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Abstract: An interpolation method is presented for the reconstruction and recognition of human face images. Basic
ingredients include an optimal basis set defining a low-dimensional face space and a set of “best interpolation
pixels” capturing the most relevant characteristics of known faces. The best interpolation pixels are chosen as
points of the pixel grid so as to best interpolate the set of known face images. These pixels are then used in a
least-squares interpolation procedure to determine interpolant components of a face image very inexpensively,
thereby providing efficient reconstruction of faces. In addition, the method allows a fully automatic computer
system to be developed for the real-time recognition of faces. Two significant advantages of this method are:
(1) the computational cost of recognizing a new face is independent of the size of the pixel grid; and (2) it
allows for the reconstruction and recognition of incomplete images.

1 INTRODUCTION

Image processing and recognition of human faces
constitutes a very active area of research. The field
has evolved rapidly and become one of the most suc-
cessful applications of image analysis and computer
vision partly because of availability of many power-
ful methods and partly because of its significant prac-
tical importance in many areas such as authenticity
in security and defense systems, banking, human–
machine interaction, image and multimedia process-
ing, psychology, and neurology. Principal component
analysis (PCA) or the Karhunen-Loève (KL) expan-
sion is a well-established method for the representa-
tion (Sirovich and Kirby, 1987; Kirby and Sirovich,
1990) and recognition (Turk and Pentland, 1991) of
human faces.

PCA approach (Kirby and Sirovich, 1990) for face
representation consists of computing the “eigenfaces”
of a set of known face images and approximating any
particular face by a linear combination of the leading
eigenfaces. For face recognition (Turk and Pentland,
1991), a new face is first projected onto the eigenface
space and then classified according to the distances
between its PCA coefficient vector and those repre-

senting the known faces. There are two drawbacks
with this approach. First, PCA may not handle cor-
rupted data well, that is, situations in which only par-
tial information of an input image is available. Sec-
ondly, the computational cost per image classification
depends on the size of the pixel grid. Despite this,
PCA is still one of the most used techniques for face
recognition due to its simplicity and efficiency over
other methods.

This paper describes an interpolation method that
aims to address these deficiencies of PCA. The
method was first introduced in (Nguyen et al., 2006)
for the approximation of parametrized fields. Here,
we investigate the method for face reconstruction and
recognition. The basic ingredient is a set of “best
interpolation pixels” capturing the most relevant fea-
tures of known face images. The essential component
is a least-squares interpolation procedure for the very
rapid computation of the interpolant coefficient vec-
tor of any given input face. The interpolant coeffi-
cient vector is then used to determine which face in
the face set, if any, best matches the input face. A sig-
nificant advantage of our approach is that the compu-
tational cost of recognizing a new face is independent
of the size of the pixel grid, while achieving a recog-



nition rate comparable to PCA approach. Moreover,
the method allows the reconstruction and recognition
of corrupted images.

In the past years, there have been a large number
of contributions to face recognition and analysis. The
reader is referred to a number of papers (Chellappa
et al., 1995; Jain and Li, 2005; Delac et al., 2005;
Draper et al., 2003; Phillips et al., 1998) for perspec-
tives and recent advances in face recognition. Face
analysis and representation have also been extensively
studied by many authors (Sirovich and Kirby, 1987;
Kirby and Sirovich, 1990; O’Toole et al., 1993; Ever-
son and Sirovich, 1995; Kanade, 2005).

This paper is organized as follows. In Section 2,
we present an overview of PCA. In Section 3, we ex-
tend the best points interpolation method (BPIM) in-
troduced in (Nguyen et al., 2006) and apply it to de-
velop an automatic real-time face recognition system.
In section 4, we test and compare our approach with
PCA. Finally, in Section 5, we close the paper with
some concluding remarks.

2 PRINCIPAL COMPONENT
ANALYSIS

2.1 Eigenfaces

An ensemble of face images is denoted by UK = {ui},
1≤ i≤K, where ui represents an i-th mean-subtracted
face and K represents the number of faces in the en-
semble. It is assumed that after proper normaliza-
tion and resizing to a fixed pixel grid Ξ of dimen-
sion N1 by N2, ui can be considered as a vector in an
N-dimensional image space, where N = N1N2 is the
number of pixels. PCA (Sirovich and Kirby, 1987;
Kirby and Sirovich, 1990) derives an optimal repre-
sentation of the face ensemble in the sense that the
average reconstruction error

ε∗ =
K

∑
i=1

∥∥∥∥∥ui −
k

∑
j=1

(φT
j ui)φ j

∥∥∥∥∥
2

, (1)

is minimal for all k ≤ K. In the literature (Turk and
Pentland, 1991), the basis vectors φ j are referred as
eigenfaces and the space spanned by them is known
as the face space. The construction of the eigenfaces
is described as follows.

Let U be the N × K matrix whose columns are
[u1, . . . ,uK ]. It can be shown that the φi satisfy

Aφi = λiφi , (2)

where the covariance matrix A is given by

A =
1
K

UUT . (3)

Figure 1: Eigenfaces and the mean face. The mean face is
on the top left and followed by 11 top eigenfaces, in order
from left to right and top to bottom.

Here the eigenvalues are arranged such that λ1 ≥ . . .≥
λK . Since the matrix A of size N×N is large, solving
the above eigenvalue problem can be very expensive.

However, if K < N, there will be only K meaning-
ful eigenvectors and we may express any φ i as

φi =
K

∑
j=1

ϕi ju j . (4)

Inserting (3) and (4) into (2), we immediately obtain

Gϕi = λiϕi , (5)

where G = 1
K UT U is a symmetric positive-definite

matrix of size K by K. The eigenvalue problem (5)
can be solved for ϕi j,1 ≤ i, j ≤ K, from which the
eigenfaces φi are obtained.

2.2 Face Reconstruction

We briefly describe the reconstruction of face im-
ages using PCA and later compare the results with
those obtained using our method. To this end, we
seek to project an input face u onto the face space
Φk = span{φ1, . . . ,φk} to obtain

u∗ =
k

∑
i=1

ai φi , (6)

where for i = 1, . . . ,k,

ai = φT
i u . (7)

We also define the associated error as

ε∗ = ‖u−u∗‖ . (8)

Note that the mean face of the ensemble UK should
be added to u∗ to obtain the reconstructed image; and
that if k is set equal to K, the reconstruction is exact
for all members of the ensemble.

We present in Figure 1 the mean face and a few
of the top eigenfaces for a training ensemble of 400
face images extracted from the AT&T database (see
Section 4.1 for details). Figure 2 shows ε∗rel as a func-
tion of k. Here ε∗rel is the average of the relative error
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Figure 2: Average relative error ε∗rel versus k for the training
ensemble.

ε∗/‖u‖ over the training ensemble. Note that the slow
convergence is mostly due to the wide and complex
variation of faces in the ensemble. Much faster con-
vergence and smaller error can be achieved by only
considering the frontal view and the oval-shaped por-
tion for the faces (Kirby and Sirovich, 1990).

2.3 Face Recognition

We briefly describe the eigenface recognition proce-
dure of Turk and Pentland (Turk and Pentland, 1991).
To classify an input image, one first obtains PCA co-
efficients ai,1 ≤ i ≤ k, as described above. One then
computes the Euclidean distances between its PCA
coefficient vector a = [a1, . . . ,ak]T and those repre-
senting each individual in the training ensemble. De-
pending on the smallest distance and the PCA recon-
struction error ε∗, the image is classified as belonging
to a familiar individual, as a new face, or a non-face
image. Several variants of the above procedure are
possible via the use of a different classifier such as the
nearest-neighbor classifier and a different norm such
as L1 norm or Mahalanobis norm (Delac et al., 2005).

It is generally observed that the recognition per-
formance is improved when using a larger k. Typ-
ically, the number of eigenfaces k required for face
recognition varies from O(10) to O(102) and is much
smaller than N. We note that classification of an in-
put image requires the evaluation of PCA coefficients
according to (7). The computational cost per image
classification is thus at least O(Nk). This cost depends
linearly on N and is quite acceptable for a small num-
ber of input images. However, when classification of
a very large number of faces is performed at the same
time, PCA approach appears increasingly intractable.
Real-time recognition is thus excluded for large-scale
applications. Other subspace methods such as in-

dependent component analysis (ICA) (Draper et al.,
2003; Bartlett et al., 2002) and linear discriminant
analysis (LDA) (Etemad and Chellappa, 1997; Lu
et al., 2003) suffer from similar drawbacks.

3 BEST POINTS
INTERPOLATION METHOD

In this section, we extend the best points interpo-
lation method (Nguyen et al., 2006) to deal with face
images and apply it for face recognition. We shall use
the eigenfaces as basis functions in the interpolation
process, as they possess optimal L2 representation of
face images. The key idea, however, is to find a set of
interpolation points which provides a good uniform
approximation.

3.1 Interpolation Procedure

Let us recall the pixel grid Ξ and the face space
Φk = span{φ1, . . . ,φk}. In this space, we shall seek an
approximation of any input image u. However, rather
than performing the projection of u onto Φ k for the
best approximation u∗, we choose to interpolate u as
follows.

In particular, we aim to find a good approxima-
tion ũ∈ Φk of u via m(≥ k) interpolation pixels {z j ∈
Ξ},1 ≤ j ≤ m, such that

ũ =
k

∑
i=1

ãiφi (9)

where the coefficients ãi are the solution of

k

∑
i=1

φi(z j)ãi = u(z j), j = 1, . . . ,m . (10)

We define the associated error as

ε̃ = ‖u− ũ‖ . (11)

In general, the linear system (10) is over-determined
because there are more equations than unknowns.
However, the interpolant coefficient vector ã =
[ã1, . . . , ãk]T can be determined from

CT Cã = CT c , (12)

where C ∈ R
m×k with Cji = φi(z j),1 ≤ i ≤ k,1 ≤ j ≤

m and c = [u(z1), . . . ,u(zm)]T . It thus follows that

ã = Bc . (13)

Here the matrix B =
(
CT C

)−1 CT is precomputed and
stored. Therefore, for any new face u, the cost of
evaluating the interpolant coefficient vector ã is only
O(mk) and becomes O(k2) when m = O(k).
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Figure 3: Distribution of the best interpolation pixels on the
pixel grid for k = 100 and m = 200.

k ε̃rel ϒ
20 0.1548 1.2048
40 0.1322 1.2448
60 0.1158 1.2524
80 0.1047 1.2712
100 0.0962 1.2954
120 0.0888 1.3189
140 0.0813 1.3295

Table 1: Average interpolation error ε̃rel and average error
ratio ϒ for different values of k for m = 2k.

Obviously, the approximation quality depends
crucially on the interpolation pixels {z j}. Therefore,
it is extremely important to choose {z j} so as to guar-
antee accurate and stable interpolation. For instance,
Figure 3 shows the interpolation pixels for k = 100
and m = 200 obtained using our method described be-
low. We see that the pixels are distributed somewhat
symmetrically with respect to the symmetry line of
the face and largely allocated around main locations
of the face such as eyes, nose, mouth, and jaw. Fur-
thermore, we present in Table 1 ε̃rel and ϒ as a func-
tion of k for the choice of m = 2k. Here ε̃rel and ϒ are
the average of the relative error ε̃/‖u‖ and the average
of the error ratio ε̃/ε∗ over the training ensemble, re-
spectively. The average error ratio ϒ is quite close to
unity for all k. This means that the approximation ũ is
also close to the “best” approximation u∗. However,
unlike u∗, ũ requires only m intensity values of u.

3.2 Best Interpolation Pixels

We proceed to describe our approach for determin-
ing the interpolation pixels. The crucial observation

is that much of the surface of a face is smooth with
regular texture and that faces are similar in appear-
ance and highly constrained; for example, the frontal
view of a face is symmetric. Moreover, the value of
a pixel is typically highly correlated with the values
of the surrounding pixels. Therefore, a large number
of pixels in the image space does not represent phys-
ically possible faces. Only a small number of pix-
els may suffice to represent facial characteristics. The
question we aim to address is to find such pixels and
proceed with our interpolation.

We choose the interpolation pixels by exploiting
the training ensemble UK . Specifically, we might
consider to choose {z j} by formulating a minimiza-
tion problem that minimizes the sum of squared er-
rors between u�,1≤ � ≤ K, and their approximations.
More precisely, we might wish to find {z j} as a min-
imizer of

min
x1∈Ξ,...,xm∈Ξ

K

∑
�=1

∥∥∥u�−
k

∑
i=1

ã�i(x1, . . . ,xm)φi

∥∥∥2
(14)

k

∑
i=1

φi(x j)ã�i = u�(x j), 1 ≤ j ≤ m,1 ≤ � ≤ K.

Clearly, the minimizer of the above error minimiza-
tion problem is optimal for the interpolation of the
face images belonging to UK . However, since the
problem is nonconvex with multiple local minima and
the Hessian is not easily computed, solving it is par-
ticularly difficult. In practice, we find {z j} by solving
a simpler minimization problem introduced below.

To begin, we introduce a set of images, U ∗
K =

{u∗�},1 ≤ � ≤ K,, where u∗� is the best approximation
to u�. It thus follows that

u∗� =
k

∑
i=1

a�iφi, (15)

where for 1 ≤ i ≤ k,1 ≤ � ≤ K,

a�i = φT
i u� . (16)

By replacing u� in the objective of the problem (14)
with u∗� and expanding the resulting objective, we ar-
rive at the nonlinear least squares minimization

min
x1∈Ξ,...,xm∈Ξ

K

∑
�=1

k

∑
i=1

(
a�i − ã�i(x1, . . . ,xm)

)2
(17)

k

∑
i=1

φi(x j)ã�i = u�(x j), 1 ≤ j ≤ m,1 ≤ � ≤ K.

Let us denote a minimizer of this problem by
{z j},1 ≤ j ≤ m. We shall call the z j as best inter-
polation pixels, because these pixels are optimal for
the interpolation of the best approximations u∗

� . It re-
mains to describe the solution procedure for (17).



3.3 Solution Procedure

We first write the linear system in (17) for ã� =
[ã�1, . . . , ã�k]T into the matrix form as

DT Dã� = DT d�, 1 ≤ � ≤ K, (18)

where d� = [u�(x1), . . . ,u�(xm)]T and D ∈ R
m×k with

Dji = φi(x j). Next let s = [x1, . . . ,xm]T , for 1 ≤ i ≤
k,1 ≤ � ≤ K, 1 ≤ q ≤ Q = kK, we set

fq(s) = a�i − ã�i(s); (19)

F(s) =
1
2

Q

∑
q=1

f 2
q (s) . (20)

The gradient and Hessian of the objective function
F(s) can thus be computed as

∇F(s) =
Q

∑
q=1

fq(s)∇ fq(s) = J(s)T f(s) , (21)

∇2F(s) = J(s)T J(s)+
Q

∑
q=1

fq(s)∇2 fq(s) , (22)

where J(s) ∈ R
Q×2m, for 1 ≤ q ≤ Q, 1 ≤ p ≤ 2m,

Jqp(s) =
∂ fq(s)

∂xd
j

, 1 ≤ j ≤ m,d = 1,2. (23)

Hence, when the residuals fq(s) are small, we may
approximately compute the Hessian in terms of only
the Jacobian matrix J(s) as

∇2F(s) = J(s)T J(s) . (24)

To compute the Jacobian J(s), we differentiate both
sides of (18) with respect to xd

j to obtain

∂ã�

∂xd
j

= E−1

(
∂DT

∂xd
j

d� +DT ∂d�

∂xd
j

− ∂E
∂xd

j

ã�

)
,

where E = DT D. The partial derivatives ∂d�/∂xd
m,

∂DT /∂xd
m, and ∂E/∂xd

m are computed by finite differ-
ences. Note also that x = (x1,x2).

Having determined the gradient and the Hessian,
we may now use the Levenberg-Marquardt (LM) al-
gorithm (Marquardt, 1963) to solve (17). The LM
algorithm is very efficient, but it is sensitive to an ini-
tial guess. Hence it is important to start the algorithm
with a good initial guess. In our implementation, we
use the empirical interpolation method (Barrault et al.,
2004; Grepl et al., 2006) to obtain an initial set of in-
terpolation points {zig

j } as follows. We first set

zig
1 = arg sup

x∈Ξ
|φ1(x)| . (25)

Then for � = 2, . . . ,m, we solve the linear system

�−1

∑
j=1

φ j(z
ig
i )σ j = φ�(z

ig
i ), 1 ≤ i ≤ �−1, (26)

for σ j,1 ≤ j ≤ �−1, and set

zig
� = argsup

x∈Ξ

∣∣∣∣∣φ�(x)−
�−1

∑
j=1

σ j φ j(x)

∣∣∣∣∣ . (27)

This set of points, when used as an initial guess, yields
very satisfactory results. For further details of the
empirical interpolation method, we refer the reader
to (Barrault et al., 2004; Grepl et al., 2006).

3.4 Application to Face Recognition

We now apply the BPIM to develop a fully automatic
real-time face recognition system involving the gen-
eration stage and the recognition stage. The detailed
implementation of the system is given below:

1. Determine the dimension of the face space k
and choose some m (say m = 2k), then calculate
φ1, . . . ,φm. Note m eigenfaces are required to ob-
tain the initial guess zig

j ,1 ≤ j ≤ m.

2. Compute and store {z j}, B =
(
CT C

)−1 CT . Re-
call that Cji = φi(z j),1 ≤ i ≤ k,1 ≤ j ≤ m.

3. For a “gallery” of images VK′ = {vi},1 ≤ i ≤ K′,
compute ãi = B[vi(z1), . . . ,vi(zm)]T ,1 ≤ i ≤ K′.
(Note VK′ can be the same or different from UK).

4. For each new face to be classified u, calculate its
interpolant coefficient vector ã from (13) and find

imin = arg min
1≤i≤K′ ‖ã− ãi‖ . (28)

5. If ‖ã− ãimin‖ is less than a chosen threshold, the
input image u is identified as the individual asso-
ciated with the coefficient vector ãimin . Otherwise,
the image is classified as a new individual.

The generation stage (steps 1–2) is computation-
ally expensive, but performed only when the training
set changes. Furthermore, even if it is necessary to
perform the generation stage due to an update of the
training set, we may compute only the eigenfaces and
reuse the best pixels. This can save us some compu-
tational time.

However, the recognition stage (steps 4–5) is very
inexpensive. The calculation of ã takes O(mk). Note
further that the problem (28) is the nearest-neighbor
search which can be solved in O(kK ′0.25) time with
the storage of O(kK ′ +K′ logK ′) (Andoni and Indyk,
2006). Hence, if K ′ is in order of O(k4) or less, the
computational cost is only O(k2). This is usually the



case even for large-scale applications; for example,
for a training database of 104 images, one would need
more (or many more) than 10 eigenfaces to achieve
acceptable recognition rates.

In summary, the operation count of the recogni-
tion stage is about O(mk). The computational com-
plexity of our system is thus independent of N. As
mentioned earlier, the complexity of PCA-based al-
gorithms is at least O(Nk). Our approach leads to
a computational reduction of N/m relative to PCA.
Since m is typically much smaller than N, significant
savings are expected. The savings per image classifi-
cation certainly translate to real-time performance es-
pecially when many face images need to be classified
simultaneously.

However, some applications of face recognition
may regard the recognition quality more importantly
than the computational performance. Therefore, in
order to be useful and gain acceptance, our ap-
proach must be tested and compared with existing ap-
proaches, particularly here with the PCA.

4 EXPERIMENTS

4.1 Face Database

The AT&T face database (Samaria and Harter, 1994)
consists of 400 images of 40 individuals (10 images
per individual). The images were taken at different
times with variation in lighting, poses, and facial ex-
pressions, with and without glasses. The images were
cropped and resized by us to a resolution of 74× 90.
We formed a training ensemble of 400 images by us-
ing 200 images of the database, 10 each of 20 differ-
ent individuals, and including 200 mirror images of
these images (Kirby and Sirovich, 1990).

The testing set contains the (200) remaining im-
ages of 20 individuals not belonging to the training
ensemble. We further divide the testing set into the
gallery of 20 individual faces and 180 probe images
containing 9 views of every individual in the gallery.
The recognition task is to match the probe images to
the 20 gallery faces. The fact that the training and test-
ing sets have no common individual serves to assess
the performance of a face recognition system more
critically — the ability to recognize new faces which
are not part of the face space constructed from the
training set.

4.2 Results for Face Reconstruction

We first present in Figure 4 the reconstruction results
for a face in the training ensemble. The BPIM pro-

Figure 4: The reconstruction results for a familiar face. The
BPIM reconstructed images are placed at the top row for
k = 40,80,120,160 (from left to right) and m = 2k. The
PCA reconstructed images are placed at the second row for
k = 40,80,120,160 (from left to right). The original face is
shown on the right.

Figure 5: Reconstruction of a familiar face (bottom right)
from a 10% mask (top right) with only the white pixels.
The reconstructed images are shown at the top row for k =
40,80,120,160 (from left to right) and m = 2k. The PCA
reconstructed images are shown at the second row for k =
40,80,120,160 (from left to right) with using all the pixels.

duces reconstructions almost as well as PCA: most
facial features captured by the PCA reconstructed im-
ages also appear in the BPIM reconstructed images.
We underline the fact that the interpolation method
requires less than 5% of the total number of pixels
N = 6660, but delivers quite satisfactory results.

To illustrate the use of the interpolation approach
for reconstructing a full image from a partial image,
we consider a face (in the training set) shown at the
bottom right and a mask shown at the top right in Fig-
ure 5. This is a relatively extreme mask that obscures
90% of the pixels in a random manner. Because the
masked face may not have intensity values at all the
best interpolation pixels, we need to define a new set
of interpolation pixels. To this end, we keep the best
interpolation pixels which coincide with some of the
white pixels of the masked face and replace the re-
maining best pixels with the “nearest” white pixels.
In Figure 5, the reconstructed images using those in-
terpolation pixels are compared with the PCA recon-
structed images utilitizing all the pixels. Although the
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Figure 6: Recognition accuracy of PCA and BPIM with in-
creasing the number of eigenfaces k. Note that the BPIM
uses m = 2k best interpolation pixels.

interpolation procedure does not recover the original
face exactly, the construction is visually close to the
“best” reconstruction.

4.3 Results for Face Recognition

We apply the face recognition system developed in
Section 3.4 to classify the probe images. We illus-
trate in Figure 6 the recognition accuracy as a function
of k for the BPIM and PCA. As it may be expected,
the BPIM yields smaller recognition rates than PCA.
However, as k increases, the BPIM gives recognition
rates which are quite comparable to those of PCA for
large enough k: PCA achieves a recognition rate of
74.98%, while PBIM results in a recognition rate of
73.66% for k = 80. In many applications, the small
accuracy loss of only 1.32% is paid off very well by
the significant reduction of 6660/160(> 40) in com-
plexity. This is confirmed in Table 2 which shows
the computational times for the BPIM and PCA. The
values are normalized with respect to the time to rec-
ognize a face for k = 10 and m = 20 with the BPIM.
Clearly, the BPIM is significantly faster than PCA.
This important advantage is very useful to applica-
tions that requires a real-time recognition capability.

Finally, in order to appreciate the power of the
interpolation approach for classifying corrupted im-
ages, we consider a random chosen mask of 10% pix-
els shown in Figure 7. Next to the mask, we show a
few faces which are correctly recognized with using
the interpolation procedure when their intensity val-
ues are available only at the white pixels of the mask.
Note here that the interpolation pixels are chosen in
the same way as before.

k BPIM PCA

10 1.00 333.30
20 4.20 592.67
30 9.33 873.34
40 15.60 1107.66
50 26.12 1437.35
60 36.47 1708.02
70 47.93 1958.94
80 61.47 2293.73

Table 2: Computational times (normalized with respect to
the time to recognize a face for k = 10 and m = 20 with the
BPIM) for the BPIM and PCA at different values of k.

Figure 7: Recognition of corrupted face images. The 10%
mask on the left is followed by a few faces which are cor-
rectly recognized with using the interpolation procedure.

5 CONCLUSION

We have presented a best points interpolation
method for the reconstruction and recognition of face
images. The method gives very good reconstruction
of face images. Therefore, the method has significant
potential to be used as an alternative to PCA for data
reconstruction. It is important to note that PCA uses
full knowledge of the data in the reconstruction pro-
cess. In contrast, the BPIM uses only partial knowl-
edge of the data. Therefore, the BPIM is very useful
to the restoration of a full image from a partial image.

We have also developed a fully automatic real-
time face recognition system based on the BPIM. The
system is shown to be able to recognize corrupted
images. Moreover, the computational cost of rec-
ognizing a new face is only O(mk), translating to a
saving of N/m relative to PCA approach. Typically,
since N is O(104) and m is O(102), this implies two
orders of magnitude less expensive computationally
than PCA. As confirmed in Figure 6 and Table 2, the
system is significantly faster, while yielding a compa-
rable recognition rate for large enough k, than a stan-
dard PCA-based system. The significant reduction in
time should enable us to tackle very large problems.
Hence, it is imperative to test our system on a larger
database such as the FERET database. We plan to
pursue this direction in future research.

The present work may also present an opportunity
combining the BPIM with some subspace techniques.



For example, in the context of ICA, instead of using
intensity values at all pixels one may use intensity val-
ues at only the best interpolation pixels to build a ICA-
based recognition system, thereby effecting signifi-
cant computational savings. It should be mentioned
that most presented ICA-based algorithms do not per-
form ICA directly on the training ensemble of face
images, but on either eigenfaces or PCA coefficient
vectors, to reduce the heavy computational cost. Al-
though we have not put effort to investigate this di-
rection, we believe that using partial image pixels will
not reduce the recognition capability of ICA-based al-
gorithms provided that a sufficient (small) number of
the interpolation pixels is used. Furthermore, in ICA
Architecture II (Draper et al., 2003; Bartlett et al.,
2002), one may want to input the interpolant coeffi-
cient vectors (instead of PCA coefficient vectors) to
ICA. Similarly, one may choose to perform LDA on
the interpolant coefficient vectors to reduce the com-
putational burden considerably.

Although we do not claim that our findings nec-
essarily have a wide range of applications, we believe
that our work could open a new direction of research
in face recognition and image analysis in general.
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