Computational Mechanics: Linear Functional Outputs and Certificates

J. Peraire

Massachusetts Institute of Technology, USA

ACDL Seminar, April 29, 2005

People

MIT: A.T. Patera, A.M. Budge, H. Ciria, and J. Wong

UCS: J. Bonet

UPC: N. Pares, A. Huerta

NUS: Z.C. Xuan

Acknowledgments

Singapore-MIT Alliance

Sandia National Laboratories

DARPA/AFOSR

• Sank in August 1991, causing an event registering 3.0 on the Richter scale and leaving nothing but a pile of debris at a depth of 220m

Institute of 'echnoloav • Sinking traced to a failure of a concrete tricell

 Sank in August 1991, causing an event registering 3.0 on the Richter scale and leaving nothing but a pile of debris at a depth of 220m

- Sinking traced to a failure of a concrete tricell
- FEM performed with NASTRAN underestimated shear stresses by 47%

 Sank in August 1991, causing an event registering 3.0 on the Richter scale and leaving nothing but a pile of debris at a depth of 220m

- Sinking traced to a failure of a concrete tricell
- FEM performed with NASTRAN underestimated shear stresses by 47%
- More precise simulation of underdesigned component predicted failure at 62m

 Sank in August 1991, causing an event registering 3.0 on the Richter scale and leaving nothing but a pile of debris at a depth of 220m

lassachusetts

- Sinking traced to a failure of a concrete tricell
- FEM performed with NASTRAN underestimated shear stresses by 47%
- More precise simulation of underdesigned component predicted failure at 62m
- Actually sank at 65m

How do we know if the answer computed with a FE code is correct¹?

How do we know if the answer computed with a FE code is correct¹?

given that:

echnoloav

• the solution may not be "well behaved"

How do we know if the answer computed with a FE code is correct¹?

given that:

- the solution may not be "well behaved"
- we may not have similar solutions to compare

How do we know if the answer computed with a FE code is correct¹?

given that:

- the solution may not be "well behaved"
- we may not have similar solutions to compare
- we may not have access to the source code

How do we know if the answer computed with a FE code is correct¹?

given that:

- the solution may not be "well behaved"
- we may not have similar solutions to compare
- we may not have access to the source code
- the code may no longer exist !!

i.e. consistent with the mathematical model

How do we know if the answer computed with a FE code is correct ?

\Rightarrow Provide a Certificate

A data set that documents a given claim

A data set that documents a given claim

• Can be used to **rigorously** proof correctness

A data set that documents a given claim

Can be used to **rigorously** proof correctness
Simple to exercise

A data set that documents a given claim

- Can be used to **rigorously** proof correctness
- Simple to exercise
- Stand alone access to the code used to compute it not required

A data set that documents a given claim

- Can be used to **rigorously** proof correctness
- Simple to exercise
- Stand alone access to the code used to compute it not required
- The stronger the claim the "longer" the certificate

(usually)

Current Paradigm

Proposed Paradigm

Proposed Paradigm

Given a polynomial $F(x), x \in {\rm I\!R}^n$

Claim : $F(x) \ge \gamma$, $\forall x$

Given a polynomial $F(x), x \in {\rm I\!R}^n$

Claim: $F(x) \geq \gamma, \quad \forall x$

Certificate : Polynomials $f_1(x), \ldots, f_m(x)$ s.t.

$$F(x)-\gamma = \sum_{i=1}^m f_i^2(x)$$
 (SOS)

Given a polynomial $F(x), x \in {\rm I\!R}^n$

Claim: $F(x) \geq \gamma, \quad \forall x$

Certificate : Polynomials $f_1(x), \ldots, f_m(x)$ s.t.

$$F(x) - \gamma = \sum_{i=1}^m f_i^2(x)$$
 (SOS)
or $(\sum_{i=1}^n f_i^2(x)) \ (F(x) - \gamma) = \sum_{i=n+1}^m f_i^2(x)$

Certificates Examples Bounds for solutions of IVP...

Given $\dot{x} = f(x,t), \ x(0) = x_0, \ (f(x,t) \text{ polynomial})$

11

CertificatesExamplesBounds for solutions of IVP...Given $\dot{x} = f(x,t), \ x(0) = x_0, \ (f(x,t) \text{ polynomial})$

 $\text{Claim}: \ x(T) \leq \gamma$

11

Certificates Examples Bounds for solutions of IVP...

Given $\dot{x} = f(x,t), \ x(0) = x_0, \quad (f(x,t) \text{ polynomial})$

 $\begin{array}{ll} \textbf{Claim:} & x(T) \leq \gamma \\ \textbf{Certificate:} \ \text{Polynomial function } B(x,t) \ \text{s.t.} \\ & B_t(x,t) + B_x(x,t)f(x,t) \leq 0 \ , \quad \forall x,t \\ & B(x_T,T) > B(x_0,0) \ , \quad \forall x_T \geq \gamma \\ & \quad \text{Parrilo, Doyle, } \ldots \end{array}$

Examples

...Bounds for solutions of IVP...

 $B_t(x,t)+B_x(x,t)f(x,t)\leq 0\ ,\qquad orall x,t$

 $B(x_T,T) > B(x_0,0) \ , \qquad orall x_T \geq \gamma$

12

Examples

...Bounds for solutions of IVP...

 $B_t(x,t)+B_x(x,t)f(x,t)\leq 0\ ,\qquad orall x,t$

 $B(x_T,T) > B(x_0,0) \ , \qquad orall x_T \geq \gamma$

Examples

...Bounds for solutions of IVP

Given:

$$\dot{x} = px^3$$

$x(0) \in [0.85, 0.95]$ $p \in [0.05, 0.2]$

Examples

...Bounds for solutions of IVP

Given:

$$\dot{x} = px^3$$

$$x(0) \in [0.85, 0.95]$$
 $p \in [0.05, 0.2]$

$$? \ x(2) \in [2.0, 2.5]$$

Examples

...Bounds for solutions of IVP

Given:

$$\dot{x} = px^3$$

 $x(0) \in [0.85, 0.95]$ $p \in [0.05, 0.2]$

 \Rightarrow $x(2) \notin [2.0, 2.5]$

ACDL, April 2005

$$? \ x(2) \in [2.0, 2.5]$$

Massachusetts

Institute of Technology

• Work with quantities of interest

- Work with quantities of interest
- Work with equations of interest

- Work with quantities of interest
- Work with equations of interest
- Guarantee certainty even for low cost

Compute Certificates for Bounds of Outputs of PDE's

- Work with quantities of interest
- Work with equations of interest
- Guarantee certainty even for low cost
- Cost effective

Non-regular solution (Plane Stress)

Linear Functional Outputs for:

- Linear Convection-Diffusion-Reaction Equation

Linear Functional Outputs for:

- Linear Convection-Diffusion-Reaction Equation
- Linear Elasticity Equations

Linear Functional Outputs for:

- Linear Convection-Diffusion-Reaction Equation
- Linear Elasticity Equations
- Stokes Equations

Linear Functional Outputs for:

- Linear Convection-Diffusion-Reaction Equation
- Linear Elasticity Equations
- Stokes Equations

Collapse Loads in Limit Analysis

Linear Functional Outputs for:

- Linear Convection-Diffusion-Reaction Equation
- Linear Elasticity Equations
- Stokes Equations

Collapse Loads in Limit Analysis

Energy Release Rates in Linear Elasticity

Outline

- Problem Description
- Method Overview
- 1.- Bounds for Energy
- 2.- Bounds for "Arbitrary" Outputs
- 3.- Bounds for "Arbitrary" Equations
- 4.- Domain Decomposition (Hybridization)
- Method Summary and Examples
- Extension to a non-linear Convex Problem: Limit Analysis

Let $u(x) \in X, \, x \in \Omega \subset {\rm I\!R}^d$, be the solution of a PDE ${\cal A}\, u = f$.

e.g.
$$\mathcal{A} \equiv -\nabla^2, -\nabla^2 + \mathbf{U} \cdot \nabla$$
, etc.

We are typically interested in *outputs* of the form $s=\ell(u)\in{
m I\!R}$

$$e.g. \quad \ell(v)\equiv v(x_0), \quad \ \ \ell(v)=\int_{\Omega'}v_x\,dx, \quad \ \ldots$$

ACDL, April 2005

"

19

• u(x) is not computable (∞ – dimensional)

- u(x) is not computable (∞ dimensional)
- In practice, we compute approximation $\bar{u}(x)$, such that $||u \bar{u}|| = C(\rightarrow 0)$ (as cost increases $\rightarrow \infty$).
 - For a given \bar{u} , C is **unknown**, and, any output approximation $\bar{s} = \ell(\bar{u})$, is uncertain.

- u(x) is not computable (∞ dimensional)
- In practice, we compute approximation $\bar{u}(x)$, such that $||u \bar{u}|| = C(\rightarrow 0)$ (as cost increases $\rightarrow \infty$).
 - For a given \bar{u} , C is **unknown**, and, any output approximation $\bar{s} = \ell(\bar{u})$, is uncertain.
- Existing error estimates are either,
 - certain but uncomputable, or,
 - computable but uncertain.

Approach

Compute **Strict** upper and lower bounds for functional outputs of the **Exact** solutions of PDE's

Approach

Compute **Strict** upper and lower bounds for functional outputs of the **Exact** solutions of PDE's

... and give Certificates

21

1.- Energy
$$s = J(u)$$

Poisson's Equation: Find $u \in X(\Omega)$ $-
abla^2 u = f(x), \quad x \in \Omega, \quad (+ ext{ b.c.'s})$

"Energy" functional:
$$J(v): X o {
m I\!R}$$

 $J(v) = \int_\Omega
abla v \cdot
abla v \, dx - 2 \int_\Omega f v \, dx$

1.- Energy
$$s = J(u)$$

Minimization

ſ

Minimization formulation

$$\min_{v \in X} J(v) = J(u) = -\int_{\Omega} u f \, dx$$

1.- Energy s = J(u)

Minimization

$$s=J(u)=-\int_\Omega uf\,dx$$

ACDL, April 2005

24

I.- Energy
$$s=J(u)$$

Lower Bound...

Lower bound s^- (harder)

Construct **dual** problem

$$egin{aligned} (J(u)=) & J^c(p)=\max_{q\in Q_f}J^c(q) \ , \end{aligned}$$

1.- Energy s = J(u)

$$s = \min_{v \in X} \int_\Omega (
abla v \cdot
abla v - 2vf) \, dx$$

1.- Energy
$$s = J(u)$$

$$egin{aligned} s &= \min_{v \in X} \int_\Omega (
abla v \cdot
abla v - 2vf) \, dx \quad (oldsymbol{q} =
abla v) \ &= \min_{v \in X} \max_{q \in Q} \int_\Omega (-q \cdot q + 2q \cdot
abla v - 2vf) \, dx \end{aligned}$$

1.- Energy
$$s = J(u)$$

$$egin{aligned} s &= \min_{v \in X} \int_\Omega (
abla v \cdot
abla v - 2vf) \, dx \quad (oldsymbol{q} =
abla v) \ &= \min_{v \in X} \max_{q \in Q} \int_\Omega (-q \cdot q + 2q \cdot
abla v - 2vf) \, dx \ &\geq \max_{q \in Q} \min_{v \in X} \int_\Omega (-q \cdot q + 2q \cdot
abla v - 2vf) \, dx \end{aligned}$$

1.- Energy
$$s = J(u)$$

...Lower Bound...

$$egin{aligned} s &= \min_{v \in X} \int_\Omega (
abla v \cdot
abla v - 2vf) \, dx \quad (m{q} =
abla v) \ &= \min_{v \in X} \max_{q \in Q} \int_\Omega (-q \cdot q + 2q \cdot
abla v - 2vf) \, dx \ &\geq \max_{q \in Q} \min_{v \in X} \int_\Omega (-q \cdot q + 2q \cdot
abla v - 2vf) \, dx \ &= \max_{q \in Q_f} \int_\Omega -q \cdot q \, dx \ &= \max_{q \in Q_f} \int_\Omega -q \cdot q \, dx \ &f = \{m{q} \in m{Q} \mid \int_\Omega q \cdot
abla v \, dx = \int_\Omega fv \, dx, \quad orall v \in X \} \ &-
abla \cdot q = f \end{aligned}$$

 \boldsymbol{Q}

I.- Energy
$$s = J(u)$$

...Lower Bound...

$$egin{aligned} s &= \min_{v \in X} \quad oldsymbol{J}(v) \ &= \min_{v \in X} \max_{q \in Q} \int_\Omega (-q \cdot q + 2q \cdot
abla v - 2vf) \, dx \ &\geq \max_{q \in Q} \min_{v \in X} \int_\Omega (-q \cdot q + 2q \cdot
abla v - 2vf) \, dx \ &= \max_{q \in Q_f} \quad oldsymbol{J}^c(q) \ &Q_f &= \{q \in Q \mid \int_\Omega q \cdot
abla v \, dx = \int_\Omega fv \, dx, \quad orall v \in X \} \ &-
abla \cdot q = f \end{aligned}$$

1.- Energy s = J(u)

or, in a different way
$$\dots \int_{\Omega} (q - \nabla v)^2 dx \ge 0, \ \forall v \in X, q \in Q$$

 $\int_{\Omega} q \cdot q \, dx - 2 \int_{\Omega} q \cdot \nabla v \, dx + \int_{\Omega} \nabla v \cdot \nabla v \, dx \ge 0, \ \forall v \in X, q \in Q$
 $\underbrace{\int_{\Omega} q \cdot q \, dx}_{-J^c(q)} \underbrace{-2 \int_{\Omega} f v \, dx + \int_{\Omega} \nabla v \cdot \nabla v \, dx}_{2} \ge 0, \ \forall v \in X, q \in Q_f$
 $J^c(q) + J(v) \ge 0, \ \forall v \in X, q \in Q_f$
 $Q_f = \{q \in Q \mid \int_{\Omega} q \cdot \nabla v \, dx = \int_{\Omega} f v \, dx, \ \forall v \in X\} \quad (-\nabla \cdot q = f)$
 $J(v) \ge J^c(q), \quad \forall v \in X, q \in Q_f$

1.- Energy s = J(u)

...Lower Bound...

Duality

1.- Energy
$$s = J(u)$$

...Lower Bound...

Then, $s^-\equiv J^c(p_h),\ orall p_h\in (Q_f)_h\subset Q_f$.

Method
Overview1.- Energy s = J(u)...Lower Bound

Idea :

We can exchange an **infinite** dimensional **minimization** problem by a **finite** dimensional **feasibility** problem while retaining the bounding property

1.- Energy
$$s = J(u)$$

Lower Bound - Summary

Given
$$-
abla^2 u = f(x)$$

1.- Energy
$$s = J(u)$$

Lower Bound - Summary

Given
$$-
abla^2 u = f(x)$$

Claim :
$$s=J(u)=-\int_{\Omega} uf\,dx\,\geq\,s^-$$

1.- Energy
$$s = J(u)$$

Lower Bound - Summary

Given
$$-
abla^2 u = f(x)$$

Claim :
$$s=J(u)=-\int_\Omega uf\,dx\,\geq\,s^-$$

Certificate : Any $p_h \in (Q_f)_h \subset Q_f$ s.t. $s^- \equiv J^c(p_h)$

32

1.- Energy
$$s = J(u)$$

Lower Bound - Summary

Given
$$-
abla^2 u = f(x)$$

Claim :
$$s=J(u)=-\int_\Omega uf\,dx\ \ge\ s^-$$

Certificate : Any $p_h \in (Q_f)_h \subset Q_f$ s.t. $s^- \equiv J^c(p_h)$

Recall:

$$Q_f = \{q \in Q \mid \int_\Omega q \cdot
abla v \, dx = \int_\Omega f v \, dx, \quad orall v \in X\} \quad (-
abla \cdot q = f)$$

ACDL, April 2005

32

2.- General Outputs $s = \ell(u)$

Find $s = \ell(u)$, where $u \in X(\Omega)$ $(\ell(v) = \int_{\Omega} f^{\mathcal{O}} v \, dx)$ $-\nabla^2 u = f(x), \quad x \in \Omega, \quad (+ \text{ b.c.'s})$

2.- General Outputs
$$s = \ell(u)$$

Find
$$s = \ell(u)$$
, where $u \in X(\Omega)$ $(\ell(v) = \int_{\Omega} f^{\mathcal{O}} v \, dx)$
 $-\nabla^2 u = f(x), \quad x \in \Omega, \quad (+ \text{ b.c.'s})$

or,

$$\int_\Omega (
abla u \cdot
abla v - fv) \, dx = 0, \quad orall v \in X$$

2.- General Outputs
$$s = \ell(u)$$

Find
$$s = \ell(u)$$
, where $u \in X(\Omega)$ $(\ell(v) = \int_{\Omega} f^{\mathcal{O}} v \, dx)$
 $-\nabla^2 u = f(x), \quad x \in \Omega, \quad (+ \text{ b.c.'s})$

Or,

$$\int_\Omega (
abla u \cdot
abla v - fv) \, dx = 0, \quad orall v \in X$$

Modified Energy : $\mathcal{E}(v): X o \mathrm{I\!R}$ $\mathcal{E}(v) \equiv \int_\Omega
abla v \cdot
abla v \, dx - \int_\Omega f v \, dx$

2.- General Outputs
$$s = \ell(u)$$

Find
$$s = \ell(u)$$
, where $u \in X(\Omega)$ $(\ell(v) = \int_{\Omega} f^{\mathcal{O}} v \, dx)$
 $-\nabla^2 u = f(x), \quad x \in \Omega, \quad (+ \text{ b.c.'s})$

or,

$$\int_\Omega (
abla u \cdot
abla v - fv) \, dx = 0, \quad orall v \in X$$

 $\begin{array}{ll} \text{Modified Energy} \colon \mathcal{E}(v) : X \to {\rm I\!R} \\ \mathcal{E}(v) \equiv \int_\Omega \nabla v \cdot \nabla v \, dx - \int_\Omega f v \, dx & \Rightarrow \mathcal{E}(u) = 0 \end{array}$

Method
Overview2.- General Outputs $s = \ell(u)$ Lagrangian

$egin{aligned} s &= \ell(u) = & \min & \ell(v) \ & v \in X \ & \int_\Omega (abla v \cdot abla \psi - f \psi) \, dx = 0, orall \psi \in X \end{aligned}$

35

Method
Overview2.- General Outputs $s = \ell(u)$ Lagrangian

 $egin{aligned} s &= \ell(u) = & \min & \ell(v) + \mathcal{E}(v) \ & v \in X & \ & \int_\Omega (
abla v \cdot
abla \psi - f \psi) \, dx = 0, orall \psi \in X \end{aligned}$

Lagrangian : $L(v,\psi):X imes X o { m I\!R}$ $L(v,\psi)={\mathcal E}(v)+\ell(v)+\int_\Omega (abla v\cdot abla \psi-f\psi)\,dx$

Method
Overview2.- General Outputs $s = \ell(u)$ Lagrangian

 $egin{aligned} s &= \ell(u) = & \min_{egin{aligned} v \in X \ \int_\Omega (
abla v \cdot
abla \psi - f \psi) \, dx = 0, orall \psi \in X \end{aligned}} \ell(v) &+ \mathcal{E}(v) \end{aligned}$

Lagrangian : $L(v,\psi):X imes X o { m I\!R}$ $L(v,\psi)={\mathcal E}(v)+\ell(v)+\int_\Omega (abla v\cdot abla \psi-f\psi)\,dx$

$$s = \ell(u) = \min_v \max_\psi L(v,\psi)$$

2.- General Outputs
$$s = \ell(u)$$

Lower Bound...

Weak duality + Relaxation

$$egin{aligned} s &= \ell(u) = \min_v \max_\psi L(v,\psi) \ &\geq \max_\psi \min_v L(v,\psi) \ &\geq \min_v L(v,ar{\psi}), \, orall ar{\psi} \in X \end{aligned}$$

2.- General Outputs $s = \ell(u)$

...Lower Bound...

$$egin{aligned} L(v,ar{\psi}) &= \int_\Omega
abla v \cdot
abla v \, dx - \int_\Omega f v \, dx \ &+ \ell(v) + \int_\Omega (
abla v \cdot
abla ar{\psi} - f ar{\psi}) \, dx \end{aligned}$$

37

2.- General Outputs $s = \ell(u)$

...Lower Bound...

$$egin{aligned} L(v,ar{\psi}) &= \int_\Omega
abla v \cdot
abla v \, dx - \int_\Omega f v \, dx \ &+ \ell(v) + \int_\Omega (
abla v \cdot
abla ar{\psi} - f ar{\psi}) \, dx \end{aligned}$$

For a given $\bar{\psi}$, $L(v, \bar{\psi})$, contains quadratic and linear terms in v

2.- General Outputs
$$s = \ell(u)$$

...Lower Bound...

$$egin{aligned} L(v,ar{\psi}) &= \int_\Omega
abla v \cdot
abla v \, dx - \int_\Omega f v \, dx \ &+ \ell(v) + \int_\Omega (
abla v \cdot
abla ar{\psi} - f ar{\psi}) \, dx \end{aligned}$$

For a given $\overline{\psi}$, $L(v, \overline{\psi})$, contains quadratic and linear terms in $v \Rightarrow$ identical to J(v) (for an appropriate $f_{\overline{\psi}}$).

$$L(v,ar{\psi}) = \int_\Omega
abla v \cdot
abla v \, dx - 2 \int_\Omega f_{ar{\psi}} v \, dx - \int_\Omega oldsymbol{f} oldsymbol{ar{\psi}} \, dx$$

Idea :

Write output as a **constrained** minimization problem. **Relax** constraint to obtain an **energy-like** minimization problem. Obtain **lower bound** by finding a **feasible** solution of the dual problem.

2.- General Outputs
$$s = \ell(u)$$

Upper Bound

Define $\ell_*(v) = -\ell(v)$ and compute,

 $s^-_* \leq \ell_*(u)$

2.- General Outputs
$$s = \ell(u)$$

Upper Bound

Define $\ell_*(v) = -\ell(v)$ and compute,

 $s^-_* \leq \ell_*(u)$

$$s^+\equiv -s^-_*\geq -\ell_*(u)=\ell(u)$$

2.- General Outputs
$$s = \ell(u)$$

Upper Bound

Define $\ell_*(v) = -\ell(v)$ and compute,

 $s^-_* \leq \ell_*(u)$

$$s^+\equiv -s^-_*\geq -\ell_*(u)=\ell(u)$$

Idea:

Upper Bound for $\ell(v) \equiv -$ Lower Bound for $-\ell(v)$

2.- General Outputs
$$s = \ell(u)$$

Summary

Given
$$-
abla^2 u = f(x)$$

2.- General Outputs
$$s = \ell(u)$$

Summary

Given
$$-
abla^2 u = f(x)$$

Claim : $s^+ \ge s = \ell(u) \ge s^-$

2.- General Outputs
$$s = \ell(u)$$

Summary

Given
$$-
abla^2 u = f(x)$$

Claim :
$$s^+ \ge s = \ell(u) \ge s^-$$

Certificate :

$$ar{\psi} \in X_h \subset X, \ p_h^+ \in (Q_{f^+})_h \subset Q_{f^+}, \ p_h^- \in (Q_{f^-})_h \subset Q_{f^-}$$

3.- Non-symmetric equations

$- \nabla^2 u + \boldsymbol{U} \cdot \nabla \boldsymbol{u} = f(x), \quad x \in \Omega, \quad (+ \text{b.c.'s})$

3.- Non-symmetric equations

$$egin{aligned} &-
abla^2 u + oldsymbol{U}\cdot
abla u &= f(x), & x\in\Omega, \ & ext{(+ b.c.'s)} \ & ext{or,} \ & ext{or,} \ & ext{\int}_\Omega (
abla u \cdot
abla v + (oldsymbol{U}\cdot
abla u)v - fv)\,dx = 0, & orall v\in X \end{aligned}$$

3.- Non-symmetric equations

$$egin{aligned} &-
abla^2 u + oldsymbol{U}\cdot
abla u &= f(x), & x\in\Omega, \ & ext{(+ b.c.'s)} \ & ext{or,} \ & ext{or,} \ & ext{\int}_\Omega (
abla u \cdot
abla v + (oldsymbol{U}\cdot
abla u)v - fv)\,dx = 0, & orall v\in X \end{aligned}$$

Modified Energy :
$$\mathcal{E}(v): X o \mathrm{I\!R}$$
 $\mathcal{E}(v) \equiv \int_\Omega
abla v \cdot
abla v \, dx - \int_\Omega f v \, dx$

3.- Non-symmetric equations

$$egin{aligned} &-
abla^2 u + oldsymbol{U}\cdot
abla u &= f(x), & x\in\Omega, \ & ext{(+ b.c.'s)} \ & ext{or,} \ & ext{or,} \ & ext{\int}_\Omega (
abla u \cdot
abla v + (oldsymbol{U}\cdot
abla u)v - fv) \, dx = 0, & orall v \in X \end{aligned}$$

$$\begin{array}{ll} \text{Modified Energy} \colon \mathcal{E}(v) : X \to {\rm I\!R} \\ \mathcal{E}(v) \equiv \int_\Omega \nabla v \cdot \nabla v \, dx - \int_\Omega f v \, dx & \Rightarrow \mathcal{E}(u) = 0 \end{array}$$

Method 3.- Non-symmetric equations Overview Lagrangian...

$$egin{aligned} s &= \ell(u) = & \min_{egin{aligned} v \in X \ \int_\Omega (
abla v \cdot
abla \psi + (egin{aligned} U \cdot
abla v) \psi - f \psi \ dx = 0, orall \psi \in X \end{aligned}$$

Method Overview 3.- Non-symmetric equations Lagrangian...

 $egin{aligned} s &= \ell(u) = & \min_{egin{aligned} v \in X \ \int_\Omega (
abla v \cdot
abla \psi + (egin{aligned} U \cdot
abla v) \psi - f \psi) \, dx = 0, orall \psi \in X \end{aligned}$

 $egin{aligned} s &= \ell(u) = \min_{egin{aligned} v \in X \ \int_\Omega (
abla v \cdot
abla \psi + (egin{aligned} U \cdot
abla v) \psi + (egin{aligned} v \in V) \psi - f \psi \end{pmatrix} dx &= 0, orall \psi \in X \end{aligned}$

Lagrangian : $L(v,\psi):X imes X o {
m I\!R}$

 $L(v,\psi) = \mathcal{E}(v) + \ell(v) + \int_{\Omega} (
abla v \cdot
abla \psi + (U \cdot
abla v) \psi - f\psi) \, dx$

 $egin{aligned} s &= \ell(u) = \min & \ell(v) + \mathcal{E}(v) \ v \in X & \ & \int_\Omega (
abla v \cdot
abla \psi + (m{U} \cdot
abla v) \psi - f \psi) \, dx = 0, orall \psi \in X \end{aligned}$

Lagrangian : $L(v, \psi) : X \times X \rightarrow \mathbb{R}$

 $L(v,\psi) = \mathcal{E}(v) + \ell(v) + \int_{\Omega} (
abla v \cdot
abla \psi + (oldsymbol{U} \cdot
abla v) \psi - f\psi) \, dx$

$$s = \ell(u) = \min_v \max_\psi L(v,\psi)$$

Idea :

Non-symmetric terms do not contribute to the "energy" and only enter in the Lagrangian linearly. After relaxation, minimization problem retains **convex** structure.

Summary

1. Primal problem: $u_h \in X_h$

$$\mathcal{A} u_h = f$$

Summary

1. Primal problem: $u_h \in X_h$

$$\mathcal{A} u_h = f$$

2. Dual problem: $\bar{\psi} \in X_h$ $\mathcal{A}^* \bar{\psi} = f^{\mathcal{O}}, \quad (\ell(v) = \int_{\Omega} f^{\mathcal{O}} v \, dx)$

Summary

3. Domain decomposition (Equilibration) $\rightarrow ar{\lambda}$

Global Solution

Equilibrated Solution

Summary

4. Obtain lower bounds for local minimization problems $\rightarrow s^+ s^-$

... and piecewise polynomial certificates

47

Summary

4. Obtain lower bounds for local minimization problems $\rightarrow s^+ s^-$... and piecewise polynomial certificates

5. It can be shown that the bound gap can be written as

$$s^+ - s^- = \sum_{T_e \in \mathcal{T}_H} \Delta_e$$

$$... \Rightarrow Adaptivity$$

with $\Delta_e > 0$

Convection-Diffusion

 $u
abla^2 u + U \cdot
abla u = f$

 $s=\ell(u)=\int_\Omega f^{\mathcal O} u\,dx$

Convection-Diffusion

Solution

ExamplesConvection-Diffusion Adaptive Solution

 $\Delta_{gap} = 0.0005 \qquad s = 0.00370 \pm 0.00049$

Uniform refinement would require 6356 elements

Elasticity

Test problem

Find
$$u \in X$$
 such that $abla \cdot \sigma(u) = 0$

$$\sigma(u) \cdot n = y \;\; x = L$$

Exact Solution:

$$u=(2xy,-
u(y^2-x^2)/(2\lambda), \ \ (x,y)\in [0,L]^2$$

Elasticity

Linear Functionals

$$\ell(u) = \int_{x=L} y u_1 \, ds \; \left(= L^4/3\lambda
ight)$$

Elasticity

Energy Release Rates...

p∱ 60 . 5 Crack tip 30 20 \downarrow \downarrow p⁺ ★

Massachusetts

Institute of Technology

Total Potential Energy

$$\Pi(v) = \frac{1}{2}a(v,v) - (f,v) - \langle g,v \rangle$$
Displacement solution u minimizes $\Pi(v)$

$$\Pi(u) = -\frac{1}{2}a(u,u) = -\frac{1}{2}|||u|||$$

Elasticity

Energy Release Rates...

Massachusetts

Institute of Technology

Total Potential Energy

$$\Pi(v) = \frac{1}{2}a(v,v) - (f,v) - \langle g,v \rangle$$
Displacement solution u minimizes $\Pi(v)$

$$\Pi(u) = -\frac{1}{2}a(u,u) = -\frac{1}{2}|||u|||$$
Energy Release Rate $J(u)$
 $\delta\Pi(u) = -\mathcal{J}(u) \,\delta\ell$

... *l* crack length

Examples Elasticity ...Energy Release Rates...

Given (an approximate) solution u_H , $e = u - u_H$

 $\mathcal{J}(u) = \mathcal{J}(u_H) + \delta \mathcal{J}_u(u_H;e) + \mathcal{J}(e)$

Examples Elasticity ...Energy Release Rates...

Given (an approximate) solution u_H , $e = u - u_H$

$${\mathcal J}(u) = {\mathcal J}(u_H) + \delta {\mathcal J}_u(u_H;e) + {\mathcal J}(e)$$

 $egin{aligned} & ullet \mathcal{J}_u(u_H;e) ext{ linear } & \mathcal{L}^- \leq \delta \mathcal{J}_u(u_H;e) \leq L^+ \ & ullet \mathcal{J}(e) ext{ quadratic } & |\mathcal{J}(e)| \leq \eta_\chi |||e|||^2 \equiv Q \end{aligned}$

Examples Elasticity ...Energy Release Rates...

Given (an approximate) solution u_H , $e = u - u_H$

$${\mathcal J}(u) = {\mathcal J}(u_H) + \delta {\mathcal J}_u(u_H;e) + {\mathcal J}(e)$$

 $egin{aligned} & ullet \mathcal{J}_u(u_H;e) ext{ linear } & \mathcal{L}^- \leq \delta \mathcal{J}_u(u_H;e) \leq L^+ \ & ullet \mathcal{J}(e) ext{ quadratic } & |\mathcal{J}(e)| \leq \eta_\chi |||e|||^2 \equiv Q \end{aligned}$

$${\mathcal J}^-\equiv {\mathcal J}(u_H)-Q+L^-\leq {\mathcal J}(u)\leq {\mathcal J}(u_H)+Q+L^+\equiv {\mathcal J}^+$$

Mixed mode crack problem (Plane Strain, $\nu = 0.3$)

ACDL, April 2005

Examples

Elasticity

... Energy Release Rates...

Examples

Elasticity

... Energy Release Rates

Mesh size	H	H/2	H/4	H/8	H/16
$\mathcal{J}(u_H)$	4.1722	5.3889	5.9313	6.1325	6.2034
$\eta_{\chi} e ^2$	10.7902	3.4107	0.8012	0.1829	0.0411
\mathcal{J}^-	-16.8051	-3.3567	3.3228	5.4447	6.0829
\mathcal{J}^+	34.6587	17.1489	9.3096	7.0083	6.4621

Limit Analysis

Compute **Bounds** on the **Collapse Load** under the assumption of **rigid-plastic** material behavior

Limit Analysis

Formulation

$$egin{aligned} &a(\sigma,v) = \int_\Omega \sigma: \dotarepsilon(v)\,dx\ &F(v) = \int_\Omega fv\,dx + \int_{\partial\Omega} gv\,ds\ &X_F = \{v\in X|F(v)=1\}\ &\Sigma = \{\sigma|f(\sigma)\leq\sigma_Y\}\ &\dotarepsilon(v) = egin{aligned} & ext{if}\ f(\sigma)\leq\sigma_Y\ &\kapparac{\partial f}{\partial\sigma} ext{if}\ f(\sigma)=\sigma_Y \end{aligned}$$

$$arphi^* = \max_{egin{array}{cc} arphi \in \Sigma \ a(\sigma,v) = arphi F(v), orall v \in X \end{array}} arphi$$

$$= \min_{v \in X_F} \max_{\sigma \in \Sigma} a(\sigma, v)$$

$$= \max_{\sigma \in \Sigma} \min_{v \in X_F} a(\sigma,v)$$

 $egin{aligned} \max_{\sigma\in\Sigma}a(\sigma,ar{v})&
ightarrow ext{Upper Bound}\ \min_{v\in X_F}a(ar{\sigma},v)&
ightarrow ext{Lower Bound} \end{aligned}$

59

Nonlinear Limit Analysis Extension Outline

• By choosing appropriate piecewise polynomial interpolations for v and σ we can obtain strict upper and lower bounds on φ

Nonlinear Limit Analysis Extension Outline

- By choosing appropriate piecewise polynomial interpolations for v and σ we can obtain strict upper and lower bounds on φ
- Discrete minimization/maximization problems are convex (SOCP) and solved (globally) with an IPM

Nonlinear Limit Analysis Extension Outline

- By choosing appropriate piecewise polynomial interpolations for v and σ we can obtain strict upper and lower bounds on φ
- Discrete minimization/maximization problems are convex (SOCP) and solved (globally) with an IPM
- $\varphi^+ \varphi^-$ can be decomposed into elemental contributions \rightarrow Adaptivity

Limit Analysis

Examples...

• Cantilever Beam in Plane Stress

ACDL, April 2005

Limit Analysis

...Examples...

ACDL, April 2005

Limit Analysis

...Examples...

Uniform Mesh							
Number	Number	Low. Bound	Upp. Bound	Bound	Low. Bound	Upp. Bound	
of refin.	of elem.	λ_h^{*LB}	λ_h^{*UB}	Gap Δ_h	Error (%)	Error (%)	
0	34	0.52186	0.75759	0.23573	23.821	10.591	
1	136	0.65432	0.71936	0.06503	4.484	5.010	
2	544	0.68079	0.69704	0.01624	0.620	1.752	
3	2176	0.68349	0.68983	0.00634	0.226	0.699	
4	8704	0.68440	0.68662	0.00223	0.093	0.231	

Adaptive Mesh							
Number	Number	Low. Bound	Upp. Bound	Bound	Low. Bound	Upp. Bound	
of refin.	of elem.	λ_h^{*LB}	λ_h^{*UB}	Gap Δ_h	Error (%)	Error (%)	
0	34	0.52186	0.75759	0.23573	23.821	10.591	
1	90	0.65782	0.71951	0.06169	3.973	5.032	
2	300	0.68079	0.69704	0.01625	0.620	1.752	
3	882	0.68349	0.68989	0.00640	0.226	0.708	
4	2450	0.68440	0.68667	0.00227	0.093	0.238	

• Uniform bounds on

- Uniform bounds on
- Relevant engineering outputs (linear functionals) of

- Uniform bounds on
- Relevant engineering outputs (linear functionals) of
- Exact weak solutions of linear PDEs, with a

- Uniform bounds on
- Relevant engineering outputs (linear functionals) of
- Exact weak solutions of linear PDEs, with a
- Stand-alone certificate of precision, including

- Uniform bounds on
- Relevant engineering outputs (linear functionals) of
- Exact weak solutions of linear PDEs, with a
- Stand-alone certificate of precision, including
- Non-symmetric operators, using

- Uniform bounds on
- Relevant engineering outputs (linear functionals) of
- Exact weak solutions of linear PDEs, with a
- Stand-alone certificate of precision, including
- Non-symmetric operators, using
- Standard FE solutions and purely local subproblems.

Certificates allow to

• **Standardize** the use of more accurate and safer mathematical models (e.g. construction codes)

- Standardize the use of more accurate and safer mathematical models (e.g. construction codes)
- Eliminate costlier-than-necessary computations

- **Standardize** the use of more accurate and safer mathematical models (e.g. construction codes)
- Eliminate costlier-than-necessary computations
- Allow for true black boxes that can be used by non-experts in numerical analysis

- Standardize the use of more accurate and safer mathematical models (e.g. construction codes)
- Eliminate costlier-than-necessary computations
- Allow for true black boxes that can be used by non-experts in numerical analysis
- **Document** computations

Certificates allow to

- Standardize the use of more accurate and safer mathematical models (e.g. construction codes)
- Eliminate costlier-than-necessary computations
- Allow for true black boxes that can be used by non-experts in numerical analysis
- **Document** computations
- Address software error issues

65

Exploit Discontinuous Galerkin Discretizations

- Exploit Discontinuous Galerkin Discretizations
- Time dependent parabolic problems

- Exploit Discontinuous Galerkin Discretizations
- Time dependent parabolic problems
- μ -PDE's

- Exploit Discontinuous Galerkin Discretizations
- Time dependent parabolic problems
- μ -PDE's
- Non-coercive operators with positivity constraints on the solution

- Exploit Discontinuous Galerkin Discretizations
- Time dependent parabolic problems
- μ -PDE's
- Non-coercive operators with positivity constraints on the solution
- Deformation theory of plasticity

Recent papers can be found at:

http://raphael.mit.edu

ACDL, April 2005

66

Limit Analysis

Compute **Bounds** on the **Collapse Load** under the assumption of **rigid-plastic** material behavior

67

Massachusetts Institute of Technology

ACDL, April 2005

Limit Analysis

Continuous Formulation

Limit Analysis

Continuous Formulation

$$a(\sigma,\mathrm{u})=\int_\Omega \sigma:\dotarepsilon(\mathrm{u})\,dx$$

$$F(\mathrm{u}) = \int_\Omega f \mathrm{u}\, dx + \int_{\partial \Omega^N} g \mathrm{u}\, ds$$

$$C=\{\mathrm{u}\in Y|F(\mathrm{u})=1\}$$

$$B = \{\sigma \in X | f(\sigma) \leq \sigma_Y\}$$

$$\dot{arepsilon}(u) = egin{cases} 0 & ext{if} \; f(\sigma) < \sigma_Y \ \kappa rac{\partial f}{\partial \sigma} \; ext{if} \; f(\sigma) = \sigma_Y \end{cases}$$

$$egin{aligned} \lambda^* &= \sup \lambda \ & \ s.t. iggl\{ egin{aligned} \exists \sigma \in B \ a(\sigma, \mathrm{u}) &= \lambda F(\mathrm{u}), orall \mathrm{u} \in Y \end{aligned}$$

$$= \sup_{\sigma \in B} \inf_{\mathrm{u} \in C} a(\sigma,\mathrm{u})$$

$$= \inf_{\mathrm{u}\in C} \sup_{\sigma\in B} a(\sigma,\mathrm{u})$$

 $= \inf_{\mathrm{u}\in C} D(\mathrm{u}).$

 $egin{array}{c} Y \ & \sup_{\sigma \in B} a(\sigma, u^*)
ightarrow ext{Lower Bound} \ & \inf_{u \in C} a(\sigma^*, u)
ightarrow ext{Upper Bound} \ & \operatorname{ACDL}, ext{April 2005} \end{array}$

Limit Analysis

Discrete Formulation

Mesh the domain Ω and choose interpolation spaces X_h for σ and Y_h for \mathbf{u} .

$$egin{aligned} \lambda_h^* &= \max &\lambda \ && s.t. iggl\{ \exists \sigma_h \in B_h \ && a(\sigma_h, \mathrm{u}_h) = \lambda F(\mathrm{u}_h), orall \mathrm{u}_h \in Y_h \end{aligned}$$

 $= \max_{\sigma_h \in B_h} \min_{\mathrm{u}_h \in C_h} a(\sigma_h,\mathrm{u}_h)$

 $= \min_{\mathrm{u}_h \in C_h} \max_{\sigma_h \in B_h} a(\sigma_h, \mathrm{u}_h)$

$$= \min_{\mathrm{u}_h \in C_h} D_h(\mathrm{u}_h).$$

Limit Analysis

Discrete Formulation...

• In general, for a given choice of $X_h \times Y_h$, λ_h^* is only an approximation to λ^* , but not a bound.

Limit Analysis

Discrete Formulation...

- In general, for a given choice of $X_h \times Y_h$, λ_h^* is only an approximation to λ^* , but not a bound.
- For appropriately-chosen combinations of the interpolation spaces $X_h \times Y_h$, then λ_h^* is either a lower bound $(\lambda_h^{*LB} \leq \lambda^*)$ or an upper bound $(\lambda^* \leq \lambda_h^{*UB})$.

Limit Analysis

Discrete Formulation...

- In general, for a given choice of $X_h \times Y_h$, λ_h^* is only an approximation to λ^* , but not a bound.
- For appropriately-chosen combinations of the interpolation spaces $X_h \times Y_h$, then λ_h^* is either a lower bound $(\lambda_h^{*LB} \leq \lambda^*)$ or an upper bound $(\lambda^* \leq \lambda_h^{*UB})$.
- Purely static spaces $X_h^{LB} \times Y_h^{LB}$ yield lower bounds. Purely kinematic spaces $X_h^{UB} \times Y_h^{UB}$ yield upper bounds.

Limit Analysis

...Discrete Formulation...

- Purely static spaces $X_h^{LB} imes Y_h^{LB}$:
 - Plane stress/strain σ_h : elementally discontinuous linear interpolations, u_h : constant spaces on the elements and additional linear interpolations in the inter-element edges.
- Purely kinematic spaces $X_h^{UB} \times Y_h^{UB}$:
 - Plane stress σ_h : constant spaces on the elements, u_h : continuous piecewise linear interpolations.
 - Plane strain σ_h : constant spaces on the elements and additional linear tractions in the inter-element edges; u_h : elementally discontinuous linear spaces.

Limit Analysis

Conic Programming...

• Primal (P) and Dual (D) canonical forms of Conic Programs: $(P) \min \{c^T x \mid Ax = b, \ x \in \mathcal{K}\},$

 $(D) \; \max \; \left\{ b^T y \mid A^T y + s = c, \; s \in \mathcal{K}_*
ight\}$

where $\mathcal{K} \subset \mathbb{R}^n$ is a closed, convex cone with a nonempty interior and $\mathcal{K}_* = \{s \in \mathbb{R}^n \mid s^T x \ge 0, \ \forall x \in \mathcal{K}\}$ is its dual.

- Canonical Self-Dual Cones $\mathcal{K} \equiv \mathcal{K}_*$: Positive orthant (LP)- \mathbb{R}^n_+ ; Lorentz cone (SOCP): $\mathcal{L}^n = \left\{ x \in \mathbb{R}^n \mid x_1 \ge \sqrt{\sum_{i=2}^n x_i^2} \right\}$; Positive semidefinite cone (SDP): $\equiv \S^n_+$
- Mixed Conic Program:

assachusetts

$$\mathcal{K} = \mathbb{R}^{n_1} imes \mathcal{L}^{n_2} imes \ldots imes \mathcal{L}^{n_r} imes \S^{n_{r+1}}_+ imes \ldots imes \S^{n_q}_+ \equiv \mathcal{K}^{n_r}$$

ACDL, April 2005

Limit Analysis

Conic Programming...

Limit Analysis

...Conic Programming...

Example: Lower Bound Problem as a SOCP

$$\begin{split} \lambda_{h}^{*LB} &\equiv \max \lambda \\ s.t. \begin{cases} \left(\underbrace{\underline{A}}_{eq2}^{eq1} : \underline{F}_{h}^{eq1} : \underline{0} \\ \underline{A}_{eq2}^{eq2} : \underline{F}_{h}^{eq2} : \underline{0} \\ \underline{A}_{soc}^{soc} : \underline{0} : \underline{I}_{\delta} \\ \underline{\sigma}_{h} \text{ free}, \ \lambda \geq 0, \ \underline{x}_{\delta}^{soc} \in \mathcal{K} \\ \end{split} \right) = \begin{pmatrix} \underline{0} \\ \underline{0} \\ \underline{b}_{\delta}^{soc} \\ \underline{b}_{\delta}^{soc} \\ \underline{\delta}_{\delta}^{soc} \\ \end{array} \\ \end{split}$$
where $\mathcal{K} = \underbrace{\mathcal{L}^{n} \times \cdots \times \mathcal{L}^{n}}_{3 \times \mathcal{K}}, \ \delta = 1$ refers to plane stress (n = 5) and $\delta = 2$, to plane strain (n = 3).

Limit Analysis

...Conic Programming

Solution of the Bound Problems

- Both the upper and the lower bound problems are SOCPs.
- This is important mainly for two reasons:
 - 1. State of the art primal-dual interior point methods (IPMs), particularly developed for SOCP, can be used. They guarantee global convergence and efficiency in the solution process.
 - 2. The bound problems can be solved using any generic conic programming optimization package.

Limit Analysis

Certificates...

- ullet Claim: $\lambda_h^{*LB} \leq \lambda_h^* \leq \lambda_h^{*UB}$
- Certificate:
 - Information about the computational mesh \mathcal{T}_h
 - $-(\lambda_h^{*LB}, \underline{\sigma}_h^{LB}) \Longrightarrow$ check that equilibrium and membership to the yield condition hold point by point.
 - $(\lambda_h^{*UB}, \underline{u}_h^{UB}) \Longrightarrow$ check that \underline{u}_h^{UB} is a kinematically admissible velocity field and that $\lambda_h^{*UB} = D(\underline{u}_h^{UB})$.

Limit Analysis

... Mesh Adaptivity

- Objective: refine the mesh \mathcal{T}_h efficiently, by only dividing the elements that contribute more to the numerical error. Here, the error is measured by the **bound gap**, $\Delta_h = \lambda_h^{*UB} \lambda_h^{*LB}$.
- The **elemental bound gap**, Δ_h^e , gives the contribution of each element, e, in the mesh to the total bound gap:

$$\Delta_h^e = \underbrace{\int_{\Omega^e} \sigma_y \varepsilon_{eq}(\mathbf{u}_{UB}^e)}_{D^e(\mathbf{u}_{UB}^e)} - \underbrace{\left(\int_{\Omega^e} (-\nabla \cdot \sigma_{LB}^e) \cdot \mathbf{u}_{UB}^e \, dV + \int_{\partial \Omega^e} (\mathbf{n}^{\xi_e} \cdot \sigma_{LB}^e) \cdot \mathbf{u}_{UB}^e \, dS\right)}_{F^e(\mathbf{u}_{UB}^e)},$$

- Properties of Δ_h^e : 1) $\Delta_h^e \ge 0, \ \forall e \in \mathcal{T}_h$, 2) $\sum_{e \in \mathcal{T}_h} \Delta_h^e = \Delta_h$.
- Adaptive strategy: refine only the elements with higher Δ_h^e .

