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Overview

� Motivation: Why another CFD algorithm for aerodynamics?

� Finite volume methods for hyperbolic conservation laws

� Discontinuous Galerkin (DG) for hyperbolic conservation laws

� DG for elliptic problems

� p-multigrid for higher-order DG discretizations

� Conclusions and future work
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Motivation for higher order

� Higher-order methods are critical for simulation of unsteady flows
with multiple scales, e.g.:
I Applications of DNS, LES, or DES
I Acoustics

� Even in aerodynamics, higher-order methods may offer benefits:
I Existing ’industrial-strength’ methods largely based on

finite-volume with at best second order accuracy
I Questions exist whether current discretizations are capable of

achieving desired accuracy levels in practical time
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AIAA Drag Prediction Workshop

Transonic drag prediction studied for a wing-body configuration

Excluding outliers, uncertainty in CD is 40 counts of drag amoung 18
different simulations

Note: 1 count of drag is the equivalent of about 5-10 passengers
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AIAA Drag Prediction Workshop:
Mesh Studies

Simulations by Mavriplis

At low CL, discretization error
is about 10 drag counts from
coarse to fine mesh

At high CL, discretization
error is about 20 drag counts.

Experimental uncertainty is
about 10 drag counts through-
out polar, but can be reduced
to about 1 drag count with bet-
ter corrections.
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Higher-order CFD Project

Team Goal: To improve the aerothermal design process for complex
3D configurations by significantly reducing the time from geometry to
solution at engineering-required accuracy using high-order adaptive
methods

� Students
I Garrett Barter (shock limiting)
I Jean-Baptiste Brachet (shock limiting)
I Mike Brasher (visualization)
I Tan Bui (unsteady aero/structures)
I Krzysztof Fidkowski (multigrid solver)
I James Lu (optimization and adaptation)
I Todd Oliver (viscous discretization)
I Mike Park (3-D meshing)

� Advisors
I David Darmofal
I Robert Haimes
I Jaime Peraire
I Karen Wilcox
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First-order Accurate Finite Volume
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In each triangle, assume u is constant.

Apply conservation law on triangle:

du0

dt
A0 +

3∑

k=1

∫

0k
Hi(u0,uk, n̂0k) ds = 0

Hi(uL,uR, n̂LR) is flux function that
determines inviscid flux in n̂LR direction
from left and right states, uL and uR.

Example flux functions: Godunov, Roe,
Osher, Van Leer, Lax-Friedrichs, etc.

This discretization has a solution error
which is O(h) where h is mesh size.
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Second-order Accurate Finite Volume
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In each triangle, reconstruct a linear so-
lution, ũ, using neighboring averages:

ũ0 ≡ u0 + (x− x0) · ∇u0,

∇u0 ≡ ∇u0 (u0,u1,u2,u3) .

Apply conservation law on triangle:

du0

dt
A0 +

3∑

k=1

∫

0k
Hi(ũ0, ũk, n̂0k) ds = 0

On smooth meshes and flows, solution
error is O(h2).
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Pros/Cons of Higher-order Finite Volume
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+ Increased accuracy on given mesh
without additional degrees of free-
dom

− Difficulty in achieving higher-order
on unstructured meshes and near
boundaries

− Single stage, local iterative methods
(e.g. Jacobi) are not stable for higher
order (Godunov’s theorem)

− Matrix fill-in increased resulting in
high-memory requirements
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Previous Work in DG

� Extensive work on DG for hyperbolic equations
I Bassi and Rebay (1997)
I Cockburn and Shu (1998, 2001)
I Karniadakis et al. (1998, 1999)

� More recently work begun on elliptic equations
I Bassi and Rebay (1997,1998)
I Cockburn and Shu (1998, 2001)
I Baumann and Oden (1997)
I Brezzi et al. (1997)

� Only Bassi and Rebay have published RANS results (1997, 2003)
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Discontinuous Polynomial Basis

� Triangulate domain Ω into non-overlapping elements κ ∈ Th
� Define function space: Element-wise discontinuous polynomials

of degree p

Vph = {v ∈ L2(Ω) : v|κ ∈ P p(κ) : ∀κ ∈ Th}

Example of One-Dimensional Bases

p = 0 basis

1 DOF/element

p = 1 basis

2 DOF/element
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DG for Hyperbolic Conservation Laws:
Derivation

Find uh ∈ Vph, such that ∀κ ∈ Th, ∀vh ∈ Vph:
∫

κ
vTh (uh)t dx−

∫

κ
∇vTh · Fi dx

+

∫

∂κ\∂Ω
v+
h
THi(u+

h ,u
−
h , n̂)ds+

∫

∂κ∩∂Ω
v+
h
THbi (u+

h ,u
b
h, n̂) ds = 0.

Boundary conditions enforced weakly through Hbi (u+
h ,u

b
h, n̂) where ubh

is determined from desired boundary conditions and outgoing
characteristics.

For smooth problems, the error of this scheme is expected to be
O(hp+1).
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Relationship of DG to other methods

� For p = 0 discretization, DG reduces to:

(uκ)tAκ +

∫

∂κ\∂Ω
Hi(u+

h ,u
−
h , n̂)ds

∫

∂κ∩∂Ω
Hbi (u+

h ,u
b
h, n̂) ds = 0.

� Thus, p = 0 DG is identical to first-order finite volume.

� For p > 0, DG can be intrepreted as a moment method.

� Moment methods for hyperbolic problems were first suggested by
Van Leer (1977) and then developed for the Euler equations by
Allmaras (1987, 1989) and later Holt (1992).
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Stability of Local Iterative Methods for DG

An elemental block Jacobi iterative method to solve this problem is,

un+1
j = unj − ω (∂Rj/∂uj)

−1 Rj(u).

where ∂Rj/∂uj is the diagonal block for the element j.

For 1-D hyperbolic systems, the eigenvalues of the higher-order
modes are all collocated⇒ p-independent convergence.

For multiple dimensions, elemental block Jacobi is stable independent
of p when 0 < ω < 1.
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Matrix Fill for Higher-order DG
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DG for Elliptic Operators: First Attempt

� Model problem for viscous terms of N-S: 1-D, scalar Poisson’s
equation

−uxx = f on [−1, 1]

� Proceed as for Euler:
I Triangulate domain into non-overlapping elements κ ∈ Th
I Define solution and test function space Vph

� Discrete formulation: Find uh ∈ Vph such that ∀vh ∈ Vph,

∑

κ∈Th

{
−
[
vhûx

]xκ+1/2

xκ−1/2
+

∫

κ
(vh)x(uh)xdx

}
=
∑

κ∈Th

{∫

κ
vhfdx

}

� Need to define ûx
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DG for Elliptic Operators: First Attempt

� No upwinding mechanism⇒ choose central flux

ûx =
1

2
((uh)+

x + (uh)−x )

� Discrete formulation becomes: Find uh ∈ Vph such that ∀vh ∈ Vph,

∑

κ∈Th

{
−
[1

2
vh((uh)+

x + (uh)−x )
]xκ+1/2

xκ−1/2

+

∫

κ
(vh)x(uh)xdx

}
=
∑

κ∈Th

{∫

κ
vhfdx

}

� PROBLEM: Scheme is inconsistent! Constants can be added to
all elements without altering residual.
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First Order System Approach
(Bassi & Rebay)

� Introduce new variable, q = ux, such that

− qx = f

q − ux = 0

� Discrete formulation: Find uh ∈ Vph and qh ∈ Vph such that ∀vh ∈ Vph
and ∀τh ∈ Vph,

∑

κ∈Th

{
−
[
vhq̂
]xκ+1/2

xκ−1/2

+

∫

κ
(vh)xqhdx

}
−
∑

κ∈Th

{∫

κ
vhfdx

}
= 0

∑

κ∈Th

{∫

κ
τhqhdx+

∫

κ
(τh)xuhdx−

[
τhû
]xκ+1/2

xκ−1/2

}
= 0

� Need to choose q̂ and û
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First Method of Bassi & Rebay (BR1)

� No upwinding mechanism⇒ choose central fluxes

û =
1

2
(u+
h + u−h ); q̂ =

1

2
(q+
h + q−h )

� Sub-optimal order of accuracy for odd p

� Stencil no longer compact

Rk

q
k-1k

q
+1k

q

-1k
q

u k-2 -1ku u k

+1k
q

u k +1ku u k+2

q
k

-1ku u k +1ku
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Second Method of Bassi & Rebay (BR2)

BR2 achieves optimial p+ 1 accuracy and has compact stencil:

{s} =
1

2

(
s+ + s−

)
; JsK = s+ − s−

û = {uh}; q̂ = {(uh)x} − ηf{δf}

Where δf ∈ Vph, ∀τh ∈ Vph :
∫
κ± τhδ

±
f dx = (JuhK{τh})f

δk-1/2
+/-

-1ku u k

δk+1/2
+/-

u k +1ku

Rk

δk-1/2
+/--1ku

δk+1/2
+/- +1kuu k
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Iterative Solution of Higher-order DG
(Fidkowski & Darmofal, 2004)

� Use a preconditioned iterative scheme to drive R(unh)→ 0:

un+1
h = unh −P−1R(unh)

� Elemental line preconditioner: P = Mline

� Motivation: Transport of information in Navier-Stokes equations
characterized by strong (anisotropic) coupling
I Inviscid regions: Information follows characteristic directions

set by convection
I Boundary layers/wakes: Diffusion effects can be as strong if

grid is well-resolved.

� Lines of elements from using an element-to-element coupling
measure.
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Connectivity Criteria

� Measure of influence based on p = 0 discretization of scalar
transport equation

∇ · (ρ~uφ)−∇ · (µ∇φ) = 0

� ρ~u and µ taken from current solution

� At each edge, compute off-diagonal
components of Jacobian for adjoining el-
ements

1
2

e      

� Connectivity given by maximum absolute value

Ce = max

(∣∣∣∂R1

∂φ2

∣∣∣,
∣∣∣∂R2

∂φ1

∣∣∣
)

CILAMCE 2004 22/31



AEROSPACE COMPUTATIONAL DESIGN LAB

Example Lines and Performance
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p-Multigrid: Motivation

� Observation: Smoothers are inefficient at eliminating low
frequency error modes on fine level

� h-Multigrid
I Spatially coarse grid used to correct solution on fine grid
I Grid coarsening is complex on unstructured meshes

� p-Multigrid (Ronquist & Patera, Helenbrook et al., Fidkowski &
Darmofal)
I Low order (p− 1) approximation used to correct high order (p)

solution
I Natural implementation in DG FEM discretization on

unstructured meshes

CILAMCE 2004 24/31



AEROSPACE COMPUTATIONAL DESIGN LAB

p-Multigrid: Full Multigrid

� Full Approximation Scheme (FAS) used

� Line solver used as smoother

p=0

p=1

p=2

p=3
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NACA 0012 Test Case

M = 0.5, Re = 5000, α = 0
Grids are from Swanson at NASA Langley

2112 element mesh Mach contours
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Iterative Behavior: p and h dependence

p = 1 convergence
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p = 3 convergence
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Iterative rate for p-multigrid with line smoothing:

� Nearly p-independent

� Some h-dependence
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Comparison of Iterative Algorithms

p = 1 convergence
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p = 3 convergence
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p-multigrid with line smoothing increasingly important with higher p
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Drag Error Convergence
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Note: FUN2D is an unstructured finite volume algorithm developed at
NASA Langley by Anderson
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CPU Timing
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Future Work

� Turbulence modeling

� Shocks
� Adaptation

� Optimization

� Many others
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