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We are concerned with the numerical solution of the Navier-Stokes and Reynolds-
averaged Navier-Stokes equations using the Hybridizable Discontinuous Galerkin (HDG)
methods recently introduced in Ref. [34]. These methods are computationally more e�-
cient and accurate than other discontinuous Galerkin methods and hence, well suited to be
applied to CFD problems. However, in order for them to be able to deal with the range
of problems of relevance to Aeronautics, both turbulence and shocks have to be properly
addressed. First, we will present a modi�cation of the Spalart-Allmaras (SA) turbulence
model that improves the convergence properties of the method by means of a regulariza-
tion of the working variable; this modi�cation is e�ective only in regions where the eddy
viscosity is smaller than the molecular viscosity, therefore, it does not a�ect the numerical
prediction of ow quantities as compared to the original SA model. Then, an arti�cial
viscosity coe�cient driven by the divergence of the velocity will be implemented in order
to deal with shock waves. Numerical results are presented to demonstrate the proposed
approach in several instances, from laminar separated ows to turbulent compressible ows.

I. Introduction

The numerical simulation of viscous compressible ows has become an indispensable tool for many im-
portant applications such as aero-acoustics, vehicle design and turbomachinery. Although the ever increasing
computer power allows us to solve complex problems that would have been intractable a few years ago, there
are still many problems of practical interest for which the existing methods are inadequate. Therefore, the
development of robust, accurate, and e�cient methods for the numerical solution of the compressible Navier-
Stokes equations in complex geometries remains a topic of considerable importance. In particular, we are
concerned with the solution of ows where shock waves are present and the Reynolds number is high enough
so that some sort of turbulence modeling is required. To do so, the Reynolds Averaged Navier-Stokes system
(RANS) combined with the one equation Spalart-Allmaras (SA) model with transition terms will be used.
In order to tackle this system the hybridizable discontinuous Galerkin (HDG) method, recently introduced
in Ref. [34], will be applied. In addition to possessing local conservativity, high-order accuracy, and strong
stability for convection-dominated ows, the HDG methods have the following main advantages over many
existing DG methods. First, unlike other DG methods which result in a �nal system involving the degrees of
freedom of the approximate �eld variables, the HDG methods produce a �nal system in terms of the degrees
of freedom of the approximate traces of the �eld variables. Since the approximate traces are de�ned on the
element faces only and single-valued on every face, the HDG methods have signi�cantly less globally coupled
unknowns than other DG methods. This large reduction in the degrees of freedom can lead to signi�cant
savings for both computational time and memory storage. Second, for di�usion-dominated problems with
smooth solutions, the HDG methods exhibit optimal convergence properties for the primal variables as well
as their gradients. In fact, to our knowledge, it is the only DG method that achieves optimal convergence
of the viscous uxes in multidimensions. Finally, the HDG methods can deal with inow, outow, slip, and
solid wall boundary conditions weakly in a uni�ed framework by de�ning appropriate numerical uxes on
the domain boundaries.
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The �rst HDG method was introduced for di�usion-reaction problems11 and later analyzed in.7,13,14 Sev-
eral HDG methods were subsequently developed for biharmonic equations,8 linear and nonlinear convection-
di�usion problems,9,28,29 linear elasticity,39 Stokes ows,10,12,15,30 incompressible Navier-Stokes equations,26,27,31

compressible Navier-Stokes equations,34 linear acoustic and elastodynamics,25 and time-harmonic Maxwell’s
equations.24 Although HDG methods are locally conservative and stable for convection-dominated ows,
they produce oscillatory solutions in the presence of shock waves. These oscillations known as the Gibbs
phenomenon will eventually preclude convergence of the simulation. In the literature, several techniques
such as �lters, limiters, reconstruction, and arti�cial viscosity have been proposed to suppress oscillations
around the discontinuities. The approach we have taken here relies on arti�cial viscosity as a way to stabilize
the solution around discontinuities. In [32], we introduce an arti�cial viscosity model for the compressible
Euler equations. In this paper, we extend this arti�cial viscosity method to viscous compressible ows.

Arti�cial viscosity has been widely used in �nite volume methods,23 streamline upwind Petrov-Galerkin
(SUPG) methods,22 and spectral methods.40 Recently, DG researchers have also employed arti�cial viscosity
to capture shocks. Hartmann and Houston21 used the magnitude of the residual to determine the amount
of viscosity added around the shock region. Persson and Peraire35 introduced a sub-cell shock-capturing
method based on the smoothness of an orthogonal expansion of the computed density for determining the
shock region and amount of arti�cial viscosity added there. However, a drawback of this approach is that it
may lead to oscillations in state gradients because the arti�cial viscosity is piecewise-constant. Recognizing
this limitation by the Persson and Peraire’s approach, Barter and Darmofal introduced a PDE-based arti�cial
viscosity model2 appended to the system of governing equations to obtain smoother gradients. However, the
PDE-based arti�cial viscosity approach is clearly more expensive since it solves an additional PDE to be
solved for. Yet another approach proposed by Cook and Cabot16{18 consists of adding arti�cial terms to the
physical viscosity coe�cients such as the dynamic viscosity, bulk viscosity, and thermal conductivity. The
added arti�cial terms are determined based on the strain rate tensor and the internal energy. This approach
was followed up with the work by Lele et al.5,19 in the context of compressible turbulence simulations. The
approach was also adopted by Premasuthan et al.36 for spectral di�erence method.

Regarding turbulence modeling, it is well known that the development of high-order methods for the
solution of the RANS equations coupled with a turbulence closure model is a challenging task because of the
sti�ness associated to the closure equations. In practice, it is often necessary to supplement the turbulence
model with some form of stabilization to prevent the divergence of the simulations. In the previous work,33

we proposed to add arti�cial dissipation into the Spalart-Allmaras (SA) turbulence model in order to avoid
oscillations and negative values of the eddy viscosity along the edge of the boundary layer. In this paper, we
take a di�erent approach by pursuing a simple modi�cation of the SA equation in order to render it easier
to integrate using high-order methods. The modi�cation is indeed necessary to avoid the sudden divergence
often experienced when HDG is applied to the original SA model. We aim to explain why the blow-ups may
occur and propose a �x to prevent them. In fact, our modi�cation is e�ective only in regions where the eddy
viscosity is smaller than the molecular viscosity. Therefore, it does not a�ect the numerical prediction of
ow quantities as compared to the original SA model.

II. Flow Models

In this section, the di�erent models used (RANS, SA, and Arti�cial Viscosity) will be described separately.
For the sake of clarity, the HDG implementation of the �nal system of equations will not be described here;
the interested reader is referred to 34 for details on the implementation of the Navier-Stokes equations such
as the underlying weak formulation, the boundary conditions, etc. or any of the references provided in the
introduction above.

A. Navier-Stokes and RANS Equations

We consider the compressible Navier-Stokes equations
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where , Pr and � are the ratio of gas speci�c heats, the molecular Prandtl number and molecular dynamic
viscosity, respectively.

The Reynolds averaged Navier-Stokes (RANS) equations are obtained from the Navier-Stokes equations
by means of an averaging process that introduces the so called Reynolds stresses u0iu

0
j . If the Bousinesq eddy

viscosity assumption is invoked, then the Reynolds stresses are modeled as being proportional to the mean
strain rate tensor. That way the Reynolds stresses are included in system 1-6 by simply replacing � with
� + �t, where �t is the turbulent dynamic viscosity. Similarly, the heat transfer coe�cient �=Pr has to be
replaced by �=Pr + �t=Prt. This is:
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To close the system of equations 1-6, the eddy viscosity �t and the turbulent Prandtl number Prt have
to be modeled. For the former, a modi�ed version of the Spalart-Allmaras one equation model is used in
order to trace the evolution of the eddy viscosity in the domain. As for Prt, we are interested in low to
moderate speed ows with negligible heat transfer e�ects, hence a constant value of Prt = 0:9 is a reasonable
approximation.

B. The Spalart-Allmaras Model

In the Spalart-Allmaras model,38 a working variable ~� is solved together with the RANS equations subject
to the following governing transport law:

D~�
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= cb1 ~S~� +

1
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d
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where the three di�erent terms on the right hand side represent turbulence production due to shear, turbu-
lence di�usion/propagation into the ow and turbulence destruction due to walls, respectively. The e�ective
eddy viscosity applied to the RANS system is computed from ~� as follows:

�t = ��t; �t = ~�fv1; fv1 =
�3

�3 + c3v1
; � =

~�

�
: (10)

while the production term takes the form:
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Here 
ij = 1
2 (@ui=@xj � @uj=@xi) is the rotation tensor and d is the distance from the closest wall. Finally,

the destruction term is given by:

fw = g
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g = r + cw2(r6 � r); r =
~�

~S�2d2
: (14)
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The closure constants involved in the model are set as follows: cb1 = 0:1355; cb2 = 0:622; cv1 = 7:1; � = 2=3;

cw1 = cb1
�2 + (1+cb2)

� ; cw2 = 0:3; cw3 = 2; � = 0:41.
In order to model forced transition, the SA model has to be modi�ed to make ~� = 0 a stable solution of

the problem up to a desired threshold. This way, the solution can remain laminar up until certain locations
where the system is perturbed out of equilibrium and the eddy viscosity starts evolving. To do so, the right
hand side is modi�ed so that when ~� is small enough the linearized system is stable; for this, the leading
term needs to have the shape D~�=Dt = �~� with � < 0. The approach followed in the original work by
Spalart and Allmaras38 reads:
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1
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where the new functions are de�ned as:

ft1 = ct1gt exp(�ct2
w2
t

�U2
[d2 + g2t d

2
t ]); ft2 = ct3 exp(�ct4�2); (16)

Here, dt represents the distance to the trip, wt represents the vorticity at the trip, �U equals the di�erence in
velocity between the uid and the trip (this last usually zero) and gt = min(0:1;�U=wt�x). The constants
in these terms are set to: ct1 = 1, ct2 = 2, ct3 = 1:1 and ct4 = 2.

With this choice of tripping functions and constants, the zero eddy viscosity solution is stable up to
� � 0:14 and is pushed out of equilibrium by the ft1 function. More details on this can be found in
the original reference.38 The free-stream condition is set to ~� = �=10 in order to be consistent with the
stabilization terms. In cases where the interest lies on fully turbulent solutions, the trip terms can be
neglected and the free-stream value for the working variable can be set to ~� = �. In any case, the boundary
condition for the working variable at solid walls is ~� = 0.

C. Modi�cation of the Spalart-Allmaras Model

It is well known that high order methods face a series of challenges when it comes to solving the RANS
equations, all of them associated to the sti�ness of the equations that govern the eddy viscosity evolution.3,33

In particular, for the SA model, the weak solution corresponding to the propagation of turbulence into
the laminar region (due to the di�usion term r � (~�r~�) ) is discontinuous in the �rst derivative and only
regularized by the e�ect of the molecular viscosity ( r�((�+ ~�)r~�) ). It is thus clear that in situations where
the length scale of the molecular viscosity is much smaller than the resolution, the high order approximation
(polynomials in the case of HDG) will su�er from oscillations due to the discontinuity; these can later trigger
two other problems, namely:

1. In the case where the resolution at the edge of the boundary layer is too small, the oscillation in ~�
can be negative enough to reach � = �cv1, in which case the function fv1 becomes unbounded and a
sudden blow-up in the computation is experienced.

2. Even though such small values are not reached, it is enough to reach � = �cv1= 3
p

2 to cancel the
molecular viscosity applied to the RANS equations. Furthermore, values of � < �1 produce negative
total viscosity in the SA model. In short, below a certain threshold, negative � can turn dissipative
terms into anti-dissipative ones.

To address the above issues we propose a simple modi�cation of the SA model consisting on a transfor-
mation that avoids � < 0. In particular, we replace � with

 = 0:05 log
�
1 + exp

�
20�)

�
(17)

As plotted in Figure 1,  is almost identical to � for ~� � �. In fact, the di�erence j � �j is smaller than
1:04 � 10�10 for ~� � � and just over 1:5% for ~� = 0. However, unlike � which goes negative,  vanishes
rapidly to zero for negative values of the working variable. As a result, if  is used as argument for fv1, the
turbulent eddy viscosity applied to the RANS equations can never be negative. Similarly, if  � instead of ~�
is used in the di�usion term of the SA model, the dissipative character of the operator is always preserved.
Our proposed modi�cation is to use the regularized  instead of � wherever possible. The modi�ed model
reads:
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Figure 1: Plots of  and � as a function of ~�=�.
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and the trip terms (ft1 and ft2) are not modi�ed and still depend on � in the case of ft2. The turbulent
dynamic viscosity is then calculated as

�t = ��t; �t =  �fv1; fv1 =
 3

 3 + c3v1
: (21)

The closure constants used in the original SA model where obtained out of a careful calibration for several
canonical cases under the hood of second order �nite di�erence schemes. This calibration seems to be still
valid when high order methods on su�ciently �ne meshes are used,33 however, the modi�cation we propose
introduces subtle changes, specially for small or negative ~� that might slightly modify the parameters of the
model. In any case, our main goal is to asses the enhanced stability of the proposed modi�cation and hence
a re-calibration will not be carried out here.

It is important to point out that our modi�cation does not aim to alleviate the issue of negative working
variable ~� in the SA model. In particular, this variable may still be negative if the boundary layer edge is
under-resolved. However, the modi�cation is bene�cial for high-order methods since it renders the resulting
system easier to integrate. We observe from our numerical experiments that the modi�ed SA model succeeds
in a number of cases where the original SA model fails.

D. Shock Capturing

In order to treat shock waves, the Navier-Stokes or RANS equations have to be written in non-dimensional
conservation form as:

@u

@t
+r � (F (u;ru)� "r~u) = 0; (22)
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where u is the m-dimensional vector of conserved dimensionless quantities and F (u;ru) are the physical
uxes of dimension m � d, that have been augmented by the arti�cial uxes "r~u of dimension m � d too.
The later are added to the original equations for the purpose of capturing shocks. Here " is the arti�cial
viscosity and ~u is the same as u except that the energy is replaced with the enthalpy.2

Following the previous work,5,36 we de�ne the arti�cial viscosity as

" = "0f
�‘r � v

c

�
; (23)

where "0 is a user-speci�ed constant, ‘ is a characteristic length scale, v is the velocity �eld, c =
p
p=� is

the sound speed, and f is an analytic function. Not wanting to add viscosity at the wall, we specify ‘ as

‘ = min(h0; 10dw); (24)

where h0 is a representative size of the �nite elements and dw is the distance from the closest wall. To
complete our arti�cial viscosity model we de�ne f as

f(x) = � log(1 + exp((� � x)=�)); (25)

where � = 0:05 and � = �0:5. The function f plays the same role as the regularization introduced for
the SA model. In this case though, the objective is to apply arti�cial viscosity when the divergence of the
velocity is negative (compressive data) and cannot be resolved in the available length scale (‘=c). As a result,
the arti�cial viscosity added is continuous within each element. The jumps in arti�cial viscosity between
elements are related to the jumps in the solution at the interface, and hence, will tend to zero if the solution
is properly resolved. This way, the concerns associated to the arti�cial viscosity being a constant inside the
element2,35 instead of a �eld itself no longer apply.

III. Results

In this section, some results obtained using HDG and the previous models will be presented. The objective
is to show the capabilities of this approach in di�erent ow regimes; from laminar separated to turbulent
transonic ows.

A. Laminar ow past SD7003 foil

We �rst consider the laminar ow past a SD7003 at low Reynolds number. It is well known that this airfoil
presents a laminar separation bubble that can experience reattachment if transition occurs. However, our
interest lies on the laminar separation regime and the associated vortex shedding.

Figure 2 shows a snapshot of the horizontal velocity and vorticity as obtained using HDG for Re = 104,
M1 = 0:2, and � = 4o. In this case, the solution is computed on a C-mesh of 3360 triangular elements
using polynomials of order p=4 and time integration is carried out using a third order accurate DIRK
scheme with time step �t = 0:025. We observe the typical vortex structures shedding behind the airfoil,
that compares well with the results reported by Uranga et al using LES .41 Notice how the combination of
accurate time stepping and spatial discretization yields a solution with small dissipation that can capture
the vortex propagation into the wake with high �delity.

B. Turbulent ow over at plate

The next set of results deals with the turbulent ow over a at plate, that represents the simplest tests case
for the validation of the modi�ed SA model due to the simplicity of the geometry and the availability of
experimental data.6 The case studied here consists on a at plate at M1 = 0:2 and Re = 1:027 � 107. In
order to compute the solution, the modi�ed SA model is used without the trip terms on a mesh consisting
on 572 triangles and polynomial order p = 2 to p = 4. The �rst high order node o� the wall is placed at a
distance y=L = 2:75 � 10�5 while the �rst node over the at plate is placed at x=L = 2:37 � 10�3 from the
leading edge.

The results for this case are plotted in Figure 3 and show the value of the SA working variable as well as
the velocity pro�le (non dimensionalized with u� and ‘� ) for di�erent polynomial orders. The results agree
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(a) Horizontal Velocity (b) Vorticity

Figure 2: Snapshot of the horizontal velocity u (left) and vorticity ! (right) for laminar ow past a SD7003
foil at Re = 104, M1 = 0:2, and � = 4o.

well with the experimental results6 as well as the law of the wall. Notice the slight oscillation at the edge of
the eddy viscosity boundary layer does not prevent the convergence towards a solution.

(a) SA working variable, p = 4
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(b) Velocity pro�le

Figure 3: Relative value of the SA working variable � = ~�=� (top) and velocity pro�le at Rex = 1:027 � 107

(bottom) for a at plate at M1 = 0:2 and Re = 1:027 � 107.

C. Transition to turbulence over at plate

Following, we deal with the turbulent transition over a simple geometry, again, using a at plate at M1 = 0:2
and Re = 1:027 � 107. In order to compute the solution, the modi�ed SA model is used with the trip terms
included. The discretization is carried out using polynomials of order p = 4 and a grid of 952 triangles. The
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�rst high order node o� the wall is placed at a distance y=L = 1:73 � 10�5 while the �rst node over the at
plate is placed at x=L = 7:86 � 10�4 from the leading edge.

Tripping is prescribed to occur at a certain location (forced trip) and the value of vorticity there, required
by the SA model, is obtained from the Blasius solution. The inclusion of a small laminar region helps alleviate
the singularity present at the leading edge, plus, it is interesting on its own in order to asses the behavior of
the transition mechanism in the SA model.

Before trying to solve the problem, we need to check the stability of the modi�ed SA model. In particular,
we need to check that the eddy viscosity is attracted to zero when the stabilization terms are active and
the free-stream condition is set to be small, regardless of the shear present in the ow. For this, the
solution is computed using a free-stream value for the SA working variable of ~�=� = 0:1. The results for
the friction coe�cient Cf along the plate and the velocity pro�le at the x=L = 0:96 station are included
in Figure 4. As we can see, the friction coe�cient follows the laminar Blasius law and the velocity pro�le
presents the usual laminar shape. The value of the working variable in the �nal solution remains in the gap
~�=� 2 [�0:077; 0:1029] as desired. The oscillation in the Cf close to the leading edge is due to the boundary
layer singularity together with lack of resolution and only a�ects the �rst two elements.
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(a) Friction coe�cient
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(b) Velocity pro�le

Figure 4: Friction coe�cient (left) and velocity pro�le (right) for the stabilized RANS laminar solution over
a at plate at M1 = 0:2 and Re = 107. The solution remains laminar throughout the at plate which
indicates the stabilization terms are working properly.

After checking the stability of the modi�ed SA model, we are ready to solve the turbulent ow over the
at plate. For this, the trip is set to occur at Rex = 5 � 105 and the free-stream condition for the SA working
variable is set to ~�=� = 0:1. In order to converge to a solution, time marching is mandatory. In this case, a
second order, single stage Diagonally Implicit Runge-Kutta scheme has been used, with a prescribed growth
in the time step length. This strategy requires several restarts and plenty of heuristics in the choice of the
time step law. The method would de�nitely bene�t from more robust strategies such as p-continuation and
time step control through the CFL number.4

Figure 5 shows the computed solution for the friction coe�cient over the at plate obtained using the
modi�ed SA model. As we can see, the friction coe�cient is in good agreement with usual laminar and
turbulent �tting laws.37 The solution computed setting the trip term parameter to ct1 = 1:0 presents
an overshoot in the friction coe�cient that might be alleviated if the trip strength was reduced. The
corresponding result for ct1 = 0:1 does not present such overshoot and still produces the desired transition.

To complete the results, the horizontal velocity and the eddy viscosity �elds close to the leading edge are
included in Figure 6. Notice at the transition location (roughly at x=L = 0:05), the boundary layer pro�le
smoothly changes and the eddy viscosity starts to grow as expected. Before this point, the boundary layer
resembles the Blasius solution and the turbulence e�ects (through the eddy viscosity) are null. Notice also,
the modi�ed SA model we propose seems to be capable of dealing with transition within a single element.
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Figure 5: Friction coe�cient over a at plate at M1 = 0:2 and Re = 1:027 � 107. Transition is forced to
occur at Rex = 5 � 105. The result agrees well with laminar and turbulent friction laws.

(a) Horizontal Velocity

(b) Relative Eddy Viscosity

Figure 6: Horizontal velocity u (top) and relative SA working variable � = ~�=� (bottom) in the region
around the leading edge of a at plate at M1 = 0:2 and Re = 1:027 � 107. Transition is forced to occur at
Rex = 5 � 105. Notice transition is produced smoothly within an element.
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D. Turbulent subsonic ow past NACA 0012 foil

We next present results for the fully turbulent ow past NACA 0012 airfoil at Mach number M1 = 0:3,
Reynolds number Re = 1:85� 106, and zero angle-of-attack . We use a single-block, two-dimensional C-grid
of 101�31 nodes consisting on quadrilateral elements of order p = 4. The grid is clustered around the leading
edge and the trailing edge to resolve the ow gradients there, and around the airfoil surface to resolve the
boundary layer. The �rst high order node o� the airfoil is at a distance of d=c = 7� 10�6.

The problem was evolved in time from an initial uniform condition and convergence was achieved in
around 40 iterations. Figure 7 shows the working variable �eld � around the airfoil and in the wake. We can
observe oscillations in the wake with � as low as � = �50 due to the lack of resolution of the mesh there.
Despite this, the convergence of the scheme was not a�ected; if the original SA model had been used in this
same mesh, there would have been convergence issues due to this lack of resolution. Also, Figure 8 depicts
the pressure coe�cient distribution. We see that numerical predictions agree well with the experimental
measurements.1

Figure 7: Relative SA working variable (� = ~�=�) solution for a turbulent subsonic ow past NACA 0012
airfoil at M1 = 0:3, � = 0o, and Re = 1:85� 106. Notice the under-resolution in the wake generates strong
negative oscillations in the working variable that do not a�ect the modi�ed SA model convergence.
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Figure 8: Pressure coe�cient distribution over the airfoil surface for turbulent subsonic ow past NACA
0012 airfoil at M1 = 0:3, � = 0o, and Re = 1:85� 106.

E. Laminar Separation Bubble and transition on the SD7003 airfoil

All the previous results seem to indicate the proposed approach is adequate to deal with transition on
attached ows and fully turbulent computations. However, we are also interested in cases where transition
occurs in free shear layers and drastically modi�es the ow �eld. One of this situations is the reattachment

10 of 14

American Institute of Aeronautics and Astronautics



that laminar separation bubbles can experience in the low-moderate Reynolds number regime. A well studied
example of this would be the SD7003 airfoil, for which Large Eddy Simulation results exist.20,41

In this case, we are interested in the solution of the ow around the SD7003 airfoil at Mach number
M1 = 0:3 and Reynolds number Re = 60000. The solution will be computed using a C-mesh of 864
quadrilateral elements with polynomial order p = 4. The modi�ed SA model was used with the trip term
parameters extracted from the results found in Uranga et al.41 In particular, transition is set to occur at
x=c = 0:535 and a distance d=c = 0:025 o� the wall. No comparison with the results provided there are
attempted because of the strong dependence of the solution on the trip parameters and the grid. For this,
the results shown in Figures 9 and 10 for the pressure coe�cient and the velocity �eld should be taken as
merely qualitative. The solution exhibits a separation bubble on the upper surface that reattaches due to
transition and produces the usual drop in the pressure coe�cient.

Figure 9: Horizontal velocity u for the ow around a SD7003 airfoil at M1 = 0:3, � = 4o, and Re = 60000.
Notice the thin laminar separation bubble that reattaches around x=c = 0:5.
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Figure 10: Pressure coe�cient over an SD7003 airfoil at M1 = 0:3, � = 4o, and Re = 60000. Notice the
drop due to the reattachment of the separation bubble following transition

11 of 14

American Institute of Aeronautics and Astronautics



F. Turbulent transonic ow past RAE 2822 foil

Finally, we present the results for a transonic turbulent ow on a RAE 2822 airfoil at free-stream Mach
number M1 = 0:729, Reynolds number Re = 6:5� 106, and � = 2:31o angle-of-attack. The goal of this test
case is to explore the robustness of the proposed approach when combined with shock capturing.

The solution was computed on a C-mesh of 3456 triangular elements using polynomials of order p = 4.
Figure 11 shows the pressure contour and the pressure coe�cient distribution over the airfoil surface, that
resembles the experimental results1 except for the location of the shock. This may be due to the coarse mesh
used and further studies would be required. Figure 12 shows the SA working variable �eld obtained.
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Figure 11: Pressure (left) and pressure coe�cient distribution over airfoil surface (right) for turbulent tran-
sonic ow past RAE 2822 foil at M1 = 0:729, � = 2:31o, and Re = 6:5� 106.

Figure 12: SA model working variable for the turbulent transonic ow past RAE 2822 foil at M1 = 0:729,
� = 2:31o, and Re = 6:5� 106.
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IV. Conclusion

We have presented a modi�cation of the Spalart-Allmaras turbulence model suitable for high order
computations on grids that are not well resolved at the edge of the boundary layer. Combined with forced
transition terms and shock capturing the modi�ed model has shown good stability properties on di�erent
instances.

Future extensions of this work would include a careful calibration of the constants in �ner grids and the
implementation of more robust solution strategies. Of particular interest would be a physically meaningful
time stepping scheme that would allow free transition to be modeled if properly combined with a shear layer
stability analysis tool.
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