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The present work presents a preliminary investigation into the e�ects of cross-ow on
transition at low Reynolds numbers, an area which has essentially remained unexplored.
The ow around an in�nite SD7003 wing at an angle of attack of 4� is considered at a
chord Reynolds numbers of 60,000, and for sweep angles ranging between 0� and 60�. A
separation bubble is present on the upper surface where the ow transitions to turbulence,
and both Tollmien-Schlichting (TS) waves and cross-ow instabilities are observed.

The level of coupling between cross-ow and streamwise boundary layer velocity com-
ponents is evaluated by projecting them along two-dimensional equivalent directions. It
is established that the cross-ow cannot be decoupled from the streamwise evolution for
sweep angles between about 10� and 40� due to strong non-linear interactions that take
place after the laminar boundary layer separates. Hence, in separation-induced transition
at low Reynolds numbers, it is not possible to treat streamwise and cross-ow instabilities
independently for wings at intermediate sweep angles, and predicting the mixed transition
cannot be reduced to treating the disturbances of each component separately. Further-
more, the type of transition (TS dominated, cross-ow dominated, or mixed) is a priori
unknown, as soon as the ow is slightly misaligned with the wing’s chord|an important
presumption for the study of unsteady ows encountered in MAVs and animal locomotion.

I. Introduction

The low Reynolds number regime has been the subject of growing interest in the last decades, a conse-
quence of both advancements in Micro-Air Vehicles (MAVs) and studies of animal locomotion|swimming

of �sh, ying of birds and bats, apping of insects. In the simulation of such ows with characteristic Reynolds
numbers between roughly 103 and 104, accurately predicting transition to turbulence is of crucial importance
since the transition location has a signi�cant impact on aerodynamic performance. This is linked to the fact
that laminar ows have a much greater tendency to separate than the essentially turbulent ows encoun-
tered at high Reynolds numbers. When a laminar boundary layer separates in an adverse pressure gradient,
triggering transition and reattachment, it forms what is known as a laminar separation bubble (LSB).

The present works advances the understanding of low Reynolds number transition in an LSB. Building
upon our previous studies of the ow around a straight wing,1{3 the focus is now on transition along a swept
wing in order to study the e�ect that a cross-ow velocity component in the boundary layer has on ow
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stability and transition. While cross-ow transition has been the subject of a large number of studies in high
Reynolds number ows, it has remained essentially unexplored at low Reynolds numbers.

Simulation of transition requires low numerical dispersion and dissipation, and therefore the use of high-
order methods seems to be a practical requirement. A high-order Discontinuous Galerkin (DG) Finite
Element method is used as it combines high accuracy with the geometric exibility required for practical
applications. The computational methodology and boundary layer analysis employed in the present work are
the same that we had used to study the ow around an in�nite straight wing at di�erent Reynolds numbers.2,3

Those results proved the advantages of this approach by providing a good comparison with both experimental
and better-resolved simulations published by other groups. Furthermore, Tollmien-Schlichting waves were
observed, their growth quanti�ed, and the transition mechanism demonstrated.

As previously, an in�nite SD7003 rectangular wing section is set at an angle of attack of 4�, a characteristic
case exhibiting an LSB on the upper surface for a range of ow conditions. The Reynolds numbers based on
chord is set at 60,000 and the free-stream ow angle with respect to the leading-edge line is varied in order
to represent the ow over a wing at di�erent sweep angles.

II. Background

The nature of cross-ow over swept wings at large Reynolds number is explained in the works by Reed
and Roshotko.4{6 Near the leading edge, the combination of pressure gradient and sweep deects the inviscid
streamlines inward (i.e. away from the tip of a backwards-sweep wing), and then outwards near the trailing
edge. The boundary layer ow carries less momentum and hence this deection is larger near the wall, which
results in a secondary ow perpendicular to the inviscid streamline direction, known as cross-ow. Hence, the
cross-ow velocity is zero both at the boundary layer edge and at the wall, such that the cross-ow pro�le has
an inection point and is inviscidly unstable. Disturbances in the form of cross-ow vortices propagate, which
rotate around an axis oriented close to the inviscid streamline direction and have a span-wise periodicity of
the same order as the boundary layer thickness (about twice or three times the thickness).

The parameters which are important in cross-ow stability studies are the height of the inection point
(related to inviscid stability), the velocity gradient at this point (with larger shear stresses resulting in more
unstable pro�les), and the maximum cross-ow velocity (linked to the streamline curvature inducing it).

A �nding which is of particular importance to transition prediction at high Reynolds numbers is the
following: when the cross-ow is unstable, the boundary layer stability characteristics are very close to those
of the cross-ow alone (i.e. irrespective of the streamwise ow); when the cross-ow is stable, the stability
characteristics are essentially those of the streamwise pro�le. Hence, the stability of the cross-ow and
streamwise pro�les can usually be considered separately.6,7

As Reed & Saric5 point out, cross-ow instability is usually dominant near the leading edge where
pressure gradients are important, and the shift between cross-ow and streamwise (Tolmien-Schlichting)
instability occurs when the cross-ow pro�les become S-shaped and hence highly stable. The authors note
that in the region where the prevalent mechanism switches, eN envelope methods need to be used carefully
and critical factors for transition due to cross-ow instability can be very large. Furthermore, non-linear
saturation of disturbance amplitude can be observed before transition, and methods based on linear stability
are inappropriate to predict cross-ow dominated transition.5,8, 9

Another important consideration is that, due to the large streamwise velocity gradients close to the
wall and the related substantial momentum exchanges, small uctuations in cross-ow or in normal velocity
can lead to large steam-wise disturbances which soon become too large for non-linear interactions to be
neglected.9 This can occur even close to the attachment line which divides the ow between the branch that
follows the upper surface and the one that follows the lower surface. Thus, a ow can transition due to the
growth of streamwise instabilities over swept wings and yet be destabilized by cross-ow uctuations.

Before the present work, and to the author’s knowledge, the possible decoupling of cross-ow and stream-
wise ampli�cation had not been studied for low Reynolds number transition, and it remained unknown
whether the conclusions for high Reynolds number ows were still applicable. We introduce here a system-
atic approach to assessing the level of coupling between streamwise and cross-ow components, and show
how non-linear coupling is signi�cant when intermediate levels of cross-ow are present.
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III. Computational Methodology

The present section provides a description of the computational approach used for solving the three-
dimensional, unsteady, compressible Navier-Stokes equations with the Discontinuous Galerkin method. De-
tails on the time-stepping procedure and computational grids are given, followed by an explanation of how
the di�erent sweep angles are simulated. Finally, we explain how the boundary layer is analyzed and the
transition mechanism established. Most of this section is common to our previously published study of low
Reynolds number transition over an in�nite SD7003 un-swept wing.2,3

A. High-Order Discontinuous Galerkin Method

The unsteady, compressible Navier-Stokes equations are solved using a high-order Discontinuous Galerkin
method implemented in the computational code 3DG. This framework solves time-dependent systems of
conservation laws of the form8<:

@u

@t
+r � F(i)(u)�r � F(v)(u;q) = S(u;q)

q�ru = 0
(1)

in a domain 
, with conserved state variables u, inviscid ux function F(i), viscous ux function F(v), and
source term S.

In the case of the three-dimensional, unsteady, compressible Navier-Stokes equations,

u =

2666664
�

�u1

�u2

�u3

�E

3777775 , F
(i)
i =

2666664
�ui

�uiu1 + �i1p

�uiu2 + �i2p

�uiu3 + �i3p

�ui (E + p=�)

3777775 ; F
(v)
i =

2666664
0

�i1

�i2

�i3

uk�ik + �
Pr

@e
@xi

3777775 ; S =

2666664
0

0

0

0

0

3777775 : (2)

In the above equations, e = E � ukuk=2 is the internal energy per unit mass, � denotes the uid density, ui
the velocity component in the direction xi, p the static pressure, E the total energy per unit mass, � the
dynamic viscosity coe�cient, and Pr the ow Prandtl number. The viscous stress tensor, �ij , and the heat
ux, qi, are de�ned by

�ij � �
��

@ui
@xj

+
@uj
@xi

�
� 2

3

@uk
@xk

�ij

�
(3)

qj = � �

Pr

@

@xj

�
E +

p

�
� 1

2
ukuk

�
: (4)

In order to close the system, the ideal gas equation of state is used in its form

p = ( � 1)�

�
E � 1

2
ukuk

�
: (5)

The speci�c heat ratio is set to  = 1:4 and the Prandtl number to Pr = 0:72. Moreover, the kinematic
viscosity, � = �=�, is assumed to be constant since only low Mach number ows are considered.

Following the �nite element procedure, we consider a triangulation Th of the spatial domain 
 and
introduce the �nite element spaces

Vh = fv 2 [L2(
)]m j vjK 2 [Pp(K)]m; 8K 2 Thg ;
�h = fr 2 [L2(
)]dm j rjK 2 [Pp(K)]dm; 8K 2 Thg ;

where Pp(K) is the space of polynomial functions of degree at most p � 1 on the tetrahedral element K, m
is the dimension of u and number of states, and d is the spatial dimension. In the case of three-dimensional
simulations, d = 3 and m = 5. Curved elements are handled by iso-parametric mapping to a straight
master (reference) element in which the polynomials are de�ned.
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The DG formulation is then of the form: �nd uh 2 Vh and qh 2 �h such that for all K 2 Th,Z
K

qh � r dx = �
Z
K

uhr � r dx+

Z
@K

û r � n ds 8r 2 [Pp(K)]dm ;Z
K

@uh
@t

v dx�
Z
K

[F(i)(uh)� F(v)(uh;qh)] � rv dx

=

Z
K

S(uh;qh)v dx�
Z
@K

[F̂(i) � F̂(v)] � n v ds 8v 2 [Pp(K)]m :

Here, the numerical uxes F̂(i), F̂(v) and û are approximations to F(i), F(v) and u, respectively, on the
boundary @K of the element K. The DG formulation is complete once these numerical uxes are speci�ed
in terms of qh and uh, and the boundary conditions set.

The inviscid ux F̂(i) is determined using Roe’s scheme10 and provides the numerical dissipation needed
for ILES. The viscous ux F̂(v) is calculated using the Compact Discontinuous Galerkin (CDG) method:11

by choosing the numerical ux û to be a function of uh and not qh, the additional qh variables can be
eliminated after discretization at element level. This results in a system involving only the degrees of freedom
corresponding to the conserved variables uh. The �nal result is a system of coupled ordinary di�erential
equations of the form

M _u = R(u) ; (6)

where u is a vector containing the degrees of freedom associated with uh, and _u denotes its time derivative.
Here, M is the mass matrix and R is the residual vector which is a nonlinear function of u. Nodal basis
expansions are used to represent uh inside each element.

The system (6) is linearized using Newton’s method and the resulting linear system solved using the
Conjugate Gradient Squared (CGS) method preconditioned by incomplete factorizations (ILU) following
Persson & Peraire 2008.12 The code is parallelized using a domain-decomposition approach with block-wise
ILU factorizations, the details of which can be found in the paper by Persson 2009.13

In the present work we follow the Implicit Large Eddy Simulation (ILES) approach, and the unresolved
small eddies are accounted for by means of the numerical dissipation. Hence, no subgrid-scale model is
employed and the full (un�ltered) compressible Navier-Stokes equations are solved. This approach was
used successfully for the simulation of low Reynolds number ows around an SD7003 airfoil in our previously
published studies,2,3 and also by Visbal and collaborators using a sixth-order compact di�erence method.14{17

B. Computational Domain and Grid

The ow around a rectangular wing with an SD7003 airfoil pro�le at an angle of attack of 4� and free-stream
Mach number of 0.2 is considered. The axes are set with x being the chord-wise direction and z the span-wise
direction, such that the leading-edge is located along the line x = 0, y = 0.

From the wing’s leading-edge line, the domain extends 4.3 chord lengths upstream, 7.4 chord lengths
downstream, 5.9 chord lengths above, and 6.0 chord lengths below. The wing span-to-chord ratio is set to
0.2 chords following previously published results.2,3, 14 Thus, if we denote by c the chord length, the domain
has the range [-4.3c , 7.4c] � [-6.0c , 5.9c] � [0 , 0.2c] along the chord-wise, vertical, and span-wise directions,
respectively.

The computational domain has periodic boundary conditions along the span-wise direction in order to
simulate an in�nite wing. The wing’s surface is represented by a non-slip, adiabatic, boundary condition,
while a free-stream type boundary condition employing Roe’s approximate Riemann solver is imposed at the
outer edges (far-�eld) of the computational domain.

We use the term high-order nodes to refer to all the nodes used in the numerical procedure at which the
variable states are computed, so as to di�erentiate them from the nodes at the corners of each tetrahedral
element. Note that the number of high-order nodes is equal to the number of degrees-of-freedom per state.

The grid is constructed by extruding a two-dimensional structured C-mesh around the pro�le which is
generated from a rectangular grid by conformal transformations. To obtain curved elements that are aligned
with the geometry boundaries and do not intersect, a �ne structured grid is generated and the high-order
nodes of the computational mesh placed at the mesh points of this �ne grid. Note that this �ne grid is
such that the number of subdivisions in each direction is compatible with the number of high-order nodes
required for a given polynomial order. The tetrahedral connectivities of the computational mesh are then
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Figure 1. Span-wise view of the computational grids used in the present preliminary study: (left) domain,
(right) closer view on foil.

obtained directly from the cartesian topology of the �ne structured grid by splitting each cartesian cell into
six tetrahedrals. The boundaries are thus represented accurately and a high-order mesh appropriate for DG
computations obtained.

In this preliminary assessment, only one grid is used. In our previous study of unswept wings,2 the
resolution of this grid (called grid 2) in the span-wise y-plane was found to be appropriate to capture the
separation bubble and observe the linear growth of unstable waves, even though a higher resolution is needed
to accurately predict the locations of separation, transition, and reattachment. The focus here is on how the
cross-ow inuences transition and on the trends with varying sweep angle. These are not expected to be
qualitatively modi�ed as long as the spatial resolution is close to adequate. Simulations with �ner meshes
are under way and the results presented here will be updated in a future publication.

Third-order polynomials (p = 3) are employed for a fourth-order accurate method in space. Figure 1
shows the grid in a planar cut along the span-wise direction (y-plane). It has a total of 158,400 elements, and
hence 3,168,000 high-order nodes at p = 3. Along the leading-edge line (y direction), there are 12 elements
for a total number of unique high-order span-wise nodes of 37. On the airfoil’s upper surface, there are 108
unique high-order nodes.

C. Time Stepping and Averaging Procedure

Time stepping is performed with a two-stage, A-stable, third-order accurate diagonal implicit Runge-Kutta
(DIRK) method.18 This allows to take large time steps chosen based on physical time accuracy considerations
and not on numerical stability factors. Unless otherwise speci�ed, the simulations are performed with a non-
dimensional time step of dt� = dt � U1=c = 0:01, and the solution is saved every 5 steps for computing
statistics and other post-processing tasks (�t� = 0:05).

For all the cases considered, the ow is initialized to a uniform �eld with the far-�eld conditions. The
initial transient is over by t� = 15 as estimated from the temporal evolution of the forces on the wing.
Hence, unless otherwise speci�ed, the average �elds, turbulence correlations, and statistics are computed
by averaging the solution over a non-dimensional time interval of 10 corresponding to 200 solutions with
t� 2 [15; 25], and then performing a spatial average over 20 span-wise planes (unless otherwise speci�ed)
since the domain has periodic boundary conditions in the span-wise direction.

D. Visualization of Vortical Structures: Q-Criterion

Vortical coherent structures are identi�ed using the q-criterion19 and de�ned as

q � 1

2
(
ij
ij � SijSij) ; (7)

where 
ij and Sij are the anti-symmetric and symmetric parts of the velocity gradient, respectively, that is


ij �
1

2

�
@ui
@xj
� @uj
@xi

�
and Sij �

1

2

�
@ui
@xj

+
@uj
@xi

�
:

In this work iso-surfaces of positive q are used to visualize vortical structures, with the velocity gradients
computed consistently with the DG method (i.e. using the variables q) to preserve the order of accuracy.
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E. Simulation of Di�erent Sweep Angles

A rectangular, in�nite, SD7003 wing is used with a free-stream velocity that has a non-zero component in
the direction of the leading edge line in order to simulate a swept wing. With x and y the chord-wise and
span-wise directions respectively, the velocity imposed at the far�eld of the domain is given by

~U1 =

264 cos�

tan �

sin�

375 (8)

in which � is the angle of attack, and � is the sweep angle which is de�ned here as the angle between the
free-stream velocity and the x-z plane on which the SD7003 foil lies. Note that the angle of attack is the
angle between the free-stream velocity and the SD7003 chord (x-direction), that is � = tan�1 (U1z=U1x)
and is thus consistent with our previous un-swept wing studies.2,3 The free-stream velocity magnitude is

U1 =
p

1 + tan2 � =
1

cos �
:

In order to keep the descriptions consistent with those in the absence of cross-ow, the term chord-wise
is used to refer to the x-direction which preserves the SD7003 geometry, while the foil that the free-stream
ow sees is the SD7003 scaled by a factor of

p
1 + tan2 � along its chord as illustrated in Figure 2. Similarly,

span-wise refers to the direction of the leading edge line, that is the y-direction.
The chord-wise Reynolds number, Rex, thus refers to the Reynolds number in the direction normal to

the leading edge line, and is kept at Rex = 60; 000. In this way, the ow in the chord-wise direction should
be similar at all sweep angles except for the non-linar coupling between the cross-ow and the streamwise
components as explained in Section F. The e�ects of cross-ow on the boundary layer development and
transition to turbulence can thus be assessed by comparing the results with di�erent values of �. Note
that the free-stream Reynolds number, Re1 = Rex

p
1 + tan2 � = Rex= cos �, and the span-wise Reynolds

number, Rey = Rex tan �, vary with sweep angle.
Furthermore, the pressure and skin friction forces are non-dimensionalized with respect to the dynamic

pressure projected along the chord-wise direction in order to obtain pressure and friction coe�cients which
allow for a meaningful comparison. The forces are thus divided by q1x = 1=2 �U

2
1x

instead of the usual
q1 = 1=2 �U

2
1; this corresponds to a factor of

�
1 + tan2 �

�
. The coe�cients of lift (force component normal

to the free-stream direction) and drag (force in the free-stream direction) are referred to as CL and CD,
respectively, while CLx

= CL
�
1 + tan2 �

�
and CDx

= CD
�
1 + tan2 �

�
denote the chord-wise lift and drag

coe�cients, respectively, which are relative to q1x
.

The arbitrary sign choice implied by the de�nition of the cross-ow unit vector ŝ2 = ŝ1�n̂ (see Section G),
results in a dominantly negative cross-ow. In order to avoid confusion, we refer to the average pro�le �u2=ue
as the cross-ow pseudo-velocity pro�le or simply as the cross-ow velocity.

direc
tion

free−
strea

m
Λ

(span−wise)y

(chord−wise)x

trailing edge

y (spanwise)
leading edge

Λ 1

tan Λ

s

s (cross−flow)2

1
(streamwise)

(chord−wise)
x

direction
free−

stream

U

Figure 2. Illustration of the free-stream velocity ~U1, chord-wise direction x, and span-wise direction y for the
swept-wing ow; � is the sweep angle.
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F. Swept-Wing Theory for Laminar Flow

Let us consider the Navier-Stokes equations for a three-dimensional, steady, incompressible, laminar ow
whose velocity vector has components u in the chord-wise x direction, v in the span-wise y direction, and
w in the transverse z direction. It is reasonable to assume that the changes along the span-wise direction
over a constant-chord swept-wing are much smaller than changes that occur along both the chord-wise and
the transverse directions. This is a good approximation not only for small sweep angles, but for any sweep
provided that one is far away from the wing ends (which is always the case for an in�nite wing). The
y-derivative terms (@=@y) can thus be neglected in front of x and z derivatives, and the governing equations
simpli�ed to

@u

@x
+
@w

@z
= 0

u
@u

@x
+ w

@u

@z
= �1

�

@p

@x
+ �

�
@2u

@x2
+
@2u

@z2

�
u
@v

@x
+ w

@v

@z
= �

�
@2v

@x2
+
@2v

@z2

�
u
@w

@x
+ w

@w

@z
= �1

�

@p

@z
+ �

�
@2w

@x2
+
@2w

@z2

�
:

An interesting property of a ow governed by the above equations is that the components u and w are
decoupled from v, but v depends on u and w. To make this clear consider the �rst, second, and last equations
above, namely 8>>>>>><>>>>>>:

@u

@x
+
@w

@y
= 0

u
@u

@x
+ w

@u

@z
= �1

�

@p

@x
+ �

�
@2u

@x2
+
@2u

@z2

�
u
@w

@x
+ w

@w

@z
= �1

�

@p

@z
+ �

�
@2w

@x2
+
@2w

@z2

� (9)

This system can be solved for u, w, p (three equations, three unknown functions of x and z), irrespective of
the span-wise velocity: it predicts the two-dimensional laminar boundary layer ow on the airfoil’s plane.
The additional equation

u
@v

@x
+ w

@v

@z
= �

�
@2v

@x2
+
@2v

@z2

�
(10)

de�nes v at given u and w. Hence, there is a one-way coupling between the laminar ow component in the
span-wise direction and the components on the chord-wise plane: v depends on u and w, but the converse
is not true.

Comparing the chord-wise boundary layer ow at di�erent sweep angles thus allows to study the inuence
(if any) of the cross-ow present over swept wings on the boundary layer development and transition. The
above analysis predicts no inuence in the laminar boundary layer region; on the other hand, turbulence is
a highly non-linear process which could be responsible for a two-way coupling in which the span-wise ow
inuences the chord-wise boundary layer evolution.

G. Boundary Layer Analysis

In order to compute the boundary layer integral quantities, we �rst obtain the pseudo-velocity pro�le by
integrating the ow vorticity, namely

~u�(x; n) =

Z n

0

~! � n̂ dn : (11)

Here ~u� denotes the pseudo-velocity, ~! the ow vorticity vector, n̂ the unit vector normal to the airfoil at
the location considered, and n the local coordinate along n̂. The reason for using this pseudo-velocity pro�le
is that it always asymptotes outside the boundary layer, even with strong curvature, thus making the edge
of the boundary layer a well de�ned location.
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The edge ne of the boundary layer is then taken to be the location where both the magnitudes of vorticity,
j~!j, and of vorticity’s normal variation, j@~!=@nj, are below a certain threshold, namely8><>:

j~!jn < �0j~u�j ;����d~!dn
���� n2 < �1j~u�j :

(12)

The edge velocity is then ~u�e = ~u� (ne), and has magnitude ue = j~u�ej. The values �0 = 0:01 and �1 = 0:1
were found to allow for a robust and systematic detection of the boundary layer edge for the simulations
reported in the present work.

Local streamwise and cross-ow unit vectors are then de�ned as, respectively,

ŝ1 = ~u�e=ue and ŝ2 = ŝ1 � n̂ : (13)

Thus, the streamwise and cross-ow velocity pro�les are given by, respectively,

u1(x; n) = ~u�(x; n) � ŝ1 and u2(x; n) = ~u�(x; n) � ŝ2 : (14)

The boundary layer streamwise displacement and momentum thicknesses are then

��1 =

Z ne

0

�
1� u1

ue

�
dn (15)

�11 =

Z ne

0

�
1� u1

ue

�
u1
ue
dn ; (16)

and the streamwise shape factor is
H11 = ��1=�11 : (17)

Note that the boundary layer analysis relies on quantities at points along lines normal to the foil’s surface.
These are obtained by interpolating within the grid’s tetrahedral elements in a manner consistent with the
order of the polynomials being used in order to preserve the accuracy of the method. Moreover, as many
stations along the foil (or the chord) are employed as there are unique grid nodes, and about 100 points
inside the boundary layer along the normal are taken.

The cross-ow displacement thickness corresponds to the defect of cross-ow velocity ratio in the bound-
ary layer relative to its edge value which is zero | since the cross-ow vanishes at the boundary layer edge
by construction. Hence it is de�ned as

��2 =

Z ne

0

�
0� u2

ue

�
dn :

The momentum thickness is a tensor with four components

�11 =

Z ne

0

�
1� u1

ue

�
u1
ue
dn ; �12 =

Z ne

0

�
1� u1

ue

�
u2
ue
dn ;

�21 =

Z ne

0

�
0� u2

ue

�
u1
ue
dn ; �22 =

Z ne

0

�
0� u2

ue

�
u2
ue
dn :

Note that, on average, the cross-ow pseudo-velocity u2 is negative over most of the boundary layer, and
hence all the thicknesses ��i , �ij are positive values except for �12. These integral quantities de�ned in the
local streamwise, cross-ow reference frame are linked to the sweep angle.

In order to decouple any linear e�ects, it is useful to consider the chord-wise quantities

��x =

Z ne

0

�
uex
ue
� u�x
ue

�
dn ; (18)

�xx =

Z ne

0

�
uex
ue
� u�x
ue

�
u�x
ue

dn ; (19)
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in which u�x is the component of the pseudo-velocity ~u� in the chord-wise x direction. Using the same
notation the displacement and momentum thicknesses in a two-dimensional boundary layer are written as

�� =

Z ne

0

�
1� u�x

uex

�
dn ;

� =

Z ne

0

�
1� u�x

uex

�
u�x
uex

dn :

A meaningful comparison of the average boundary layer integral quantities can thus be obtained by consid-
ering the two-dimensional equivalent displacement thickness, momentum thickness, and shape factor for any
given sweep angle and at any chord-wise location through the relations

�� =
ue
uex

��x ; (20)

� =

�
ue
uex

�2

�xx ; (21)

H =
��

�
; (22)

in which the ratio ue=uex (the inverse of the x component of the streamwise unit vector ŝ1) accounts for the
e�ect of sweep on the boundary layer development: it is unity for � = 0�, and increases as the sweep angle
increases. The e�ect of the cross-ow on the chord-wise boundary layer can thus be assessed by comparing
the two-dimensional equivalents ��, �, and H for various sweep angles, as done in Section V.

H. Transition Mechanism

In order to identify which mechanism is responsible for transition to turbulence, we compute the uctuating
streamwise pseudo-velocity

u01(~x; t) = u1(~x; t)� u1(x) ;

in which the over-line denotes a temporal average. The increase in perturbation amplitude of disturbances
along the chord-wise direction is then quanti�ed by computing the ampli�cation A1 of streamwise perturba-
tions at any location x along the chord, that is

A1(x) =
1

ue(x)
p
ne(x)

sZ ne

0

u01
2 dn : (23)

The ampli�cation factor N1 of the streamwise perturbations is then

N1(x) = ln

�
A1(x)

A10

�
; (24)

in which A10 is the ampli�cation at the onset of transition, or equivalently

eN1 =
A1(x)

A10

:

Similarly, the ampli�cation of cross-ow instabilities can be assessed by computing

A2(x) =
1

ue(x)
p
ne(x)

sZ ne

0

u02
2 dn (25)

to which corresponds the cross-ow ampli�cation factor

N2(x) = ln

�
A2(x)

A20

�
: (26)
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IV. Results at 30� Sweep Angle

The ow around a wing with sweep angle � = 30� is now considered in detail. After determining that a
span domain length of 0:2c is su�cient to capture the mean ow features, the average results are compared
with those of the equivalent un-swept (� = 0�) wing.

A. E�ect of Domain Span Length

Previous studies over SD7003 un-swept wings2,3, 20 determined that a domain length of 0:2 chords in the
span-wise direction with periodic boundary conditions is su�cient to simulate an in�nite wing. However,
the presence of a span-wise velocity component may change the characteristic span-wise length of the ow
structures, and hence the ow for a domain with 0:2c span is compared to that for a 0:3c domain span.

Figure 3 shows the time evolution of lift, drag, and span-wise force coe�cients for both cases: the average
coe�cients di�er by less than a quarter of a percent for lift and drag, and by less than 2% for the third
component. The forces are similar, Figure 4 shows the pressure and skin friction coe�cients and Figure
5 the boundary layer integral parameters of the average ow on the wing. The average pressure and skin
forces are undistinguishable, and the small di�erence in boundary layer quantities after transition can be
attributed to a lack of statistical convergence of the time-average ow and not to the di�erence in the
domain’s span. Hence, a domain with a span length of 0:2c and span-wise periodic boundary conditions is
adequate to capture the mean ow features of an in�nite wing even with a span-wise free-stream component
corresponding to � = 30�.

This span should be adequate for any other sweep angle: for larger sweep angles, the span-wise extent of
any ow structures is more likely to decrease than increase; and for smaller �, this domain span should be
enough since it was found su�cient at � = 0 in our previous studies.2,3

Figure 3. Time variation of lift (top left), drag (top right), and span-wise (bottom) force coe�cients for 30�

sweep wing at Rex = 60; 000: comparison of grids with two di�erent span lengths.

Figure 4. Average pressure coe�cient (left) and chord-wise skin friction coe�cient (right) for 30� sweep wing
at Rex = 60; 000: comparison of grids with two di�erent span lengths.
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Figure 5. Boundary layer average streamwise displacement and momentum thicknesses (left), and shape factor
(right) evolution along the chord-wise direction for 30� sweep wing at Rex = 60; 000: comparison of grids with
two di�erent span lengths.

B. Comparison with Un-Swept Wing

The average iso-surfaces of q-criterion of Figure 6 show that the swept wing generates more vortical structures,
in particular around the quarter-chord point, than the un-swept wing; this is consistent with the fact that
the ow becomes unstable earlier. Note that the noise in the average iso-surfaces on the downstream half of
the swept wing indicate that more time averaging is needed due to the presence of smaller, higher-frequency
structures over the swept wing.

Figure 7 shows the pressure and chord-wise skin friction coe�cients for both � = 0 (un-swept wing,
no cross-ow) and � = 30�. As mentioned previously, non-dimensionalization of pressure and skin friction
forces is done with respect to the free-stream dynamic pressure projected along the chord-wise direction,
q1x

, which is the same for all values of � since Rex = 60; 000 is kept constant.

Figure 6. Instantaneous (left) and average (right) iso-surfaces of q-criterion for un-swept wing (top) and wing
with 30� sweep (bottom) at Rex = 60; 000.
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Figure 7. Average pressure coe�cient (left) and chord-wise skin friction coe�cient (right): comparison of
un-swept and 30� sweep wing at Rex = 60; 000.

Figure 8. Boundary layer average streamwise displacement and momentum thicknesses (left), and shape factor
(right) evolution along the chord-wise direction: comparison of un-swept and 30� sweep wing at Rex = 60; 000.

1. Boundary Layer

Figure 8 provides a comparison of the boundary layer streamwise displacement thickness, momentum thick-
ness, and shape factor for straight and swept wing. Separation and transition locations are taken at the
locations where the shape factor H11 reaches 4 and where it peaks, respectively. The separation location does
not change signi�cantly (5% farther downstream for the swept wing), but transition does occur signi�cantly
earlier (18%) in the presence of cross-ow. This, and the considerations that follow, shows that the presence
of a cross-ow component destabilizes the streamwise velocity pro�le.

The average and uctuating pro�les of streamwise pseudo-velocity at di�erent chord-wise locations for
� = 30� of Figure 9 are qualitatively similar to those without cross-ow. The streamwise pro�le at x=c = 0:1
with and without sweep can be seen in Figure 10: the di�erence, though very small, is largest on the half of
the boundary layer thickness close to the wall where shear stress is important.

The cross-ow pseudo-velocity pro�les, �u2=ue, of Figure 11 show the pro�le which vanishes both at the
wall and at the boundary layer edge. Moreover, the cross-ow has an S-shaped pro�le with two inection
points when close to the wing’s leading edge: the cross-ow velocity �u2=ue goes from being positive near
the wall (i.e. cross-ow directed towards the root of a wing with backward sweep), to negative near the
boundary layer edge before asymptoting to zero at the edge. Downstream of x=c � 0:13, the cross-ow
velocity remains of the same sign (positive) all the way from the wall up to the boundary layer edge. Thus,
the cross-ow velocity direction is consistent with the description given in Section II where the cross-ow
near the leading edge is described to be directed towards the root on a wing with positive sweep.

A quantitative measure of how much cross-ow is present is given by the value of the maximum average
cross-ow, max (�u2=ue), along the chord-wise direction shown on the left plot of Figure 12: the black
line indicates that the maximum cross-ow increases linearly as we move downstream up to the transition
location of xtr=c = 0:3996, while the dotted blue line shows that the location of maximum cross-ow moves
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Figure 9. Boundary layer average pro�les of streamwise pseudo-velocity u1=ue (left), and uctuating streamwise

pseudo-velocity u01
2=u2

e (right), at di�erent chord-wise locations x=c 2 [0:1; 0:15] for 30� sweep wing at Rex =
60; 000.

Figure 10. Boundary layer average streamwise pro�le u1=ue at x=c = 0:1: comparison of un-swept and 30� sweep
wing at Rex = 60; 000.

Figure 11. Boundary layer average pro�les of cross-ow pseudo-velocity �u2=ue (left), and uctuating cross-

ow pseudo-velocity u02
2=u2

e (right), at di�erent chord-wise locations x=c 2 [0:1; 0:15] for 30� sweep wing at
Rex = 60; 000.
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Figure 12. Values and locations of maximum (left) and minimum (right) average cross-ow velocity �u2=ue

for 30� sweep wing and Rex = 60; 000.

away from the wall as we move downstream down towards transition. The large variations past transition
can probably be explained, again, by the need for computing time averages over more steps.

The right-hand-side of Figure 12 shows how the value of the minimum cross-ow velocity (the local
extrema near the boundary layer edge which gives the cross-ow pro�le an S-shape) increases as we move
downstream, and eventually becomes zero thus leaving a cross-ow pro�le with a single inection point.
Furthermore, as this happens, the locus of minimum negative cross-ow moves closer and closer to the
boundary layer edge as indicated by the dotted blue line.

2. Ampli�cation of Disturbances

A comparison of streamwise ampli�cation factor, N1, evolution between the wing without cross-ow and the
wing at � = 30� can be seen in Figure 13. As expected and as con�rmed by the earlier occurrence transition,
the ampli�cation factor grows faster in the presence of cross-ow (slope of 16 in the region of linear increase
where disturbances grow exponentially) than for the un-swept wing (linear slope of 13).

However, the streamwise pro�les with and without sweep only di�er slightly as can be seen in Figure 10.
If one solves the Orr-Sommerfeld equation for both of these pro�les, the resulting growth factors di�er by
only 3%, thus proving that the change in streamwise pro�les is insigni�cant from a stability point of view. As
explained in the background section, the cross-ow/TS interaction is particularly important since the cross-
ow velocity magnitude is signi�cant near the wall (highest at around 20% of the boundary layer thickness)
which is a region of high shear where the streamwise pro�le has a large gradient. Thus, even more than
modifying the streamwise pro�le, the presence of a cross-ow velocity modi�es the stability of the overall
ow: the transition over the 30� swept wing is not anymore solely caused by the growth of TS waves, but is

Figure 13. Ampli�cation factor N1 of streamwise
perturbations: comparison of un-swept and 30�

sweep wing at Rex = 60; 000.

Figure 14. Streamwise and cross-ow ampli�cation
factors, N1 and N2 respectively, for 30� sweep wing
at Rex = 60; 000.
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a mixed result of streamwise and cross-ow disturbances. We shall come back to this important fact later.
With � = 30�, the cross-ow ampli�cation factor N2 has a similar slope (close to 15) in the linear-growth

region to the streamwise ampli�cation factor N1, but a larger normalized magnitude at any given chord-wise
location. However, this does not allow us to determine whether transition is caused by the growth of TS
waves or by cross-ow disturbances: the threshold where transition occurs might not be the same for both
ampli�cation factors, and there is no currently known value of critical cross-ow ampli�cation factor | the
determination of an appropriate value being outside the scope of the present research, especially since the
mechanism of cross-ow instability might not be as accurately reduced to the ampli�cation of cross-ow
disturbances as purely TS transition is.

V. E�ect of Sweep Angle

Having seen how the presence of cross-ow induced by a 30� sweep can accelerate transition, we now
quantify how di�erent sweep angles a�ect the boundary layer development by considering sweep angles
� 2 f0�; 1�; 5�; 10�; 20�; 30�; 40�; 50�; 60�g. The average results are summarized in Table 1.

A. Forces

When normalizing the forces with respect to the chord-wise dynamic pressure, q1x , there is little change
in lift coe�cient, CLx, which remains at 0.6 within about 5% for all sweep angles considered as illustrated
in Figure 15 (blue line with triangles). Indeed, lift is primarily the result of pressure forces which, when
normalized properly, change little with sweep angle and only in the region close to transition as can be
seen in Figure 16. On the other hand, the drag coe�cient, CDx, increases for sweep angles of 30� and
more, probably due to the rise in friction coe�cient associated with an earlier transition, as well as to some
non-linear e�ects in the interaction between streamwise and cross-ow components. As expected, the third
coe�cient of force, CCx, (in the direction normal to both lift and drag) increases almost linearly with �.

If we now look at the lift and drag as commonly de�ned with respect to the free-stream (CL and CD black
lines and circles of Figure 15), both lift and drag decrease close to linearly for moderate and large sweep
angles (� � 20�) as occurs when a wing is swept and its pro�le is e�ectively elongated. It is interesting that
the third force component increases and then decreases, having a maximum at around � = 30�; however,
in a typical vehicle con�guration with two symmetric wings, this lateral force would be counteracted by an
equal and opposite one from the other wing and hence would have no impact on the overall aerodynamics
of the vehicle.

Figure 15. Variation of force coe�cients with sweep angle at Rex = 60; 000: lift coe�cient (top left), drag
coe�cient (top right), and span-wise force coe�cient (bottom); the subscript x refer to the force coe�cients
non-dimensionalized with respect to the chord-wise direction.
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Figure 16. Average pressure coe�cient comparison of di�erent sweep angles of
f0�; 1�; 5�; 10�; 20�; 30�; 40�; 50�; 60�g at Rex = 60; 000.

Figure 17. Variation of separation xsep=c, transition xtr=c, and reattachment xr=c locations with sweep angle
at Rex = 60; 000.

B. Separation, Transition, Reattachment

Separation occurs almost at the same chord-wise location across all sweep angles, as measured from the
two-dimensional equivalent shape factor and the common location where H = 4. The earliest and latest
separations are observed at 24% and 25% of the chord, respectively, showing that separation location varies
only by about than 6% (moving upstream by less than 1:5% of the chord) even for sweep angles up to 60�,
as illustrated in Figure 17.

The separation location is basically left unchanged since, for all sweep angles at these low Reynolds
numbers, the boundary layer separates while being laminar and hence separation is determined by the
chord-wise pressure gradient. The presence of more or less cross-ow at the di�erent sweep angles inuences
the growth of disturbances, but has no e�ect on the laminar boundary layer development and separation.

On the contrary, transition does vary signi�cantly with sweep angle as can be readily observed in the
pressure coe�cient on the wing’s upper surface shown in Figure 16. Transition location is determined by
computing the boundary layer two-dimensional equivalent shape factor H (Figure 21) and measuring its
peak. Transition takes place between 0:445c and 0:498, a close to 12% di�erence, and for � � 5� moves
farther and farther upstream (by as much as 5% of the chord) as the sweep angle is increased.

The reattachment location is more accurately measured as the place where the shape factor H goes back
down to a value of 4 after transition | since the friction coe�cient is not a good measure of the ow nature,
especially aft of separation. Transition occurring earlier for larger sweep angles, the ow reattaches faster as
expected. Reattachment takes place as late as xr=c = 0:5716 for the un-swept wing, but moves up to 0:5372c
for � = 40�: reattachment is pushed upstream by as much as 3.5% of the chord. This represents a di�erence
of only 6% while transition between these two cases moves upstream by 12%; this is to be explained by the
fact that turbulent ow uctuations do create more momentum but not all of the momentum gain is readily
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organized into a shear layer shape that induces reattachment.
To summarize, the change in transition location (by up to 0:05c) is more signi�cant than the change in

both separation (up to 0:015c) and reattachment (up to 0:035c) locations: transition is dominated by the
growth of unstable perturbations and hence strongly inuenced by the presence of a destabilizing cross-ow,
while laminar separation is set by the pressure gradient which is left unchanged in the chord-wise direction.
Reattachment (inuenced both by the unchanged pressure gradient and the transition) does globally move
upstream due to the faster transition, thus making the laminar separation bubble shorter.

It is important to note that the uncertainly in determining the relevant locations is not insigni�cant,
especially at small sweep angles. In particular, transition is taken at the location of the peak in the two-
dimensional equivalent shape factor, and the peak region is not smooth given the relative coarseness of the
grid employed.

C. Boundary Layer

The plots of streamwise boundary layer displacement thickness, momentum thickness, and shape factor of
Figure 19 show a continuous change in boundary layer shape | except for the case at � = 1� | as the
sweep angle is increased: the peak in H11 moves upstream and its maximum value decreases as quanti�ed
in Figure 18. Even a small sweep angle of � = 10� (which induces only little cross-ow and small cross-ow
perturbations) is enough to change the stability characteristics of the streamwise boundary layer pro�le, as
evidenced now by the change (about 13%) in max(H11) between 0� and 10�. As the sweep angle is increased
further, the maximum shape factor continues to decrease but at a lower and lower rate.

The cross-ow displacement thickness becomes larger and larger at any chord-wise location when the
sweep angles increases as can be seen in Figure 20: larger sweep angles generate more cross-ow and hence
a larger ��2 as from equation (G).

As mentioned earlier, since the chord-wise characteristics are constant across all sweeps (same airfoil
pro�le, angle of attack, chord-wise Reynolds number) the two-dimensional-equivalent quantities ��, �, H
can provide a meaningful comparison by decoupling the cross-ow components from the purely chord-wise
boundary layer evolution. In other words, if the cross-ow and streamwise e�ects are only linearly coupled,
the curves for di�erent sweep angles should collapse into a single line.

Comparing the plots of ��, �, H in Figure 21 clearly demonstrates that the span-wise/cross-ow e�ects
cannot be considered independently of the chord-wise/streamwise evolution for sweep angles between 10�

and 30�: the inuence of the latter on the former is non-linear. On the other hand, for � = 1� and � = 5�,
the two-dimensional equivalent boundary layer curves collapse, indicating that only linear interactions occur;
the same happens for sweep angles of 40� and larger.

These are evident in most of the curves presented next, as well as on Figure 18 which shows the maximum
in H: if we ignore the � = 1� point, the curve is at between 0� and 5� sweep, and then again for � � 40�.
In between, the interaction between cross-ow and streamwise components is non-linear and there is a
continuous decrease in the H peak as the sweep angle is increased.

Figure 18. Variation of boundary layer streamwise shape factor maximum, max(H11), and two-dimensional
equivalent shape factor maximum, max(H), with sweep angle at Rex = 60; 000.
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Figure 19. Boundary layer average streamwise displacement and momentum thicknesses (left), and shape
factor (right) evolution for sweep angles of f0�; 1�; 5�; 10�; 20�; 30�; 40�; 50�; 60�g at Rex = 60; 000.

Figure 20. Boundary layer average cross-ow displacement thickness evolution for sweep angles of
f0�; 1�; 5�; 10�; 20�; 30�; 40�; 50�; 60�g at Rex = 60; 000.

Figure 21. Boundary layer average equivalent chord-wise displacement and momentum thicknesses (left), and
shape factor (right) evolution for sweep angles of f0�; 1�; 5�; 10�; 20�; 30�; 40�; 50�; 60�g at Rex = 60; 000.
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Figure 22. Boundary layer average pro�les of streamwise u1=ue (right) and cross-ow pseudo-velocity �u2=ue

(left) at x=c 2 [0:1; 0:15] for sweep angles of f0�; 5�; 10�; 20�; 30�; 40�; 50�; 60�g at Rex = 60; 000.

Figure 23. Variation of the average boundary layer cross-ow pseudo-velocity pro�le �u2=ue characteristics
with sweep angle at Rex = 60; 000: maximum at x=c = 0:1 (left) and chord-wise location where the pro�le stops
being S-shaped, that is where min (u2=ue) � 0 (right).

In the laminar region, all the curves of two-dimensional equivalent boundary layer integral quantities
overlap: if the cross-ow a�ects streamwise disturbances, these play no role in the laminar boundary layer
development. Once separation occurs, the disturbances are rapidly ampli�ed and the interactions become
highly non-linear: the largest di�erence between the curves occurs around the transition region where dis-
turbance growth and their interactions dominate the shear layer evolution.

Note that the curves of boundary layer quantities at 0� and 1� sweep in Figures 19 and 21 are not
smooth near transition. This can be attributed to the coarseness of the grids being used and to the very high
sensitivity of boundary layer quantities near transition to spatial resolution. Furthermore, the uncertainty
in determining the separation, transition, and reattachment locations shows in Figure 17 is relatively large.
Therefore, while we believe the major trends discussed in this section can be trusted, the exact values could
bene�t from a more accurate solution; this is particularly true at certain sweep angles (0� and 1� certainly,
and probably also 10�) and it is thus not possible to draw some conclusions with con�dence.

As the average streamwise and cross-ow pseudo-velocity pro�les of Figure 22 show, the streamwise ow
is only slightly modi�ed but the cross-ow component sees signi�cant changes with varying sweep angle. In
particular, the value of the maximum cross-ow velocity at any given chord-wise location, e.g. at x=c = 0:1 as
in the plots on the left of Figure 22, increases while its minimum decreases when � increases. This is similar
to what happens when moving downstream in the chord-wise direction: the cross-ow pro�les becomes more
and more unstable as we either move downstream or increase the sweep angle. Again, this veri�es that the
presence of cross-ow has a destabilizing e�ect.

From the the precise variation of maximum cross-ow velocity with sweep angle at x=c = 0:1 of Figure 23,
it can be noted that the maximum cross-ow value increases linearly up to about � = 40� before starting to
level o�. This saturation suggests that increasing the sweep cannot result in an arbitrarily large cross-ow.

Similarly, there seems to be a limit of how far downstream cross-ow S-shaped pro�les (i.e. with two-
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inection points) can exist, all the pro�les having a single inection point far enough downstream | even
long before separation. As the left plot of Figure 23 shows, S-shaped pro�les are present in longer and
longer regions near the leading edge as the sweep angle is increased, but their spatial extent does not seem
to increase above about 0:14c when the curve levels o� for � � 30�.

D. Ampli�cation Factors

The streamwise and cross-ow ampli�cation factors, N1 and N2, for di�erent sweep angles can be seen in
Figure 24. Contrarily to the average boundary layer integral quantities, the change in ampli�cation factors
is not uniform with sweep angle: the growth (even linear) of disturbances is more complex than the average
boundary layer development, and a simple correlation seems unlikely. However, this hypothesis needs to be
veri�ed with better resolved simulations, as the average results at some of the sweep angles are particularly
noisy.

Correspondingly, the slopes of streamwise and cross-ow ampli�cation factors in their linear regions vary
non-uniformly with sweep angle as quanti�ed in Figure 25. The linear slope of N1 varies by as much as 30%
with sweep angle, and an even larger change is observed in the growth of the cross-ow disturbances which
almost doubles from � = 5� to � = 20�. What happens for sweep angles larger than 30� (slope amplitudes
decrease, then increase, and then increase again) can be interpreted as the e�ect of a complex interaction
between streamwise and cross-ow unstable waves.

Figure 26 shows the values of N1 and N2 at transition for the di�erent sweeps. If transition were due
to cross-ow instabilities for � = 60� (which is the most likely candidate for cross-ow transition), then
transition would also have to be caused by cross-ow instabilities at all the other sweep angles since they all

Figure 24. Streamwise ampli�cation factor N1 (left), and cross-ow ampli�cation factor N2 (right): comparison
of di�erent sweep angles at Rex = 60; 000.

Figure 25. Variation of streamwise and cross-ow
ampli�cation factor slopes in the linear-growth re-
gion, dN1=d(x=c) and dN2=d(x=c), with sweep angle at
Rex = 60; 000.

Figure 26. Variation of streamwise and cross-ow
ampli�cation factor at transition with sweep angle
at Rex = 60; 000.

21 of 23

American Institute of Aeronautics and Astronautics



have a value of N2 at transition lower than that for � = 60� | of course assuming that there is a critical
cross-ow ampli�cation analog to the critical ampli�cation factor in two-dimensional ows. However, it
seems unlikely that transition at such a small sweep angle as 5� would be the result of unstable cross-ow
disturbances. Therefore, the following hypothesis seems again the most plausible: transition over the swept
wing at this low Reynolds number is caused by the growth of unstable TS waves (just as it was for the un-
swept wing), but the presence of even small cross-ow velocities destabilizes the laminar streamwise pro�le
and accelerates transition; in other words, we are in the presence of a mixed transition at intermediate sweep
angles.

Again, at this point it is not possible to determine at which critical cross-ow ampli�cation factor tran-
sition can be assumed to occur, and hence it is even harder to determine which type of disturbance (TS or
cross-ow waves) is eventually responsible for transition. However, for sweep angles of 30� and more, the
value of N1 at transition remains more or less constant close to 5.5, while transition location keeps moving
upstream: this suggest that transition at large sweeps is primarily dominated by cross-ow disturbances. In
spite of this, N2 at transition keeps decreasing; one should remember at this point that cross-ow transition
may not be characterized by solely the linear growth of disturbances, as can often be done for TS-dominated
transition.

VI. Summary and Conclusions

Very little being known about the inuence of cross-ow on transition at low Reynolds numbers, a
preliminary numerical study of the ow around an in�nite SD7003 wing at low Reynolds number and
various sweep angles has been presented. While keeping the chord-wise Reynolds number, angle of attack,
and SD7003 geometry constant, the e�ects of cross-ow are determined by projecting the boundary layer
velocity components along the relevant two-dimensional equivalent directions. In this way, if the cross-ow
and streamwise components were only linearly coupled, curves for di�erent sweep angles would collapse into
a single line.

Three facts observed throughout this preliminary investigation of the e�ects of cross-ow on transition
are worth emphasizing. One is the saturation phenomena observed at large sweep angles: after \enough"
cross-ow is present (a fuzzy threshold), the ow becomes somewhat insensitive to further increases, and
the cross-ow stops being strongly inuential even before the sweep angle becomes ine�cient in generating
cross-ow. This is seen in many of the curves which atten-out for large values of �, e.g. maximum in H
and transition location.

Second, the streamwise and cross-ow components cannot be decoupled from a stability point of view
for intermediate sweep angles (roughly between � = 10� and 40�) and the resulting mixed transition is due
to the presence of strong non-linear interactions. Considering the two components independently is however
possible for either very small or very large sweep angles. This is consistent with the high Reynolds number
observations7 and reports which have successfully decoupled them.6

Finally, even a small amount of cross-ow can signi�cantly a�ect transition, as evidenced by the large
changes between results at 0� and 10� sweep. Transition and turbulence are highly non-linear processes, and
the stability characteristics of boundary and shear layers are very sensitive to even small perturbation. An
important consequence is that, at these low Reynolds numbers in which transition takes place along a laminar
separation bubble, a purely TS-wave based transition is unlikely to be successful in real ow conditions since
the free-stream is unlikely to be (nor to stay) purely in the chord-wise direction. This misalignment is
more pronounced on instantaneous �elds and with apping vehicles, and more so at low than high Reynolds
numbers due to the low inertia of the ow. An important presumption to be adopted in the study of MAVs
and animal locomotion is thus that the type of transition (TS dominated, cross-ow dominated, or mixed)
is a priori unknown.

The use of an Implicit Large Eddy Simulation (ILES) with a Discontinuous Galerkin (DG) method
has again2,3 proven to be appropriate at predicting the ows involved. However, due to the coarseness of
the computational grid employed, it is not yet possible to conclude with full con�dence. We are presently
validating these results by performing higher-resolved simulations in order to reduce the uncertainty of the
trends observed here, as well as validate or disprove some of the hypothesis presented. An update will follow
shortly in a future publication.
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