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Abstract

Gas turbine vanes have airfoil shapes optimized to deliver specific flow conditions to
turbine rotors. The limitations of the manufacturing process with regards to accuracy
and precision mean that no vane will exactly match the design intent. This research
effort is an investigation of the effects of manufacturing-induced geometry variability
on the performance of a transonic turbine vane. Variability is characterized by per-
forming Principal Components Analysis (PCA) on a set of measured vanes and then
applied to a different vane design. The performance scatter of that design is estimated
through Monte Carlo analysis. The effect of a single PCA mode on performance is
estimated and it is found that some modes with lower geometric variability can have
greater impact on performance metrics. Linear sensitivity analysis, both viscous and
inviscid, is carried out to survey performance sensitivity to localized surface pertur-
bations, and tolerances are evaluated using these results. The flow field is seen to be
practically insensitive to shape changes upstream of the throat. Especially sensitive
locations like the throat and trailing edge are investigated further through nonlinear
sensitivity analysis.

Thesis Supervisor: David L. Darmofal
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Chapter 1

Introduction

1.1 Motivation

The turbine is the source of a gas turbine engine’s power as well as many of its

technical challenges. The trend of operating at ever higher temperatures, perhaps

the most significant tendency in the ongoing development of the jet engine, is almost

entirely dependent on the performance of the turbine and its ability to withstand

such temperatures[18][25]. It is no surprise then that the gas turbine industry exerts

considerable effort on improving turbines.

A turbine consists of one or more stages, each with a row of stationary vanes

followed by a rotor immediately downstream. Turbine vanes are designed to condition

the airflow for the rotor. They accept flow from the combustor or a preceding stage and

give it a tangential swirl which is subsequently taken out or redirected by the rotor.

Their airfoil shapes are optimized to impart specified levels of turning and acceleration

with minimum loss generation. A transonic vane row may form convergent-divergent

passages which accelerate a subsonic inflow to a supersonic outflow at the proper

flow rate and angle to match the downstream blade row. Suboptimal performance

in the vane row can decrease the amount of work that is extracted in the rotor both

directly, by introducing losses, and indirectly, by supplying the rotor with incorrectly-

conditioned flow which will cause its efficiency to drop.
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Geometry deviations from an optimized airfoil shape naturally lead it to function

less than optimally. There are multiple ways in which this can occur. Shifting the

trailing edge can cause the turning angle to take on a different value. Over the bulk

of the surface, adding or subtracting material changes the cascade passage area which

controls flow acceleration and flow rate. If the vane is transonic, any bumps in the

region of supersonic flow can potentially cause shocks.

Every manufacturing process has limited accuracy and precision, so products do

not exactly match the design intent or each other. There are several processes in the

fabrication of a turbine vane: casting, machining, and the application of protective

coatings[14]. Each one can and does introduce shape variability, necessitating the use

of quality control methods such as tolerancing schemes. Such measures make produc-

tion more expensive but mitigate the costs associated with putting faulty products

into service, such as increased maintenance, recalls, and loss of customers. The suc-

cessful engine manufacturer must find the appropriate level of tolerancing so as to

provide acceptable quality without excessive manufacturing costs. To inform this de-

cision with regards to turbine vanes, one needs an estimate of how their performance

is affected by shape variability, which must seek to address the following questions:

• What kind and degree of geometric variability is to be expected, and what is

the resulting performance distribution?

• Are there any regions on the vane in which shape deviations have an especially

large effect on the vane’s performance?

• How tight must the geometric tolerances be to ensure acceptable performance?

The third question represents the manufacturer’s decision, which can only be made

once the first two questions have been answered. If the engine or a close variant are

in production already, manufacturing variability and the consequences thereof can

be measured directly and tolerances adjusted accordingly. Estimation is required in

the case of a new engine, motivated by the need to ensure that improved designs do

12



not outpace the capability of the manufacturing process to reliably produce them.

The desire to ensure a successful engine model launch places a premium on effective

manufacturing and quality control processes.

1.2 Objectives

Put simply, the aim of this research is to estimate how far a manufactured vane is

likely to deviate from the design intent and to investigate what causes it to do so.

This can be expressed in the form of specific individual goals:

• Characterize the manufacturing variability in a set of manufactured vanes in

terms of local shape deviations from the nominal design, and devise a way to

apply the observed variability to a new vane design.

• Calculate the expected performance scatter of a manufactured population of the

new vanes and estimate the probability that a vane’s performance will lie within

an acceptable range.

• Quantitatively assess the surface-wise distribution of flow sensitivity to geometric

perturbations and use this to evaluate tolerance levels.

1.3 Approach

The objectives are accomplished in the following manner. Principal Components Anal-

ysis is performed on vane measurement data provided by Rolls-Royce. In this way the

manufacturing variability in one radial section is decomposed into a set of mode shapes.

A set of new vanes, with a different nominal design than those measured, is then gen-

erated using random combinations of these modes. The combinations account for the

fact that each mode is responsible for a different share of the observed geometric scat-

ter and thus each has a different likelihood of being expressed to a significant degree.

In order for the measured variability to be applied to the generated vanes, each mode
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is represented in terms of normal displacement as a function of arc length along the

vane’s surface.

The performance of these vanes is estimated using the inviscid-viscous coupled flow

model MISES[9]. The performance distribution of the generated population is com-

pared to the nominal values and evaluated against specified limits. The performance

effects of individual dominant modes is determined; combined with the probability dis-

tribution of mode shape amplitudes, this makes it possible to estimate the probability

that a random manufactured vane will non-conform.

The flow field’s sensitivity to geometry perturbation is investigated in an effort to

locate the sources of the estimated performance scatter. Linear sensitivity analysis is

carried out by applying localized bump modes all along the surface of the vane. MISES

enables direct calculation of sensitivity derivatives with respect to virtual bump mode

amplitude for both viscous and inviscid cases. A discontinuous-Galerkin solver (the

MIT-developed ProjectX[11][10][22]) is used to provide a check on the trends and mag-

nitudes of the inviscid sensitivity derivatives. The viscous MISES derivatives are used

in conjunction with specified performance limits to convert the sensitivity behavior

into geometric tolerances. Nonlinear sensitivity analysis is performed using MISES in

regions that are identified by the linear analysis as being particularly sensitive. This

is done by introducing a series of finite displacements from the nominal shape.

1.4 Organization

The remainder of this thesis is organized in the following manner. Chapter 2 details the

geometric analysis used to characterize the manufacturing variability and generate new

vanes. The third chapter describes the CFD results for performance scatter and flow

sensitivity to shape perturbations. Chapter 4 presents alternative sensitivity results

for comparison to those in the previous chapter, and Chapter 5 contains concluding

remarks and suggestions for follow-on work.
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Chapter 2

Geometric Analysis

The impact of manufacturing variability on vane performance begins with modeling

the geometry perturbations. Specifically, the following steps are taken:

1. Take geometric measurements (at one radial section) of a set of manufactured

turbine vanes.

2. Perform Principal Components Analysis (PCA) on the measured geometry data.

3. Generate a probabilistically accurate set of vanes according to the geometry

perturbation modes described by PCA.

2.1 Blade Measurement Process

The raw geometry data which forms the basis of the performance scatter estimate is

collected using a Coordinate Measuring Machine (CMM). The machine uses a stylus

to physically measure the location of an object’s surface. For this study, the measure-

ments are taken at a radial location corresponding to the midspan of the vane. The

measured population consists of 25 vane doublets, i.e., each manufactured part has

two vane airfoils. The typical CMM output contains 700 to 800 measured coordinate

pairs. This is many more points than are included in the nominal design definition

to which the data is compared. Therefore the data set is truncated by matching
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each design point with the closest measured point so that there can be a one-to-one

correspondence between the nominal definition and each measured blade shape.

2.2 Principal Components Analysis

2.2.1 Methods

Principal Components Analysis is used in this work to quantitatively characterize

the observed manufacturing-induced shape variability[12][13][19]. This allows one to

grow a relatively small measured vane population into a larger, randomly generated

population with the same variability, thus enabling performance evaluation of a large

set of vanes without having to actually manufacture them. The ability to do this

without real vanes is particularly important to this analysis, in which the variability

seen in an existing vane design (referred to hereafter as Type I) is applied to a proposed

design (Type II) of which no examples have yet been made.

Garzon[12][13] describes the workings and use of PCA, and his description will be

summarized here. As implemented in this work, PCA separates a set of measured

geometries into the mean geometry x̄ and a set of m perturbation modes vi. The

number of modes m is equal to the number of points in each measured geometry, but

only N − 1 of them have nonzero scatter fractions, where N is the number of blades

in the measured set. The jth measured blade x̂j can thus be described by Equation

2.1 below. Note that in this context, x and v represent 2-dimensional geometry, not

just the x-coordinate.

x̂j = x̄ +
∑

m
i=1aijvi (2.1)

Each measured blade is therefore the sum of the average blade with a weighted sum

of the modal perturbations. As mentioned in Section 2.1, the measured data points

that are considered in PCA are those that most closely correspond to the nominal

definition points. The mode shapes and their amplitudes are calculated by taking the

Singular Value Decomposition (SVD) of a matrix X, each row of which is a vector
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describing the pointwise deviation from the nominal in a single measured blade. The

SVD is given as follows:

X = UΣV T (2.2)

in which Σ is diagonal with its nonzero elements equal to the square root of the

eigenvalues of X’s scatter matrix S:

S = XT X (2.3)

The eigenvalues of S correspond to the variances of the mode amplitudes. The columns

of V are the eigenvectors of S, which correspond to the modal geometries v, and U

contains the contribution of each perturbation mode to the geometry of each measured

blade. The variance of each mode amplitude, when divided by the sum of all the

variances, represents the scatter fraction of that mode, which is its contribution to

the total geometric variability of the measured population. A compact SVD is used

instead of a full one; this outputs only the modes with nonzero scatter fraction.

The mold used to produce a doublet cannot guarantee identical airfoil shapes. For

this reason, the measurement data is segregated into two distinct populations, one

for the leading or #1 airfoil and one for the trailing or #2 airfoil in the doublet (see

Figure 2-1). Generation of perturbed blades is also done separately based on the PCA

output of each population.
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Figure 2-1: Turbine vane doublet[14].

For a much more comprehensive discussion of Principal Components Analysis in

an aerodynamic design context, the reader is referred to Chapter 2 and Appendix A

of Garzon[12].

2.2.2 Results

The measured Type I vane population consists of 25 vane doublets. However for the

leading airfoil, only 18 are included in the PCA analysis since 7 of the leading airfoils

have been intentionally notched on the trailing edge to indicate that those doublets are

to be scrapped (for reasons unrelated to geometric shape tolerances). Since this notch

introduces a shape change far more severe than any that could normally be caused

by the manufacturing process, the leading airfoils of the scrapped doublets cannot be

included in the PCA calculations, else they would greatly skew the resulting modes.

For this reason the leading airfoil has only 17 PCA modes.
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The nature of the distribution of the mode shape amplitudes within the measured

population is important for the generation of a statistically-accurate set of new vanes.

The validity of the assumption that the mode shape amplitudes are normally dis-

tributed is checked using a Kolmogorov-Smirnov test[24]. In this population, that

assumption is a valid one according to a Kolmogorov-Smirnov test at the 95% level.

Quantile-quantile plots for the first three PCA modes of each airfoil are given in Figure

2-2. The p-values from the K-S test are tabulated in Table 2.1. The p-value is the

probability of obtaining the observed data assuming that the mode shape amplitudes

follow a standard normal distribution[27]. The lower the value, the less likely it is that

the standard normal distribution is an suitable fit.
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Figure 2-2: Quantile-quantile plots of PCA mode amplitude.
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Mode p-value (Leading Airfoil) p-value (Trailing Airfoil)

1 0.853 0.801

2 0.856 0.822

3 0.983 0.404

4 0.953 0.412

5 0.984 0.808

6 0.564 0.999

7 0.820 0.643

8 0.989 0.870

9 0.784 0.959

10 0.967 0.820

11 0.984 0.319

12 0.999 0.938

13 0.576 0.660

14 0.967 0.834

15 0.713 0.837

16 0.959 0.796

17 1.000 0.516

18 N/A 0.872

19 N/A 0.556

20 N/A 0.863

21 N/A 0.349

22 N/A 0.325

23 N/A 0.918

24 N/A 0.787

Table 2.1: K-S test p-values
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The scatter fraction of the PCA modes is as follows:
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Figure 2-3: Scatter fraction of PCA modes.

As evidenced by the above plots, a relative handful of modes is responsible for

the bulk of the geometric variability observed in the Type I population. There is

practically no additional cost for including all of them when generating new blades,

but their relative dominance can inform the manufacturer as to where the fabrication

process most needs to be improved. Some of the dominant modes are shown in Figures
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2-4 through 2-7, both as observed in the Type I population and as applied to the Type

II vane. Modes are ordered according to their scatter fraction: the lower a mode’s

number, the more likely it is to find significant expression in a manufactured vane.

Note that although positive-amplitude modes are displayed here, they are just as likely

to be negative in the measured and generated populations.
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Figure 2-4: Dominant modes, leading airfoil.
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Figure 2-5: Dominant modes, leading airfoil.
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Figure 2-6: Dominant modes, trailing airfoil.
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(c) Mode 4 on Type I
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(d) Mode 4 on Type II

Figure 2-7: Dominant modes, trailing airfoil.

One can readily see differences between Type I and Type II in Figures 2-4 through

2-7. The first is in the shape of the trailing edge region: some of the dominant modes

largely describe perturbation of the trailing edge and gill slot but as explained above,

these modes cannot be fully expressed in the generated vanes. Another difference is

that the deviations between the nominal geometry and each mode shape appear less

substantial on the Type II vane. They are in fact of the same magnitude on each

vane, and only look smaller because the Type II design is significantly larger than the
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Type I. The distinctions between the dominant modes illustrated in Figures 2-4 and

2-5 and those in Figures 2-6 and 2-7 underscore the fact that the manufacturing of

each airfoil is distinct, as mentioned in Section 2.2.1.

2.3 Vane Generation

The main purpose of decomposing the observed geometric variability into PCA modes

is to enable the generation of a new vane population, as described in this section.

Normally, this is done in order to create an experimental population for Monte Carlo

analysis that is much larger than that which was measured. In this instance, a more

important benefit is producing a perturbed set of vanes with a different design (Type

II) than those measured (Type I), but which will employ the same manufacturing

process. In this way, an engine manufacturer can acquire data to inform decisions on

design and process improvements for a new engine before production begins. For this

analysis, a total of 100 blades have been generated, 50 for each airfoil in the doublet.

A new, perturbed blade is formed by adding a weighted sum of the PCA modes to

a baseline shape. Each mode is scaled by the product of the standard deviation of its

amplitude σ with a Gaussian random value r (normally-distributed with zero mean

and unit standard deviation). The latter brings about variation among the generated

blades, while the former corresponds to a mode’s scatter fraction and therefore ensures

that the dominant modes occur with the same variability as in the original data set.

The equation for the kth point of the jth generated vane is given by the following:

(xj,k, yj,k) = (xk, yk)nominal, Type II +
∑

m
i=1 (Cri,jσi(n̂k)Type II∆ni,k)

C =





0 in gill slot region

1 elsewhere

(2.4)

∆ni,k = (n̂k)Type I · (∆Xi,k, ∆Yi,k)Type I (2.5)
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The size and shape differences between the Type I and Type II vanes prevent one

from directly applying the PCA modes derived from Type I to the Type II design.

There is no direct correspondence between design geometry points from one design to

the other, and in fact the Type II definition is comprised of fewer points than that

for Type I. Therefore the Type I modes are mapped to the Type II vane based on

fractional arc length, with each Type II point experiencing the mode amplitudes from

the closest Type I point. The modes are initially defined in terms of x and y deviations

from the mean, which only apply to the Type I vane. They are therefore expressed as

normal deviations according to Equation 2.5 in which n̂k is the surface normal vector

at the kth node. As an operational design, the Type I definition includes a cooling gill

slot near its trailing edge, which is a significant source of geometric variability. The

more preliminary Type II definition lacks this feature, and so attempting to apply

Type I’s PCA modes to the Type II trailing edge will result in distorted, non-physical

geometry. For this reason, there is simply no perturbation applied near the trailing

edge of the Type II vane, as enforced by the variable C in Equation 2.4. Note that

usually, the baseline to which the modes are applied is the average measured blade. In

this case, there can be no average blade because the Type II design has not yet been

put into production; therefore the nominal design is used instead. Although this does

not take any average geometry perturbations into account, it is expected that such

perturbations would not be substantial (and indeed the engine industry professionals

consulted during this research have expressed confidence that the average blade and

the nominal blade would be quite close in most respects[14]). Additionally, an average

perturbation would affect all blades equally, and this research is more concerned with

the distribution of the experimental population’s performance and the causes thereof,

rather than with the absolute performance values.
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Chapter 3

CFD Analysis

3.1 Performance Scatter of Generated Vanes

3.1.1 Methods

The performance of the perturbed blade shapes is analyzed using the coupled Euler-

boundary layer method MISES, developed by Drela and Youngren[9]. The boundary

conditions consist essentially of a specified inlet angle and pexit

po,inlet
ratio. The Reynolds

number, based on axial chord, is approximately 770000; Sutherland’s formula is used

to determine the viscosity[1].

The Type II nominal design includes a round trailing edge, which MISES cannot

currently accept[9], and which is therefore removed from the input. MISES instead

utilizes a blunt trailing edge model. Recall from Section 2.3 that no perturbations

could be applied to the trailing edge using PCA, so the omission of those points is of

little consequence in and of itself. It must also be noted that the performance scatter

calculations use non-planar geometry in that the streamtube radius as measured from

the engine centerline and width are not constant.

Performance comparisons between vanes are made based on the following key quan-

tities:

29



• Exit Mach number, M2

• Exit/turning angle, α2

• Inlet Mach number, M1, or flow rate

• Loss coefficient, ω̄, or total pressure loss, ∆po

po1

The flow rate is only a function of the inlet Mach number because the inlet angle

and the stagnation temperature and pressure are all fixed. The flow solver outputs the

above critical quantities directly, with one exception: MISES calculates and outputs

ω̄ according to the definition for compressors, as given below[9].

ω̄comp =
pisen

o2 − po2

po1 − p1

=
po1 − po2

po1 − p1

(3.1)

The proper definition for a turbine is the following[16]:

ω̄ =
po1 − po2

po2 − p2

(3.2)

During postprocessing, ω̄ is calculated from the MISES output using the equation

below.

ω̄ =
1− po2

po1

po2

po1
− p2

po1

(3.3)

Alternatively, one can directly convert the compressor loss coefficient that MISES

outputs into the appropriate turbine definition using the following:

ω̄ = ω̄comp

1− p1

po1

po2

po1
− p2

po1

(3.4)

Ideally, Equations 3.3 and 3.4 should give the same answer, but in actuality that

is not the case due to the differences in the way the pressure ratios and ω̄comp are

calculated. Except when otherwise noted, Equation 3.3 is used to calculate the loss

coefficient, but Equation 3.4 is useful for finding the approximate relative contributions

of viscous and inviscid losses. MISES outputs estimates for these using Equations 3.5
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and 3.6[9], and the use of Equation 3.4 allows one to reframe them in turbine-specific

terms. Note that in Equation 3.6, b is the streamtube thickness.

ωi =
1

po1 − p1

∫ (
pisen

o − po

) dṁ

ṁ
(3.5)

ωv =
1

po1 − p1

(
po

p

ρV

ṁ
ρV 2Θb

)

exit

(3.6)

In a supersonic exit turbine like the one in this analysis, the above equations do not

give exactly accurate answers because the momentum defect Θ does not asymptote

to a constant downstream of the vane[9]. However, the relative contributions can still

be assessed, if somewhat roughly.

3.1.2 Results

The distributions of the key performance quantities, as calculated by MISES, are

shown in the following histograms. Since these results involve proprietary information,

all quantities are scaled by their respective nominal value, except for the turning angle

in which the nominal value is subtracted from each data point. The black dashed lines

represent the acceptable range ∆ftol for each quantity: ±0.3◦ for turning angle, ±0.3%

for inlet and exit Mach numbers, and ±5% for loss coefficient.
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(d) Exit Mach number,
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(f) Turning angle, trailing
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(g) Loss coefficient, leading

airfoil
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(h) Loss coefficient, trailing

airfoil

Figure 3-1: Distributions of performance quantities.
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All vanes are well within the limits for exit Mach number and turning angle. With

regards to losses, the leading airfoil performs unacceptably 2% of the time, while

the trailing airfoil has approximately an 8% chance of non-conformance. The inlet

Mach number is out of limits much more often: 36% of leading airfoils and 58% of

trailing airfoils are more than 0.3% from the nominal. Some quantities are seen to

have a centered distribution about the nominal value, whereas others (that have a

high degree of dependence on shock mechanisms) are offset somewhat. For example,

the offset-distributed exit Mach number is significantly influenced by shock behavior,

whereas the centrally-distributed turning angle is much less so.

The viscous loss (Equation 3.6) and inviscid shock-loss coefficients (Equation 3.5)

are distributed rather differently in the generated vane population, as illustrated in

Figure 3-2. The viscous losses are approximately constant, varying by up to 3%

of the nominal value, while the shock losses can be up to 30% than the nominal.

This indicates that the increased total pressure loss in the generated vanes (i.e., the

offset distribution) is likely due to shock effects rather than changes in boundary layer

behavior.
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(a) Shock losses, leading airfoil
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(b) Viscous losses, leading airfoil
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(c) Shock losses, trailing airfoil
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(d) Viscous losses, trailing airfoil

Figure 3-2: Inviscid and viscous loss coefficients of the generated vane pop-

ulation.
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3.2 Sensitivity to PCA Modes

The PCA modes describe the expected variability of manufactured vanes, so it is

useful to examine how individual modes affect performance. This is done by creating

a series of vanes in which individual modes are expressed to varying degrees. The

vane generation process is analogous to that described in Section 2.3, except that only

one mode is applied at a time and the random scaling factor is replaced by a series

of factors, in this case ±3, ±1, and ±0.5. Since the modes are still scaled by their

respective scatter fractions, the end result is the application of modes with amplitudes

of ±3σ, ±σ, and ±0.5σ. The sensitivity is evaluated by examining each performance

metric as a function of mode amplitude. The same non-planar geometry that is used

as a baseline in the performance scatter estimate is used here as well, since the PCA

modes are derived from measurements of the non-planar section.

The effect of each airfoil’s six most dominant PCA modes on the performance

quantities is displayed in Figures 3-3 and 3-4. As in Figure 3-13, the dashed black lines

represent the limits of acceptable performance. The second set of x-axis tick marks

displays the cumulative distribution function values corresponding to each amplitude.

These are based on the standard normal distribution[27] to which the PCA mode

amplitudes conform (see Section 2.2.2).
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Figure 3-3: Sensitivity to dominant PCA modes, leading airfoil.
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Figure 3-4: Sensitivity to dominant PCA modes, trailing airfoil.

As expected, the modes with the highest scatter fraction generally have more of

an effect on the flow. The leading airfoil’s fourth mode appears to have a greater

influence on the inlet Mach number than anticipated because it has an unusually large

outward deviation near the throat, as shown in Figure 2-5 (Section 3.3.1 shows that

the inlet Mach number depends most strongly on the throat geometry). The inlet

Mach number has a nearly linear response to the amplitude of each mode since the

throat area scales with mode amplitude in simple linear fashion. According to these
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results, a single dominant PCA mode can cause inlet Mach number nonconformance

at above the approximate ±2σ level for the leading airfoil and the ±σ level for the

trailing. Based on the standard normal distribution to which the mode amplitudes

conform, the probabilities that an individual mode will be expressed at that level are

roughly 5% and 32%, respectively.

Nonlinearity is evident in the sensitivity of the loss coefficient and to a lesser extent

the exit Mach number. Nonetheless, there is only one excursion outside the acceptable

performance range for these parameters; in every other case the chance that a single

mode will cause unacceptable performance is less than 0.26%. The probability is the

same for the more linear turning angle. The trailing airfoil’s first mode is seen to bring

about unacceptably high losses at around the +2σ level, and the probability of this

occurring is about 2.5%. Loss coefficient nonconformances happen at a slightly higher

rate in Figure 3-1, likely due to additive effects from the other modes, particularly

mode 2.
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3.3 Sensitivity to Localized Bump Perturbations

The next main segment of this work is the use of linear and nonlinear sensitivity

analysis to identify locations on the vane surface where geometric perturbations have

the greatest effect on performance.

3.3.1 Linear Sensitivity in MISES

Methods

This analysis makes use of MISES’ functionality to calculate linear sensitivity deriva-

tives with respect to the amplitudes of a series of geometry perturbation modes, which

are used to virtually move the airfoil surface.

The flow analysis performed in this section is different from that described in Sec-

tions 3.1 and 3.2. Specifically, to enable comparison with the discontinuous-Galerkin

method in Chapter 4, the analysis is planar (i.e., no radius variation) and the stream-

tube thickness is constant.

This section contains analysis of the sensitivity to localized small bumps. The

purpose is to determine where geometry perturbations are most/least detrimental to

performance. This analysis, due to its linearity, could also be used to consider linear

sensitivity of other perturbations using a linear combination of the localized bump

sensitivities. This has not been pursued in this thesis, but remains an opportunity for

future work.

The specific bump shape is the Hicks-Henne function[15], which is commonly used

to perturb airfoil surfaces[5][17]. Its definition is given in Equation 3.7[26].

y = A
[
sin

(
πx

− ln 2
ln xp

)]t

, x ∈ [0, 1] (3.7)

In the above equation, y corresponds to the normal displacement and x is the distance

along the airfoil surface, A represents the amplitude, xp is the location of the maximum,

and t defines the sharpness of the bump. For this work, A is simply set to 1, xp is 0.5
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to produce a centered bump, and t is 5, reducing Equation 3.7 to y = sin5 πx. Below

is a plot of that function.
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Figure 3-5: Hicks-Henne bump function used to perturb airfoil geometry.

Almost all modes are applied between surface definition points i − 1 and i + 1,

with the midpoint approximately corresponding to point i, meaning that the mode is

essentially a smoothed normal perturbation of that point. The only exceptions are

the first and last modes which must lie between the first two and last two points,

respectively. The modes are thus distributed so that, taken together, they span the

entire airfoil surface. MISES uses each mode shape to apply a virtual perturbation to

the airfoil surface and then calculates the linear sensitivity derivative with respect to

mode amplitude for key performance quantities like Mach number, static pressure over

inlet total pressure, loss coefficient ω̄, and flow slope S, which is equal to the tangent

of the flow angle α. The latter is again calculated in MISES according to Equation
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3.1 and is converted to the turbine definition of Equation 3.2 as follows:

dω̄

d[Mode]
=

dω̄comp

d[Mode]

1− p1

po1

po2
po1
− p2

po1

− ω̄comp

po2
po1
− p2

po1

d
(

p1

po1

)

d[Mode]
+

+ ω̄comp

1− p1

po1(
po2

po1
− p2

po1

)2

d
(

p2

po1

)

d[Mode]
− ω̄comp

1− p1

po1(
po2

po1
− p2

po1

)2

d
(

po2

po1

)

d[Mode]
(3.8)

It is the exit or turning angle α2 rather than the exit slope S2 that is of interest, so

the sensitivity derivative of the former is found using Equation 3.9, given below. The

negative sign is necessary because the exit slope is negative on the axes used in this

analysis but, according to convention, the turning angle is to be quoted as a positive

value.
dα2

d[Mode]
= − dS2

d[Mode]
cos2 α2 (3.9)

Often, manufacturing tolerances include a maximum allowable surface deviation,

∆ntol that is defined as the maximum allowable normal perturbation from the design

intent shape. Thus, ∆ntol defines a band of allowable shapes surrounding the design

intent. In the following linear sensitivity analysis, ∆ntol is used to determine the

performance perturbation that would result from a bump of height ∆ntol. For each

performance metric f , the performance deviation for the turning angle is df
d[Mode]

∆ntol.

Tolerances are also placed on the performance quantities, i.e., there is a maximum

allowable ∆ftol (see Section 3.1.2). One can compare that value to the linear sensitivity

estimate to determine if a perturbation will cause unacceptable performance.

The linear sensitivity derivatives are calculated for both viscous and inviscid flow.

For the inviscid runs to be successful, the Type II vane geometry must be modified so

that the trailing edge is cusped. Recall from Section 3.1 that the nominal geometry

includes a rounded trailing edge, which must be left out of the shape that is input

into MISES, and that a blunt trailing edge model is utilized in its place. The use

of this model causes difficulties in an inviscid calculation: MISES assumes that a

constant-thickness streamtube exists on the blunt trailing edge in an inviscid flow[8].
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To improve the physical modeling, a more realistic approach is to cusp the trailing

edge so that the trailing edge streamtube has zero thickness.

Viscous Results

The viscous linear sensitivity with respect to bump mode amplitude is shown in Figure

3-6. Note that all results are scaled by the nominal value, except in the case of the

turning angle.
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Figure 3-6: Linear sensitivity results from viscous MISES calculations.
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Figure 3-6 shows that the sensitivity is restricted to less than half of the vane’s

surface, outside of which the derivatives are insignificant. In order to more clearly

illustrate the locations of high sensitivity, Figure 3-7 represents each derivative by

the length of a surface normal vector located at the midpoint of the associated bump

mode. An outward-pointing vector indicates a positive derivative, meaning that an

outward displacement will cause the quantity in question to increase. Note that Figure

3-7 follows the same color convention as Figure 3-6 in that the vectors representing

pressure-side derivatives are blue and those corresponding to the suction-side are red.
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Figure 3-7: Normal-vector representation of viscous MISES linear sensitivity
derivatives.
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Figure 3-8 illustrates that the sensitivity derivatives begin to take on significant

values only once the flow reaches sonic speed at the throat; the region of near-zero

sensitivity is upstream of the throat. Geometry perturbations in the supersonic flow

region are likely to cause shocks which will cumulatively cause significant changes

to the flow, hence the nonzero sensitivity derivatives. A geometry change near the

location of an existing shock is likely to change the shock’s strength and/or cause it to

occur at a different location, either of which will have a marked effect on the flow field.

Perturbing the airfoil surface near the throat itself will cause the throat to widen or

narrow, changing the mass flow through the passage which affects the Mach number

and consequently the shock losses. The throat is located very near to the suction side

inflection point, and its high sensitivity is thus reinforced by the work of Denton and

Xu who show that loss is particularly sensitive to blade suction side curvature[7]. There

is further support for the fundamental validity of these data in the well-established

fact that loss generation is much higher on the suction side of a blade (where most of

the sensitivity lies) than on the pressure side (which is largely insensitive)[20]. This

result holds for subsonic as well as transonic blades because entropy generation is

proportional to the cube of surface velocity. The suction side/pressure side disparity

in loss generation will be amplified in a transonic blade because shocks can be present

in the supersonic flow over the suction side but cannot occur on the vast majority of

the pressure side.
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Figure 3-8: Sensitivity derivatives compared with Mach contours.
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The notion that the sensitivity derivatives are associated with shock behavior is

supported by results from the performance scatter estimate of Section 3.1, specifically

the distributions of viscous and inviscid loss coefficients as shown in Figure 3-2. If

geometric differences between blades express themselves more prominently through

inviscid mechanisms, then it stands to reason that geometry perturbations in the

supersonic flow region will have a much greater effect on the flow field than those in

the subsonic regime, and that perturbations near the throat or existing, comparatively

strong shocks will have the greatest effect of all.

If the performance scatter results can help inform and confirm the sensitivity be-

havior, than the converse can be done as well. For an optimized vane such as this

one, perturbations in the supersonic flow region are expected to decrease performance,

primarily through the generation or modification of shocks. That is, over much of the

sensitive region, any changes can only make things worse. However, opening the throat

will increase the inlet and exit Mach numbers by continuity and closing it will have the

opposite effect, so perturbations near the throat could in fact “improve” Mach num-

bers (in practice, one wants the vane to produce an exit Mach number that is as close

as possible to the nominal value to which the rotor stage is optimized- a higher inlet

Mach number to the rotor will decrease its efficiency). The distribution of inlet Mach

number is thus centered because it is essentially dependent on throat area alone, and

the distributions of losses and exit Mach number are offset from the nominal because

they are additionally subject to the worsening effects of shock generation. The linear

sensitivity results also highlight a limitation of the performance scatter estimate. Re-

call that the trailing edge is not perturbed at all among the generated vanes. Since the

linear sensitivity analysis indicates that the trailing edge is one of the most sensitive

regions of all, the results of Section 3.1.2 almost certainly underestimate the scatter.

For the designer and manufacturer, the practical value of these results lies chiefly

in their use as a guide for setting or adjusting tolerances. The preceding identifies

the highly-sensitive “hotspots” on the vane; it is worthwhile to find out just how hot

they are from a manufacturing standpoint by converting the sensitivity derivatives
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into geometric tolerances. These are calculated by multiplying the reciprocal of the

derivative by ∆ftol. The resulting shape envelopes are compared to the nominal tol-

erance on local deviations ∆ntol in Figure 3-9. Red sections of the envelope are those

in which ∆ntol allows a greater performance deviation than specified, meaning that it

needs to be tightened. In yellow sections, the derivatives are nonzero but ∆ntol is en-

forced (and plotted) because it is tighter than that stipulated by the derivatives. The

nominal tolerance is plotted in green sections as well, but these correspond to areas

where near-zero sensitivity derivatives indicate that ∆ntol can be widened by a factor

of 5 or more. Note that the envelopes are formed based on single-point deviations,

that is, if one point in a red zone is outside of the envelope, the vane’s performance

will be out of the limits.
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Figure 3-9: Tolerance bands for specified performance limits.

Over much of the vane, ∆ntol is sufficient to keep the performance within the

specified limits. Three of the performance metrics indicate that it can even be virtually

abolished over most of the vane, but the 5% limit on the loss coefficient prohibits this.

Only near the throat is the nominal tolerance inadequate, as perturbations within it

can drive the inlet Mach number (flow rate) outside of the stipulated range.
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Inviscid Results

The linear sensitivity results for inviscid flow are shown in Figures 3-10 and 3-11.
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(d) Sensitivity of loss coefficient

Figure 3-10: Linear sensitivity results from inviscid MISES calculations.
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Figure 3-11: Normal-vector representation of inviscid MISES linear sensitiv-

ity derivatives.

The inviscid linear sensitivity derivatives largely follow the same trends as their

viscous counterparts (see Figures 3-6 and 3-7), with one notable exception: the sign

of the derivatives at the suction side trailing edge. The sign does not change in

the inviscid results whereas it oscillates between positive and negative in the viscous

results. The most likely cause of this discrepancy is the presence/absence of the blunt

trailing edge model. The magnitudes of the derivatives are similar, with the inviscid
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results generally exhibiting greater sensitivity than their viscous counterparts. Shock-

boundary layer interaction[6] can act to damp out the effects of shocks near the surface

of an airfoil by concealing small perturbations which could potentially generate shocks

within the displacement thickness. Although individually weak, those shocks would

have a cumulative effect that would likely increase losses to a significant degree. Since

the boundary layer is absent from inviscid flow, it stands to reason that the linear

sensitivity derivatives should be higher in an inviscid flow.

3.3.2 Nonlinear Sensitivity Analysis

Methods

Nonlinearity is explored in regions of the vane surface that are identified by the viscous

linear sensitivity analysis as being particularly sensitive. The critical results of these

runs are the performance quantities as functions of normal displacement. Individual

geometry nodes are given a series of finite normal perturbations and the resulting set

of vanes is analyzed in MISES using viscous calculations. In contrast to the MISES

linear sensitivity analysis, these perturbations are real rather than virtual. However,

moving one node a short distance in the normal direction is approximately equivalent

to applying a bump mode of small amplitude since the midpoint of the ith geometry

perturbation mode is very close to the ith point (see Section 3.3.1). This similarity

allows for comparisons between the linear and nonlinear sensitivity behavior.

Results

Nonlinear sensitivity is evaluated at four especially sensitive locations: both sides of

the throat (nodes 2 and 68), a point (node 72) in the supersonic flow region just after

the throat, and the suction side trailing edge (node 84). Those points are displayed

in Figure 3-12.
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Figure 3-12: Locations at which nonlinear sensitivity is investigated.

The nonlinear sensitivity of the performance metrics at these four nodes is shown

in Figure 3-13. The dashed black lines display the performance limits ∆ftol, and the

dashed colored lines are the linear sensitivity results. All quantities are nondimen-

sionalized by their respective nominal values.
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Figure 3-13: Nonlinear sensitivity results.

The sensitivity observed here is almost universally higher than that predicted by

the linear analysis. Logically, there is closer agreement between linear and nonlin-

ear results for smaller perturbations; nonlinearity makes more of a difference as the

geometry is displaced farther from the nominal, particularly in the case of the loss

coefficient. The nonlinearity in loss coefficient observed at nodes 68 and 72 on the

suction side indicates that the airfoil shape is indeed optimal at these locations with

regards to losses because perturbation in either direction causes losses to increase.
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Since the maximum normal displacement applied here is slightly less than the nom-

inal tolerance ∆ntol, these nonlinear results indicate that ∆ntol may in fact not be

adequate to control losses at the trailing edge. The inlet Mach number shows more

sensitivity than the exit Mach number according to both linear and nonlinear anal-

ysis, which is reasonable due to the basic geometry of the vane passage. Figure 3-8

illustrates that A2

A∗ is not much greater than unity while A1

A∗ is an order of magnitude

larger, meaning that the latter will scale more dramatically with A∗. In sum, these

results suggest that with the nominal tolerance in place, Type II vanes manufactured

according to the same process as Type I should be entirely capable of producing a

properly conditioned exit flow with regards to speed and direction. Losses may be

unacceptably high, though, and the flow rate through a given passage is likely to be

out of limits. The near-constant slope of the latter means that, barring any bias in the

manufacturing process towards plus- or minus-material, there will likely be as many

high-flowing passages as there are low-flowing ones so the total flow rate through the

vane row should be acceptable. The results in Figure 3-1 bear this out, showing a

centered distribution of inlet Mach number. Nevertheless, uniformity is desirable and

for that reason particular attention must be paid to the throat area.
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The nonlinear bump sensitivity of inlet Mach number is compared to both the

isentropic relation between Mach number and area change[23] and data extracted from

the PCA mode sensitivity analysis of Section 3.2 in Figure 3-14. For the latter, the

throat area change is based on the perturbation of node 68; recall that, as part of the

trailing edge, node 2 is not perturbed by the PCA modes in this analysis. Comparison

shows that both data sets closely follow the isentropic trend, particularly for small

perturbations. The isentropic relation supports the observation in Section 3.3.1 that

∆ntol (the vertical dashed black lines) is not sufficient to keep the inlet Mach number

within ±∆M1,tol (the horizontal dashed black lines).
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Figure 3-14: Comparison of inlet Mach number sensitivity.
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Chapter 4

Comparison with

Discontinuous-Galerkin Sensitivity

Results

An alternative method of calculating linear sensitivity derivatives makes use of a

discontinuous-Galerkin (DG) solver currently in development at the MIT Aerospace

Computational Design Laboratory[4][11][10][22]. The objective of this segment of the

research is to obtain independent confirmation of the sensitivity behavior observed in

the MISES results.

4.1 Methods

The DG solver, known as ProjectX, does not yet have the capability to directly perform

linear sensitivity calculations, so the derivatives are found using finite differencing.

Also, presently its turbulence modeling has not been applied to turbomachinery[3][21]

so all runs are inviscid.

The following boundary conditions are utilized throughout the DG runs. The flow

angle, total pressure and total temperature at the inlet along with the exit static pres-

sure ratio are set to the same values used in MISES. The top and bottom boundaries
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of the grid are designated as periodic, simulating a blade row, and flow tangency is

enforced on the airfoil surface.

The baseline grid used in DG calculations is modified from one supplied by Rolls-

Royce, with the following changes being made:

• Dividing each (4-sided) element into two triangular elements.

• Moving the nodes on the lower boundary face in the y direction so as to make the

height of the grid constant along its length. Although the changes are very slight,

this ensures that there will be no difficulties enforcing the periodic boundary

condition at the upper and lower boundary faces.

• Representing the elements on the airfoil as quadratic polynomials (instead of the

straight-line segments in the original mesh) by adding midpoint nodes to their

faces[2]. The midpoint nodes on the airfoil surface are generated by splining

the surface nodes from the original mesh. The other midpoint nodes are simply

co-linear (i.e. the interior edges remain linear).

The nominal grid is shown in Figure 4-1, with the added nodes highlighted in red.
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Figure 4-1: Nominal grid for DG cases.

59



The converged nominal case is the basis for each of the linear sensitivity runs via

the substitution of a perturbed grid into the nominal solution file. The perturbed

grids are intended to mimic as closely as possible the perturbations used in MISES.

Hicks-Henne bump functions of finite amplitude are applied to the airfoil surface over

the same fractional arc length limits as in MISES, so that the resulting sensitivity

derivatives have a direct correspondence to those in Section 3.3.1. Note that the

midpoint nodes of the interior edges are affected by the surface perturbation, as they

are re-positioned to be at the midpoints of the new elements’ faces. Two grids are

generated for each arc length interval: one with positive bump function amplitude, and

one with negative. The sensitivity derivative for a performance quantity f is found

through finite differencing of the results from the positive- and negative-amplitude

cases, according to the following equation:

df

d(∆n)
=

f+ − f−

2(Amplitude)
(4.1)

Like in MISES, bump function amplitude and maximum normal displacement are

by definition the same.
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4.2 Results

The finite-difference linear sensitivity derivatives are displayed in Figure 4-2.
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(d) Sensitivity of loss coefficient

Figure 4-2: Linear sensitivity calculated via DG method.

Figure 4-2 show that the inviscid DG linear sensitivity derivatives largely follow the

same trends as the viscous MISES results in Figure 3-6 , a further indicator that the

sensitivity is primarily dependent on inviscid mechanisms. The trends deviate from

each other on both sides of the trailing edge, which is possibly due to the workings

of MISES’ blunt trailing edge model. The model is not active in the inviscid MISES
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calculations, but the two sets of inviscid results still have opposite signs on the pressure

side trailing edge for the exit Mach number and loss coefficient derivatives. Each solver

uses a different geometry at the trailing edge, though, with a cusp in MISES and a

round in DG. For ease of comparison, both sets of inviscid linear sensitivity data are

plotted together in Figure 4-3. Note that solid lines correspond to the pressure side

and dashed lines correspond to the suction side.
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(d) Sensitivity of loss coefficient

Figure 4-3: Comparison of linear sensitivity results.

The Mach contours from MISES and DG are shown in Figures 4-4 through 4-6 for
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the nominal case and for perturbations near the throat (at nodes 2 and 68, the same

as in Section 3.3.2). The most noticeable difference between the three cases is in the

shock behavior on the suction side. When the node 68 perturbation is compared to the

other two cases, its shock structure is seen to be somewhat more spread out along the

surface. In MISES, the nominal structure appears only to be stretched, whereas the

formation of a new weak shock is observed in the DG results. This may be the source

of the greater sensitivity seen in DG. Once ProjectX is developed further, future work

could investigate whether or not the sensitivity remains higher when viscous effects

are included.
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(a) MISES

(b) DG

Figure 4-4: MISES and DG Mach contours (nominal).
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(a) MISES

(b) DG

Figure 4-5: MISES and DG Mach contours. (node 2 perturbed)
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(a) MISES

(b) DG

Figure 4-6: MISES and DG Mach contours (node 68 perturbed).
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Chapter 5

Summary and Conclusions

This work shows the marked effect that manufacturing variability can have on the

performance of a transonic turbine vane. Shape changes not only induce scatter in

performance but also shift the distributions of shock-influenced quantities away from

their nominal values. The results derived from Principal Components Analysis indicate

that there is a significantly high probability that a manufactured vane will produce

unacceptable values for flow rate and/or losses.

Virtually all of the differences in performance between the nominal vane and manu-

factured examples are due to geometry deviations in the region of sonic and supersonic

flow. The flow is particularly sensitive to perturbations at the throat and trailing edge.

The mechanisms that appear to drive this sensitivity are the opening/closing of the

throat and the formation or modification of shocks. As a consequence, performance

shows practically no sensitivity to shape changes upstream of the throat.

These results suggest the following recommendations to a manufacturer of tran-

sonic turbine vanes. Special care, such as additional or tighter tolerances, should be

taken to make the throat area as close as possible to the design value; the trailing edge

also requires particular attention. Controlling the shape variations at these locations

as well as the suction side supersonic flow region may require more sophisticated man-

ufacturing equipment, depending on the producer’s current capabilities. The limited

extent of the sensitive areas does nothing to defray the monetary costs of such ma-
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chinery, but if enhanced accuracy and precision result in a slower process, time can

be saved by only using it at and downstream of the throat. Fidelity to the design and

shape smoothness are much more important in that area than elsewhere. Addition-

ally and perhaps more usefully, it should not be necessary for aerodynamic reasons to

scrap a vane that does not conform to the local deviation tolerance upstream of the

throat so long as the basic shape is preserved. Each scrapped component represents

a loss of time and money, and this research shows that imperfections over much of a

vane’s surface will not have appreciable effects on its performance.

5.1 Suggestions for Future Work

A work of this scope inevitably leaves much still to be done. The data used in the

Principal Components Analysis is limited in size and extent. A larger population of

Type I vanes will lead to higher-fidelity modeling of the geometric variability that arises

during manufacturing. The vane measurements are from one phase of the production

process only; it is worthwhile to investigate how shape variability changes over the

course of the process. Data on the Type II vane is limited as well: its pre-production

status prevents characterization of its mean shape deviation. It has the additional

consequence that no gill slot is present, precluding the application of variability near

the trailing edge. Since that feature has a high degree of influence on the flow, its

irregularity should be included for a more accurate assessment of the performance

distribution.

In addition to improving this work’s data, one can also expand upon its analysis. It

should be pointed out that doing any of these will require a non-trivial amount of time

and/or computational resources. Geometry perturbation modes of different extent or

type could be applied to see how those variables impact sensitivity. Linear sensitivity

can be further explored by examining the effects of linear combinations of the local

sensitivities. Viscous DG results would provide a check on the sensitivity derivative

magnitudes. Manufacturing variability and sensitivity could be investigated over more
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of the vane by including additional airfoil sections. The nonlinear sensitivity analysis,

herein limited to a handful of locations on the vane, could reveal more if performed

over the rest of the vane or at least the sensitive region. This research effort considers

one vane at a time, but of course an actual engine has an entire row of different vanes.

It will be fruitful to explore the engine-level effects of variability by carrying out the

analysis presented here on groups of vanes and eventually an entire vane row.
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