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The present work aims at predicting the formation of laminar separation bubbles (LSB)
and the related transition to turbulence by means of Implicit Large Eddy Simulations with a
high-order Discontinuous Galerkin (DG) method. We focus on the flow around an SD7003
rectangular wing section at an angle of attack of 4o degrees and consider two different
Reynolds numbers of 10,000 and 60,000 in order to gain insight into the characteristics of
the laminar and turbulent regimes. At Reynolds number 10,000 the flow remains laminar
and essentially two dimensional over the wing surface, and only the wake appears to exhibit
a turbulent behavior. For the case at Reynolds 60,000, the flow is unsteady over the upper
wing surface and the time averaged streamlines show a separation bubble which starts at
about 24% of the chord. A close to 51% of the chord, the flow is fully turbulent. These
findings appear to be in agreement with previously published results despite the relatively
coarse meshes employed, which suggest that the DG method used is particularly suited
to simulate these flows. Finally, transition is found to be caused by unstable Tollmien-
Schlichting (TS) waves, as revealed by the growth of the stream-wise amplification factor.

Nomenclature

Letters
c Airfoil chord
CD Drag coefficient
Cfs Stream-wise skin friction coefficient
CL Lift coefficient
Cp Pressure coefficient
E Total energy
hb Separation bubble height
p Static pressure
Pr Prandtl number, Pr = µ cp/κ
Re Free-stream Reynolds number, Re = U∞c/ν
t Physical time
t∗ Non-dimensional time, t∗ = t U∞/c

U∞ Free-stream flow speed
~u∗ Pseudo-velocity profile
ui Velocity component in direction xi

us Stream-wise velocity component,
ut Transverse velocity component
uz Cross-flow (span-wise) velocity component
xi Computational coordinate i
xr Reattachment location
xsep Separation location
xtr Transition location
x Chord-wise direction
y Direction perpendicular to the chord-wise

and span-wise directions
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z Span-wise direction

Symbols
α Angle of attack
γ Fluid specific heat ratio
δ∗1 Stream-wise boundary layer

displacement thickness
∆t∗ Non-dimensional time step ∆t∗ = ∆t U∞/c
µ Dynamic viscosity coefficient
ν Kinematic viscosity coefficient ν = µ/ρ
ρ Fluid density
θ11 Stream-wise boundary layer

momentum thickness

Subscripts
i In the direction of coordinate xi

r Reattachment
s In the free-stream direction, i.e. stream-wise
sep Separation
t In the transverse direction, i.e. perpendicularly

to both free-stream and span-wise directions
tr Transition
z In the cross-flow direction, i.e. span-wise

I. Introduction

Accurately predicting transition to turbulence is of crucial importance for the simulation of low Reynolds
number flows since in these regimes the transition location has a significant impact on aerodynamic

performance. This is primarily due to the fact that laminar flows have a much greater tendency to separate
than the essentially turbulent flows encountered at high Reynolds numbers. In the presence of an adverse
pressure gradient, a laminar boundary layer can separate and subsequently reattach, thus forming what is
known as a laminar separation bubble (LSB).

Several studies1,2 have shown that transition to turbulence can be predicted by means of Large Eddy
Simulations (LES), and this type of simulation can significantly benefit from the use high-order methods
due to the high computational cost involved. Furthermore, simulation of transition requires low numerical
dispersion and dissipation, and therefore the use high-order methods seems to be a practical requirement.
Here, we have chosen to use a high-order Discontinuous Galerkin (DG) Finite Element method as it combines
high accuracy with the geometric flexibility required for practical applications. To the author’s knowledge,
the present investigation is the first attempt at using a DG method for Large Eddy Simulations.

The present work aims at predicting the formation of an LSB and the related transition to turbulence.
We focus on the flow around an SD7003 rectangular wing section at an angle of attack of 4◦, and consider
Reynolds numbers of 10,000 and of 60,000 in order to gain insight into the characteristics of both laminar and
turbulent regimes. This case is chosen since the flow exhibits a fairly stable LSB on the upper surface, and
extensive experimental data is available for comparison,3 as well as numerical simulations.2 Furthermore,
this flow regime corresponds to the one encountered in small flying animals and in micro-air vehicles (MAV’s).

II. Computational Methodology

A. Governing Equations and Turbulence Modeling

The motion of a compressible Newtonian fluid is governed by the Navier-Stokes equations which express the
conservation of mass, momentum and energy,

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂τij
∂xj

for i ∈ {1, 2, 3} (2)

∂

∂t
(ρE) +

∂

∂xj
[uj (ρE + p)]− ∂

∂xj
(uiτji) +

∂qj
∂xj

= 0 (3)

where the viscous stress tensor, τij , and the heat flux, qi, are defined by, respectively,

τij ≡ µ
[(

∂ui

∂xj
+
∂uj

∂xi

)
− 2

3
∂uk

∂xk
δij

]
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Pr

∂
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p

ρ
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2
ukuk

)
. (5)
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In the above equations, ρ denotes the fluid density, ui is the velocity component in the direction xi, p is the
static pressure, E is the total energy, µ the dynamic viscosity coefficient, and Pr the flow Prandtl number.
In order to close the system, we use the ideal gas equation of state written in the form

p = (γ − 1)ρ
(
E − 1

2
ukuk

)
. (6)

For all the flows considered the specific heat ratio is γ = 1.4, the Prandtl number is Pr = 0.72, the free
stream Mach number is 0.2, and kinematic viscosity, ν = µ/ρ, is assumed to be constant since were are only
considering low Mach number flows.

In a Large-Eddy Simulation (LES), the large-scale motions are resolved while the small scales are modeled
through a sub-grid-scale model. The principle behind LES is justified by the fact that the larger scales,
because of their size and strength, carry most of the flow energy while being responsible for most of the
transport, and therefore should be simulated precisely (i.e. resolved). On the other hand, the small scales
have relatively little influence on the mean flow and thus can be approximated (i.e. modeled). Furthermore,
small scales tend to be more homogeneous and isotropic and hence are easier to model than the large scales,
thus ensuring higher accuracy of the overall simulations.

In the present work we follow the Implicit Large Eddy Simulation (ILES) approach, and hence the
unresolved small eddies are accounted for by means of the numerical dissipation and no sub-grid-scale model
is employed such that the full (unfiltered) compressible Navier-Stokes equations are solved. This approach
has been successfully used by Visbal and collaborators2 using a compact difference method for the simulation
of the flow around an SD7003 airfoil.

B. High-Order Discontinuous Galerkin Method and Time Stepping Scheme

The modeling equations are solved using a high-order Discontinuous Galerkin method implemented in the
computational code 3DG. This framework solves time-dependent systems of conservation laws of the form,

∂u

∂t
+∇ · Fi(u)−∇ · Fv(u, q) = S(u, q)

q −∇u = 0
(7)

in a domain Ω, with conserved state variables u, inviscid flux function Fi, viscous flux function Fv, and
source term S.

We consider a triangulation Th of the spatial domain Ω and introduce the finite element spaces Vh and
Σh as

Vh = {v ∈ [L2(Ω)]m | v|K ∈ [Pp(K)]m, ∀K ∈ Th} ,
Σh = {r ∈ [L2(Ω)]dm | r|K ∈ [Pp(K)]dm, ∀K ∈ Th} ,

where Pp(K) is the space of polynomial functions of degree at most p ≥ 0 on triangle K, m is the dimension
of u and d is the spatial dimension.

The DG formulation is of the form: find uh ∈ Vh and qh ∈ Σh such that for all K ∈ Th,∫
K

qh · r dx = −
∫

K

uh∇ · r dx+
∫

∂K

ûr · nds , ∀r ∈ [Pp(K)]dm,∫
K

∂uh

∂t
v dx−

∫
K

[Fi(uh)− Fv(uh, qh)] · ∇v dx

=
∫

K

S(uh, qh)v dx−
∫

∂K

[F̂i − F̂v] · nv ds , ∀v ∈ [Pp(K)]m.

Here, the numerical fluxes F̂i, F̂v and û are approximations to Fi, Fv and u, respectively, on the boundary
∂K of the element K. The DG formulation is complete once these numerical fluxes are specified in terms of
qh and uh and the boundary conditions.

The inviscid flux is determined using Roe’s scheme4 whereas the viscous flux is calculated using the Com-
pact Discontinous Galerkin (CDG) method introduced by Peraire & Persson.5 By choosing the numerical
flux û to be a function of uh and not qh, the additional qh variables can be eliminated after discretization at
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element level. This results in a system involving only the degrees of freedom corresponding to the conserved
variables uh. The final result is a system of coupled ordinary differential equations of the form,

Mu̇ = R(u) , (8)

where u(t) is a vector containing the degrees of freedom associated with uh, and u̇ denotes the time derivative
of u(t). Here, M is the mass matrix, while R is the residual vector which is a nonlinear function of u. We
use nodal basis expansions to represent uh inside each element.

The linear systems of equations are solved with a combination of incomplete factorizations (ILU) and
p-multigrid with Newton-GMRES preconditioning following the work by Persson & Peraire.7 The code is
parallelized with block-incomplete LU factorizations, the details of which can be found in the paper by
Persson.6

Finally, the system is solved using the third order diagonal implicit Runge-Kutta (DIRK) method.8 This
allows to take large time steps, and hence the time step is chosen only based on physical time resolution
considerations and not on numerical stability factors. A non-dimensional times step of ∆t∗ = ∆t × U∞/c =
0.01 was used, and the solution was recorded every 10 steps for computing statistics.

The average fields and velocity correlations are computed by averaging the solution after the initial
transient has passed, as estimated by looking at the forces on the wing, and are performed over a non-
dimensional time interval of around 8.

C. Computational Grids

The flow aroung a rectangular wing with an SD7003 airfoil profile at an angle of attack of 4◦ is considered.
The wing span to chord ratio is set to 0.2, following the findings of Galbraith and Visbal.2 The axes are
setup with x being the chord-wise direction and z the span-wise direction, such that the leading-edge is
located along the line x = 0, y = 0.

Measured from the wing’s leading-edge line, the domain extends 4.3 chord lengths upstream, 7.4 chord
lengths downstream, 5.9 chord lengths above, and 6.0 chord lengths below. Thus, if we denote by c the chord

Figure 1. View of a span-wise plane of the coarse grid (grid 1): (left) domain, (right) closer view on foil. This
grid has 430,080 degrees-of-freedom in 21,504 tetrahedral elements.

Figure 2. View of a span-wise plane of the medium grid (grid 2): (left) domain, (right) closer view on foil.
This grid has 1,056,000 degrees-of-freedom in 52,800 tetrahedral elements.
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length, the domain spans on the range [-4.3c , 7.4c] × [-6.0c , 5.9c] × [0 , 0.2c] along the chord-wise, vertical,
and span-wise directions, respectively.

The computational domain has periodic boundary conditions along the span-wise direction in order to
simulate an infinite wing. The wing’s surface is represented by a non-slip, adiabatic, boundary condition,
while a full-state type boundary condition is imposed at the far-field of the computational domain.

In order to investigate how much spatial resolution is needed to capture the transition to turbulence that
occurs in the separation bubble, two computational grids are considered: a coarse grid (hereafter referred to
as grid 1) with 21,504 tetrahedral elements, and a medium grid (grid 2) with 52,800 tetrahedral elements.
Third-order polynomials are employed, which result in a fourth-order accurate method in space; thus, grids
1 and 2 have 430,080 and 1,056,000 degrees-of-freedom, respectively. Figures 1 and 2 show the coarse and
medium computational grids on a planar cut along the span-wise direction.

D. Angle of Attack for Comparisons with XFoil

The Navier-Stokes methods apply the specified freestream angle α = 4◦ at the outer grid inflow boundary,
without accounting for the 2D vortex farfield of the airfoil. The missing vortex upwash at the inlet gives a
decrease in the effective angle of attack seen by the airfoil by the amount

∆α = − CL

4π r/c

where CL is the airfoil lift coefficient and r/c is the distance-to-chord ratio between the inlet boundary and
the wing’s lift centroid (or center of pressure), such that the higher-order y-doublet farfield term is exactly
zero. For the current case of CL = 0.6, r/c = 6, the correction is ∆α = −0.46◦. Since XFoil fully accounts
for the farfield vortex, it was therefore run with the smaller angle

αXFoil = 4◦ − 0.46◦ = 3.54◦

to give a more correct comparison to the Navier-Stokes results. Furthermore, the critical amplification factor
was set to Ncrit = 7.5, since for this value the transition occurs at a location consistent with the present
LES results.

E. Q-Criterion

Dubeif and Delcayre9 proposed what is referred to as the q-criterion as a way of identifying vortical coherent
structures. It is defined as

Q =
1
2

(ΩijΩij − SijSij) =
1
4
(
ω2 − 2SijSij

)
=

1
2
∇2p

ρ
(9)

where the Ωij and Sij are the anti-symmetric and symmetric part of the velocity gradient respectively, that
is

Ωij ≡
1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
and Sij ≡

1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
.

The q-criterion thus represents the balance between the rate of vorticity Ω2 = ΩijΩij and the rate of
strain S2 = SijSij . In the core of a vortex, q > 0 since vorticity increases as the center of the vortex is
approached. Thus regions of positive q-criterion correspond to vortical structures.

F. Boundary Layer Parameters

In order to obtain the boundary layer parameters, we first obtain the pseudo-velocity profile by integrating
the vorticity, namely

~u∗(n) =
∫ n

0

~ω × n̂ dn . (10)

Here ~u∗ denotes the pseudo-velocity, ~ω the flow vorticity vector, n̂ the unit vector normal to the airfoil at
the location considered, and n the local coordinate along the direction normal to the foil. The reason for
using this pseudo-velocity profile is that it always asymptotes outside the boundary layer, even with strong
curvature, thus making the edge of the boundary layer a well defined quantity.
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The edge ne of the boundary layer is then taken to be the location where both the magnitudes of vorticity,
|~ω|, and of vorticity variation along the normal, |d~ω/dn|, are below a certain threshold, namely

|~ω|n < ε0|~u∗| (11)∣∣∣∣d~ωdn
∣∣∣∣ n2 < ε1|~u∗| . (12)

The edge velocity is then ~u∗e = ~u∗ (ne), with magnitude ue = |~u∗e|.
We then define the local stream-wise and transverse unit vectors as, respectively,

ŝ1 = ~ue/ue and ŝ2 = ŝ1 × n̂ , (13)

Thus, the stream-wise and cross-flow velocity profiles are given by, respectively,

u1(n) = ~u∗(n) · ŝ1 and u2(n) = ~u∗(n) · ŝ2 . (14)

The boundary layer stream-wise displacement and momentum thicknesses are then

δ∗1 =
∫ ne

0

(
1− u1

ue

)
dn (15)

θ11 =
∫ ne

0

(
1− u1

ue

)
u1

ue
dn (16)

with the shape factor
H1 = δ∗1/θ11 . (17)

III. Flow Around a Rectangular Wing

A. Laminar Regime

At a Reynolds number of 10,000 the flow is found to be fundamentally two-dimensional with little variation
along the spanwise direction and close-to-periodic vortex shedding, as can be seen in the time history of lift
and drag force coefficients for grid 1 in Figure 3. The average lift coefficient is 0.3826, and the average drag
coefficient is 0.0504 when using the medium grid 2. The average forces obtained on grid 1 differ by less than
0.2% from those obtained with grid 2 (0.3833 and 0.0503 respectively for lift and drag coefficients), thus
indicating that the spatial resolution provided by grid 2 is sufficient to capture the main flow features at this
Reynolds number.

The average pressure and stream-wise skin friction coefficients are shown in Figure 4. The comparison
with a two-dimensional simulation performed on a grid with the same resolution than a span-wise plane is
shown in the figures. Both the time evolution of the force and the average stress coefficients obtained with
three-dimensional simulations are very close to the two-dimensional results, which confirms that the flow at
a Reynolds number of 10,000 and 4◦ angle of attack is fundamentally two dimensional.

At this Reynolds number, the flow is found to be laminar all over the airfoil. The boundary layer
separates at a distance of 0.34 chords from the leading edge, and does not reattach. This can be seen in the
instantaneous and average span-wise vorticity contours on the plane at the middle of the wing (y = 0.1) as
shown in Figure 5, on the friction coefficient distribution of Figure 4, and on the average stream-lines shown
in Figure 9. The iso-surfaces of q-criterion of Figure 7 also indicate that the flow remains laminar until close
to the trailing edge where the boundary layers generated by the upper and lower surfaces meet.

The stream-wise displacement thickness δ∗1, momentum thickness θ1, and shape factor H1 = δ ∗1 /θ1 of
Figure 10 confirm that transition to turbulence occurs aft of the trailing edge. The dashed line shows the
XFoil prediction.
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Table 1. SD7003 at Reynolds 10,000 and 4◦ angle of attack using grid 2.

Source Freestream Separation Transition Reattachment
CL CD

Turbulence Tu xsep/c xtr/c xr/c

XFoil10 (Ncrit = 7.5) 0.32 - - 0.2735 0.0461
present ILES 0 0.34 - - 0.3826 0.0504

Figure 3. Time variation of lift coefficient (left) and drag coefficients (right) at Re = 10,000: 2D versus 3D
simulations. The dotted horizontal line indicates the average value.

Figure 4. Average pressure coefficient (left) and stream-wise skin friction coefficient (right) at Re = 10,000:
2D versus 3D simulations.
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Figure 5. Span-wise vorticity on the plane at the middle of the wing at Re = 10,000: instantaneous (top) and
average (bottom) contours.

Figure 6. Average non-dimensional velocity correlations u′su′t / U2
∞ at Re = 10,000.
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Figure 7. Instantaneous (left) and average (right) iso-surfaces of q-criterion (top) and span-wise vorticity
(middle) at Re = 10,000.
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Figure 8. Average velocity vectors on the midplane at Re = 10,000.

Figure 9. Average steamlines on the midplane at Re = 10,000. The colored contours show velocity magnitude.

Figure 10. Boundary layer average displacement and momentum thicknesses (left), and shape factor (right)
evolution along the stream-wise direction on the midplane at Re = 10,000. The dashed lines show XFoil’s
prediction.
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Figure 11. Average pressure coefficient (left) and stream-wise skin friction coefficient (right) at Re = 60,000:
comparison of results using coarse (grid 1) and medium (grid 2) spatial resolutions.

B. Turbulent Regime

1. Spatial Resolution

The comparison of average pressure coefficient and skin friction coefficient on the airfoil obtained with the
coarse and medium grids can be seen in Figure 11. The coarse mesh is unable to properly capture the
separation bubble and associated transition to turbulence.

2. Results with Medium Grid

At a Reynolds number of 60,000, three-dimensional structures are present as made visible by contours of
vorticity or q-criterion presented in Figure 17. With a fourth-order method, a relatively coarse mesh with
one million degrees-of-freedom is able to accurately capture the transition location, the position of separation
and reattachment, as well as the average pressure and skin friction coefficient profiles along the foil.

The pressure and skin friction coefficients can be seen in Figure 14, with comparison curves for the data
by Galbraith & Visbal2 and with XFoil.10 The separation bubble is clearly visible in the skin friction profile,
with separation occurring at 24% of the chord.

Table 2 gives the location of separation and reattachment with comparison to previously published results,
as well as the transition location and the mean lift and drag coefficients. TU-BS corresponds to the PIV
experiments at the Technical University of Braunschweigs Low-Noise Wind Tunnel,11 while HFWT is for
the PIV experiments at the Air Force Research Labs Horizontal Free-Surface Water Tunnel.3

Contours of instantaneous and average span-wise vorticity on the plane at the middle of the wing (y = 0.1)
are shown in Figure 15. Average non-dimensional velocity correlations can be seen in Figure 16, and reveal
the transition to turbulence. This is verified by looking at the displacement thickness, momentum thickness,
and shape factor of the pseudo-velocity profile (Figure 20). A sharp increase in shape factor reveals that,
on the average flow, transition to turbulence occurs at a distance of 0.51 chords from the leading edge. The
curve for the shape factor lies in between the XFoil predictions with critical amplification factors of 9 and
of 7.5 (dashed and dash-dotted lines respectively in the figure).
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Figure 12. Time variation of lift coefficient (left) and drag coefficients (right) at Re = 60,000: 2D versus 3D
simulations.

Figure 13. Average pressure coefficient (left) and stream-wise skin friction coefficient (right) at Re = 60,000:
2D versus 3D simulations.

Table 2. SD7003 at Reynolds 60,000 and 4◦ angle of attack using grid 2.

Source Freestream Separation Transition Reattachment
CL CD

Turbulence Tu xsep/c xtr/c xr/c

TU-BS11 0.08 % 0.30 0.53 0.62 - -
HFWT3 ∼ 0.1% 0.18 0.47 0.58 - -
Visbal2 0 0.23 0.55 0.65 - -
XFoil10 (Ncrit = 7.5) 0.26 0.57 0.60 0.5826 0.0181

present ILES 0 0.24 0.51 0.60 0.6028 0.0220
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Figure 14. Average pressure and stream-wise skin friction coefficients at Re = 60,000, with comparison to the
computations by Galbraith & Visbal and with XFOIL.

Figure 15. Instantaneous (top) and average (bottom) span-wise vorticity on the plane at the middle of the
wing at Re = 60,000.

Figure 16. Average non-dimensional velocity correlations u′su′t / U2
∞ at Re = 60,000.

13 of 17

American Institute of Aeronautics and Astronautics



Figure 17. Instantaneous (left) and average (right) iso-surfaces of q-criterion (top), span-wise vorticity (mid-
dle), and streamlines (bottom) at Re = 60,000.
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Figure 18. Average velocity vectors on the midplane at Re = 60,000.

Figure 19. Average steamlines on the midplane at Re = 60,000. The colored contours show velocity magnitude.

Figure 20. Boundary layer average displacement and momentum thicknesses (left), and shape factor (right)
evolution along the stream-wise direction on the midplane at Re = 60,000. The dashed and dash-dotted lines
show XFoil’s predictions with critical amplification factor Ncrit of 9 and 7.5, respectively.
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3. Transition Mechanism

In order to understand the transition mechanism, we look at the fluctuating stream-wise pseudo-velocity

u∗
′

1 (~x, t) = u∗1(~x, t)− u∗1(x) ,

where the over-line denotes temporal average. Profiles of auto-correlations u∗′1
2
/u2

e can be seen on the left
plot of Figure 21, for chord-wise stations x/c ∈ [0.1, 0.3]. Each profile has the shape of a Tollmien-Schlichting
(TS) mode, and we observe an increase in perturbation amplitude as the chord-wise location increases.

This is quantified by computing the amplification A1 of stream-wise TS waves at any location x, namely

A1(x) =
1

neue(x)

√∫ ne

0

u∗
′

1
2
dn . (18)

The amplification factor N1 of the stream-wise perturbations is then

N1(x) = ln
(
A1(x)
A10

)
(19)

in which A10 is the amplification at the onset of transition, or equivalently

eN1 =
A1(x)
A10

. (20)

Figure 21. Boundary layer fluctuating stream-wise pseudo-velocity profiles
`
u∗

′
1

´2
/ue (left), and average stream-

wise pseudo-velocity profiles u∗1/ue (right), at different chord-wise locations x/c ∈ [0.1, 0.3] on the midplane at
Re = 60,000.

Figure 22. Amplification factor N1 of stream-wise pseudo-velocity perturbations for the flow at Re = 60,000.
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The growth of the stream-wise amplification factor along the chord-wise direction can be seen in Figure 22.
The fluctuations observed from the separation location on (x/c ≥ 0.24) indicate that the temporal average
needs to be carried out over a longer period of time. The dotted red line shows the amplification factor
of the single most energetic wave as predicted by XFoil, while the blue line is the result of the integration
(18) and hence corresponds to the compounded energy of all the waves; this explains why the XFoil line
gives a smaller amplification factor at any given location. However, the slopes of the lines from the present
simulations and from XFoil are very similar, which suggests that even with the relatively coarse grid used
we are able to properly capture unstable modes.

Both the shape of the fluctuating stream-wise pseudo-velocity profiles, and the spatial growth of the
amplification factor, indicate that the mechanism of transition for this low Reynolds number flow is a TS
transition and not a bypass transition.

IV. Conclusions

This paper presents some preliminary results obtained with a discontinuous Galerkin method for the
prediction of transition associated with a laminar separation bubble on the SD7003 airfoil. The grid resolution
utilized is clearly too coarse to capture all the scales of motion present in the flow, yet it appears to produce
a remarkable agreement with results obtained with much finer LES simulation2 as well as with the results
obtained with well-validated codes such as XFoil10 and experimental data.3

The study of the boundary layer fluctuating stream-wise pseudo-velocity profiles and of the spatial growth
of the amplification factor shows that the transition taking place at a Reynolds number of 60,000 is due to
unstable TS waves.

Our future work will concentrate on validating these results by performing spatial and temporal resolution
studies. Further extension will also include the simulation of pitching and heaving airfoils as required for
the design of micro-air vehicles. It is known that in these situations the accurate prediction of transition is
of crucial importance. For the case of a moving wing, a well-validated time-averaged solver such as XFoil is
not available and therefore the use of LES seems to be the only viable option.
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