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SUMMARY

In this paper we present a fractional time-step method for Lagrangian formulations of solid dynamics
problems. The method can be interpreted as belonging to the class of variational integrators which are
designed to conserve linear and angular momentum of the entire mechanical system exactly. Energy
fluctuations are found to be minimal and stay bounded for long durations.

In order to handle incompressibility, a mixed formulation in which the pressure appears explicitly
is adopted. The velocity update over a time step is split into deviatoric and volumetric components.
The deviatoric component is advanced using explicit time marching, whereas the pressure correction
for each time step is computed implicitly by solving a Poisson-like equation. Once the pressure
is known, the volumetric component of the velocity update is calculated. In contrast with standard
explicit schemes, where the time-step size is determined by the speed of the pressure waves, the
allowable time step for the proposed scheme is found to depend only on the shear wave speed. This
leads to a significant advantage in the case of nearly incompressible materials and permits the solution
of truly incompressible problems. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Dynamic problems involving rapid phenomena in continuum media are encountered in many
engineering applications. Generally, these types of problems are discretized in space using
tri-linear hexahedral elements and integrated in time in a Lagrangian manner with an explicit
leap-frog time-stepping procedure. The resulting explicit integration is conditionally stable with
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1372 S. K. LAHIRI ET AL.

a critical time step given by the time that the volumetric wave takes to cross the smallest
characteristic element length. Inevitably, for nearly incompressible materials the resulting time
steps are very small, specially in the presence of large distortions which often lead to very
small characteristic element sizes. Moreover, the fully incompressible limit cannot be modelled
with these types of methods and consequently materials such as rubber or common fluids need
to be approximated as nearly incompressible.

In Eulerian fluid dynamics, incompressible flows are often modelled using fractional time
integration schemes [1], where the pressure is integrated in time in an implicit manner. Ex-
tending these ideas to solids in which the geometry is constantly changing requires introducing
the pressure as an additional variable and has been attempted in References [2–5] using linear
tetrahedral elements. In both these references, however, the motivation for treating pressure as
a problem variable was to eliminate the well-known problem of volumetric locking encountered
by the standard linear triangular and tetrahedral elements. Unfortunately, the pressure step was
taken explicitly and the resulting critical time step is much smaller than that obtained with
standard integration [3].

The aim of this paper is to present a fractional step integration for Lagrangian solid dynamic
applications which is implicit in the pressure, or volumetric terms, but explicit for the deviatoric
component. Previous researchers [6, 7] have developed similar methods using implicit schemes.
Although such methods are unconditionally stable they become very expensive for large size
problems. The scheme proposed here is formulated by taking advantage of the variational
framework for time integrators described in References [8–15].

Variational integrators have been developed on the basis of Hamilton’s variational principle
rather than discretizing in time the differential equations of motion. Hamilton’s principle dictates
that the path followed by a body is a stationary point of the integral of the Lagrangian over a
given interval. Variational integrators take advantage of this principle by constructing a discrete
approximation of this integral which then becomes a function of a finite number of positions of
the body at each time step. The stationary conditions of the resulting discrete functional with
respect to each body configuration lead to time-stepping algorithms that retain many of the
conservation properties of the continuum problem. In particular, the schemes developed in this
way satisfy exact preservation of linear and angular momentum and are symplectic [9, 16–18].
In addition, these algorithms are found to have excellent energy conservation properties even
though the exact reasons for this are not fully understood [9]. This class of variational algorithms
includes both implicit and explicit schemes, and in particular, it includes some well-known
members of the Newmark family [9, 19].

In order to introduce a fractional procedure within the variational framework, the volumetric
component of the internal energy will be expressed in a mixed form in terms of the geometry
and pressure using the complementary volumetric energy. In addition, different approximations
will be used for the isochoric and volumetric components of the integrated Lagrangian. In this
way, the velocity update over a time step is split into a deviatoric component and a volumetric
component. The deviatoric component is advanced using explicit time marching, whereas the
pressure correction for each time step is computed using an implicit time integration. Once the
pressure is known, the volumetric component of the velocity update is calculated. This type
of mixed formulation relaxes the time-step restriction encountered in general explicit schemes.
For linear cases, it can be shown that the maximum time step that can be used only depends
on the deviatoric wave speed of the material, which leads to a significant advantage in case
of nearly incompressible material behaviour and allows the fully incompressible limit to be
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modelled. The examples presented in the paper will indicate that this is also true for more
general non-linear applications.

Given the geometrical non-linearity inherent in the type of applications of interest, the
resulting equations for the pressure are non-linear. This non-linearity can be easily eliminated
if the volume increment over a time step is calculated in an approximate manner using the
divergence of the velocity. In this way, a set of linear equations for the pressure is obtained
at each step with a structure similar to that of a discrete Poisson solution.

The paper is organized as follows. Section 2 defines the Lagrangian function for the con-
tinuum problem, including the internal energy terms for simple neo-Hookean materials, and
presents the Hamilton’s principle as the variational principle governing the problem. Section 3
explains how the variational framework can be used to obtain time integrators that preserve
the invariants of the motion. Section 4 uses the above framework to derive the fractional step
algorithm proposed. Section 5 discusses the finite element discretization and Section 6 is a
linearized form of the volumetric equations that eliminates the need to solve a system of non-
linear equations at each step. Section 7 describes a linearized stability analysis which shows
that the critical time step of the proposed scheme is independent of the volumetric wave speed.
Section 8 presents a number of examples that extend this conclusion to more general cases
and Section 9 summarizes the key aspects of the proposed method.

2. THE CONTINUOUS PROBLEM

We consider the motion under loading of a three-dimensional body. We adopt a reference
configuration, Q ⊂ R3, corresponding to the configuration of the body at time t = 0. The
material co-ordinates X ∈ Q, are used to label the particles of the body. At an arbitrary
time t , the position of particle X is given by the co-ordinate x, and in general, the motion of
the body is described by a deformation mapping,

x = �(X, t) (1)

as illustrated in Figure 1. In its reference configuration, the body has volume V0 and density
�0, whereas at a given time t , the body has volume V (t) and density �(t).

2.1. The action integral for non-dissipative systems

For non-dissipative systems, both the internal and external forces in the system can be derived
from a potential, and the motion between times t0 = 0 and t , can be determined from Hamilton’s

Figure 1. Continuous systems.
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1374 S. K. LAHIRI ET AL.

principle. To this end, we introduce a Lagrangian, L,

L(x, ẋ) = K(ẋ) − �(x)

where K denotes the kinetic energy, � is the potential energy and ẋ = dx/dt is the material
velocity. The potential energy can be generally decomposed into an internal elastic component,
�int, and a component accounting for the external conservative forces, �ext. Thus, �(x) =
�int(x) + �ext(x). The action integral, S, is defined as the integral of the Lagrangian over the
time interval considered,

S =
∫ t

0
L dt (2)

and Hamilton’s principle states that the deformation mapping satisfying the equations of motion
can be obtained by making the action integral stationary with respect to all possible deformation
mappings which are compatible with the boundary conditions.

2.2. The kinetic energy (K)

The kinetic energy of the body is a function of the velocity and can be written as

K(ẋ) =
∫

V0

1
2�0ẋ

2 dV0

2.3. The internal potential energy (�int)

The internal potential energy depends on the constitutive relations of the materials in our
system. In this paper we shall consider hyperelastic neo-Hookean materials undergoing large
deformations and displacements, although the proposed techniques can be equally applied to
more general models.

Let F be the deformation gradient tensor which can be written as

Fij = �xi

�Xj

∀i, j = 1, . . . , 3

The relevant kinematic quantities associated with the deformation gradient are the right Cauchy–
Green tensor, C, the Jacobian, J , and the deviatoric component of C, Ĉ, which are given by

C = F TF ; J = det(F ); Ĉ = J−2/3C

For isotropic neo-Hookean materials, the internal potential energy can be expressed in terms
of the Lame constant �, and the bulk modulus � as

�int(x) =
∫

V0

[
�

2

(
tr(Ĉ) − 3

)
+ 1

2
�(J − 1)2

]
dV0 (3)

The above expression is well suited for compressible or nearly incompressible materials. How-
ever, when the material approaches incompressibility, the bulk modulus, �, becomes very large
and this causes �int(x), in (3), to be unbounded for all motions not satisfying J = 1. This is
a constraint on the allowable deformations which, in practice, is difficult to enforce a priori.
A more suitable formulation which still allows us to work with general motions is obtained by
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VARIATIONAL FRACTIONAL TIME-STEP METHOD 1375

introducing the constraint, J = 1, through a Lagrange multiplier. It turns out that it is actually
possible to reformulate the internal potential energy, by introducing an additional pressure vari-
able in such a way that a formulation which is valid for both compressible and incompressible
materials is obtained. In the compressible case, the pressure can be determined from the vol-
umetric change as p = �(J − 1), whereas in the incompressible limit, the pressure becomes a
Lagrange multiplier which enforces J = 1. We write

�int(x, p) = �iso(x) + �vol(x, p) (4)

where,

�iso(x) =
∫

V0

�

2

(
tr
(
Ĉ

) − 3
)

dV0 (5)

and,

�vol(x, p) =
∫

V0

p(J − 1) dV0 −
∫

V0

p2

2�
dV0 (6)

For compressible materials, the constitutive equation relating the volumetric changes and the
pressure is recovered by setting the variation of �vol with respect to p equal to zero. Thus,
the form (4)–(6) of the internal potential function has the property that it is equivalent to
the primitive form (3), but as the material becomes incompressible, the second term in �vol
disappears and only the constraint times the Lagrange multiplier, p, remains. As expected, for
incompressible materials, �vol → 0, and �iso → �int. It is clear that when we adopt the form
(4)–(6) for the internal potential energy, the Lagrangian will also depend on the pressure, that
is L(x, ẋ, p), and that the solution will need to be determined by requiring stationarity of the
action integral, (2), with respect to x and p.

2.4. The external potential energy (�ext)

The external potential energy includes the work done by the external body and surface forces

�ext(x) = −
∫

V0

f b · x dV0 −
∫

�V0

f s · x dS0

Here, f b are the body forces, f s are the surface forces, and �V0 denotes the section of the
boundary, in the reference configuration, where the surface forces are applied.

3. TIME INTEGRATION

3.1. Variational formulation

Consider now a sequence of time steps tn+1 = tn + �t, n = 0, 1, . . . , N , where for simplicity
a constant step size has been taken. The position of the body at each step is defined by a
mapping xn = �(X, tn). A variational algorithm is defined by a discrete sum integral

S(x0, x1, . . . , xN) ≈
N−1∑
n=0

Ln,n+1(xn, xn+1)
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where the discrete Lagrangian L approximates the integral of the continuum Lagrangian L
over a time step, that is

Ln,n+1 (xn, xn+1) ≈
∫ tn+1

tn

L(x, ẋ) dt (7)

Here, for simplicity, we consider the case in which the Lagrangian is a function of x and ẋ

only. The pressure variable will be introduced later. Obviously, there are a number of ways in
which approximation (7) can be chosen, and, as we shall see, each one will lead to a different
time integration algorithm.

The stationary conditions of the discrete sum integral S with respect to a variation �vn of
the body position at time step n are now given by

DnS[�vn] = D2Ln−1,n (xn−1, xn) [�vn] + D1Ln,n+1 (xn, xn+1) [�vn] = 0 ∀�vn (8)

where Di denotes directional derivative with respect to ith variable. The above equation rep-
resents the statement of equilibrium at step n and will enable the positions at step n + 1
to be evaluated in terms of positions at n − 1 and n. It will be shown in the next section
that regardless of the actual discrete Lagrangian chosen, the algorithms derived following the
above variational procedure will inherit the conservation properties of the continuum system.
Moreover, it is also shown in Reference [9] that this type of algorithms are also simplectic.

As a simple example of the above variational integrators, consider first the standard case of
the commonly used central difference (or leap-frog) time integrator. This well-known scheme
is arrived at by defining the discrete Lagrangian between two time steps as

Ln,n+1 (xn, xn+1) = �t

2
M

(
vn+1/2, vn+1/2

) − �t � (xn) (9)

where the intermediate velocity is defined as vn+1/2 = (xn+1 − xn)/�t and the mass bilinear
form is given by

M(u, v) =
∫

V0

(u · v) �0 dV0 (10)

Substituting into Equation (8) for the above discrete Lagrangian expression leads, after some
simple algebra, to the standard explicit central difference time integration scheme,

M

(
�vn,

vn+1/2 − vn−1/2

�t

)
= F (�vn; xn) − T (�vn; xn) (11)

where the external and internal forces are, respectively,

F (�v; xn) = −D�ext (xn) [�v]
T (�v; xn) = D�int (xn) [�v]

(12)

Remark
For a uniform step size, identical explicit equations are in fact obtained if the Lagrangian is
approximated as

Ln,n+1 (xn, xn+1) = �t

2
M

(
vn+1/2, vn+1/2

) − �t � (xn+1) (13)
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or indeed,

Ln,n+1 (xn, xn+1) = �t

2
M

(
vn+1/2, vn+1/2

) − �t

2
� (xn) − �t

2
� (xn+1) (14)

However, for variable time-step size, only the last equation leads to the standard second-order
leap-frog scheme.

A different scheme, namely the mid-point rule, can be derived from an incremental
Lagrangian defined as

Ln,n+1 (xn, xn+1) = �t

2
M

(
vn+1/2, vn+1/2

) − �t �
(
xn+1/2

) ; xn+1/2 = 1

2
(xn + xn+1) (15)

Simple algebra shows that the resulting equilibrium equations are

M

(
�vn,

vn+1/2 − vn−1/2

�t

)
= 1

2

{
F

(
�vn; xn+1/2

) + F
(
�vn; xn−1/2

)
−T

(
�vn; xn+1/2

) − T
(
�vn; xn−1/2

)}
(16)

This is clearly an implicit scheme. It is well known, however, that for the linear case it
is unconditionally stable. Note also that the mid-point rule is more commonly written in one
step as

M

(
�vn,

vn+1 − vn

�t

)
= F

(
�vn; xn+1/2

) − T
(
�vn; xn+1/2

) ; xn+1 = xn + �t

2
(vn + vn+1)

(17)

Averaging this expression written between n and n + 1, and n − 1 and n, it is easy to show
that Equation (16) is recovered.

3.2. Conservation of system invariants

The conservation properties of the above variational algorithms are a consequence of the
invariance of the Lagrangian with respect to rigid body translation and rotations. This is simply
a particular case of Noether’s Theorem, whereby the symmetries of the Lagrangian lead to
conserved quantities throughout the motion [11].

Consider the case of linear momentum first. This easily follows from the translational in-
variance of the discrete Lagrangian in the absence of external forces. To show this note first
that if there are no external forces, then for any arbitrary constant vector a ∈ R3,

Ln,n+1 (xn + a, xn+1 + a) = Ln,n+1 (xn, xn+1)

Differentiating this expression gives

D1Ln,n+1 (xn, xn+1) [a] + D2Ln,n+1 (xn, xn+1) [a] = 0 (18)

But from the equilibrium equation (8), taking �vn = a, we obtain

D1Ln,n+1 (xn, xn+1) [a] = −D2Ln−1,n (xn−1, xn) [a]
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Substituting into (18) gives

D2Ln,n+1 (xn, xn+1) [a] = D2Ln−1,n (xn−1, xn) [a] (19)

which implies the preservation of the discrete linear momentum, P (xn, xn+1), which is
defined as

P (xn, xn+1) · a = D2Ln,n+1 (xn, xn+1) [a] ∀a ∈ R3 (20)

The case of angular momentum is similarly obtained from the invariance of the Lagrangian
with respect to rotations

Ln,n+1 (Rxn, Rxn+1) = Ln,n+1 (xn, xn+1) (21)

where R is an orthogonal rotation matrix. Differentiating this expression now gives

D1Ln,n+1 (xn, xn+1) [w × xn] + D2Ln,n+1 (xn, xn+1) [w × xn+1] = 0 ∀w ∈ R3 (22)

where w represents a small rotation (spin) vector associated with R which is arbitrary since the
choice of R, in (21), was also arbitrary. Again from (8) for the particular case �vn = w × xn

we obtain

D1Ln,n+1 (xn, xn+1) [w × xn] = −D2Ln−1,n (xn−1, xn) [w × xn]

and substituting into Equation (22) gives

D2Ln,n+1 (xn, xn+1) [w × xn+1] = D2Ln−1,n (xn−1, xn) [w × xn] (23)

which leads to the following definition of the discrete angular momentum H (xn, xn+1),

H(xn, xn+1) · w = D2Ln,n+1 (xn, xn+1) [w × xn+1] (24)

Note that in order to define the discrete linear and angular momentum, only the dependence
of the Lagrangian on the geometry is relevant. In particular, when the Lagrangian depends
explicitly on geometry and the pressure, as in the next section, the above definitions and
derivations remain unaffected.

As an illustration of the conservation laws derived above, consider the simple case of a
system of particles with masses ma for a = 1, . . . , M as shown in Figure 2. The configuration
at time tn is given by a vector xn ∈ R3M and xT

n = [
x1

n, . . . , xa
n, . . .

]
. Consider the discrete

Lagrangian,

Ln,n+1 (xn, xn+1) =
M∑

a=1

�t

2
ma va

n+1/2 · va
n+1/2 − �t � (xn) (25)

where � represents some internal potential leading to particle interaction forces (which is
typically only a function of particle distances) and va

n+1/2 = (
xa

n+1 − xa
n

)
/�t . Both linear and

angular momentum emerge from

D2L (xn, xn+1)
[
�vn+1

] = ∑
a

mava
n+1/2 · �va

n+1 (26)
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Figure 2. A system of particles.

For instance, taking �va
n+1 = a, the standard definition of the linear momentum is recovered,

P (xn, xn+1) =
M∑

a=1
mava

n+1/2 (27)

Taking �va
n+1 = w × xa

n+1 gives, after some trivial algebra, the angular momentum as

H(xn, xn+1) =
M∑

a=1
maxa

n+1 × va
n+1/2 (28)

Note that if we consider a finite element discretization with a lumped mass matrix, the ex-
pressions for the discrete linear and angular momentum of the system are analogous to (27)
and (28).

4. FRACTIONAL STEP VARIATIONAL FORMULATION

Here, we extend the time integration algorithms introduced in the previous section to the case
in which the volumetric internal potential energy, and in turn the Lagrangian, is expressed in
terms of the configuration x, and the pressure, p, as given by Equations (4)–(6).

We consider the following discrete Lagrangian between any two steps n and n + 1:

Ln,n+1
(
xn, xn+1, pn+1/2

) = �t

2
M

(
vn+1/2, vn+1/2

) − �t�iso (xn) − �t�ext (xn)

−�t

∫
V0

1

2
pn+1/2 (Jn+1 + Jn − 2) dV0 + �t

∫
V0

p2
n+1/2

2�
dV0

(29)

Note that a central difference approximation for the volumetric components has been used and
that we have chosen to evaluate the pressure at the half-step. The stationary conditions of the
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action integral with respect to position at step n can now be obtained with the help of the
expression DJ

[
�v

] = J div �v, and lead to

M

(
�vn,

vn+1/2 − vn−1/2

�t

)
= F (�vn; xn) − T ′ (�vn; xn)

−
∫

Vn

1
2

(
pn−1/2 + pn+1/2

)
div �vn dVn (30)

where T ′(�v; x) = D�iso (xn) [�v] represents the isochoric, or deviatoric, component of
the internal forces, and the domain of integration has been changed from V0 to that in the
configuration at time level n, Vn, noting that dV0 = Jn dVn. Note also that the divergence of
�vn is taken at the current configuration n. Introducing the additional velocity variable, v∗

n+1/2,
the above expression can now be re-arranged in a more traditional fractional step format as

M

(
�vn,

v∗
n+1/2 − vn−1/2

�t

)
= F (�vn; xn) − T ′(�vn; xn) − 1

2

∫
Vn

pn−1/2 div �vn dVn (31)

M

(
�vn,

vn+1/2 − v∗
n+1/2

�t

)
= −1

2

∫
Vn

pn+1/2 div �vn dVn (32)

Assuming xn, xn+1 and pn−1/2 are known, v∗
n+1/2 can be determined explicitly from the first

equation. However, the computation of vn+1/2 from the second equation, requires the solution
of an additional equation for pn+1/2. This equation is derived from the stationarity condition
of the action integral with respect to the pressure. This gives

M�
(
�p, pn+1/2

) =
∫

V0

1
2 (Jn + Jn+1 − 2) �p dV0 (33)

where the notation

M�(p, q) =
∫

V0

1

�
p q dV0

has been used. Note that for incompressible materials � → ∞ and the above expression enforces
that the average volume ratio should be one.

The combined solution of Equations (33) and (32) is described below in the context of a
finite element discretization.

5. FINITE ELEMENT SPATIAL DISCRETIZATION

Consider now a standard linear tetrahedral finite element space consisting of M nodes for both
the pressure and geometry of the solid. The finite-dimensional approximations ph and xh, are
given in terms of the shape functions Na(X) by

ph =
M∑

a=1
Na(X) pa

h; xh =
M∑

a=1
Na(X) xa

h (34)
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The discretization of Equations (31) and (32) is expressed as

M
v∗
n+1/2 − vn−1/2

�t
= Fn − T′

n − 1

2
Gnpn−1/2 (35)

M
vn+1/2 − v∗

n+1/2

�t
= −1

2
Gnpn+1/2 (36)

where M is the mass matrix, F the vector of external forces, T′ are the equivalent internal
forces due to the deviatoric component of the stress, vT

n+1/2 = [
v1
h,n+1/2, . . . , v

a
h,n+1/2, . . .

](
with va

h,n+1/2 = (
xa

h,n+1 − xa
h,n

)/
�t

)
are the nodal velocities, pT = [

p1
h, . . . , p

a
h, . . .

]
the

nodal pressures and the gradient-like matrix at time level n, Gn, has nodal components [G]ab
n

given by

[G]ab
n =

∫
Vn

Nb∇nN
a dVn (37)

Note that the weighting functions in expression (35) corresponding to the velocity degrees of
freedom which are prescribed by boundary conditions are set to zero. As a result all the entries
in the row of Gn corresponding to a prescribed boundary velocity component are equal to zero
(i.e. the corresponding Nb is zero). Similarly, the constitutive equation (33) becomes

M�pn+1/2 = 1
2 (Vn + Vn+1 − 2V0) (38)

where the components of the volumetric mass matrix and the vector of nodal volumes are
given by

[M�]ab =
∫

V0

1

�
NaNb dV0; [Vn]a =

∫
Vn

Na dVn (39)

Equations (36) and (38) represent a set of non-linear equations for the nodal pressures due
to the fact that the volume vector Vn+1 depends non-linearly on the nodal positions at n + 1
which in turn are functions of the pressure at n + 1/2. They can be solved using a standard
Newton–Raphson algorithm. In order to derive the incremental equation, note first that the
linearization of the nodal volumes is expressed as

DV(i)
n+1

[
�x(i)

n+1

] = GT,(i)
n+1 �x(i)

n+1 (40)

where �x(i)
n+1 = x(i+1)

n+1 − x(i)
n+1 and V(i)

n+1 and GT,(i)
n+1 are calculated from the ith iterate of xn+1,

x(i)
n+1. In addition, combining xn+1 = xn + �t vn+1/2 and the linearized form of Equation (36)

gives

�x(i)
n+1 = − 1

2�t2M−1Gn�p(i)
n+1/2 (41)

where �p(i)
n+1/2 = p(i+1)

n+1/2 − p(i)
n+1/2. Equations (40) and (41) can now be combined with

expression (38) to yield a Newton–Raphson iteration process for the pressure

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:1371–1395



1382 S. K. LAHIRI ET AL.

increment �p(i)
n+1/2,(

M� + 1
4�t2GT,(i)

n+1 M−1Gn

)
�p(i)

n+1/2 = 1
2

(
Vn + V(i)

n+1 − 2V0

)
− Mkp(i)

n+1/2 (42)

The initial value for the iteration is p(0)
n+1/2 = pn−1/2, and, from (36), x(0)

n+1 = xn + �tv∗
n+1/2 −

(�t/2)M−1Gnp(0)
n+1/2. Note that once a new pressure increment has been computed solving the

linear system (42), the geometry is easily updated using expression (41). In the next section
we present a simplified form of this algorithm that will be discussed below which avoids the
Newton–Raphson iteration.

For computational convenience both the mass matrix and volumetric mass matrix will be
lumped. This permits the direct evaluation of the nodal pressures from Equation (38) to give

pa
h,n+1/2 = �

2

(
J a

n + J a
n+1 − 2

) ; J a
n = [Vn]a

[V0]a
(43)

We note that in the compressible case, it is possible to eliminate the pressure and re-define
the incremental Lagrangian in a more conventional form as a function of nodal positions alone
as

Ln,n+1 (xn, xn+1) = �t

2
vT
n+1/2Mvn+1/2 − �t�iso (xn) − �t�ext (xn) − �t�n+1/2

vol (44)

where the volumetric component is

�n+1/2
vol =

M∑
a=1

V a
0 U

(
1

2
J a

n + 1

2
J a

n+1

)
; U(J ) = 1

2
�(J − 1)2 (45)

It is easy to verify that the incremental Lagrangian (44) leads to the same set of discrete
equations. Note that Equation (44) can be interpreted as using the central difference form for
the deviatoric component of the internal energy and a mid-point form for the volumetric energy.
The resulting scheme is therefore implicit in the pressure and should have a time step only
controlled by the speed of the shear wave.

Finally, note that using Equations (20) and (24) and some simple algebra, the above discrete
Lagrangian can be shown to have the following associated conserved variables:

P = [I I · · · I ]Mvn+1/2; I =
⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦ (46)

H =

⎡
⎢⎢⎢⎣

0 −z1
n+1 y1

n+1 · · · 0 −zM
n+1 yM

n+1

z1
n+1 0 −x1

n+1 · · · zM
n+1 0 −xM

n+1

−y1
n+1 x1

n+1 0 · · · −yM
n+1 xM

n+1 0

⎤
⎥⎥⎥⎦ Mvn+1/2 (47)

which correspond to approximations to the physical linear and angular momenta obtained with
the intermediate velocity.
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6. LINEARIZED FORMULATION

6.1. Linearization of the volume increment

The Newton–Raphson iteration that appears in the above evaluation of the nodal pressures can
be eliminated if the volume increment per step is linearized. In effect, this is equivalent to
the assumption that the displacements during the increment are small. This is in general a
reasonable assumption to make given that the algorithm is still explicit with respect to the
deviatoric component.

In order to calculate the pressure increment without the need for a Newton–Raphson iteration,
consider the discretized constitutive equation (38) written in terms of the volume increment
between steps as

M�pn+1/2 = (Vn − V0) + 1
2 �Vn+1/2; �Vn+1/2 = Vn+1 − Vn (48)

Assuming that the geometrical changes are small during the increments, the volume increment
for a given node a can be expressed in terms of the divergence of the velocities as

[
�Vn+1/2

]a =
∫

V0

Na (Jn+1 − Jn) dV0 (49)

≈ �t

∫
Vn

Na div vn+1/2 dVn (50)

= �t
[
GT

nvn+1/2
]a

(51)

The volumetric constitutive equation can therefore be linearized as

M�pn+1/2 = (Vn − V0) + �t

2
GT

nvn+1/2 (52)

It is now possible to combine this expression with Equation (36) for the mid step velocity to
give a linear set of equations for the pressure as

(
M� + 1

4
�t2GT

nM−1Gn

)
pn+1/2 = (Vn − V0) + �t

2
GT

nv∗
n+1/2 (53)

The resulting time-stepping algorithm can be summarized as shown in Table I.

6.2. First step

Finally, it is clear that the first time step requires special treatment, as the velocities and pres-
sures at the previous half-step are not known. (Note that the variational equilibrium equations
(8) cannot be applied until two full configurations have been determined.) There are a number
of ways in which this can be done, but the one which we have used and which appears to be
more natural in the context of the above algorithm is given by writing the equilibrium equation
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Table I. Fractional time-step algorithm.

Steps:
0. Known: xn, vn−1/2, pn−1/2, M, and M�.
1. Calculate Fn, T′

n and Gn.
2. Calculate v∗

n−1/2 using Equation (35).
3. Calculate pn+1/2 using Equation (53).
4. Calculate vn+1/2 using Equation (36).
5. Calculate xn+1 using xn+1 = xn + �t vn+1/2.

at time t0 as

M
v∗

1/2 − v0

�t/2
= F0 − T′

0 − 1

2
G0p0 (54)

M
v1/2 − v∗

1/2

�t/2
= −1

2
G0p1/2 (55)

Note that if the initial configuration corresponds to the unstressed state of the body, last two
terms on the right-hand side of the first equation will vanish.

The above expression can be combined with the linearized constitutive equation written for
the first half-step as

M�p1/2 = 1
2�V1/2; �V1/2 = V1 − V0 ≈ �t GT

0 v1/2 (56)

to give a set of linear equations for the pressure values at the first-half step as(
M� + 1

8
�t2GT

0 M−1G0

)
p1/2 = �t

2
GT

0 v∗
1/2 (57)

7. LINEAR STABILITY ANALYSIS

It is clear from the previous section that the cost per step of the above algorithms is significantly
greater than that of a standard explicit central difference, albeit it is still far less than a typical
implicit step, which inevitably involves solving a set of highly non-linear equations for the
nodal positions. The use of this type of integration will therefore only be practical if the
time-step size is considerably greater than that of an explicit step. The aim of this section is to
prove that the linear stability limit for the fractional scheme is governed by the speed of the
sheer wave, which for nearly incompressible problems will inevitably be far slower than the
pressure wave. In order to prove this, consider first the geometrical incremental Lagrangian (44)
for the small displacement linear elasticity case as

Ln,n+1(un, un+1) = �t

2
vT
n+1/2Mvn+1/2 − �t�ext(un)

−�t

2
uT

n+1/2Kvolun+1/2 − �t

2
uT

nKisoun (58)
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where as before vn+1/2 = (un+1 − un) /�t , u is the vector of nodal displacements, and Kvol
and Kiso represent the volumetric and isochoric (i.e. deviatoric) components of the stiffness
matrix. Typically, for nearly incompressible materials Kvol will be far stiffer than Kiso and
consequently, it is important that it does not play a role in the evaluation of the critical
time step.

The corresponding stationary conditions lead now to the following set of linear equations

1

�t2 M (un+1 − 2un + un−1) + Kisoun + 1

2
Kvol

(
un+1/2 + un−1/2

) = Fn (59)

The homogenous part of the above equation can be re-arranged to give

M̂ (un+1 + un−1) + �t2
(

K − 2

�t2 M̂
)

un = 0 (60)

where

M̂ = M + 4

�t2 Kvol; K = Kvol + Kiso (61)

Consider now the eigenvalue problem Kw = �M̂w and express the displacements as a linear
combination of the corresponding eigenvectors as un = ∑

i ri
nwi . Substituting into Equation (60)

leads to the following difference equation for the modal components

ri
n+1 − (2 − �i�t2)ri

n + ri
n−1 = 0 (62)

which, upon substitution of ri
n = An, where |A| �1 for stability, quickly leads to the standard

time-step condition

�t� 2√
�max

(63)

In order to derive an upper bound for �max note that

�max = max
v

(
vTKv

vTM̂v

)
= max

v

(
vTKisov + vTKvolv

vTMv + (�t2/4)vTKvolv

)
(64)

Introducing now the maximum eigenvalue of the deviatoric stiffness component as

�iso
max = max

v

(
vTKisov
vTMv

)
(65)

gives

�max� max
v

(
�iso

maxvTMv + (4/�t2)(�t2/4)vTKvolv
vTMv + (�t2/4)vTKvolv

)
� max

(
�iso

max,
(
4/�t2)) (66)

Given that stability requires �max
(
�t2/4

)
�1, the critical time-step limit is given by

�t� 2√
�iso

max

(67)
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Thus, we see for the linear case the time step is constrained purely by the isochoric eigenvalues
and is independent of the volumetric part. The fully incompressible case can either be similarly
studied using the pressure as a separate independent variable or more easily as a limit case
of the above derivation. The examples shown below will indicate that the stability properties
demonstrated here for the nearly incompressible linear case do in fact extend to the non-linear
and fully incompressible cases.

Finally, the maximum eigenvalue �iso
max is estimated as

�iso
max = 2�

� (he)
2
min

(68)

where (he)min is the smallest characteristic element length over the whole mesh.

8. PRESSURE STABILIZATION

In the incompressible limit � → ∞, and Mk in Equation (53) or (42) vanishes. As a result,
the linear system of equations becomes singular. This can be seen by realizing that multiple
solutions can be obtained by adding any vector field w satisfying Gnw = 0 to a given solution.
In our implementation we choose to remedy this problem by introducing a pressure stabilization
term to the discrete variational in the form

�sta(pn+1/2) = 1

2
pn+1/2

(
ML

�∗ − M�∗
)

pn+1/2; �∗ = 1

�
(69)

where � represents a small stability parameter and ML
�∗ denotes the lumped version of the

volumetric mass matrix M�∗ . It is now simple to show that the equation for the pressure (53)
now becomes(

M� + ML
�∗ − M�∗ + 1

4
�t2GT

nM−1Gn

)
pn+1/2 = (Vn − V0) + �t

2
GT

nv∗
n+1/2 (70)

and Equations (35) and (36) remain unchanged. The introduction of the difference between the
lumped and consistent version of the volumetric mass matrix eliminates the artificial pressure
modes from the system and will obviously vanish as the mesh is refined for any choice of the
stability parameter �.

9. EXAMPLES

9.1. A plane strain case

We consider a square flat plate of unit side length under plane strain. The left and bottom
boundaries were restricted to move only tangentially, whereas the top and right boundaries are
restricted to move normally, as shown in Figure 3. Under the assumption of small displacements,
u = x − X, the isochoric and volumetric components of the internal energy become

�iso(u) =
∫

V

��′ : �′ dV ; �′ = 1
2 (∇u + ∇uT) − 1

3 (div u)I (71)
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Figure 3. 2-D test case.

�vol(u, p) =
∫

V

p div u dV −
∫

V

p2

2�
dV (72)

and the corresponding differential Euler–Lagrange equations can be reduced to

(� + �) ∇ (div u) + �∇2u = �ut t (73)

where � = � − 2
3� is the standard Lame coefficient. An analytical solution for this problem

is easily obtained. In particular, with the appropriate choice of initial condition the solution
becomes (cd = √

�/�)

u(t) = U0 cos

(
cd�t

2

) ⎡
⎢⎢⎢⎣

sin

(
�X1

2

)
cos

(
�X2

2

)

− cos

(
�X1

2

)
sin

(
�X2

2

)
⎤
⎥⎥⎥⎦ (74)

Note that this solution is only a function of �, and is independent of the compressibility of
the material. In order to test our formulation, we have discretized the domain into 288 equal
triangles, and run this problem with the fractional step algorithm proposed with a non-linear
neo-Hookean material as well as with the linearized small displacement potentials given by
Equations (71) and (72). For values of U0 below 0.001 we have found no appreciable difference
in the computed solutions.

Figure 4 shows the displacement of the point at X1 = 1, X2 = 0 versus the non-dimensional
time, compared to the analytical solution. In this case the code was run assuming nearly
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incompressibility for a value of �/� = 5000, which corresponds to a Poisson’s ratio of 	 =
(1 − �/�)/2 = 0.4999. The agreement with the analytical solution is excellent. We note that
if this problem had been run with an explicit code, the time step would have been of the
order of �t ∼ (he)min /

√
(� + 2�)/� which would have been about 35 times smaller than

the time step used in the calculation. Figure 5 shows the same calculation but now for a
totally incompressible material 	 = 0.5. This case could not be run with an explicit code
as, in this case, the size of the allowable time step would go to zero. We note that the
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0.9996

0.9998

1
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1.0004

1.0006
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1.001
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x
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fraction
exact

Figure 4. Displacement of point X1 = 1, X2 = 0 in time for nearly incompressible solution
(	 = 0.4999) compared with analytical solution.
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Figure 5. Displacement of point X1 = 1, X2 = 0 in time for incompressible solution (	 = 0.5)
compared with analytical solution.
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Figure 6. Energy history.

results are undistinguishable from the previous nearly incompressible case, as expected. Finally,
Figure 6 depicts the time history of the normalized total energy, E, showing also the contribution
from the kinetic, M

(
vn+1/2, vn+1/2

)
/2, and potential �iso (xn) + �ext (xn) components. Here,

the potential energy due to volumetric deformation is equal to zero. It is clear that since the
external forces do not do any work, the total energy should be conserved. Numerically we
observe a small oscillation about the conserved value which, obviously, decreases when the
discretization is refined. Nevertheless, the average level of the total energy does not decay but
stays constant.

9.2. A spinning plate

A unit thickness square plate without any constraints is released without any initial deformation
and an initial angular velocity of 1 rad/s, Figure 7. This problem is chosen to illustrate the
conservation properties of fractional time-stepping algorithm proposed. The density of the plate
and edge length are chosen to be unity. The Young’s modulus given by 3�/(1 + �/(3�)) was
chosen to be unity and the Poisson’s ratio, (1 − �/�)/2, was 0.45. The plate was meshed with
288 equal linear triangular elements as shown in Figure 8, which also shows the levels of
the pressure distribution (although shown constant over each element for display purposes, the
pressure is continuous and has a linear variation over each element). Given that the centre of
mass is initially at zero velocity, we expect it to remain so. In addition, we expect the angular
momentum,

∫
V0

xn+1 × vn+1/2�0 dV0, to stay constant at its initial value. The time histories of
the linear and angular momentum are shown in Figure 9. Note that the initial conditions used
here are such that there is no steady-state solution, even in a rotating reference frame.

9.3. 2-D beam bending

The bottom side of a unit thickness beam, moving at a constant velocity V0 = 0.1, is instantly
brought to rest as shown in Figure 10. The density of the material of the beam, its Young’s
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Figure 7. Spinning plate test case.
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Figure 8. Finite element mesh and pressure distribution at a given instant.

modulus, and the width of the beam are chosen to be unity. The Poisson’s ratio, (1 − �/�)/2,
of the material is 0.45 and the length of the beam is taken to be 6.0. This problem is non-
linear and involves large deformations. The beam was meshed with linear triangular elements
as shown in Figure 11 where the pressure distribution at a given time during the simulation is
also shown.

For this problem we show the time evolution of the energy in Figure 12. Here, the potential
energy is given by �iso (xn)+�ext (xn)+

∫
V0

(pn+1/2) (Jn+1 + Jn − 2) dV0−∫
V0

(
p2

n+1/2�
)

dV0.
Numerically, we see that the energy oscillates about the exact constant value. Again, we note
that the scheme is not dissipative and therefore very well suited for long time integrations.
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Figure 9. Linear momentum and angular momentum plots.
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Figure 10. Beam bending.

9.4. 3-D cylinder bending

A final 3-D example is presented in this section. This involves a bending problem similar to
that discussed in the previous section. A half cylinder travelling with uniform speed has its base
suddenly fixed thus leading to a large strain oscillatory motion. The initial radius of the cylinder
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Figure 11. Pressure distribution in the beam.
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Figure 12. Energy fluctuations in the case of fractional method.

is 0.32 m, its length 3.24 m and the initial speed is 2.42 m/s. This set of data corresponds to
the example already discussed in Reference [3]. The initial mesh is shown in Figure 13 which
also illustrates the deformed configuration after 5 s. In order to demonstrate that the allowable
time step is still independent of the bulk modulus, the problem has been re-run with increasing
�/� ratios. The resulting allowable time step, normalized by the allowable time step of the
standard explicit scheme when �/� = 1, is shown in Figure 14 which clearly illustrates the
desired behaviour.
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Figure 13. 3-D bending example: (a) initial mesh; and (b) deformed configuration.
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Figure 14. Dependency of maximum stable time step on bulk modulus (3-D example).

10. CONCLUDING REMARKS

We have described a fractional step algorithm for the simulation of dynamic problems involving
incompressible or nearly incompressible material. The method has a variational interpretation
and it can be easily shown to conserve exactly linear and angular momentum. In addition,
the method possesses excellent energy conservation properties which makes it well suited for
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long time integrations. The method requires the solution of a symmetric Poisson-like equation
at each time step for the pressure variable. This is clearly much cheaper than a fully implicit
scheme requiring the solution of a non-symmetric system of equations involving three times as
many unknowns (in 3-D). For large values of �, the time-step size of the presented method is
approximately

(√
3/2

)(√
�/�

)
times larger than the time step of the standard explicit scheme.

Further work is clearly needed in order to assess the range of problems for which the extra cost
induced by the fractional step method is compensated by the larger step size permitted. For
the presented algorithm the linearized analysis shows that the time step should be independent
of � and this is confirmed by our computations in the linear and the non-linear regimes.
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