustive flow

field surveys.

The numerical solution of delta wing flows can sometimes be simplified by use of the

conical assumption, in which flow quantities are taken to be constant on rays emanating

from the apex of the wing. This simplification is only valid for supersonic flow of an

inviscid fluid around a sharp edged wing of a suitable shape. Powell [64] performed a

study of leading edge vortex flows with the use of embedded structured grids to increase

resolution. Batina [7, 5] formulated and solved the conical Euler equations using an

unstructured mesh of triangles, and adaptive refinement, and Kandil and Chuang [35]

used the conical model to study the unsteady flow that results from a rolling wing.

Fully three-dimensional solutions of delta wing flow are necessary in situations in

which streamwise variations occur. Rizzi et al. [68, 55, 67] have performed numerous

calculations, particularly for transonic flows. Melton [51] performed adaptive compu-

tations in three dimensions using hexahedral cells, and Borsi et al. [10] made use of

adaptation using a mesh of tetrahedral cells. In addition, in the absence of vortex

breakdown simpler models can provide accurate solutions. An example is the method

developed by Tavares [78] using slender wing theory with an explicit vortex wake.

1.1.2 Vortex Breakdown

Vortex breakdown, also known as vortex bursting, is a phenomenon that was first ob-

served in delta wing flows by Peckham and Atkinson in 1957 [58], and was studied in

detail by Lambourne and Bryer [39]. It occurs when a vortex is subjected to a suffi-

ciently strong adverse pressure gradient. The basic features of vortex breakdown are a

sudden enlargement of the vortex core, followed by a stagnation region on the axis. The

vortex that reforms downstream of breakdown is often diffuse and erratic. Two types



Figure 1.4: Flow visualization of vortex breakdown over a delta wing

of vortex breakdown can be seen in figure 1.4, from Lambourne and Bryer. The upper

vortex is experiencing the axisymmetric "bubble" type of breakdown, while the lower

vortex is undergoing the asymmetric "spiral" type of breakdown. Breakdown has also

been observed [57] to alternate periodically in time between the bubble and spiral types,

and Sarpkaya [72] reports forms of breakdown intermediate between the two types. The

effects of vortex breakdown are a significant decrease in lift and pitching moment, and a

large rolling moment due to the possibility of asymmetric breakdown (such as appears

in figure 1.4). The deleterious effects of vortex breakdown increase with the angle of

attack of the wing, as the location of breakdown moves forward from the trailing edge.

The flow conditions under which vortex breakdown occurs in incompressible flow are

summarized in figure 1.5. The angle of attack at which breakdown appears decreases

as the sweep angle A decreases, which is to say, as the wing becomes less slender. For

very slender wings, asymmetrical vortex lift-off occurs, in which one leading edge vortex

retreats from the wing surface, while the other approaches the wing. This produces an

anomalous rolling moment, and can lead to an oscillatory motion called wing rock [56,

11].



30

a 20

10 - Symmetric Vortices

90 80 70 60 50

A

Figure 1.5: Flow conditions leading to vortex breakdown ad vortex lift-off in incom-
pressible flow [63]

Surveys of vortex breakdown in general and proposed theoretical explanations of it

are presented by Landahl and Widnall [40], Hall [25], Leibovich [43] and Escudier [18].

Numerical investigation of the breakdown process was first performed by Grabowski

and Berger [23] for the axisymmetric breakdown in a swirling pipe flow. Numerical

simulations of vortex breakdown over a delta wing have also been reported. Fujii and

Kutler [20] possibly captured the onset of breakdown, with more demonstrative calcu-

lations being performed by Thomas, Krist and Anderson [80], Hartwich, Hsu, Luckring

and Liu [26], Ekaterinas and Schiff [17], Agrawal, Barnett and Robinson [1], Deese,

Agarwal and Johnson [15] and Webster and Shang [87]. The bubble type of breakdown

was specifically noted by Thomas et al. and by Ekaterinas and Schiff, while Webster

and Shang characterized their solution as the spiral type of breakdown.

1.1.3 Pitching Delta Wing

Modern fighter aircraft are being designed to perform extreme maneuvers, known as

"supermaneuvers," which involve flight at very high angles of attack, where vortex



'4°

O.o

0.0 s0.0i S. n. m ie . 0 &0 '.e 0 . i.e ieo s e s i.e me oe
ANGL OF AfTAC(

- 0.0 (S IC 0 .......... I 0.03

- 5.0.04

Figure 1.6: Measured aerodynamic coefficients on a pitching delta wing [31, 32]

breakdown is likely to occur. Previous aircraft have been designed to remain at lower

angles of attack to avoid vortex bursting and wing stall. In order to study aircraft

performance in this extreme flight regime, Jarrah [32, 31] analyzed three canonical

supermaneuvers and determined that the aircraft dynamics could be represented by

either a sinusoidal or a ramp variation of angle of attack. Jarrah then subjected a

delta wing in a low-speed wind tunnel to pitching motions with both the sinusoidal and

ramp variation, and found a large hysteresis in the unsteady aerodynamic forces on the

wing, as shown in figure 1.6. The hysteresis persisted even at low reduced frequencies

at which Jarrah expected to observe quasi-steady flow. Jarrah attributed the hysteresis

to a lag in the vortex breakdown, whereby the angle of attack at which the vortex

breaks down during the upward motion is greater than the angle of attack at which the

vortex re-establishes itself during the downward notion. Experiments by Thompson,

Batill, and Nelson [81] also indicate the lag in burst location. It is the goal of this work

to simulate the unsteady flow around a pitching delta wing and study the behavior of

vortex breakdown in this flow. Jarrah and Thompson et al., both found the effect of

Reynolds number on this flow to be weak, so that the Euler equations are adequate to

simulate the flow around a sharp-edged delta wing. The unsteady flow around a pitching

wing for very small amplitudes of motion was studied by Kandil and Chuang [34].



1.2 Validity of the Euler Equations

In general, there are two conditions for the validity of the Euler equations for modeling

delta wing flows. First, the wing geometry must have a sharp leading edge to provide

a Kutta condition for flow separation, and second, the flow solution algorithm must

provide a dissipative mechanism to bring the swirl velocity to zero at the vortex core.

The wing geometry used for all computations in this thesis has a sharp leading edge,

and the artificial dissipation added to the flow solution scheme serves the latter purpose.

Experimental investigations indicate that a changing Reynolds number does not affect

the structure of the primary vortices [37] or the lift variation with angle of attack [70].

There is also evidence [72] that in the high Reynolds number limit the behavior or

vortex breakdown also is independent of Reynolds number.

1.3 Thesis Summary

The goal of the present research is the application of adaptive refinement via mesh-point

embedding to the solution of the unsteady inviscid flow around a pitching sharp-edged

delta wing. The main body of the thesis is divided into three parts. In chapter two,

the governing equations for the flow of an inviscid, ideal gas, the Euler equations, will

be presented in an inertial reference frame, and transformed into a rotating reference

frame fixed to the wing. Also, suitable physical boundary conditions will be discussed.

In chapter three, the procedure for solving the Euler equations numerically will be de-

scribed. This includes the spatial discretization by means of the Galerkin finite element

method, the artificial dissipation with the Holmes-Connell extension, the temporal in-

tegration procedure, the implementation of the boundary conditions, and a detailed

description of the adaptive refinement method. In chapter four, stationary and pitching

wing flow solutions will be discussed and interpreted. Ultimately, some conclusions will

be drawn and some recommendations for further work will be made.



Chapter 2

Governing Equations

Fluid dynamics is much less interesting if it is treated largely as an exercise
in mathematics.

From the point of view of a 'pure' scientist concerned only with basic laws,
there seems to be little need to go further.

The set of governing equations is much too complicated for a direct mathe-
matical approach to be feasible.

G. K. Batchelor

In this chapter, the governing equations for inviscid, compressible flow in an iner-

tial reference frame are derived, and appropriate choices for nondimensionalization and

boundary conditions are described. In addition, the equations for the flow are trans-

formed into a non-inertial reference frame, which is specialized to rotation about a fixed

center.

2.1 Inertial Frame of Reference

The Euler equations are a system of partial differential equations that describe the

behavior of an compressible, inviscid, non-conducting fluid. They are derived from the

integral form of the laws of conservation of mass, momentum, and energy, in an inertial

frame of reference.



For an arbitrary fixed control volume V, the law of conservation of mass can be

expressed as

- pdV = -j p(ujnj)dS (2.1)

where p is the density, uj is the fluid velocity, expressed using indicial notation, and nj

is the outward-pointing unit normal vector at the surface of the control volume. This

states that the rate of change of the mass of the fluid in the control volume is equal

to the transport of mass across the control volume boundary, OV. Gauss' divergence

theorem is used to transform the surface integral into a volume integral over V. Then,

by requiring the resulting integral equation to hold for any infinitesimal control volume,

the differential form of the law of mass conservation is found to be

ap a
+ - (pu) = 0 (2.2)atazt

which holds everywhere that the flow quantities are continuous and differentiable. At

discontinuities, only the integral form is valid.

The integral form of the law of conservation of momentum can be written as

-f pu dV = - pui (ujnj) dS - pni dS (2.3)
Tf , 8v v

where p is the static pressure of the fluid. The index i spans the three equations, and

the repeated index j indicates summation. These equations state that the momentum

of the fluid within the control volume is changed by the transport of momentum across

the surface, and by the action of fluid pressure on the surface OV. Again, the divergence

theorem is used to transform the surface integral terms. The differential form of the

momentum equation,
( a

(P-uL) + i (piuj + p) = 0 (2.4)
results. Again, the differential form is not valid at flow discontinuities.

results. Again, the differential form is not valid at flow discontinuities.



The integral form of the law of conservation of energy can be written as

-f pE dV = - pE (ujnj) dS - uj (p nj) dS
t v ev fav

(2.5)

where E is the total internal energy per unit mass. This states that the energy within

the control volume is changed by the transport of energy across the surface, and by the

work done by the action of the fluid pressure upon the surface of V. By application

of the divergence theorem, the energy equation can be transformed into its differential

form,
E) + ([pE + p]

(pE) + ([pE + p uj) = o (2.6)

which is only valid in continuous regions of the flow.

Since the three conservation laws have analogous terms, they can be grouped to-

gether to form a system of equations,

9U OFS+-7 +
Ot Oaz

where the state vector U is

U =

and the Cartesian components of the flux

F =

pu

pU2 + p

puV

puw

puh

f

OG OH
+ - = O

Dy Oz

P

Pu

pv

pw

pE

vector, F,

pv

putv

v2 +

pvw

pvh

(2.7)

(2.8)

G and H are

pw
pow

pw 2 +p

pwh

(2.9)

The momentum equation is written as the three equations for its Cartesian compo-



nents, u, v and w. The quantity h is the total enthalpy, defined to be

ph=E+

The system is closed by the equation of state for a perfect gas,

p= (y-1) pe, (2.11)

where e is the internal energy per unit mass, which is defined by the thermodynamic

relation

E = e + (R 2 + 2 + 2), (2.12)

and 7 is the ratio of specific heats, cp/c,.

2.2 Rotating Frame of Reference

To express the Euler equations in a moving, non-inertial frame of reference, in which

derivatives are denoted by a prime superscript, substitute the following transformations

for the derivatives of an arbitrary scalar and an arbitrary vector into the Euler equations:

DQ D'Q
Dt Dt'

DQ D'Q
+ oDt'xDt Di'

or, expanding the total derivatives:

OQ O'Q
ot -vt.VQ

-t '- t-v Q.vQ + xQ
Ot at'

where

(2.15)

is the transformation velocity from the absolute frame of motion, in which the fluid

velocity is 'v, to the moving, relative frame, in which the fluid velocity is v,. The

(2.10)

(2.13)

(2.14)

VU = Va - , = Vo + Wx



relative motion can have both a translational velocity, to, and a rotational velocity

about a fixed point, from which the position vector ' is referenced. The rotation need

not be steady. When the transformations 2.14 are substituted into the Euler equations

(2.7, 2.8, 2.9), the system gains a source term, S, which contains terms related to the

motion of the frame:
O'U OF OG OH

+ + + = S.
at' Be By 8z

(2.16)

Also, several of the primitive variables have changed meaning, so that the state vector

is now

U =

P

pu,

pv,

pw,

pE,

(2.17)

and the flux vector is

pu,

Pur + p

pu,.wv,.

pu,.h,

pVy

pur v,

pVr + p

Ptw,.

pv,.h,.

put w,

pw +p

pw,h,

(2.18)

This is the same form of the unsteady Euler equations as used by Kandil and Chuang [35,

34]. The fluid velocities are now measured in the relative frame of reference, and the

total energy and enthalpy are replaced with new quantities, which are related to the

quantities of the absolute frame by

E, = E-v -.t

h, = h- v -vt.

(2.19)

(2.20)

The quantity h, is called the total rothalpy, and is constant in steady flows in a rotating

reference frame, as is the total enthalpy in a nonrotating frame. The source term S has



the complicated form

0

-pat_

S = -paty (2.21)

-patz

-p do W + VO(WXVa)}

where

D, D'i,
at =  (2.22)

= ao + xr'F + 23x + W x(xrF) (2.23)

is the relative acceleration of the two frames, having linear, angular, Coriolis, and cen-

tripetal terms, respectively.

The cumbersome form of the energy source term is reduced by restricting the form of

the transformation velocity. In this case, the motion is required to be purely rotational,

so that the translational terms, io and do, vanish, giving a source term with the form

0

-pat,

= -pat, . (2.24)

-patz

-p f((v + - :

In the case of pitching motion, the axis of rotation points in the spanwise direction, and



the angular velocity w is equal to the pitch rate, &. The source term now can be written

0

-p(dz + 2ww, - w 2 X)

S = 0 (2.25)

-p(-Cx - 2wu, - w 2 z)

-p {(uz - Wz) + w(X2 + Z 2 )}

where z and z are measured from the center of rotation. In addition, the variation of

the angle of attack, and thus the rotation rate w, is taken to vary sinusoidally with an

angular frequency of a. Specifically, the angle of attack varies as

a = ao + !Aa(1 - cos at) (2.26)

The rotation rate is then

w = dAa sin t, (2.27)

which has a maximum value of

wmax = at. (2.28)

In addition, the angular acceleration is

j = f2 Aa cos nt. (2.29)

The energy source term in equations 2.24 and 2.25 vanish if the rotation is steady,

as occurs in most turbomachinery and rotorcraft flows. However, the Coriolis and

centripetal contributions to the momentum source terms remain.

2.3 Physical Boundary Conditions

There are three different physical boundary conditions to apply to the Euler equations.

The implementation of these boundary conditions is discussed in section 3.3.



2.3.1 Solid wall

At a solid wall, no flux is permitted through the surface. This condition is written as

u.n= 0 (2.30)

where n' is the unit vector normal to the surface. This condition also applies at symmetry

surfaces.

2.3.2 Kutta condition

Since there is a multitude of solutions for the flow around an arbitrary body, some

condition must be imposed to collapse to a single solution. For the flows that will be

considered in this thesis, the Kutta condition can be applied at sharp edges of the wing

to fix the lift. For sharp-edged delta wings, both the leading and trailing edges are

treated this way.

2.3.3 Far field

In the far field, the flow should approach a uniform free stream in the inertial refer-

ence frame. By use of equation 2.15, this is transformed in the rotating frame into a

free stream with time-varying solid body rotation imposed. Since it is impossible to

model variations at infinity using the numerical methods described in this thesis, the

implementation of this boundary condition will be the most mathematically complex.



2.4 Nondimensionalization

It is often desirable to make the Euler equations dimensionless to solve them numerically.

This makes the problem independent of the choice of units, clarifies the scales relevant

to the problem, and can reduce the sensitivity of the solution procedure to numerical

round-off errors. The reference parameters used are the freestream density, p,, the

freestream speed of sound, ao, and a characteristic length. In this thesis, the wing root

chord, cR, is chosen as a length scale. The nondimensionalization factors for some flow

quantities are listed in table 2.1. There are three important nondimensional parameters,

which appear in table 2.2. The freestream Mach number, M,, measures the importance

of compressibility, while both the reduced frequency, k, and the nondimensional pitch

rate, K, both measure the importance of unsteady effects. The reduced frequency

measures the frequency of unsteady effects, and the nondimensional pitch rate measures

the amplitude of unsteady effects. The latter two parameters are related by

2K
k - (2.31)

Aa

where Aa is the range of angle of attack variation during the unsteady cycle. The flows

in this thesis have a low Mach number in the subsonic range. A flow with a low reduced

frequency is referred to as quasi-steady, meaning that the evolution of the flow with

time is a succession of steady flows, with varying parameters.

The form of the Euler equations is unchanged by this nondimensionalization, but

the free stream boundary conditions are altered. With this set of reference parameters,

the freestream state vector takes the form

P 1

pu M. cos a cos / - wz

pv = M. sin (2.32)

pw M, sin a cos I + wx

pE 1 + M.



Table 2.1: Nondimensionalization of flow quantities

Table 2.2: Nondimensional parameters

Coefficient Symbol Dimensional Nondimensional

N N*
normal force CN 2 MAR

pooqooS AR
L L*

lift CL 2 1
Spqoo S I8 MAR

D D*
drag CD 1 2 1 2

SpoooqS &M AR
M M*

pitching moment CM 1 2 S
TpooqaSE c MAR

Table 2.3: Nondimensional aerodynamic coefficients

Quantity Reference Freestream Value

P Poo 1
u, v, w, a ao M. cos a cosp -wz, M, sin i, M. sin a cos 3 + w , 1

E, h a o + + 1

p pa, 1/l

z, y, Z CR

t CR/ao

w, n aoo/CR -, 2Mook

N, L, D pac2
M poa ooCR

PooaOO R

Parameter Symbol Definition

freestream Mach number Moo q
aao

reduced frequency k CR

2q,

nondimensional pitch rate KC maxCR



in which M is the freestream Mach number, a and 3 are the angles of attack and yaw,

respectively, and w is the rotation rate.

The forces that act on a wing are characterized by the dimensionless aerodynamic

coefficients of normal force, lift, drag and pitching moment. The definitions of these

coefficients, in terms of both dimensional and dimensionless quantities, are given in ta-

ble 2.3. The forces are normalized by the freestream dynamic pressure and the wing

area. The pitching moment has an additional normalization factor, ,, the mean aerody-

namic chord of the wing. For a triangular wing, this has the value of two-thirds of the

wing root chord. In addition, these formulae assume that the forces are due to the effect

of the entire wing. When simulating flows about a wing at zero angle of yaw, one can

take advantage of the symmetrical nature of the problem to compute a solution within

a domain of half the size. In such a case, the aerodynamic force coefficients must be

doubled to obtain their values for the entire wing.

2.5 Auxiliary Quantities

The following is a list of auxiliary quantities, defined in terms of the primitive variables:

Quantity

Local flow speed:

Local speed of sound:

Local Mach number:

Total pressure:

Total pressure loss:

Entropy:

Definition

q = V 2 + v 2 + W2

V P

M =q
a

Po = 1 +O
Po

Apo = 1

Freestream

1

Moo

1 + M2 .

0

0



Chapter 3

Numerical solution procedure

God made integers, all else is the work of man.

Leopold Kronecker
Jahresberichte der Deutschen
Mathematicker Vereinigung,

bk. 2

In this chapter, the numerical solution method for solving the governing equations is

derived. The procedure used is a finite element method based on a mesh of tetrahedral

cells. Also, the temporal integration procedure is discussed, along with the implementa-

tion of the physical boundary conditions and the numerical smoothing procedure. The

chapter also includes a description of the adaptive refinement procedure.

3.1 Mesh geometry

The tetrahedral cell is the basis for most of the calculations described here. The faces

and nodes of a cell are numbered such that node j is opposite face j. Thus each face is

defined by the three nodes with different numbers. The outward-pointing area normal S

of each cell face is frequently used. It is constructed by taking the cross product of any

two edge vectors of the face, with the requirement that it point outwards. Thus,



supercell of node 1

Figure 3.1: Section of a triangular mesh

S 1  = (y32 42 - z32y42)

s'= (32 X X42) S2( = - a~32 z42 ) (3.1)

5 1 = ( 32y42 - Y3242)

s522 = 4131 - z41 3 1 )

S2 = (41 X X31) S , 2  = (zI -1 (3.2)

Sz 2  = -(X41Y31 - Y41X31)

S ,3  = (Y21z41 - z21y41)

S3 = (X21 X 41) Sys = (z 21 4 1 - X2 1 4 1 ) (3.3)

Sz3 = (21Y41 - Y21X41)

S , 4 (= ( 3 1 Z2 1 - z3 1Y21 )

S4 = ( 31 X 21) S 4  = (z 31XZ21 - zXz21) (3.4)

Sz4 = I( 3 1 Y2 1 - Y31Z21)

where zij = - j, yij = y - yj and zij = zi - zj. Although it is far from obvious based

on the above formulas, the vector sum of the areas of the four faces of a tetrahedron is

zero. This is a general result for a closed surface.

The union of all cells that contain a node is called the supercell of that node, as

represented for the analogous two-dimensional situation in Figure 3.1. The volume of

the supercell of node i is the sum of the volumes of the cells of which node i is a vertex.



node 3

face 4

node 4

node 1

Figure 3.2: Tetrahedral cell nomenclature

The volume of a tetrahedral cell is

221 Y21 Z21

Vc= 231  Y31 Z31

2 41  Y41 Z4 1

6 (X 21 y31z41 + Y21z 3 1 41 + z 21 X3 1y 41

-z21Y3141 - 21iz3 1Y41 - Y2 1z 3 1 4 1 )

where

xj = xi - xj

is the edge vector between the ith and jth nodes of the tetrahedron. The vertices of the

cell are numbered so that nodes 1, 2 and 3 are in a counterclockwise orientation when

viewed from node 4. A single tetrahedral cell is seen in figure 3.2, showing the node and

face numbering, and a typical face area vector.

The boundaries of the mesh are arranged so that the nodes are numbered in the

counterclockwise direction when viewed from the interior of the computational domain.

The surface normal at a boundary node is the area-weighted average of the normals of

(3.5)

(3.6)

(3.7)



the boundary faces that contain the node. The boundary normal is the cross product

of two edge vectors that yield the correct direction. Thus,

S 1 ( 21 x X_31)= 2 (X32 X X1 2 )= 2( 13 X X23)

s = F (y2 1 z31 - z 21Y 3 1 )
S 2 (3.8)

= = (z21s31 - Z21z31)

S = (X2131 - Y21 3 1 )

All boundary normals point into the computational domain.

3.1.1 Mesh Generation

Tetrahedral meshes are generated by the advancing wavefront method, using a mesh

generator developed by Peraire, et al. [59, 61]. A three-dimensional mesh is generated

in two steps. First, a surface mesh, composed of triangular elements, is generated.

Then, using the surface mesh as an input, a volume mesh, composed of tetrahedra, is

generated in the flow field. Mesh generation begins with the assembly of a front of

triangles, which is initialized to be the surface mesh. Then, every triangle is examined,

and a tetrahedron is created with the triangle as a base, and having a height calculated

according to a mesh point spacing function, which is controlled by the user. The node

at the peak of the tetrahedron will be an existing node of the mesh if a suitable node

exists, or, if not, it is created. The original triangle is then removed from the front. The

procedure continues until the front does not contain any triangles.

3.2 Finite element method

Spatial discretization is by means of the Galerkin finite element method with tetrahedral

cells. The mass matrix is lumped, resulting in a scheme identical to the cell-vertex

finite volume method in which control volume for node i is the supercell of the node.



However, the finite element and finite volume methods lead to different discretizations

when viscous effects are modeled. A detailed discussion of the finite element method

can be found in Cook [12], although with an emphasis on applications to structural

mechanics.

The basis of the finite element method is that the spatial variation of the state and

flux variables is represented in terms of nodal values of these quantities, Ui(t), Fi(t),

Gi(t), Hi(t) and Si(t), and interpolation functions Ni(z, y, z), so that

U(Z, y, z, t) = N(z, y, z) Ui(t)

F(z, y, z, t) = Ni(, y, z) Fi(t)

G(,y, z, t) = Ni(z,y, z) Gi(t) (3.9)

H(o,y,z,t) = Ni(z,y,z) Hi(t)

S(z, y, z, t) = Ni(z, y, z) Si(t)

in which the repeated index i indicates a sum over the nodes of the mesh. The in-

terpolation functions Ni have a value of unity at the node i, and a value of zero at

all other nodes. The sum of all the interpolation functions must be unity, so that a

uniform field results when all the nodal quantities are equal. A distinction of the finite

element method, as opposed to other interpolation methods, is that the global inter-

polation functions are a piecewise combination of local interpolation functions, one per

cell. This means that the variation of a quantity inside a cell is a function only of the

nodal quantities and interpolation functions associated with the nodes of that cell. The

local interpolation functions are taken to be zero outside the cell. The superscript C is

used to represent a quantity associated with a cell.



A = A + A2 + A 3

I 
=  P = P(C1, C2,9 3)

AA 3

2

Figure 3.3: Triangular area coordinates

3.2.1 Interpolation functions

The local interpolation functions used here are trilinear. They are defined in terms of

a local coordinate system, which is the set of tetrahedral volume coordinates C1, C2,

C3 and C4, which are shown for the analogous two-dimensional situation in Figure 3.3.

An arbitrary point P divides the tetrahedron into four sub-tetrahedra. The volume

coordinates are defined as ratios of the volumes of the sub-tetrahedra to the volume of

the entire tetrahedron:

V1 V2  V3  V4C1 2 3 C4 =(3.10)VC' V ' VC' V(.

Since Vc = V + V2 + V3 + V4 these coordinates are not independent, but satisfy the

relation

(1 + (2 + + 4 = 1. (3.11)

Therefore C4 is replaced by 1 - C( - C2 - (3. The volume coordinates each have a value of

unity at the node with which they are associated, and a value of zero at the other three

nodes of the tetrahedron. Since these are the properties desired in a set of interpolation

functions, the interpolation functions are taken to be exactly the volume coordinates,



so that

NC = (2 (3.12)

N4C = (4 = 1 - 1 -C2 - 3

The local coordinates are often referred to as natural coordinates.

3.2.2 Spatial Discretization

The discretization of the Euler equations proceeds as follows. First, the interpolated

representations of the state, source and flux quantities (Eqn. 3.9) are substituted into

the Euler equations, giving

NidU NSi Fi - ON i - NHi (3.13)
dt az y Oz

in which indicial notation is again used. Note that this is a single vector equation,

not a system of equations. The interpolation imposes a form on the solution that

is unlikely to satisfy the Euler equations at every point in the field. Therefore it is

necessary to recast the equations in the weak form by projecting them onto the space of

test functions Nj and integrating over the solution domain. The test functions, which

are again associated with the mesh nodes, roughly correspond to control volumes over

which the integral equations are satisfied. In the Galerkin approach, the test functions

are identical to the interpolation functions for the same node. We now have a set of

equations

dU raN. ON- ONN-I
i NNjdV = S NiNjdV-F -NdV-Gf ' NdV - -N dV

dt a y z
(3.14)



in which the repeated index i indicates summation over the set of nodes, while the

non-repeated index j spans the set of equations. Equations 3.14 can be written as

dU
Mi- - = M jSj - Rx,jFii - Ry,ijGi - Rz,fijH

dt (3.15)

in which Mij is the consistent mass matrix, and Rx,ij, Ry,ij and Rz,ij are the residual

matrices. These matrices are defined by integration over the entire domain. However,

since the interpolation and test functions are defined piecewise with regard to the cells,

these integrals can be broken up into a sum of integrals over the individual cells, so that

M'i = Jyv

?,= JV

F zg = J

NiNj dV

N dV

ONi
-- Nj dV

Ny d

Od

(3.16)

(3.17)

(3.18)

(3.19)

It is now possible to write equation 3.15 as

(e MC dU-
cels ' dt

c S c
(cells /cells

RX ij) F2 -

The range of summation is the group of cells that

supercell of the node.

contain node i,

(3.20)

which form the

3.2.3 Calculation of Matrices

Integration of Equations 3.16 through 3.19 is carried out in the local coordinate sys-

tem (C1, C2, C3). The spatial derivatives of the interpolation functions are evaluated by

the chain rule, as

aONi
axE

ON Ocz
d(18 a

ON 08(2 ON 03
+ +

0a0 80 0 z



ONi
8y
OON
Oz

This is particularly convenient since

oN114/9 = 1

8N 2/0( 1 = 0

8N3186 = 0

ON4 /0 16 = -1

ON1/0 2 = 0

N 2/8( 2 = 1

ON31/2 = 0

ON4/8 2 = -1

ONV/8C3 = 0

ON1/0C3 = 0

ON3 /86a = 1

ON4/086 = -1.

Combining equations 3.21 and 3.22 yields

_ _ PA _N _
am - O ay

a , I,

88 - N3 -- a --8N ~ 86N_8
am~ am 8m 8m 8Yj

!y
Bm

831 81 811
&_ &YB

8z - zoN2l _ o~h

8z - z

N __& _ _ _
az - 8z 8z &z

To evaluate the spatial derivatives of the volume coordinates in equations 3.23, the

spatial coordinates z, y and z are represented via interpolation between the nodes, in

the same manner as are the state quantities, sothat

Yc(C, C2, C3)

zc (C, C2, C3)

= C1 + z22 + z'2C + z4(1 - C - C2 - C3)

= (Z1 - 24)1 + (22 - X4)C2 + (23 - X4)C + 24

= FCN li 2, 3)

= (lC- + (2 -+ )33 + 4(1 - C1 -C .3)

(Z1 - z4 )Cl + (z 2 - Z4)C2 + (Z3 - Z4)C3 + Z4.

aC1 ac
Oi a(,

ONi 8C2
OC2 49Y

ONi OC2

OC2 Oz

INi &Cs+ ONC3
8C3 8Y
ONi O3
19 O

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

Xc( , 6, ) = ZNF(C(, 6, (3)



From Equations 3.24 - 3.26, the Jacobian matrix of the transformation is found to be

8(z,y,z)
J-

( , (,Z2, 3)

[14 X24

= Y14 Y24

Z1 4 Z 2 4

X34

Y34

Z34

(3.27)

= x- xj is the edge vector

the Jacobian matrix yields

J-1
8(z,y,z)

Y2 4 Z34 - z 2 4 Y34
1

= jI z14Y34 - Y14 z34

Y14Z24 - z14Y24

3Vc S=2 Sy2

S. 3 Sy3

between the ith and jth nodes of the tetrahedron.

Z24X34 - T24Z34

14Z34 - Z14034

Z14X24 -- T14Z24

X24Y34 - Y24]34

Y14234 - X14Y34

Z14Y24 - Y14024

Sz 1

Sz2

Sz3

(3.28)

in which Vc is the volume of the cell, and Sj, Sy,j and S,,j are the Cartesian com-

ponents of the area vector of the jth face of the cell. Finally, we obtain the spatial

derivatives of the interpolation functions by substituting the elements of J-1 into Equa-

tion 3.23, producing

ON

ON2

1N

anr

- S

= S, +t +S

ON

8N2

09
ON

Oh

S S1

- 2
3S

= S 1,+S, 2 +Ss3W
3V U

-$4= 3-V--

aN1
Oz

8N2
Oz
OzN
Oz

ON 4
Oz

(3.29)

The fact that the vector sum of the four facial areas of a tetrahedron is zero has been

used to rearrange the derivatives of N4.

where z'ij

Inverting

S ,

30V

S L
- 3VC

S L
-3V

S_, + S, +Sit
3V C

S
3V



Evaluation of the mass matrix is straightforward. Applying a coordinate transfor-

mation to Equation 3.16 yields

M= c Ni(-, y, z)Ny(, y, z) dV

- Ni((1, (2, C3) Nj((1, 2, 3) IJI dC3 dC2 d(C1

(3.30)

where IJI = 6V c , as above. Because of geometrical symmetry, all the diagonal entries

of Mc will have the same value, and all the off-diagonal entries will be identical as well.

The diagonal terms are

= MC = 6 VC J1 1-C J1--C2

= 6 VC 1 1-C1 1-C1-C2 ( 2 d

10V

NJ dC3 dC2 d(l

d(2 d(1

(3.31)

and the off-diagonal terms are

= MI = 6 VC j

= 6 VC 1j-C1Ji-C C1(2 d(

0 0 0

N N 2 d( 3 dC2 d( 1

3 d( 2 dlC

(3.32)

In order to obtain a solution using this method, the global mass matrix Mij must

be inverted. Because of the off-diagonal terms, this is a difficult and computationally

expensive process. For greater efficiency, the mass matrix can be diagonalized to produce

the lumped mass matriz, which can be inverted trivially. This causes no loss of accuracy

if only a steady-state time-asymptotic solution is desired. The lumped mass matrix is

formed by summing all the terms of a row of the mass matrix. From Equations 3.31

MCij



and 3.32, the terms of the local lumped mass matrix can be found to be

Mc = '(Vc (3.33)

The global lumped mass matrix is the sum of the individual local mass matrices. Thus,

the entry for a particular node will be one-fourth of the sum of the volumes of the cells

that contain that node, which is one-fourth of the supercell volume.

The lumping procedure can be thought to model the unsteady left-hand side in

a manner that concentrates the mass, momentum and energy at the mesh node with

which each equation is associated. This has the effect of ignoring the rotational inertia

of the control volume [12], which results in a loss of order of accuracy. With the use of

the lumped mass matrix, the scheme is identical to a finite volume scheme in which the

control volume for each node is the supercell of the node.

The residual matrices are also simple to evaluate. Only the residual matrix for the

z-direction will be considered in detail. The residual matrices for the y- and z-directions

are analogous.

A direct transformation of coordinates applied to Equation 3.17 results in

R Jc Nj dV

(N 1? ) fI -Clj-1-C2 N3 ( 1, (2, 3) JI dC3 dC2 dC1

= - C d 3 dC2 dC1.3 Moi fo 1 o (3.34)

As with the mass matrix, many of the terms will be equal. Only the choice of the index i

will affect the value of Rx,ij. For example,

R, R -S.,i 1j C, dC3 dC2 dC1

= - iR .
12 'i. (3.35)



Similarly,

RC -Lr
y,ij 12 YS,%

RC, -S,. (3.36)

It is now possible to assemble all the pieces to form the semidiscrete form of the Euler

equations that is actually used in the solution procedure. Substituting the expressions

in Equations 3.33, 3.35 and 3.36 into Equation 3.20, and multiplying by 4, we can obtain

VE- = VSi - ERC = -Ri (3.37)
cells

where Vi is the volume of the supercell of node i, and Rc is the flux residual of the cell.

The range of the sum is the set of cells that contain node i. The cell residual is given

by

RC 1RC = - + 2 2A+ -§+ 44)
= 1 (F 1 S 1 + F 2 S 2 + F 3 S 3 + F4 S4 + G 1Syl + G 2 Sy 2 + G 3Sy 3 + G 4Sy4

+ HSz1 + H 2Sz2 + H3 Sz3 + H 4 Sz4 ) (3.38)

This is equivalent to the finite volume form

RCF3+ ..1* + + F3+ .s, + + ,+ .

+ ( f + 2 + $4 (3.39)

because the sum of the areas of the four faces of a cell is zero.



3.3 Numerical Boundary Conditions

The physical boundary conditions that are applied to the Euler equations were described

in section 2.3. These boundary conditions can be enforced at two types of physical

surfaces. At a solid wall boundary, normal velocities are made to vanish, and no flux

is permitted through the solid wall. Due to the inviscid nature of the flow, the same

conditions are applied at a symmetry surface as at a solid wall. At a far field surface, far-

field characteristic boundary conditions are prescribed. In addition, special boundary

conditions are imposed at the intersection of certain surfaces.

3.3.1 Choice of Boundary Condition at Intersecting Surfaces

Since the type of boundary condition is specified at the boundary faces, while the

boundary conditions are implemented at the nodes, the type of boundary condition

to apply at the nodes at the intersection of two faces is ambiguous. Shapiro [74] and

Landsberg [41] have found empirically that the far field surface boundary condition

should be applied at the nodes at the intersection of a solid surface with a far field

surface. In the flows considered in this thesis, all such intersections will actually be

between a far field surface and a symmetry surface, but the situation is analogous.

3.3.2 Solid Wall Boundary Condition

Two boundary conditions are applied at a solid boundary. First, the fluxes are restricted

so that the non-pressure terms normal to the wall vanish. This condition is applied at

the triangular surface faces of the mesh. The flux vectors for a boundary face are



required to have the form

PUw pvw pWw

puu + p PUVw PUwW

F = PUw , G= pvvw, +p , H = PVWw (3.40)

pu, w pv,wW pw, +p

puw h pvwh pwwh

where 4, is the tangent component of the velocity, which is given by

= i - (1.i) , (3.41)

in which u, the normal velocity at the wall, is subtracted from the total velocity. Since

the flux integration procedure is cell-based, this boundary condition is implemented by

constructing a correction flux term, to be added to all nodes whose supercells contain

a solid wall face. This includes not only the nodes of the triangles on the surface, but

the "peak" nodes of the tetrahedra that have a solid surface triangle one of their faces.

The cell residual expression of equation 3.38 is modified to be

+ -# . -. + - .- + -..#) + "F
RC= - + 2 2 3 S3 4' 4 6FSF , (3.42)

where §F is the area vector of the face, and

6F = Fw - FF (3.43)

is the corrective flux vector, where the quantity Fw is the wall flux vector whose com-

ponents are given in equation 3.40, and PF is the uncorrected face flux vector, which

is the average of the flux vectors at the three nodes of the face. The pressure terms

cancel, and the difference between the wall tangent velocity, uw, and the uncorrected

velocity, i, is simply the normal velocity, ' . The components of the corrective flux



vector are thus

PUn PVn pWn

pulUn +p pUVn pUWn

SF = pUv , 6G = pvvn p , 6H = pvw (3.44)

punw pVnW pWWn + P

pun h pvnh pwnh

It is possible that a single tetrahedral cell may border more than one solid face. In this

situation, the appropriate face boundary conditions are applied separately to the nodes.

It is also necessary to explicitly force the velocity to be tangent to the wall. The

velocity at each node on a solid boundary is set to its tangent component w, which

is found using equation 3.41. This enforcement is necessary since the condition of no

flux across the surface boundary can be satisfied in the presence of an odd-even type

of error mode at the boundary nodes, which averages to the correct flux values at the

faces. The unit normal vector at the nodes in calculated as an area-weighted average of

the normal vectors of the triangular boundary faces that contain the node.

3.3.3 Symmetry Surface Boundary Condition

The boundary conditions that are applied at a symmetry boundary are the same as

those applied at a solid wall.

3.3.4 Edge Boundary Condition

Special boundary conditions are applied at some nodes that are at the intersection of

two solid or symmetry surfaces. There are two different kinds of intersection boundaries,

which are termed edge boundaries and corner boundaries.
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sharp edge, (c) sharp corner.

An edge boundary is located at the intersection of two solid surfaces in the case

that the solid body protrudes into the fluid, such as at the trailing edge of a wing. To
treat such a point as if it were on a solid boundary would invite the fluid velocity to
become infinite, as the radius of curvature of the surface would approach zero. The

Kutta condition explicitly constrains the fluid velocity to be finite, and is physically

enforced through the action of viscosity. Numerically, artificial dissipation is sufficient
to impose the Kutta condition. At sharp edge nodes, no boundary condition is directly

applied. Instead, the switch that controls the numerical smoothing (see section 3.4) is
adjusted so that the second-difference smoothing is applied at the edge nodes, and atthe nodes nearby.

3.3.5 Corner Boundary Condition

A corner boundary is located at the intersection of a symmetry surface with a solidsurface, in the case that the fluid protrudes into the solid body. In theory, the inter-

section of two solid boundaries, such as at the fuselage-wing juncture, could also bethe nodes nearby.::.r.;;:.. :~::::::

3.3.5 Corner Boundary Condition:i~~ :

A corer bondaryis loated t theinterectio of asymmery suface ith asoli
sufce n h cs ha hefui rords no h sld oy I her, h itr

secton o twosold bondares, uchas a thefuslagewingjuncure coud alo b



treated as a corner boundary. However, it is valid to model such an intersection as part

of a solid surface in which the normal direction is taken to be the average of the two

normal directions of the surfaces that intersect. Such an approach is inappropriate if

one surface is a symmetry boundary.

The boundary condition that is applied at the corner is that the flow has no com-

ponent normal to either of the two intersecting surfaces. The velocity is set to

, = ii - ("i'1) '1 - (" '2) ' (3.45)

where A' and n'2 are the surface normal vectors of the two intersecting boundaries.

An intersection boundary is categorized as an edge boundary or a corner boundary

based on the relative orientation of two vectors, the nodal surface normal vector, and

the nodal surface tangent vector (see figure 3.4). The nodal surface normal vector is

the area-weighted average of the normal vectors of all boundary faces of which a node

is a corner, while the nodal surface tangent vector is the area-weighted average of the

vectors from the node in question to the centroid of each of the boundary faces of which

a node is a corner. If the boundary is flat, and the surface mesh is uniform, the nodal

tangent vector vanishes. If the surface mesh is stretched, but still flat, the tangent

vector is in the plane of the surface, and of course, orthogonal to the normal vector.

If the surface normal is discontinuous, which will be the case at all nodes on a sharp

intersection boundary, the tangent vector will roughly bisect the dihedral angle of the

surface. Since the average normal vector points into the fluid, the sign of the scalar

product of the normal and tangent vectors will indicate whether a node is a member of

an edge boundary or of a corner boundary.



3.3.6 Far Field Surface Boundary Condition

The analytical far field boundary condition is that the flow approaches a limiting form

as distance approaches infinity. Numerically, boundaries must be located at a finite

distance. The boundary condition that is imposed is derived with the goal that tran-

sient disturbances are transmitted through the boundary with minimal reflection. The

derivation follows Jameson and Baker's [30] application of the method of characteristics.

To begin the derivation, the Euler equations are written in a coordinate system, (n, t, b),

that is normal and tangential to the boundary. The equations are then linearized, and

it is assumed that derivatives in the normal direction are much larger than those in

the tangential directions. This results in a one-dimensional partial differential equa-

tion. This equation is diagonalized by the assumption of locally isentropic flow (which

Landsberg [41] found is valid for vortex flows), to produce the characteristic equation,

C 0(C
= A 0C(3.46)

t On

in which the five equations are decoupled. The characteristic quantities are

C1 R Un +f

2a
C2 Rout U -f-

C3 = Ut = ( - U ) . (3.47)

(4 Ub

C5  e L

where Rin and Rout are the Riemann invariants, and s is the entropy. The wave speeds

associated with the characteristics are

Rn : u+a

Rout : un-a

Ut : U4  (3.48)

es :U'.



The tangential velocity is kept as a vector, i't, to avoid the necessity of computing the

tangential coordinate directions. This velocity has only two degrees of freedom, not

three.

The sign of the associated wave speed determines whether the characteristic quan-

tities are convected from within the computational domain or from without, which

corresponds to whether they are calculated based on the internal or prescribed state

quantities. This is summarized in the following table:

Inflow

(un2 0O)

Mn > 1

Ut e°

Outflow

(un < 0)

Mn <1 Mn > 1

where Mn = un/a is the Mach number normal to the boundary, as computed by the

internal field flow solver. Inflow conditions are applied at nodes where u~ 0, while

outflow conditions are applied at nodes where u, < 0. Note that since the normal

velocity un is formed by a dot product with an inward-pointing normal vector, the

behavior of the Riemann invariants Ri and Rout at the outflow boundary are the

reverse of what may appear in some references.

P P P I

P P I I

P I I I



The primitive variables are recovered from the characteristic variables by

Un 1 (Rin + Rout)

a = 4-1(Rin - Rout)

U = Unji++ utt + ubb

p - - (3.49)
7e/

pa
2

7

from which the state vector is recomputed.

In two-dimensional computations, the prescribed far field is frequently expressed as

a free stream with corrective terms added, so that accuracy can be maintained with the

external boundary closer to the body [82]. The corrective terms frequently are based on

the potential flows due to a point vortex, to model lift, or a doublet, to model volume.

While analogous expressions exist for three-dimensional lifting wings [38], Steger and

Bailey [2] demonstrated that, for three-dimensional potential flow calculations, including

the corrective terms does not produce a substantial improvement in accuracy. Therefore,

the free stream is used as the prescribed far field flow in this thesis.

3.4 Artificial Dissipation

Artificial dissipation is necessary to achieve temporal and spatial stability. The dissipa-

tion at a node i is a mix of second- and fourth-difference terms, which can be represented

as

D = D(U) = ) (icVUi - C4(V2U,)) (3.50)



where the second- and fourth-difference terms are weighted by

V
K2 S2Atmax

4  (1 - s)e4 (3.51)
Atmax

and V and V 2 are first- and second-difference operators, respectively. The combina-

tion D(na2 Ui) is actually a type of second-difference operator. The fourth-difference

operator is evaluated as two nested second-difference operators. The details of these

operators will be discussed below.

The amount of second- and fourth-difference dissipation in equation 3.50 is controlled

by a pressure switch s originally designed to locate shocks. The switch is calculated at

the nodes as

Si = (3.52)
Pi

and is then normalized by its greatest value in the flow field so that 0 < si 5 1. In

addition, the second-difference smoothing is used to enforce the Kutta condition at

sharp edges, as discussed in section 3.3. This is attained by setting the value of the

switch si to unity at nodes on or near a sharp edge at which the Kutta condition is

imposed.

If it is known a priori that there will be no shocks and no separation in the flow

field, only fourth-difference smoothing is used, and the pressure switch is unnecessary.

The quantities E2 and E4 are empirical coefficients for the second- and fourth-

difference dissipation. The values of the coefficients are chosen to achieve rapid conver-

gence without excessively corrupting the solution. Typical values are around E4 = 0.01,

and the range 62 = 0.05 to £2 = 0.15

There are two types of second difference operators V2 that will be discussed, the

conservative low-accuracy operator, and the high-accuracy nonconservative operator.

The latter is only used to form the fourth-difference operator.
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Figure 3.5: Section of an unstructured mesh, with node-to-face-center edges

3.4.1 Conservative low-accuracy second difference operator

The conservative low-accuracy second-difference operator is based on an analogy to the

structured grid operator for the second difference of a quantity Q,

22Qijk = Qi+l,jk + Qi-1,jk + Qi,j+l,k + Qi,j-l,k + Qij,k+l + Qij,k- - 6 Qijk (3.53)

which can be rewritten as the sum of the differences along the edges that emanate from

the node at which the difference is calculated,

D2)Qj = (Qi+1,j,k - Qi,j,k) + (Qi-,j,k - Qij,k) + (Qi,j+1,k - Qi,Jk)

+ (Qi,j-l,k - Qi,j,k) + (Qi,j,k+l - Qi,j,k) + (Qi,j,k-1 - Qi,j,k)

(3.54)

The analogous formula for the second difference at a node of an unstructured mesh is

constructed as the sum of the differences along line segments that join the node to the

centers of the faces of its supercell, a two-dimensional analogy of which is shown in

figure 3.5. In the figure, the edges that join node 1 to to the face centers are bold lines.

Thus, the second difference at node 1 is given by

2Q1 = (Qface - Q1). (3.55)
faces of
supercell



For a tetrahedron, the term resulting from the face with corners nodes 2, 3 and 4 is

9 2 Q1 ,2 3 4 = Q234 - Q1

=- (Q2+ Q3 + Q4)- Q1. (3.56)

The advantage of this representation is that the contribution from the face can be

thought of as the contribution from cell C, which is defined by node 1 and the face in

question.

2  (Q2 + Q3 + Q4) - Q1

S (2 (Q+ 3 Q4 - 3Q1)

S (Q1 +Q2+Q3 +Q4-4Q1)

= Qc - QQ) (3.57)

where QC, the value at cell C, is the average of the values at nodes 1, 2 3, and 4. The

second difference can be scaled by a constant without affecting its behavior, so that the

factor of 1 can be dropped. The cell C will contribute to its nodes the amounts

D 2QC = QC Q1

2Q = QC-_ Q2 (3.58)

32 QC = QCQ3

'2 Q4 = QC - Q.

The total contribution from cell C to its four nodes is zero. Therefore the net change

in the entire solution is zero, so this operator is conservative.

The advantage of this operator is that it is quick to compute, and it is conservative.

The disadvantage is that a two-dimensional solver that uses this type of operator to

calculate smoothing is less than second-order accurate on an irregular mesh, as demon-

strated by Lindquist [45). In this context, an irregular mesh is a mesh in which there

is variation in the number of faces of the supercells of the nodes. Since there is no



regular tessellation of three-dimensional space with tetrahedra, it is expected than any

three-dimensional mesh will be irregular.

3.4.2 High-accuracy nonconservative second difference operator

The high-accuracy nonconservative second-difference operator is based on the low-

accuracy second-difference operator of section 3.4.1. The goal in creating the high-

accuracy operator is that it does not smooth a linear function, which will be referred

to here as being second-order accurate. In order to attain second-order accuracy, the

operator 3.58 is modified by the insertion of a weight c for each node of each cell. The

modified smoothing operator is

2 QC = (QC - 01) ( + )(3.59)

with the result that the smoothing of the linear function Q(z, y, z) = z is

Z, = (c - ZI) 1 + 4). (3.60)
cells

The smoothing weights e for one node are solved for by minimizing the norm

0 2 (3.61)
cells

subject to the requirement that a linear function is not smoothed. This approach was

first implemented in two dimensions by Holmes and Connell [27], and extended to three

dimensions by Saxer [73]. The requirement is equivalent to the three constraints

1z, = 0

yyi = 0 (3.62)

v zi = 0



where VDQi and DVQj are defined in a manner similar to equation 3.59. The con-

strained minimization is performed by the technique of Lagrange multipliers [77], with

the Lagrangian function being

C) + Az ( -C Z)(1+ )
cells cells

+A (yC - y) (1 + )+Az zC -Zl) (1+ e ) .
cells cells

(3.63)

Differentiating with respect to the Lagrange multipliers recovers the

tions, while differentiating with respect to e results in

constraint equa-

= 2e + A, (~C -_ ) + Ay (yc ) + X, (zc - z) .

Setting this to zero allows the smoothing weights to be expressed as

4 = - A, c - )+ A, (y - )+ A zc - z
E1 2 I'X( Yc-Y) Z -Zt

(3.64)

(3.65)

which is then substituted into the constraints (3.62) to produce the system of equations

IxAx + IxAV + IzAz =

IVAx + ly Av + IuzAz =

IzzAx + I315Ay + 155 Az =

(3.66)

where

I, = E (c -

cells

lYY = Ey _ x 2
cells

cells

II E (c _-1 (Yc - YI)
cells

Y = (Yc - ) (zc - )
cells

R 1 = 2 E(yc - )
cells

Z ( = ( c - X) zC - z)
cells

Izz = (zc - z1 2
cells

R5 = 2 (zc - z).
cells

(3.67)



This system can be solved to find the Lagrange multipliers:

A =1 (R.,I ,l +

A 3 = (RylIIzz +

Az = Rlylyz +

RyIaxzIy + RzIyzl4z - RzIyyIxz -Ryllzz - RxIv)

RzIyzI-. + Rzlyl-z - R yIzz - - R zI R z2 Ix()

RyII-zz + RzI30 ,4,I - RxyIzz- RyIyzIxm - RzI,)

(3.68)

where the denominator is

D = I4,1Izz + 2 I,,IyzIx - I lI - - I- xd, xyr (3.69)

which can be used in conjunction with equation 3.65 to determine the set of smoothing

weights for the node.

The smoothing weights depend only on the mesh geometry. Thus, they do not

meaningfully increase the computational burden of this smoothing operator, although

they do greatly increase the memory storage required.

3.4.3 Complete dissipation operator

The low-accuracy second difference operator is used as described in section 3.4.1 to

calculate the unscaled pressure switch si at the nodes. The fourth-difference background

smoothing operator consists of two second-difference operators applied consecutively.

First, the high-accuracy nonconservative operator of section 3.4.2 is used to create a

second difference. Then, an operator based on the conservative low-accuracy operator

uses this second difference to create a fourth difference. This operator differs from that

of section 3.4.1 by the inclusion of dimensional scaling and the effect of the pressure

switch. These details are described in this section.

The second-difference shock smoothing operator is based on the low-accuracy oper-



ator described in section 3.4.1. Two modifications must be made to Equation 3.58, to

insure proper dimensionality, and to include the effect of the pressure switch. Except

as noted, these modifications also apply to the outer second-difference operator of the

fourth difference smoothing.

First, it is necessary to cancel the factor At/V that appears in the time integration

scheme (Equation 3.74), so that the computed changes in the state vector are dimen-

sionally consistent with the state vector itself. The smoothing terms are multiplied by

a factor r where, as in Equation 3.76,

r =2 (iF.g§F + aFSF ) (3.70)
faces

is related to the spectral radius of the flux Jacobian. Unlike the nodal supercells, the

cells have a fixed topology, so that r c can be expressed directly as

c= 2 E(Iz1 .i + aS1 + u2 S 21 +a 2 S2 + Is 3 1 +3 Ss+ I4. 4 I+a 4S4) . (3.71)

Also, the second- and fourth-difference terms have to be scaled by use of the pressure

switch si. These factors cannot simply multiply the complete difference operator at the

nodes, as that would not be conservative. The multiplication must be carried out at the

cell level of computation, so that a cell's contributions to its four nodes will still sum to

zero. The pressure switch is averaged amongst the nodes to obtain values at the cells.

In the rescaled smoothing scheme, the cell C contributes the amount

V2QC = wCrC (QC - Q1) (3.72)

to node 1 when using the conservative low-accuracy second-difference operator, where WC

is a weighting function

Wc = sC, for second-difference smoothing term
S, for fourth-difference smoothing term(3.73)
1 - sC, for fourth-difference smoothing term.



In the case of the shock-smoothing term, the quantity Q is the state quantity that is

being smoothed, whereas in the case of the background smoothing, Q is the second

difference of the state quantity, which was computed using the high-accuracy second-

difference operator.

3.5 Temporal discretization

A four-stage modified Runge-Kutta time-stepping scheme is used.

- u(o) At

= AtUi )+ a2-F

-U() Ati

=U
4 )

(-ARo) + D )

(-AR 1)+ D1)

(-AR 2 ) + D 2))

(- AR 3)+ D 3)

where al = 1, a , a = a 4 = , At is the time step, Di is the artificial dissipation.

R o) is the residual at stage zero, etc. Note that the CFL number, A, has been separated

from the time step, At. This is to prevent the dissipation from being scaled by the

CFL number, which is desirable to have similar stability characteristics when the CFL

number is changed. This also has the effect that the steady solution depends on the

CFL number, as well as on the smoothing coefficients £2 and e4. However, the variation

of A is smaller than the typical variation of the smoothing coefficients.

Residuals are calculated at every stage, and dissipation will only be evaluated as

often as is required for stability. In practice, it was found that the fourth difference

dissipation could be frozen after the first stage, whereas the second difference dissipation

must be evaluated at the second stage as well. This is due to the greater value of the

U(0)

iil

U(3)

U( 4 )

Un+1
i

(3.74)
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Figure 3.6: Supercell and centroid dual cell of a node

second difference smoothing coefficient, e2.

3.5.1 Time step

The time step, At, is calculated individually for each node. The calculation is performed

at every Runge-Kutta stage. When computing steady-state flows, the local time step is

used to accelerate convergence, so that Ati is different for each node. This At is not the

same quantity that is usually called the time step. It differs by the omission of the CFL

number, A, which is incorporated separately into the temporal integration procedure of

equation 3.74. The time step for node i is given by

(3.75)ti = --i
ri

where Vi is the volume of the supercell of node i, and ri is given by

(3.76)ri= 2 : (liiFF + aFSF)
faces



where ifF is the average fluid velocity for a face of the supercell, aF is the average sonic

speed for the face and SF = IF| is the area of the face. This quantity ri is calculated

based on the cells. The contributions by a cell C to each of its four nodes are

rc = 2 (U2 + U3 + U4) Sz1 + I 3 (V2 + V3+ V4) SUyl +I (W2 + W3 +W4) Sz1

+ ( 2 + 3 ± 4 )S}

+ (a 2 + a3 + a 4) S

rc = 2{ j(u+u3+u4)Sz2+ (v+v 23+v 4)Sy3 + (W1+ 2 +W 4)Sz3

+ (a 2 + a3 +a 4) S1

r = 2j (u +u 2 + u 3 ) S4 + (V + v 2 +V 3 ) S4 + (w + W2 + W 3 ) SA

+ (a2 + a3 + a4) S}.

(3.77)

The quantity r is related to the spectral radius of the flux Jacobian OFi/OU, or the

largest absolute value of the eigenvalues of the matrix. The expression for the spectral

radius differs from the expression for r in that the sum is over the faces of the centroid

dual polygon of node i, rather than the supercell, as shown for the analogous two-

dimensional situation in Figure 3.6. If the spectral radius were used in place of ri in

Equation 3.75 then the CFL limit would be the same as for a one-dimensional analysis,

as shown by Giles [21]. Since the dual polygon has about one-fourth the volume of the

supercell, the spectral radius should be smaller than ri by about a factor 42/3, and the

CFL limit will be less strict by the same factor. Since the one-dimensional four-stage

Runge-Kutta scheme has a stability limit of A < 2v2, the stability limit for this scheme

is A < 2v2 x 42/3, which is approximately 7.127. In practice, this value of A cannot be

attained. The practical CFL limit is roughly 6.



3.5.2 Regional Local Time Steps

When computing steady-state flows, the local time step is used to accelerate conver-

gence. For strict time-accuracy, however, the same time step must be used at each node.

This can lead to problems if the local time steps vary widely from node to node. This

will occur when the mesh spacing has a wide variation, since the local time step, as

calculated by equation 3.75, scales roughly with a local length scale of the mesh. Thus,

very fine mesh spacing will create a very strict global time step limitation. This yields a

stiff system of equations, with the time step being determined by a restrictive stability

criterion, rather than by accuracy considerations.

The use of local time steps in a time accurate calculation will introduce inaccuracies

in the solution. The global effect of the inaccuracies can be minimized by restricting

the use of local time steps to the most closely spaced regions of the mesh, where the

smallest local time steps will occur. The solution in the coarser regions of the mesh

is integrated in a strict time accurate fashion, but with a larger time step, so that the

calculation can be performed in fewer iterations. The extent of the use of local time

steps is quantified by the global time step acceleration factor, f, which is the ratio of

the global time step to the minimum local time step. It is also the factor by which the

number of iterations needed to integrate a fixed time interval is decreased. A simple

analysis of this scheme (see appendix A) indicates that its effects can be modeled as

a time delay, 6t, in the propagation of characteristic waves through the region of local

time steps. This is a model for the effect on the solution in the time accurate region. In

addition, any unsteady physical phenomena in the region of local time steps will have

inflated time scales. The magnitude of the time delay, compared to the global time step,

is roughly
6t N

Atglobal Moo

where Moo is the free stream Mach number and N is the number of cells the wave

traverses in the local time step region. There are two important conditions in order

to obtain a meaningful time accurate solution using local time steps. First, the the



important unsteady physical phenomena should take place in the strictly time accurate

region. Second, the time delay introduced by the region of local time steps, described

above, should be small compared to the physical time scales. Since the physical time

scales and the global time step can typically be estimated a priori, equation 3.78 can

be used to place a limit on the size of the region of local time steps. Two-dimensional

calculations of vortex shedding from a plat plate normal to the free stream validate the

concept of using regional local time steps. Details of the two-dimensional solutions are

presented in appendix B.

Since the primary vortex above a delta wing is roughly conical in shape, incredibly

fine mesh spacing is needed to resolve the vortex near the apex of the wing. However,

the unsteady effects are far greater in the region of, and downstream of, the vortex

breakdown location. Thus, delta wing flows with vortex bursting are ideal candidates

for the use of regional local time steps.

3.6 Data Structure

A general tetrahedral mesh with Np nodes will contain about 6Np cells. There will

be O(N2/ 3 ) boundary nodes, so that the data storage of boundary quantities will in

general be negligible.

Data storage is summarized in tables 3.1 and 3.2. Table 3.1 shows data stored at

the nodes, and table 3.2 shows data stored at the cells. The total number of quantities

is 209Np, of which more than 70% is stored at the cells. This demonstrates one of the

major penalties of the use of tetrahedral meshes. Recent publications [4, 48, 60] indicate

that an edge based data structure could provide a noticeable decrease in memory storage

requirements for unstructured tetrahedral mesh methods.

In addition, connectivity information is required specifying the four nodes of each



Quantity amount
coordinates z, y, z 3Np
supercell volume V and inverse 1/V 2Np
state quantities U" and Un+1  1ONp
state quantity changes bU" 5Np
fluxes F, G, H 15Np
time step divided by supercell volume, At/V Np
supercell volume divided by time step, V/At Np
residuals R 5Np
pressure p Np
pressure switch s Np
dissipation D 5Np
state quantity second differences, V 2U 5Np
state quantity fourth differences, D4 U 5Np
Subtotal 59Np

Table 3.1: Nodal memory usage for flow solution procedure

Quantity amount
Volume of cell divided by time step of the cell Nc
face areas S,, , Sz 12Nc
smoothing weights ec  4Nc
Subtotal 17Nc

= 102Np

Table 3.2: Cellular memory usage for flow solution procedure

cell, which is a total of 24Np pointers. The grand total storage is thus 233Np words.

This is typical of flow solvers that use unstructured tetrahedral meshes [46]. The adap-

tive refinement procedure requires additional storage, which is discussed in section 3.7.6.

3.7 Adaptive Refinement Method

In order to compute an accurate flow solution, it is necessary to have adequate mesh

spacing so that flow features are finely resolved. With current computational resources

available, it is impractical to obtain a solution using a mesh in which the entire three-



dimensional flow field has the resolution required by the finest scales. Thus, it is nec-

essary to produce meshes in which regions of the flow are only finely resolved if the

local flow features warrant such resolution. When the most important flow features

appear in a known location, such as the presence of a boundary layer along a solid wall,

increased mesh resolution can be specified a priori. In other situations, it is possible

to provide increased mesh resolution in the general area in which flow features are ex-

pected. Frequently this is insufficient, and many schemes exist whereby the flow solution

itself is examined to specify the location of additional mesh resolution for a subsequent

calculation. Such schemes are referred to as adaptive mesh methods.

There are three basic categories of adaptation schemes, and a fourth technique which

is similar. Firstly, it is possible to generate a new mesh from the ground up, taking

care to place more mesh nodes in regions specified by the adaptation procedure as being

insufficiently resolved. This method, called mesh regeneration [62, 75], results in higher

quality meshes, since it is not strongly influenced by the mesh used in the previous

calculation, and it allows arbitrary amounts of refinement or de-refinement. However,

it requires close coupling with the mesh generation procedure, and, with unstructured

mesh generation techniques, it is difficult to control the size of the mesh produced.

This procedure can also be used to adapt a structured grid, although with important

topological constraints.

A second method retains the connectivity of the initial mesh, but moves the nodes

to inadequately resolved regions. Mesh redistribution algorithms prevent the size of

the mesh from increasing, thus allowing efficient use of computer resources, but can

result in meshes with unacceptable cell shapes and stretching. This can be partly

alleviated by changing the connectivity of the mesh while retaining the set of nodes.

Mesh redistribution can also be used to adapt a structured grid.

It is also possible to add mesh nodes in regions of interest without changing the

existing nodes. This is referred to as mesh-point embedding. There are two common

procedures to determine the new cells. In one method, adaptation is performed lo-



cally on a cell-by-cell basis, with cells being subdivided as necessary to maintain mesh

connectivity with the embedded nodes [33, 66]. The algorithms required to properly

subdivide cells are quite complicated, but need only be developed once. This method

maintains the quality of the original mesh, except in an interface region between divided

and undivided cells. Embedding methods frequently result in very large meshes, and

a separate procedure is needed if it is desired to allow de-refinement as well. In order

to be efficient, mesh-point embedding methods also require a large amount of auxiliary

data that is often not needed by the flow solver.

Another adaptive embedding method assumes that the original mesh was generated

by a Delaunay triangulation method [3], which guarantees that the mesh will possess

certain mathematical properties. After a new node has been added, all cells in the

vicinity are deleted. Then, it is possible to use the Delaunay mesh generation procedure

to construct a set of cells that incorporate the new node, and that fill the same volume

as the set of cells that were deleted [49].

Mesh-point embedding cannot be used in the context of a structured grid. How-

ever, it is possible to embed entire structured sub-meshes [8], or to embed points in an

unstructured mesh that uses hexahedral cells [74], or a mixture of cell types [83].

3.7.1 Adaptation Procedure

An outline of the adaptive refinement procedure is as follows: First, an adaptation

parameter is calculated at the mesh nodes. Then, all nodes associated with extreme

values of the parameter are indicated for adaptation. Some special refinement associated

with repeated adaptation stages is then performed. New nodes are then added at

the centers of edges of which both endpoints are indicated for adaptation. Then, the

tetrahedral cells and the triangular boundary faces are examined, and are refined based

upon the status of their nodes. Each of these steps are described in detail below. This

procedure requires an immense amount of connectivity information to be efficient.



3.7.2 Adaptation Parameter

The adaptation parameter, which is intended to locate regions of the flow that require

refinement, can be based on mathematical or physical reasoning. Using a mathematical

approach, one can construct an operator that will infer the errors in a solution, and

select regions of greatest error for refinement. A Richardson extrapolation method [9]

can be used to compare the solution on two meshes of different resolution to estimate

the truncation errors. Such methods require knowledge of the order of the scheme, and

thus work best with regular meshes for which the detailed mathematical behavior of

the scheme can be derived. Also, it is possible to use a mesh convergence criterion [65]

to identify regions in which further refinement will add more structure. However, mesh

convergence methods have not been found to be adequate in three dimensions [51].

A physically based adaptation parameter can be a flow property, or a derivative or

a difference of a flow property. In such a case, the flow property is referred to as the

adaptation quantity and the operator applied to it is the adaptation measure [41]. If

the flow property itself is the adaptation parameter, then the adaptation measure is the

identity operator.

The adaptation parameter should reflect the nature of the expected flow features.

In the case of shock dominated flows, an adaptation parameter that reflects compress-

ibility should be used. In a study of two-dimensional transonic flows, Dannenhoffer [13]

found that total pressure, or its undivided first or second difference, accurately locates

shocks and shock wakes, whereas other flow features such as expansion fans and stagna-

tion zones are best detected by an undivided difference of density, pressure or velocity

magnitude.

In the case of vortex dominated flows, there are three quantities that are typically

used for adaptation. These are the total pressure loss, Apo, the entropy s, and the

normalized helicity IH,. The helicity is a kinematic quantity, defined as the scalar

product of velocity and vorticity, while the normalized helicity is the scalar product



of the unit vectors in the directions of the velocity and the vorticity, which is also

the cosine of the angle between these two vectors. The total presure loss and entropy

are popular since they are uniform in steady, irrotational, inviscid flow. Normalized

helicity has been used because of the property that it takes on a value of unity along

the core of any vortex, and has the potential to equitably detect multiple vortices of

different strengths [41]. However, it approaches an indeterminate limit of HI, -- -1 in

irrotational regions.

The entropy and the total pressure are related to each other and to the vorticity via

Crocco's relation. Although both have been used successfully as adaptation parameters

in three dimensions [10, 51], entropy is a superior physical indicator in unsteady flow,

as it is a thermodynamic state quantity and thus is independent of reference frame.

If multiple stages of adaptation are to be performed, case must be taken in the choice

of a physically based adaptation parameter. If a physical quantity, or its derivative

is used, then the extreme values, at which adaptation will be performed, will always

be in the same region of the flow. However, as the mesh is refined in these areas,

the local errors will decrease, to the point that refinement might be more useful in

other regions of the flow, where local errors are undiminished. In a study of two-

dimensional transonic flow, Warren et al. [86] found that multiply-adapted simulations

can converge to the wrong solution if a mesh-independent adaptation parameter is

used. Their recommendation is to use as an adaptation parameter a mesh-independent

physical quantity that has been multiplied by a local length scale related to the mesh

spacing.

3.7.3 Refinement of Edges

The adaptation process is primarily node-based, in that the identification of the region

in which refinement is desired is indicated by selecting the nodes in that region. The

first step in the adaptation process is to identify the edges both of whose endpoints
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Figure 3.7: Refinement of a triangle

are indicated for adaptation, and to refine these edges by creating a new node at the

midpoint of the edge and dividing the edge in two. The indices of the new node and

the new edge are associated with the original edge, to be used to identify the nodes and

edges of triangles and tetrahedra during the refinement of boundary faces and cells.

3.7.4 Refinement of Boundary Faces

The refinement of the triangular boundary faces is very similar to the refinement

of triangular cells in two dimensions. There are two principal ways that a triangle

can be refined, and an additional way that is used only in special cases involved with

multiple stages of adaptation. The three types of refinement are depicted in figure 3.7.

In this figure, the grey shaded nodes are the nodes of the triangle for which adaptation

is indicated, the dark shaded nodes are the nodes for which adaptation is not indicated,

and the unshaded nodes are the new nodes that are created by the adaptation process.

Likewise, the solid lines are mesh edges that exist prior to refinement, and the dashed

lines are edges that are created within the triangle during the refinement process. The



two general refinement types will be described first.

The choice of refinement type is based on the status of the adaptation indicator at

the three nodes of the triangle. If all three nodes are indicated for adaptation, then

the triangle is divided into four sub-triangles, one in the center and one at each corner.

The nodes and edges of the new triangle are identified by reference to the edges of the

original triangle. This is referred to as one to four, or 1:4 refinement, and is shown in

the lower left of figure 3.7. In the case that only two nodes of a triangle are indicated

for adaptation, the triangle is divided into two sub-triangles, and is marked for special

treatment if there is to be any subsequent stages of adaptation. This is referred to as 1:2

refinement, and is shown in the upper left of figure 3.7. If only one node is indicated

for adaptation, no refinement is performed on that triangle.

Triangles that have been refined 1:2 should not be treated in the normal manner in a

subsequent stage of adaptation. If the three nodes at the base of the set of triangles are

indicated for adaptation, the normal procedure would direct that both subtriangles be

refined 1:2, producing four very skinny triangles. Such triangles degrade the accuracy

and stability of the flow solution scheme, and thus should be avoided. What is done in

the case of refinement of a pair of triangles is to reconstruct the original triangle and

do divide it into four subtriangles in the 1:4 manner. This special type of refinement is

referred to as 2:4 refinement, and is shown at on right in figure 3.7. It is possible that

after 2:4 refinement that one of the base edges of the set of triangles will still need to

be refined. For example, in the lower triangle in figure 3.7, two nodes at the base of

the set of triangles are indicated for adaptation. These two nodes will remain indicated

after 2:4 refinement is complete, with the result that the lower left triangle in the set

of four triangles will be refined in the 1:2 manner, after all the special cases have been

resolved.

It is also possible to base adaptation on an indicator associated with the edges of

the mesh. In such a system, a triangle undergoes a type of refinement based upon the

number of its edges for which adaptation is indicated. A triangle of which three edges
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a tetrahedron

are indicated for adaptation is refined is divided into four triangles, as if its three nodes

were indicated for adaptation in this scheme. A triangle of which one edge is indicated

for adaptation is refined in the 1:2 manner, as if two of its nodes were indicated for

adaptation. However, if two edges are indicated for adaptation, the triangle must either

be refined in a special way, or must be promoted to 1:4 status. In the latter case,

the edge which previously was not indicated for adaptation must be refined, and the

neighboring triangle that shares the this edge must be reconsidered as to what type of

refinement it must undergo. In addition, the treatment of special cases is horrendously

intricate. It is to avoid these two complications that the choice of node-based adaptation

was made.

3.7.5 Refinement of Cells

The refinement of the tetrahedral cells is similar in principle to that of the triangular

boundary faces, but is more complex. There are three types of general and three types

of special refinement. These are shown in figure 3.8. The ordinary refinement situation



is very much like that which is applied to the triangles, except that the case of full

refinement produces twelve subtetrahedra, and a new node is created at the center of

the original cell. It is also possible to divide the cell into eight cells, but the 1:12

refinement is symmetric with respect to the nodes.

The two types of partial refinement involve division into either four or two subcells.

These cases strongly resemble the the two types of ordinary refinement in the two-

dimensional situation, with the addition of the fourth node which is not involved in

refinement. The ordinary refinement cases are shown on the left of figure 3.8. The three

cases of special refinement are also similar in principle to that which is applied to the

triangles, and are shown on the right of figure 3.8.

An important difference between the refinement of triangles and that of tetrahedra

is in relation to new edges that are created inside the elements during refinement.

These edges are shown as dashed lines in figures 3.7 and 3.8. In the refinement of a

triangle, the new edges that separate the subtriangles lie entirely within the original

triangle. In the refinement of a tetrahedron, some of the new edges lie on the faces of

tetrahedron, while others are entirely within the original tetrahedron. The edges that

are on the faces are shared with the subcells that result when a neighboring tetrahedron

undergoes refinement. Therefore, special care must be taken that these edges can be

correctly associated with both sets of cells. This necessitates the existence of a set of

pointers that identify a cell's neighbors.

3.7.6 Connectivity Requirements

The adaptive refinement procedure requires a large amount of connectivity infor-

mation that is not relevant to the flow solver. As mentioned in section 3.6, a general

tetrahedral mesh with Np nodes will have about Nc = 6Np cells. In addition, it will

have about NE = 7N edges. The adaptation procedure requires the nodes, edges, and

neighboring cells of each cell, and the nodes of each edge. In addition, the algorithm



pointer per object objects total
cell to node 4 6Np 24Np
cell to cell 4 6Np 24Np
cell to edge 6 6Np 36Np
edge to node 2 7Np 14Np
pointer subtotal 98Np
other node storage 5 Np 5Np
other cell storage 3 6Np 18Np
other edge storage 2 7Np 14Np

total 135Np

Table 3.3: Memory usage for adaptive refinement procedure

keeps track of the new node and new edge formed when an edge is bisected. There is

also a list of three pointers per cell which are used to handle unusual cell refinement.

Also, the adaptation parameter and adaptation indicator are stored at each node, as

well as the node coordinates. In total, the adaptation procedure requires 135Np words

of storage.



Chapter 4

Results and Discussion

So far as the theory agrees with reality, it is not exact; and so far as it is
exact, it does not agree with reality.

Albert Einstein

In this chapter, steady and unsteady flow solutions are presented and discussed.

Comparison is made with the experimental data in the form of Jarrah's normal force

measurements [32], and Hummel's measurements of pitching moment and vortex break-

down location [29]. Ten stationary wing flow solutions span the range of angle of attack

from zero to 52 degrees. In this range, the flow varies from a completely intact vortex

to vortex breakdown almost at the apex of the wing. A series of pitching wing cal-

culations were performed, involving the sinusoidal variation of angle of attack from 32

degrees to 37 degrees, and back down to the original value. During the pitching motion,

the position of breakdown remains above the wing, varying by about one third of root

chord. An explanation will also be advanced for the jagged appearance of the contour

plots presented in this chapter.

4.1 Data Interpolation on a Mesh of Tetrahedra

This section addresses the jagged appearance of the contour plots presented in sec-

tion 4.3.2. In the context of this thesis, this discussion pertains only to the interpo-

lation of a solution in post-processing, and does not make any implications towards
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Figure 4.1: Smooth and linear interpolation in one dimension, and linear interpolation
error.

the accuracy of the solutions on the basis of unaesthetic contour plots. Because of the

interpolation issue, care must be taken in analysis of interpolated data. This is seen

in section 4.3.2.1, in the discussion of the total pressure coefficient at the center of the

vortex. There is also no effect on global quantities such as the coefficients of normal

force and pitching moment.

The finite element method specifies an interpolation procedure that sets the value

of a quantity at any point in the solution domain in terms of a fixed number of data

points. In this thesis, data is linearly interpolated between the four comers of the

tetrahedron that the point is within. As mentioned in section 3.2.2, the interpolated

flow field thus produced is not an exact solution to the Euler equations everywhere. The

gradient of this interpolation function is uniform within each tetrahedron; thus, this

interpolation method produces a function that is not differentiable at the boundaries

between tetrahedra.

One can hypothesize another approximate solution to the Euler equations, which is

"smooth," or continuously differentiable everywhere and is coincident with the numerical

solution at the mesh nodes. This solution is called Us. The smooth function is not a



O A 00 B

f, .. .......o... ..

Figure 4.2: Jagged interpolation of a smooth function in two dimensions.

better solution than the linearly interpolated function, so no implications about accuracy

are made. In addition, the linearly interpolated numerical solution, UL, is taken to be

the first term in a Taylor expansion of the smooth solution. The difference between the

numerical solution and the smooth solution represents the numerical solution's departure

from smoothness. This error function, EL, vanishes at the mesh nodes, and elsewhere

increases with distance from mesh nodes and with the second derivative of the smooth

solution. Figure 4.1 represents this situation in one dimension.

The significance of this error function can be demonstrated in two dimensions with

reference to figure 4.2. Consider a function f(z, y) = f(y) z fo - ay2, with high curva-

ture and variation only in the vertical direction, as shown towards the left. This function

is represented at the nodes of the triangular mesh shown, and is to be interpolated onto

the horizontal line segment AB, at which the slope vanishes. The line segment alter-

nately intersects the mesh at nodes, such as at point Po, and at the midpoints of edges,

such as at point Qo. At the point Po, the function has its maximum value of fo. At the

point Qo, the function is interpolated between the two nodes at Q, and Q2, at which

the function has the value ft, which is lower than fo by the amount ayl. The interpo-

lation along the line AB alternates between points such as Po and points such as Qo,
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Figure 4.3: Total pressure loss in a Lamb vortex: interpolation of the analytic solution.

with the result that the interpolated function varies between the values fo and fl. The

magnitude of the variation depends directly on the curvature of the function f normal

to the line AB, and with the square of the mesh spacing. This is a consequence of the

misalignment between the characteristic directions of the mesh and of the function.

This behavior is almost a certainty when using a three-dimensional tetrahedral mesh,

as such meshes tend to be irregular, having no characteristic direction. As an example,

figure 4.3 shows the interpolation of the analytic solution of the total pressure loss in a

Lamb vortex. On the left is a contour plot of the interpolation of the three-dimensional

data onto a plane through the vortex core. If the interpolation were perfect, the contour

lines would be precisely horizontal. On the right is the interpolation of the planar data

onto the line segment through the vortex core. At the core, the curvature of the total

pressure loss is very high, and the slope vanishes, as in the two-dimensional example of

figure 4.2.
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Figure 4.4: Delta wing geometry.

4.2 Delta Wing Geometry

The geometry of the delta wing used in this thesis is shown in figure 4.4. Since the angle

of yaw is zero, the flow is expected to be symmetric, so the calculation is performed

using only the right-hand side of the wing, with a symmetry condition at the center

plane. The figure shows the wing root chord, cR, wing span, b, sweepback angle, A,

thickness, t, and bevel angle, 3, and the coordinate system, which has its origin at the

apex of the wing. The sweepback angle is 75 degrees, giving the wing and aspect ratio

of 1.07. The ratio of thickness to chord, r = t/c, has a value of 0.016, and the bevel

angle is 10 degrees. The bevel angle has the same value at the leading and trailing edges.

These values were chosen to match the geometry used by Ekaterinas and Schiff [17] in

their calculations. This differs from the wind tunnel model used by Jarrah [32], which

has an aspect ratio of unity, and thus a sweepback angle of 76 degrees. In addition,

Jarrah's wing is not beveled at the trailing edge, but the modeling of a blunt trailing

edge when using an inviscid fluid model is both difficult and unnecessary.



Figure 4.5: Surface triangulation of delta wing for coarse mesh.

4.3 Stationary Wing Solutions

Stationary wing solutions were performed at ten values of angle of attack, in the

range of zero to 52 degrees. The angles of attack are concentrated in the high part of the

range, in which vortex breakdown occurs. The free stream Mach number is M = 0.3

for all cases. This was chosen to match solutions obtained by Ekaterinas and Schiff [17]

at angles of attack of 20.5 degrees and at 32 degrees. The coarse mesh used for all

cases has 15462 nodes. All three-dimensional visualization was done using Visual3, an

interactive package developed by Haimes [24]. The surface triangulation for the coarse

mesh appears in figure 4.5. The apex of the wing is at the lower left, and the trailing

edge is towards the upper right. Mesh node clustering is apparent at the leading edge

and towards the apex of the wing. Only the left half of the wing is modeled, and the

triangulation on the symmetry plane is also visible. One level of adaptive refinement

was performed for all of the cases, except for the case at zero degrees angle of attack.

Fluid entropy was the adaptation parameter, with the criterion that 30% of the mesh

nodes be selected for adaptation. Figure 4.6 shows the effect of adaptation on the

mesh density. On the left is a slice through the coarse mesh at a plane normal to the

wing, located at 70% of root chord. On the right is the same slice through an adaptively



Figure 4.6: Slice through coarse and adapted meshes at 70% of root chord. Coarse mesh
in on the left, adapted mesh is on the right.

coarse mesh adapted mesh
a CN CL CD CM nodes CN CL CD CM

0.00 -0.076 -0.076 0. 0.0474
10.00 0.284 0.280 0.0493 -0.0142 77630 0.305 0.300 0.0530 -0.0137

0.302 0.297 0.0524
20.50 0.773 0.724 0.271 -0.0649 83286 0.860 0.806 0.301 -0.0786

0.912 0.854 0.319 0.863 0.808 0.302
26.00 1.132 1.018 0.496 -0.1163 81090 1.020 0.9172 0.447 -0.1061

1.147 1.031 0.503
30.00 1.268 1.098 0.634 81055 1.367 1.184 0.684 -0.1265

1.291 1.118 0.645 1.392 1.206 0.696
32.00 1.349 1.144 0.715 -0.1131 80194 1.493 1.266 0.791 -0.1056

1.554 1.318 0.823
35.00 1.454 1.186 0.841 -0.1305 81448 1.351 1.107 0.775 -0.1003

1.499 1.228 0.860
38.00 1.527 1.203 0.940 -0.1627 80652 1.321 1.041 0.813 -0.0837

1.591 1.254 0.976 1.499 1.181 0.923
42.00 1.612 1.198 1.331 -0.1958 79975 1.490 1.107 0.997 -0.1577

1.675 1.245 1.382 1.538 1.143 1.029
52.00 1.764 1.086 1.390 -0.2346 78369 1.207 0.730 0.951 -0.2693

1.811 1.115 1.427 1.264 0.778 0.996

Table 4.1: Summary of stationary wing cases.
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Figure 4.7: Iteration history of root mean square of state vector for a = 420 case.

refined mesh, for the flow around a wing at 20.50 angle of attack, which will be discussed

in section 4.3.2.1. The higher mesh node density in the region of the vortex above the

wing is clearly evident.

4.3.1 Analysis of Global Features of Solutions

A summary of the cases is presented in table 4.1, in which the angle of attack, number

of nodes in the adapted mesh, and the aerodynamic force coefficients for each case are

shown. When two values of normal force, lift and drag are presented for a single case,

the solution has not attained steady state. For the cases involving vortex breakdown

this is due to the inherent unsteadiness of the flow downstream of breakdown which

makes a steady solution unreachable. This unsteadiness is due to the rotation of the

helical vortex core, and to the periodic fluctuation of the position of breakdown. This

situation is exhibited in figures 4.7 and 4.8, which show the iteration histories of the

root mean square of the change in the state vector, and of the coefficient of normal

force, for the case at an angle of attack of 42 degrees. The RMS quickly drops to a

minimum that is much larger than machine precision, which indicates that the coarse
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Figure 4.8: Iteration history of coefficient of normal force for a = 420 case.

mesh solution is not steady, and the coefficient of normal force settles into a cycle which

shows no sign of diminishing. The values in table 4.1 are the minimum and maximum

of the final period of oscillation.

In this thesis, the unsteadiness in the stationary wing flows will be referred to as

"natural" unsteadiness, meaning that it is present in the absence of any unsteady forcing

function in the governing equations. The term "natural" should not be interpreted to

imply that the unsteadiness is of a physical, as opposed to numerical, origin. When such

an implication is intended, the term "physical" shall be used. Further, the details of

the unsteadiness, particularly the frequency, will be less accurate due to the use of local

time steps in temporal integration (see section 3.5.1). The study of the correct time

behavior of the unsteadiness will require the computation of a time accurate solution.

Further details of the unsteadiness will be discussed later in this section.

Stationary wing normal force curves are presented for coarse mesh computations

in figure 4.9, and for adapted mesh computations in figure 4.10. Both figures include

Jarrah's wind tunnel data [32] for comparison. It is clear that the coefficient of normal

force is adequately predicted using the coarse mesh at low angles of attack, in which the
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Figure 4.9: Stationary wing normal force coefficient versus angle of attack, without
adaptation. Solid line is experimental data of Jarrah [321. Symbols are computations.

vortex is intact over the entire wing. However, the coarse mesh is unable to capture the

details of breakdown, at higher angles of attack, well enough to predict the occurrence

of maximum lift. Figure 4.10 shows the improvement in the stationary wing normal

force curve due to the use of adaptation. At all angles of attack, except for 26 degrees

and 52 degrees, the computed coefficient of normal force is in excellent agreement with

the wind tunnel data. The reason for the poor match at 26 and 52 degrees angle of

attack will be explained in the discussion of the location of breakdown.

Stationary wing pitching moment curves appear in figures 4.11. Adapted and coarse

mesh computations are represented. A nose-up moment is defined to be a positive

value, and the axis about which the moments are taken is at 50 percent of the wing

root chord, and the values are referenced against the moment coefficient at zero angle

of attack. There was uncertainty as to the details of how Jarrah defined the pitching

moment, so the numerical values are compared with data measured by Hummel and

Srinivasan [29]. The agreement of the computational predictions with data is not as

good as is that of the normal force data. For the range of angle of attack for which

Hummel and Srinivasan presented data, the numerical values of the pitching moment

coefficient are consistently 25 percent higher than the experimental values. As large as
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Figure 4.10: Stationary wing normal force coefficient versus angle of attack, with adap-
tation. Solid line is experimental data of Jarrah [32]. Symbols are computations.

this difference seems, it can be accounted for by a chordwise error in the location of

the moment reference axis of one percent of root chord. In the case of Hummel and

Srinivasan's experiments, this distance is less than a centimeter. Additional calculations

were performed to investigate the history of the pitching moment coefficient during

the calculation. An example is seen in figure 4.12, which shows the history of the

pitching moment coefficient for the flow past the wing at 32 degrees angle of attack, as

computed on a coarse mesh. Fluctuations of ten to fifteen percent of the mean value are

observed, which may account for some of the difference between the numerical and the

experimental values, but should not result in a consistent trend. The pitching moment

is also very sensitive to details of the flow at the trailing edge, since the span of the wing

and the moment arm are both large there. The behavior of the numerical values at very

high angles of attack is consistent with the trends observed by Hummel and Srinivasan

for wings of higher aspect ratio, for which vortex breakdown occurs at a lower angle of

attack.

The variation of vortex breakdown location with angle of attack is shown in fig-

ure 4.13. Experimental data gathered by Hummel and Srinivasan are also shown in this

figure, for comparison. The apex of the wing is at the top of the figure, and the trail-
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Figure 4.12: Iteration history of coefficient of pitching moment for a = 320 case.
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Figure 4.13: Vortex breakdown location versus angle of attack. Solid line is adapted
mesh computations, dotted line is experimental data of Hummel and Srinivasan [29].

ing edge is in the middle. The computed breakdown location is determined as follows.

Using interactive visualization software, the core of the intact vortex is located, and

the component of velocity in the direction of the vortex axis is computed. Since one of

the characteristic features of vortex breakdown is the stagnation of the flow, followed

by a region of reverse flow, breakdown is said to occur in the numerical solution at the

location at which the axial velocity first becomes zero.

Figure 4.13 shows reasonable agreement between the computational and experimen-

tal measurements of breakdown location, with the exception of the data at 26 degrees

angle of attack. At this angle of attack, the experimental data indicates that breakdown

occurs in the wake, far downstream of the wing. In the numerical solution, however,

breakdown occurs slightly forward of the trailing edge of the wing. An explanation

for this mismatch involves the resolution of the mesh in the wake. The computational

meshes were generated with a higher resolution above the wing than in the wake, in

order to decrease the mesh size to economize on memory storage. Since the normal

force coefficient data in figures 4.9 and 4.10 show that the features of vortex breakdown

are not accurately computed with the resolution of the coarse mesh, it is possible that

similar inaccuracy will occur if breakdown attempts to occur in the less well resolved



portions of the mesh, namely the wake. It is as if the inadequate resolution in the

wake does not allow breakdown to occur, so breakdown is pushed forward to the finer

regions of the mesh. In addition, the streamwise gradients of circulation and pressure

are smaller in the wake than over the wing. Both of these gradients are important in

the physical process of vortex breakdown [14], and their variation over the wing may

help define the position of breakdown more precisely. An additional solution was per-

formed on a different mesh to investigate the effect of mesh resolution in the wake on the

breakdown position. The solution showed that finer resolution did allow breakdown to

occur in the wake, although far forward of the experimentally measured location. The

breakdown position moved very slowly rearwards, and it is estimated that 5000 addi-

tional iterations would be needed for the breakdown position to reach the experimental

position at the propagation speed seen in the calculations.

The predictive errors at 52 degrees angle of attack can also be explained by the

location of vortex breakdown. The numerical solution predicts that breakdown occurs

very far upstream, almost at the nose of the wing. Upstream of breakdown, the mesh

spacing is too coarse to satisfactorily resolve the intact vortex, so that this flow cannot

expect to be as accurate as those at lower angles of attack in which the intact vortex is

well represented.

The other cases, in which breakdown occurs over the wing, show fairly good agree-

ment with the breakdown locations measured by Hummel and Srinivasan. There are

three possible explanations for the differences between the numerical and experimental

breakdown locations. First, the difference may be due to a different criterion used to

define breakdown location. Figure 4.14 shows schematically the detail of the region of

vortex breakdown. The flow enters from the left, with the vortex core shaded as if it is

marked with smoke or dye, as is typically done in flow visualization experiments. The

region of reversed flow is to the right, and the fluid in the core is diverted around the

bubble. The locations zx and z2 locate two characteristic features of vortex breakdown.

The rapid expansion of the vortex core, which is easily identifiable in the wind tunnel

by smoke or dye visualization, occurs at z l . The onset of reverse flow, which is easily
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Figure 4.14: Detail of the region of vortex breakdown, showing two criteria for break-
down location.

identifiable numerically by examination of the axial velocity, occurs at the stagnation

point at z 2. Thus, it is likely that the numerical determination of the vortex breakdown

location will be slightly aft of the experimental determination.

A second explanation for the difference is that there can be an uncertainty in the

experimentally determined vortex breakdown location, if the breakdown region is large

or poorly defined. This problem is discussed in more detail by Thompson, Batill, and

Nelson [81]. However, it is impossible to evaluate the importance of this problem without

access to very detailed flow visualization data from which experimental researchers

determined vortex breakdown location.

Although there is a trend of the numerically predicted vortex breakdown location

being slightly aft of the locations measured by Hummel and Srinivasan, the trend is

not strong enough for the disagreement between experimental and numerical data to

be completely explained only by the difference in measurement of vortex breakdown

location. The trend is also more pronounced at higher angles of attack, at which the

breakdown location is closer to the apex, whereas at lower angles of attack, at which

the breakdown location is closer to the trailing edge, there is a weak tendency for the
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Figure 4.15: Iteration history of vortex breakdown position for a = 320 case.

numerically predicted breakdown location to be forward of the experimentally measure

breakdown location. The effect is that the rate at which breakdown moves forward with

increasing angle of attack is lower in the numerical simulation than in the experiment.

This difference in rate can also be observed in the computations of Agrawal, Barnett

and Robinson [1]. In addition, the differences between the coarse mesh solutions and

the adapted mesh solutions indicate that the adapted mesh solutions are not mesh

converged. Thus, errors due to inadequate mesh resolution could also be present.

A third source of the difference in vortex breakdown location is that the vortex

breakdown location fluctuates, due to the inherent unsteadiness of the flow. The chord-

wise "meandering" of vortex breakdown has also been observed in wind tunnel exper-

iments [69]. Figure 4.15 shows the iteration history of the vortex breakdown position

for the wing at an angle of attack of 32 degrees, using a coarse mesh. A periodic

fluctuation is present, having the same frequency as the variation in normal force coef-

ficient and pitching moment coefficient, and an amplitude of about 3 percent of wing

root chord. Wind tunnel measurements of breakdown location are likely to represent a

time-average of the unsteady breakdown location, whereas the numerically determined

breakdown location will be the instantaneous breakdown location at the iteration at
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Figure 4.16: Change of normal force to to motion of vortex breakdown.

which post-processing is performed.

The fluctuation of the vortex breakdown position is only one source of unsteadiness.

Downstream of breakdown, the helical vortex core rotates about the axis of the intact

vortex, at a rate believed to vary with chordwise position [71]. The relative importance

of the two sources of unsteadiness can be estimated by use of a relation between the

amplitude of the fluctuations of the breakdown position and the fluctuations of the

normal force on the wing. First, consider the quantity

Cn(Z)= cdy (4.1)

which represents the contribution to the normal force at a selected chordwise location.

The local semi-span of the wing is s(z). The total normal force coefficient for the wing

is then

CN = f Cn(Z) dr. (4.2)

Figure 4.16 schematically shows possible chordwise variations of C,(z). Four curves are

shown, to represent four flow situations. The total normal force for each situation is

proportional to the area under the appropriate Cn curve.



Curve A represents that variation in the absence of vortex bursting. The behavior

is roughly linear near the apex, then the rate of increase declines due to the adverse

pressure gradient above the wing, and then drops to zero due to the unloading of the wing

at the trailing edge. The other curves represent the variation of C,(z) in the presence

of vortex breakdown, at the same angle of attack. Consider curve B. Far upstream of

breakdown, the behavior is the same as if the vortex were intact. At the location of

breakdown, the pressure above the wing suddenly increases due to the disappearance of

the concentrated vortex, resulting in a decrease AC, in the contribution to lift. Then,

the contribution to lift increases gently, due to the increasing span of the wing. Curve C

represents the behavior in a situation in which breakdown occurs a small distance 6 ~BD

downstream of where it occurs in curve B. It is assumed that the chordwise lift will drop

by the same amount AC, as in curve B. The difference in normal force, 6CN, due to

the change in breakdown location is proportional to the area between curves B and C,

shaded gray in figure 4.16 . Curve D represents a flow in which the vortex breaks down

at the same location as in curve C, but the behavior of C,(z) downstream of breakdown

is the same as in curve B. The difference in normal force between curves B and D is

proportional to the area shaded dark gray, which should be larger than the light gray

area due to the low slope of the curves C and D downstream of breakdown.

The dark gray area is further approximated as a rectangle, of width 6 SBD and

height AC,, so that the change in the normal force associated with a change in break-

down location is roughly
62BD

6CN z 2 AC, (4.3)
CR

The actual fluctuation of the normal force coefficient is determined from figure 4.10 to

be about 0.1. It is more difficult to determine AC,. Based upon the behavior of C,'

at 380 angle of attack, as shown in figure 4.17, one can estimate AC, to be as large

as 0.5, while figure 4.15 shows a fluctuation in breakdown position of about 3 percent

of root chord. This reveals that the fluctuation of the breakdown position is associated

with a fluctuation of the normal force coefficient of 0.03, which is much smaller that

that which is seen.
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Figure 4.17: Variation of local lift with axial position, at a = 380.

An estimation of the frequency of the fluctuations can be used to assess the impor-

tance of the rotation of the helical vortex core. It is important to note that the use of

local time steps prevents the solutions from being time accurate, so that the following

analysis may not have any relevance to the physical phenomenon of vortex breakdown.

Nevertheless, it will help in understanding the numerical simulation.

A reduced frequency can be estimated for the fluctuations of the type seen in fig-

ures 4.12 and 4.15. It is necessary to determine an average time step throughout the

region downstream of breakdown. Because of the time step averaging procedure, the re-

duced frequency is fairly inaccurate. This yields an estimated reduced frequency in the

range k = 0.8 - 1.3. In addition, it is posible to estimate a reduced frequency specifically

associated with the rotation of the helical vortex core. This is done by examining the

chordwise distance, or pitch, X, between sucessive turns of the spiral. The frequency

of the fluctuation is related to the pitch and to the downstream convection speed, U,

as fl = U/X. If the convection speed is taken to be the speed of the free stream, then

the reduced frequency associated with the spiral vortex can be estimated to be in the

range k = 1.2 - 2. This is close enough to the reduced frequency estimated from the

iteration histories to suggest that the unsteadiness is primarily associated with motion



of the spiral vortex downstream of breakdown.

4.3.2 Analysis of Individual Cases

Three solutions will be discussed in detail. All cases are at a free stream Mach number

of 0.3. A solution at an angle of attack of 20.5 degrees features an intact vortex, and is

compared with a solution obtained by Ekaterinas and Schiff at the same conditions. A

solution at an angle of attack of 32 degrees features vortex breakdown over the aft part

of the wing, and is compared with another solution obtained by Ekaterinas and Schiff.

The third solution is at an angle of attack of 42 degrees, at which breakdown occurs

over the forward part of the wing.

4.3.2.1 Intact vortex at 20.5 degrees angle of attack.

The first case to be described in detail is at 20.5 degrees angle of attack, a condition at

which the vortex remains intact throughout the flow. A comparison is made with the

flow computed by Ekaterinas and Schiff [17], who used a Navier-Stokes flow solver with

a structured grid of approximately 100,000 grid points that are not in the boundary

layer. Due to their modeling of viscous terms, Ekaterinas and Schiff's solution captures

the behavior of the secondary vortex, which is caused by boundary layer separation on

the lee side of the wing, underneath the primary vortex. The secondary vortex is a

feature that does not appear in any flows calculated using the solver described in this

thesis.

Figure 4.18 shows contours of pressure on the upper surface of the wing. The region

of low pressure in the area of the wing underneath the vortex core is clearly visible. The

pressure is lowest towards the apex, and gradually increases towards the free stream

pressure downstream, as the core moves further from the surface of the wing. This

adverse pressure gradient is responsible for vortex breakdown, in the cases in which it



Figure 4.18: Pressure on the upper surface of the wing, at a = 20.50, on adapted mesh.
Contour increment is 0.05, outermost contour value is 0.70.

occurs.

Figure 4.19 shows contours of density in the plane normal to the wing at 90% of

root chord. The coarse mesh solution is on the left, and the adapted mesh solution is

on the right. The coarse mesh solution is very jagged, due to the interpolation issue

discussed in section 4.1. These plots can be compared with the density as computed by

Ekaterinas and Schiff, which is shown in figure 4.20. The coarse mesh solution does not

compare well with Ekaterinas and Schiff's solution, although the position of the vortex

core is adequately predicted. In the coarse mesh solution, the core is located at 0.67

of local semi-span outboard of the centerline, and 0.33 of semi-span above the wing,

which compares to values of 0.65 and 0.32 as predicted by Ekaterinas and Schiff. The

adapted solution compares more favorably with Ekaterinas and Schiff's solution, and

predicts the center of the vortex to be at 0.69 and 0.33. The differences between the

three vortex center locations are on the order of the local mesh spacing in the vortex

core, and therefore are not highly significant. For comparison, Goodsell, who solved the

Euler equations using a structured grid [22], predicted the vortex location to be 0.73

of semi-span from the centerline and 0.32 of semi-span above the wing, and Verhaagen

and Kruisbrink [85] measured the vortex center to be at 0.68 of semi-span from the



Figure 4.19: Computed density variation at z/cR = 0.90, for a = 20.50. Left: coarse
mesh, right: adapted mesh. Contour increment is 0.005, innermost contour values
are 0.930 (coarse) and 0.855 (adapted).

centerline and 0.36 of semi-span above the wing.

The density at the center of the vortex varies widely, having a value of 0.926 in the

coarse mesh solution, a value of 0.859 in the adapted mesh solution, and a value of 0.902

in Ekaterinas and Schiff's solution. This is due to the effect of viscosity on the structure

of the subcore. As the viscosity of the fluid decreases, the size of the subcore decreases.

The maximum swirl velocity, which occurs at the edge of the subcore, remains at about

the same value, which is on the order of the free stream velocity. This results in a

strong centrifugal pressure gradient in the subcore, which will force fluid outwards and

drive the conditions at the axis towards vacuum. This is the cause of the extremely low

pressure typically measured at the vortex axis, and also of the high axial velocity, which

maintains mass flow in the presence of low densities. Typical values are a minimum

pressure coefficient of c, = -10 and an axial velocity ratio of u/que = 3 [84]. This

issue is discussed in detail by Meyer and Powell [52], in their analysis of similarity

solutions for the flow in the vortex core. Since the flows computed for this thesis use

an inviscid model, the effect of viscosity is felt only through the artificial dissipation.

The dissipation operator is constructed in such a way that its magnitude decreases with
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Figure 4.20: Density variation at 4/cR = 0.90, for a = 20.50, from Ekaterinas and
Schiff [17].

decreasing mesh spacing, so that the adapted mesh solution appears less viscous than

the coarse mesh solution, resulting in a more slender subcore and a greater tendency

towards vacuum at the axis.

The structure of the vortex is more readily seen by examining the entropy, or the

total pressure loss. Figure 4.21 shows the entropy in a plane normal to the wing at 70%

of the root chord, for the coarse mesh solution. The feeding sheet is not well resolved,

and the vortex itself infringes upon the wing surface, which indicates that the vortex is

not well resolved. This solution has about five to ten cells across the vortex core. The

adaptation criterion was determined with the help of this plot. A level of entropy was

chosen that would select the entire vortex for adaptation. This results in 30% of the

nodes of the mesh being selected for adaptation. The fraction of the cells that will be

refined is similar. Since refinement of a cell produces eleven new cells, this will result in

an approximate quadrupling of the mesh size.

Figure 4.22 shows the improvement in the resolution of the vortex in the adapted so-

lution. The vortex core is smaller in size, and does not touch the wing surface anywhere.

Since the core is smaller, the number of cells across the vortex core is not doubled, even
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Figure 4.21: Computed entropy variation on coarse mesh at z/cR = 0.70, for a = 20.50.
Contour increment is 0.002, innermost contour value is 0.022.

Figure 4.22: Computed entropy variation on adapted mesh at z/CR = 0.70,
for a = 20.50. Contour increment is 0.002, innermost contour value is 0.030.
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though the mesh spacing is halved. In addition, the feeding sheet is well resolved. How-

ever, the resolution is insufficient to resolve the viscous sheath, which separates the

inviscid irrotational outer flow from the essentially invisvid rotational flow in the outer

vortex core [42].

Few researchers present entropy, so comparison with other solutions are made in

terms of total pressure, which is related to entropy through the second law of thermo-

dynamics. The total pressure is commonly expressed as the total pressure loss, defined

as

APo = 1 (4.4)
Pooo

or by the total pressure coefficient, defined as

P0 - PooPO- 1 2 (4.5)
SPwooo

For low Mach number flow, the two quantities are related by

Apo = I 7 M2 (1 - crO) + O(M.). (4.6)

The total pressure coefficient is roughly independent of Mach number at low Mach

number [22], so valid comparisons can be made with calculations and experiments per-

formed at other Mach numbers. Since total pressure is constant along particle paths in

the absence of viscous losses, it can be measured at any chordwise location at the axis.

Figure 4.23 demonstrates that the total pressure coefficient does not vary strongly along

the vortex axis in the adapted mesh solution. It also shows a noticeable interpolation

error, as discussed in section 4.1. In order to obtain a more accurate value of the total

pressure coefficient, one should choose a high value from figure 4.23, which results in

a value of -0.84. Applying a similar procedure to the coarse mesh solution yields a

minimum total pressure coefficient of -0.49. These values can be compared with Good-

sell's value of -0.60, and with Verhaagen and Kruisbrink's equivalent value of -2.8.

Goodsell's result is typical of other solutions obtained using the Euler equations. The

disparity between the computed value and the measured value of the total pressure co-
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Figure 4.23: Computed total pressure coefficient variation along the vortex axis on
adapted mesh, for a = 20.50.

efficient at the vortex axis is likely due to the lack of viscous effects, as was also observed

in the comparison of the density at the vortex axis. The fluid in the subcore is the most

rotational, which is associated with high entropy and large total pressure losses.

4.3.2.2 Vortex breakdown at 32 degrees angle of attack.

The second case is at an angle of attack of 32 degrees, at which vortex breakdown

occurs far back on the wing. The parameters of this case were also chosen so that a

comparison can be made with the solution obtained by Ekaterinas and Schiff. Based

upon the experience of the previous case, at a = 20.50, the adaptation threshold was

chosen so that 30% of the mesh nodes are selected for adaptation.

Figure 4.24 shows the pressure on the upper surface on the wing. The region of low

pressure underneath the vortex is visible upstream of breakdown, whereas downstream

of breakdown the data is somewhat irregular. Since breakdown is very far aft, this
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Figure 4.24: Pressure on the upper surface of the wing, at a = 320, on adapted mesh.
Vortex breakdown occurs at 0.80 of root chord. Contour increment is 0.05, outermost
contour value is 0.70.

region is difficult to see.

Figure 4.25 shows the axial velocity, in a plane normal to the wing at 90% of root

chord, as computed on the adapted mesh. This can be compared with the axial velocity

as computed by Ekaterinas and Schiff, which is shown in figure 4.26. In both figures,

positive values are shown as solid lines, and negative values are shown as dashed lines.

Both figures 4.25 and 4.26 show a small region of reversed flow at the center of

the vortex, which indicates the presence of vortex breakdown. The more symmetric

appearance of the reversed flow region in Ekaterinas and Schiff's solution may be due

to the more regular form of the grid, but it is also possible that this is a result of

differences between the two solutions. Ekaterinas and Schiff characterize the vortex

breakdown in their solution as the bubble type of breakdown, an assertion which they

support with visualization of particle traces in the region of breakdown, and with the

lack of unsteadiness in the solution.

The solutions computed in this thesis have a different character. There is significant
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Figure 4.25: Computed axial velocity variation on adapted mesh at z/cR = 0.90,
for a = 320. Solid lines are positive values, contour increment is 0.05. Dashed lines
are negative values, contour increment is 0.01.
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Figure 4.26: Axial velocity variation at z/cR = 0.90,
Schiff [17].

for a = 320, from Ekaterinas and
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Figure 4.27: Vortex breakdown region, showing the vortex core and the region of re-
versed flow, for a = 320, on adapted mesh.

unsteadiness in this solution, which also appears in all other solutions in this thesis in
which vortex breakdown is present. This unsteadiness is an indication that the break-
down is of the spiral type, in which the helical vortex core downstream of breakdown

rotates about the vortex axis. Visualization confirms the presence of the spiral struc-
ture. Figure 4.27 shows a perspective view of the breakdown region. The vortex core is
darkly shaded, the region of reversed flow is shown in gray. The vortex core is defined
as the region of high fluid entropy. In the steady vortex upstream of breakdown, the
entropy distribution is roughly cylindrical, and, since entropy is convected with the flow
in the absence of viscous losses, a surface of constant entropy approximates a stream
surface, until diffusion diminishes the entropy further downstream of breakdown. The
vortex core clearly follows a spiral path around the region of reversed flow, with the op-
posite sense of rotation from the flow in the vortex. The relationship between the vortex
core trajectory and the region of reversed flow is expected from a kinematic point of
view, as the velocity associated with a helical vortex filament with the sense of rotation
seen here will have an upstream component in the interior of the helix. Particle paths
launched from within the vortex core upstream of breakdown also tend to follow the
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helical form observed in the entropy variation.

It has been observed in swirling pipe flow experiments [72] that under certain con-

ditions vortex breakdown can manifest in either the spiral or the bubble form, whereas

under other conditions only one of the two forms occurs. A possible explanation for the

difference in type of breakdown encountered in the two numerical solutions is that the

flow conditions used are among those at which both types of breakdown are possible.

In such situations where a unique solution does not exist, the choice of solution form

can determined by the characteristics of the two solvers. The structured grid used by

Ekaterinas and Schiff has lines of grid points that lie on rays emanating from the wing

apex. Such a grid structure might more readily support an axisymmetric form of break-

down than it would the asymmetric spiral form. Since the spiral type of breakdown is

more commonly observed in delta wing flows than the bubble type, possibly due to an

instability of the axisymmetric bubble form [39], it is likely that the solutions obtained

in this thesis are more realistic.

Figure 4.27 also illustrates several criteria for the vortex breakdown location, which

were mentioned in section 4.3.1. Two possible criteria, both of which can be measured

experimentally, are the location at which the vortex core begins to expand, and the

location at which the core begins to follow a spiral path. The former is 10% of chord

forward of the onset of reversed flow, and the latter is 5% of chord forward of the

onset of reversed flow. The location of the onset of reversed flow is used throughout

this thesis to indicate the location of vortex breakdown. As seen in figure 4.13, the

numerically predicted location of breakdown is typically five to ten percent downstream

of the experimentally measured location, which suggests that the choice of criterion for

breakdown location is the major source of difference between the numerical predictions

and the experimental measurements of breakdown location.
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Figure 4.28: Pressure on the upper surface of the wing, at a = 420, on adapted mesh.
Vortex breakdown occurs at 0.33 of root chord. Contour increment is 0.05, outermost
contour value is 0.70.

4.3.2.3 Vortex breakdown at 42 degrees angle of attack.

The third case is at an angle of attack of 42 degrees. There is no existing data available

for comparison. This case is included because of an interesting and unusual flow feature

that appears. In this flow, the vortex undergoes a bubble type breakdown at 33% of

the wing root chord, and then reforms as a coherent vortex, only to suffer a spiral type

of breakdown further downstream.

Figure 4.28 shows the pressure on the upper surface of the wing. In contrast to

figure 4.24, this figure clearly shows the effect of vortex breakdown, since breakdown

occurs much further forward at this higher angle of attack. The region of intense low

pressure is only visible near the apex, and abruptly ends beneath the breakdown region.

A weaker area of low pressure is visible further downstream, where the reformed vortex

swoops inward and towards the wing surface.

Figure 4.29 shows a perspective view of the region near breakdown. The wing upper

surface is visible in the background, and the flow is from right to left. The vortex core
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Figure 4.29: Vortex breakdown region, showing the vortex core and the region of re-
versed flow, for a = 420, on adapted mesh.

is represented by a surface of constant entropy, which is medium gray in shade, and
has the slender cylindrical form of an intact vortex upstream of breakdown. The onset
of breakdown is visible as a rapid widening of the core, followed by a small region of
reversed flow, which is shown in a dark shade. The bubble extends only 4% of root
chord downstream before expiring, being followed by a thicker but coherent vortex that
attains 70% of the freestream axial velocity before it spirals out of the plane and begins
to dissipate. Since the axial velocity at the center of the reformed vortex stays below
the velocity of the free stream, the vortex is of the wake-like type, as opposed to the
jet-like type, with high axial velocity, that appears upstream of breakdown. The helical
vortex spirals around a large region of reversed flow which begins at 55% of root chord
and is visible as the dark region to the far left.

Figure 4.30 shows the axial velocity in a plane, normal to the wing, that contains
the vortex axis. The longitudinal cross section of the wing is visible beneath the vortex.
The flow is from left to right, and dark areas represent high speed flow, while light areas
represent low speed flow. The high axial velocity at the center of the vortex upstream
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Figure 4.30: Computed variation of axial velocity through the vortex core, for a = 420,
on adapted mesh. Contour increment is 0.1, innermost contour value is 0.

Figure 4.31: Computed variation of entropy through the vortex core, for a = 420, on
adapted mesh. Contour increment is 0.01, outermost contour value is 0.01.
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Figure 4.32: Flow visualization of the bubble type of vortex breakdown in swirling pipe
flow, showing downstream reformation of the vortex core, from Sarpkaya [72].

of breakdown is visible towards the left. The vortex undergoes a rapid deceleration,

immediately downstream of which the small region of reversed flow is visible. The

larger region of reversed flow is to the right, and can be seen to extend past the trailing

edge of the wing. Figure 4.31 shows the entropy in the same plane through the vortex

axis. The dark areas represent regions of high entropy, and the light areas represent

regions of low entropy. The fluid in the bubble has high entropy throughout, indicating

that it originated in the vortex core upstream. The reformed core downstream of the

bubble is visible for 10% of root chord before it leaves the plane. The much diffused

helical vortex can be glimpsed downstream towards the top where it passes through the

plane.

The reformation of the vortex downstream of breakdown, as seen in this solution, is

not typically observed in the breakdown of delta wing leading edge vortices. However,

it has been noted in both experiments and calculations of vortex breakdown in swirling

pipe flows [72, 47], which can be seen in figure 4.32; which shows the bubble type

breakdown in a swirling pipe flow experiment by Sarpkaya. While the vortex remains
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Figure 4.33: Computed variation of axial velocity through the vortex core, for a = 420,
on coarse mesh. Contour increment is 0.1, innermost contour value is 0.

Figure 4.34: Computed variation of entropy through the vortex core, for a = 420, on
coarse mesh. Contour increment is 0.01, outermost contour value is 0.01.
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intact for about one bubble length downstream of the bubble before degenerating, it

is not clear whether any helical structure is visible in the remains of the vortex. It is

also unclear how accurate is the numerical solution presented here, as the coarse mesh

solution shows no indication of the bubble type of breakdown. Figures 4.33 and 4.34

show the axial velocity and the entropy for the coarse mesh, in a plane through the

vortex axis and normal to the wing, which can be compared with figures 4.30 and 4.31,

which shows the adapted solution. Figure 4.33 shows that the region of reversed flow

does not form a small bubble, and figure 4.34 shows that the vortex assumes the helical

form immediately upon breakdown. The breakdown location on the coarse mesh is

at 40% of root chord, which is almost a 10% difference from the breakdown location

predicted on the adapted mesh. The difference between the coarse mesh solution and

the adapted mesh solution suggests that the adapted mesh solution might not be mesh

converged, and further differences could appear with additional refinement.

4.4 Pitching Wing Solution

Four time accurate simulations of the flow over a pitching wing were performed for a

sinusoidal variation of five degrees of angle of attack, from 32 degrees to 37 degrees, and

back to the original angle. As in Jarrah's experiments, the motion is not periodic; only

a single sinusoid is performed. In this range of angle of attack, the position of vortex

breakdown varies from about 60% to 90% of root chord. The free stream Mach number

was 0.3, and the wing geometry is the same as described in section 4.2. The nondimen-

sional pitch rate for all calculations was K: = 0.02, so that the reduced frequency of the

pitching motion was k = 0.46. The nondimensional pitch rate is in the range in which

Jarrah performed his experiments, but the reduced frequency is not. The difference in

reduced frequency in the present calculations and in Jarrah's experiments is due to the

different range of angle of attack (see equation 2.31). In Jarrah's experiments, the angle

of attack of the sinusoid motion ranged from zero to 30, 60 or 90 degrees. It is not clear

a priori which of the two nondimensional parameters of the unsteady motion better
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Figure 4.35: Variation of wing normal force versus angle of attack during pitching
motion, showing effect of local time steps.

characterizes this flow. It must also be cautioned that these four solutions represent

the same physical conditions, differing only in the extent to which local time steps were

used. In addition, they were computed on a coarse mesh. Thus, care should be taken

in generalizing the behavior seen.

The four solutions differ by the extent of the region in which local time steps are

used during temporal integration (see section 3.5.2). The extent of local time steps is

quantified by the acceleration factor, f, of the global time step. The quantity f is also

the factor by which the computational time required to obtain the solution is reduced.

A priori investigation of the initial flow field indicated that a value of f around 10

would still allow a meaningful solution. The factor f was given the values of 100, 50,

20 and 10, to determine the accuracy of the a priori estimate.

Figures 4.35 and 4.36 show the effect of varying the time step amplification factor.

Figure 4.35 shows the normal force on the wing versus angle of attack during the pitching

motion. Hysteresis is clearly evident in all of the solutions. The natural unsteadiness of

the flow is superposed upon the unsteadiness due to the pitching motion, resulting in a

high frequency variation. As discussed in section 4.3.1, the natural unsteadiness is due to
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Figure 4.36: Variation of vortex breakdown position versus angle of attack during pitch-
ing motion, showing effect of local time steps.

the rotation of the helical vortex core downstream of breakdown, and by the fluctuation

of the breakdown position. The magnitude of the time step amplification factor in the

various solutions can be correlated with the wavelength of the natural fluctuation. The

longer wavelength fluctuations correspond to a greater distortion of the time step in the

region near vortex breakdown. The close agreement between the behavior with f = 20

and with f = 10 indicates that the region of local time steps does not encompass the

breakdown region. This suggests that the solution with f = 10 is a good approximation

to the strictly time accurate solution. It is important to note that at f = 50 both the

nonfluctuating variation due to the pitching motion, and the amplitude of the natural

fluctuation, appear to be well predicted, even though the frequency of the fluctuation

is inaccurate.

Figure 4.36 shows the position of vortex breakdown versus wing angle of attack

during the pitching motion. The effect of the use of local time steps is much more visible

than in figure 4.35. All solutions show a lag in the upstream progression of the position

of vortex breakdown during the upward pitching half of the motion, and a relatively

static position of breakdown during the downward pitching half of the motion. In the

solutions for which f = 100 and f = 50, the inclusion of the vortex breakdown in the
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Figure 4.37: Variation of wing normal force versus angle of attack during pitching
motion, compared with stationary wing computations.

region of local time steps clearly produces incorrect behavior in the solution. The speed

at which the breakdown position moves upstream during the upward pitching half of the

motion is decreased, with the result that the location of breakdown during the downward

half of the motion is too far aft. The behavior of breakdown at f = 20 and f = 10

are very close, indicating that the solution with f = 10 is a good approximation to a

strictly time accurate solution. The great sensitivity of breakdown position to a wide

variety of factors has also been noted by other researchers [71].

In figures 4.37 and 4.38, the variations using an amplification factor of f = 10 are

compared with values for a stationary wing for the same range of angle of attack. The

multiple values of the stationary wing data indicate the rangle of natural fluctuations of

the normal force, as was discussed in section 4.3.1. Figure 4.37 shows that the hysteresis

provides for a higher normal force than is possible with a stationary wing. The maximum

normal force, which occurs near the maximum angle of attack, is about 15% higher than

the normal force on a stationary wing. This range of angle of attack is approximately

where the stationary wing generates the largest normal force.

The fluctuations of the normal force due to natural unsteadiness have a different
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Figure 4.38: Variation of vortex breakdown position versus angle of attack during pitch-
ing motion, compared with stationary wing computations.

appearance depending on the direction of the pitching motion. During the upward

pitching motion, the amplitude and the frequency of the fluctuations are reduced. The

frequency change is probably due a phenomenon similar to the Doppler effect, as the

position of vortex breakdown is moving upstream, while the disturbances that cause

the fluctuations propagate downstream from the breakdown position. The amplitude

change follows from the frequency change and the conservation of wave action [44, §4.6].

No natural fluctuations were reported in any experimental measurements of a pitching

delta wing. This is likely due to the high reduced frequency of the pitching motion in the

present calculation. At the lower reduced frequencies of the experiments, the natural

fluctuation would appear to be faster, relative to the pitching motion, and could easily

be interpreted as or overwhelmed by noise. In addition, any ensemble averaging of

several sets of pitching wing measurements will tend to wipe out the fluctuations. The

fluctuations during the downward pitching motion have nearly the same amplitude as

those observed in the stationary wing flows. This is not surprising, in light of the

behavior of the breakdown position during the downward motion.

Figure 4.38 shows a significant lag in the position of vortex breakdown during the

pitching motion, relative to its position in the flow over a stationary wing. The natural
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Figure 4.39: Determination of phase delay of two signals that vary with the same
frequency.

fluctuations in breakdown position may be present, but at too small an amplitude to

be visible. The phase lag can be measured, by modeling the motion of the breakdown

position as a sinusoid. Recall that the angle of attack varies as

a(t) = ao + !a(1 - cos) (4.7)

in which $ = kMmt is the phase. The breakdown position can be expressed as

zBD(t) = o + As (1 - cos ( + 6)), (4.8)

in which 6 is the phase lag relative to the angle of attack. The phase lag can be

determined by measuring the breakdown position when the angle of attack is at its

mean value, or vice versa (see figure 4.39). At a phase of 0 = 7r/2, the angle of attack

takes its mean value am = ao + Aa, while the breakdown position has the value

= zo + Az(1 + sin6). (4.9)

Likewise, when 0 + 6 = r/2, the breakdown location has its mean value, zm, and the
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Figure 4.40: Variation of vortex breakdown position versus angle of attack during pitch-
ing motion, compared with upward pitching half of ideal phase lagged sinusoidal motion.

angle of attack is

= ao + Aa(1 - sin6). (4.10)

The phase lag is thus found as

sin = - (4.11)
2

it= (4.12)

Analysis of the data shown in figure 4.38 reveals the phase lag 6 to be 35 degrees. Equa-

tions 4.11 and 4.12 yield nearly the same value for the phase delay. Figure 4.40 shows

the upward pitching part of this sinusoidal motion superimposed upon the variation of

breakdown position seen in the simulation. The agreement is surprisingly good.

Using the sinusoidal approximation, the speed at which the breakdown position

moves can be found. From equation 4.8, the speed of motion of the breakdown position

is

VBD(t) = kM dAz sin (0 + 6) (4.13)
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which has a maximum value of

VBD = kMo A2. (4.14)

For the solutions obtained here, this speed is 0.046 of the free stream speed. It has been

speculated that the cause of the lag in breakdown position is due to the fact that the

breakdown position can only move slowly. A value of one tenth of the free stream speed

has been mentioned [31], so the present results yield the same order of magnitude of the

observed propagation speed.

The behavior of the breakdown position during the downward pitching motion is

very surprising. Instead of showing the same type of phase lagged behavior evident

during the upward pitching motion, the location of vortex breakdown remains roughly

constant, at its furthest forward position. This explains why the amplitude of the

normal force fluctuations during the downward pitching motion is the same as that in

the flow over a stationary wing. Fluctuation is also present in the breakdown position,

which again has roughly the same amplitude seen in the flow over a stationary wing.

The failure of the breakdown to move aft during the downward pitching motion may

be a mesh effect, since the mesh spacing increases towards the rear of the wing, and it

has been observed that insufficiently fine mesh resolution tends to inhibit the correct

modeling of vortex breakdown. Experiments have found the motion of the breakdown

position during upward and downward pitching motion to be fairly similar [81]. This is

an important area for further study.
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Chapter 5

Conclusion

But where shall wisdom be found? and where is the place of understanding?
Man knoweth not the price thereof; ... for the price of wisdom is above
rubies.

Job 28:12-13,18

In this thesis, an adaptive solution procedure for the simulation of inviscid, compress-

ible flow fields has been described, and solutions of flow about sharp leading edge delta

wing computed with this solver have been presented. Flow solutions were obtained for

both stationary and pitching wings. Chapter two presented the Euler equations, which

govern inviscid, compressible flow, and described suitable physical boundary conditions.

Chapter three described the numerical solution procedure, the distinguishing features of

which are the use of adaptive refinement by mesh point embedding on an unstructured

mesh of tetrahedral cells, and an artificial dissipation operator with a higher order of ac-

curacy. In chapter four, stationary and pitching wing flow solutions were presented and

discussed, which included comparisons with experimental data and with other numerical

simulations.

The new contributions in this thesis are as follows. In the development of numer-

ical algorithms, a new method for the acceleration of time accurate computations was

devised, implemented and validated. The method involves the use of local time steps

in regions where numerical stability places a strict limit on the size of the time step.

This method was found to allow an order of magnitude reduction in the computational

time required to complete the pitching wing simulation presented in this thesis. This
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method is applicable to the solution of flows in which the most important unsteadiness

does not occur in the region of strictest time step stability limits.

This thesis also represents the first demonstrated use of unstructured adaptive mesh

techniques to simulate the behavior of vortex breakdown, either in the flow over a delta

wing or in other flows. The use of adaptation was demonstrated to produce good agree-

ment with existing data for delta wing flows. The flow solutions in this thesis exhibit the

spiral form of vortex breakdown, which is commonly observed in experimental studies

of delta wing flows, whereas many previous researchers obtained solutions showing the

bubble type of breakdown, which is less common. This thesis also numerically demon-

strates the validity of the Euler equations in capturing the important flow feature of

vortex breakdown, in the flow around a sharp edged delta wing. This supports research

that posits that vortex breakdown is primarily an inviscid phenomenon [14]. The pitch-

ing wing simulation in this thesis exhibits both hysteresis in normal force, and a lag in

the motion of the position of vortex breakdown. These are key features of this type of

flow that have been observed in the wind tunnel, so that the present work validates the

use of the Euler equations to simulate pitching delta wing flows with vortex breakdown

for research or design purposes.

A summary of this thesis is presented below, and is followed by recommendations

for further work.

5.1 Summary

The solver uses the Galerkin finite element method with linear shape functions, on an

unstructured mesh of tetrahedra. The lumped mass matrix allows the use of explicit

temporal integration. The method of Holmes and Connell is used to create an artificial

dissipation operator with a higher order of accuracy. The solver is capable of adaptive

refinement via mesh point embedding to increase the resolution in regions of interesting
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flow features. Entropy is used as the adaptation indicator for vortical flows, since it

is invariant under a change of reference frame. Local time steps are used to reduce

the computational time required. For time accurate calculations, the use of local time

steps is restricted to a small region of the solution domain, to minimize the inaccuracy

introduced.

The solver was used to simulate the flow over a stationary sharp edged delta wing

over a wide range of angles of attack, which included regimes both with and with-

out vortex breakdown. The Mach number of all cases was 0.3, and the leading edge

sweepback angle was 75 degrees. One level of adaptation was performed for all cases.

The computations performed with adaptation showed excellent agreement with normal

force data measured by Jarrah, and good agreement with pitching moment and vor-

tex breakdown location measured by Hummel and Srinivasan. The use of adaptation

was necessary to get reasonable agreement with the normal force and pitching moment

data. The differences in the prediction of vortex breakdown location may be due to

the use of different criteria to define the location of breakdown, which resulted in the

numerically predicted breakdown location to be five to ten percent of root chord aft of

the experimentally measured location. All solutions exhibited periodic fluctuations of

normal force, pitching moment, and vortex breakdown position.

The details of the flow fields at three angles of attack were compared with experi-

mental data and with numerical solutions obtained by other researchers. At an angle of

attack of 20.5 degrees, the leading edge vortex is intact over the entire wing. With the

use of adaptation, the details of the vortex were well resolved. This solution was com-

pared with a structured grid Navier-Stokes solution obtained by Ekaterinas and Schiff.

The adapted solution agreed well with Ekaterinas and Schiff's calculation, although the

fluid at the core of the vortex was more rarefied in the Euler calculation, which is ex-

pected due to the lack of viscous effects. Also, the secondary vortex did not appear in

the Euler solution, since it is an effect of boundary layer separation. The strength of the

vortex, as measured by total pressure coefficient at the center, was comparable to that

obtained by Goodsell using a structured grid Euler solver. Neither calculation matched
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the total pressure coefficient measured by Verhaagen and van Ransbeeck, which is to be

expected due to the lack of viscosity in the models. The location of the vortex core was

consistent in the three calculations and in the experiment, showing that the structure

of the primary vortex is not strongly influenced by the characteristics of the secondary

vortex.

At an angle of attack of 32 degrees, vortex breakdown occurs over the rearward part

of the wing. This solution was compared with a calculation obtained by Ekaterinas

and Schiff. Although both solutions predict vortex breakdown at approximately the

same chordwise location, the nature of the breakdown differs between the two solutions.

Whereas Ekaterinas and Schiff described the breakdown in their solution as the axisym-

metric bubble type of breakdown, with negligible intrinsic unsteadiness, the solution

obtained for this thesis was clearly of the asymmetric spiral type of breakdown, and un-

derwent substantial fluctuations, as indicated by the behavior of the normal force on the

wing. The bubble type of breakdown is rarely observed in experiments involving delta

wings, and has been characterized as unstable by some researchers. Quantitative mea-

surements also typically show periodic unsteadiness associated with vortex breakdown

in delta wing flows. A possible explanation for the difference in the nature of breakdown

in the two solutions is that the structured grid used by Ekaterinas and Schiff intrinsi-

cally favors the axisymmetric configuration, whereas the unstructured mesh used in this

thesis does not.

At an angle of attack of 42 degrees, vortex breakdown occurs over the forward part

of the wing. There is no previous work at this angle of attack in sufficient detail to

provide a meaningful comparison of results. When adaptation is performed for this

case, an interesting flow feature is exposed. The vortex appears to break down in

the axisymmetric bubble mode and then reform, only to break down again, in the

asymmetric spiral form. Similar behavior has been observed in experiments of vortex

breakdown in confined swirling flows. The fact that this double breakdown structure

appeared only in the adapted solution is a strong indication that the solutions presented

in this thesis are not mesh converged.
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Time accurate calculations were performed for a wing undergoing sinusoidal motion

in angle of attack from 32 degrees to 37 degrees, and back to the original value. The

nondimensional pitch rate was 0.02, and the reduced frequency was 0.46. Variation of

the extent of the use of local time steps validated the result of a priori investigation of

the initial flow field to select a region of local time steps that would allow satisfactory

accuracy. Hysteresis was observed in the behavior of normal force, allowing a fifteen

percent greater force to be generated that that associated with a stationary wing at

the maximum angle of attack. During the upward pitching motion, the position of

vortex breakdown showed a phase lag with respect to the changing angle of attack.

However, during the downward pitching motion, the position of breakdown remained

relatively fixed at its farthest forward location. This behavior has not been observed in

experiments. It is not known whether this represents a new physical behavior of vortex

breakdown propagation or whether it is a numerical artifact.

The contour and line plots of the solutions displayed in this thesis were typically

jagged and irregular in appearance. This was demonstrated not to be a reflection upon

the accuracy of the solutions, but to be an effect of the process of interpolation of data

stored on an irregular unstructured mesh onto a viewing plane or line.

5.2 Recommendations for Further Work

1. The analysis of the unsteady flow fields that involve vortex breakdown also in-

dicated a need for more comprehensive methods to analyze unsteady flow fields.

Post processing techniques are adequate for the analysis of steady flow fields, but

a full unsteady flow field, consisting of data at every iteration, would put a severe

burden upon the resources that are currently available for memory storage. Steady

flow tools can be used to analyze a single iteration of an unsteady flow, but the

fluctuations in the flow could be at an extreme point of the unsteady behavior,

and thus would not represent the typical features of the flow. In analysis and

in experiments, unsteady flow behavior is frequently represented as the sum of
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a mean flow field and a fluctuating perturbation. Forming such a time-averaged

representation of an unsteady numerical simulation would allow a researcher to

study the typical characteristics of the flow using post-processing tools for steady

flow. Care must be taken to determine whether the flow can be linearized about

the time mean. The motion of vortex breakdown may be too nonlinear to allow

the flow to represented as the sum of a mean flow and a small perturbation.

2. The analysis of the flow at 42 degrees angle of attack revealed a significant flow

structure that appeared only in the adapted solution. This indicates that this solu-

tion is not mesh converged, and suggests that none of the other solutions presented

in this thesis are mesh converged, either. In order to obtain mesh converged solu-

tions of delta wing vortex flows using adaptive refinement, a tremendous amount

of memory storage will be required. The computations in this thesis, with one level

of adaptation, required 25 million words of storage on the Cray X/MP supercom-

puter, and consumed up to 15 hours of processing time. Performing a second level

of adaptation using the method developed in this thesis would roughly quadruple

the memory and CPU usage, resulting in a need for 100 million words of storage,

and would require 60 hours of processor time. This is above the range of resources

routinely available to the typical researcher at the present time. Due to this lim-

itation, the best approach to investigate mesh convergence of delta wing flows

may involve the use of structured or unstructured hexahedral cell meshes, which

typically require less memory storage per mesh node than do methods which use

a tetrahedral cell mesh structure. The quest for mesh convergence is unlikely to

be meaningful in the context of unsteady flow with vortex breakdown, as the na-

ture of the unsteadiness downstream of breakdown is expected to be disorganized.

Only steady flows, or unsteady flows with a great degree of regularity, are suitable

for mesh convergence studies.

3. The flow solutions presented in this thesis required a large amount of computa-

tional processing time to calculate. This is primarily due to the restrictive time

steps imposed by the explicit temporal integration procedure. Although the use

of local time steps in restricted regions of the flow allowed the acceleration of time
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accurate computations by a factor of ten, more can be done. There is a wide range

of implicit temporal integration procedures that allow a less restrictive time step

to be used, and thus allow solutions to be obtained with the use of less computa-

tional effort. A particularly promising method is a point implicit procedure that

has a resemblance to Gauss-Seidel integration. This procedure has been seen to

decrease by a factor of five the computational time required to obtain a steady

solution. The use of the point implicit temporal integration is inappropriate in

conjunction with the central difference type of spatial discretization used in this

thesis. Thareja et al. [79] and Batina [6] have used the point implicit temporal

integration with an upwind spatial difference. Upwind spatial differencing also

has the potential to further decrease the computational time needed, by eliminat-

ing the need for explicitly added artificial dissipation, the computation of which

takes up a large fraction of processor time. In addition, upwind schemes are also

capable of greater resolution of flow features than central difference schemes, an

ability which also should be explored in more detail in the context of delta wing

vortex flows and vortex breakdown.

4. The motion of the position of vortex breakdown during the pitching motion ex-

hibited the peculiar behavior of remaining relatively fixed at its most forward

location during the downward pitching part of the motion. Since this behavior

has not been observed in experiments, it might be an artifact of the numerical

procedure, possibly related to the variation of the mesh resolution. In order to

resolve this issue, a simulation of the pitching motion should be performed with

a finer mesh. Due to the amount of computational resources this will require,

such a calculation will require a more efficient algorithm, as discussed above. In

addition, motion with a variety of nondimensional pitch rate and range of angle

of attack should be performed, to assess the the influence of the parameters on

the motion of vortex breakdown.

128



Appendix A

Acceleration of Time Accurate Computation

The temporal integration of the Euler equations can be symbolically expressed as the

system of equations

U,"+' - U = SU = -Ri (A.1)

which spans the set of mesh nodes by the index i, in which Ui is the state vector of

conserved quantities at a node, Ati and V are the time step and a volume associated

with a node, and Ri is a generalized residual. The time step Ati is limited by a stability

constraint at each node,

Ati ! Atmax,i, (A.2)

where the maximum stable time step can be expressed as

Atmax,i = Am x (A.3)
Si (ai + qi)

where A is the CFL number, Si is an area, ai is the sonic speed, and q is the flow speed.

For strict time accuracy, the time step is a global quantity, so Ati must be the same at

every mesh node. Stability must be maintained at every node, so that the global time

step must be no greater than the minimum, over the set of mesh nodes, of the maximum

stable time step at the node,

Ati Atglobal = m mLinAtmx,i. (A.4)

This can lead to problems if the mesh spacing varies widely. The velocity terms in

equation A.3 are insensitive to mesh spacing, so that the maximum stable time step
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scales with mesh spacing as

AX4
Atmax,, ~ ~ (A.5)

Thus, very close mesh spacing will create a very strict global time step limitation. This

yields a stiff system of equations, with the time step being determined by a restrictive

stability criterion, rather than by accuracy considerations.

In the time asymptotic calculation of steady flow, it is unnecessary to accurately

model the time derivative, since in the converged solution it will vanish. Commonly,

the restriction of a globally uniform time step is relaxed, so that the time step at a

node is determined by the local stability limit. The method of local time steps allows

convergence to steady state to be reached in fewer iterations.

The use of local time steps in a time accurate calculation will introduce inaccuracy.

The global effect of the inaccuracy can be minimized by restricting the use of local time

steps to the most closely spaced regions of the mesh, where the small local time steps

will occur. This allows the flow in the coarser regions of the mesh to be integrated in a

strict time accurate fashion. The extent of the use of local time steps is quantified by

the global time step acceleration factor, f, which is the ratio of the global time step to

the minimum local time step. It is also the factor by which the number of iterations

needed to integrate a fixed time interval is diminished. The time step at each node is

now given by

Ati = min (Atglob.1, Atma,i), (A.6)

and the time step ratio qi is defined to be

Atglobal (A7)
Wi =  (A.7)

The time step ratio has a value of unity at the nodes that are integrated time accurately,

and goes to a maximum of f at the node that has the strictest time step stability limit.

The effect of the inaccuracy due to the use of local time steps on the solution in the
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Figure A.1: Propagation of physical and numerical waves in a region of local time steps.

time accurate region can be seen by considering the propagation of a small amplitude

characteristic wave through a region of local time steps. Physically, the wave travels at a

speed Up, which for the Euler equations can have the values q, q + a or q - a, depending

upon to which characteristic family the wave belongs. Due to the use of a nonphysical

time step value, wave propagation will be slowed in the local time step region. Consider

the propagation of a wave during a single timestep, at a physical velocity Up. The

wave will travel a distance 6zp = UpAtglobal. In the region of local time steps, the

numerical simulation of the wave will travel a shorter distance, 6 XN = UpAti, due to

the lesser time step. Since the local and global time steps are related by equation A.7,

the equivalent numerical wave propagation speed can be expressed as

62zy Updt; Up
UN= (A.8)

Atglobal Atglobal 7li

The propagation of the physical and numerically simulated waves is shown in a

space-time diagram in figure A.1. The physical wave traverses the region of local time

steps in a time

tp - . (A.9)
o UP
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while the numerical wave arrives later, at time

X1i dz
tN = d (A.1O)

o UN

f 1 
dz

= oUp/it (A.11)

Note that 7 varies in space. The effect of the use of local time steps can be thought of

a time delay determined by

6t = tN - tp, (A.12)

which, upon substiution of equations A.9 and A.11, can be written as

6t = ( U1 U1 dz (A.13)
o Up Up/ 77

O 7U )dx (A.14)

m(A.15)

where is the average value of the time step ratio in the region of local time steps.

Using the definition of 77 in equation A.7, the time delay is

6t = At i (A.16)

which can be related to the global time step by

6t 1 1 ( 1

Atglobal / tglobal U(A.17)

If the local time step is much smaller than the global time step, then the second term

can be neglected. The local time step can be approximated using equations A.3 and A.5

to form

Ati 6i (A.18)
ai

so that

t (A.19)
Atglobal A Z U
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1 z1
M (A.20)

N
m o (A.21)

where

N (A.22)

is approximately the length of the region of local time steps, in mesh cells. The

freestream Mach number, M,, is not varied by large factors, so the relationship be-

tween the time delay and the global time step is determined primarily by the size, in

mesh cells, in the region of local time steps.
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Appendix B

Two-Dimensional Validation of the Method of

Regional Local Time Steps

Section 3.5.2 describes the method of regional local time steps, which allows the ac-

celeration of time accurate computations. This method was validated by performing

a simulation of the unsteady flow past a flat plate normal to the incoming flow. The

unsteadiness is due to the shedding of vorticity from the sharp edges of the plate, which

forms a set of distinct vortices. A schematic drawing of the vortex street is seen in

figure B.1. This flow was chosen because of the similarity between vorticity generation

in it and at the sharp leading edge of a delta wing. Similarly, very fine mesh resolution

is needed at the sharp edge. This can be seen in figure B.2, which shows the mesh of

triangles used for this problem. The mesh contains 5552 nodes and 10871 triangles. The

mesh spacing in the vicinity of the edge of the plate is one percent of the length of the

plate. Figure B.3 shows contours of the pressure in a strictly time accurate simulation of

Figure B.1: Vortex shedding behind a flat plate normal to the incoming flow.
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Figure B.2: Triangular mesh around the flat plate, with a closeup of the region near the

plate.

this flow. Five distinct vortices can be seen, one of which is in the process of formation.

Figure B.4 shows the variation of pressure coefficient on the surface of the plate. The

most upstream vortex is associated with a strong suction peak.

Two calculations were performed using regional local time steps. The extent of the

use of local time steps is quantified by the global time step acceleration factor, f, which

is the ratio of the global time step to the minimum local time step. It is also the factor

by which the number of iterations needed to integrate a fixed time interval is diminished.

The values of f in the two calculations were 5 and 10. Figure B.5 shows the region of

local time steps for the f = 5 case. Local time steps are confined to the region around

the edges of the plate. When f is raised to 10, the region of local time steps includes

the entire surface of the plate, and extends about one third of the width of the plate

downstream, at the plate midpoint. This includes the region in which the vortices form.

Figure B.6 shows the temporal variation of the drag coefficient on the plate, during two

periods of vortex formation. The f = 10 case is clearly inaccurate, while the f = 5 case

shows the correct behavior, with a slight phase shift due to earlier transient behavior.

These calculations demonstrate that reasonable time accuracy can be obtained using

local time steps, provided that the region of local time steps does not include the areas
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Figure B.3: Contours of pressure in the flow past the flat plate.
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Figure B.4: Coefficient of pressure on the surface of the plate.
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Figure B.5: Contours of time step in the region of local time steps, for a time step
acceleration factor of 5.

of greatest unsteadiness.
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Figure B.6: Time history of drag coefficient on the flat plate at different values of the
global time step acceleration factor. Solid line is strictly time accurate (f = 1); Dashed
line is f = 5; Dotted line is f = 10.
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