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The application of proper orthogonal decomposition for incomplete (gappy) data for compressible external
aerodynamic problems has been demonstrated successfully in this paper for the first time. Using this approach, it
is possible to construct entire aerodynamic flowfields from the knowledge of computed aerodynamic flow data or
measured flow data specified on the aerodynamic surface, thereby demonstrating a means to effectively combine
experimental and computational data. The sensitivity of flow reconstruction results to available measurements and
to experimental error is analyzed. Another new extension of this approach allows one to cast the problem of inverse
airfoil design as a gappy data problem. The gappy methodology demonstrates a great simplification for the inverse
airfoil design problem and is found to work well on a range of examples, including both subsonic and transonic cases.

Introduction

T HE proper orthogonal decomposition (POD), also known as
Karhunen–Loève expansion and principle components analy-

sis, has been widely used for a broad range of applications. POD
analysis yields a set of empirical modes, which describes the domi-
nant behavior or dynamics of given problem. This technique can be
used for a variety of applications, including derivation of reduced-
order dynamical models,1 steady analysis and design of inviscid
airfoils,2 image processing,3 and pattern recognition.4

Sirovich introduced the method of snapshots as a way to effi-
ciently determine the POD modes for large problems.5 In particular,
the method of snapshots has been widely applied to computational-
fluid-dynamic (CFD) formulations to obtain reduced-order models
for unsteady aerodynamic applications.6−9 A set of instantaneous
flow solutions, or “snapshots” is obtained from a simulation of the
CFD method. The POD process then computes a set of modes from
these snapshots, which is optimal in the sense that, for any given
basis size, the error between the original and reconstructed data is
minimized. Reduced-order models can be derived by projecting the
CFD model onto the reduced space spanned by the POD modes.

Everson and Sirovich10 have developed a modification of the ba-
sic POD method that handles incomplete or “gappy” data sets. Given
a set of POD modes, an incomplete data vector can be reconstructed
by solving a small linear system. Moreover, if the snapshots them-
selves are damaged or incomplete an iterative method can be used
to derive the POD basis. This method has been successfully applied
for reconstruction of images, such as human faces, from partial data.

In the research described here, the gappy POD approach is ex-
tended for application to aerodynamic problems. Incomplete aero-
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dynamic data can arise in several situations. First, a limited set
of data might be available from experimental measurements. The
gappy POD provides a way to reconstruct full flowfield information,
using a combination of the available experimental and supplemental
computational data. Second, certain data might be missing because
they are not known. For example, one can have a set of snapshots that
correspond to a set of airfoil shapes and their respective flowfields.
Given a new airfoil shape, the gappy POD provides a way to quickly
estimate the corresponding flowfield. Conversely, the gappy POD
can be used to solve the problem of inverse design: given a target
pressure distribution, the optimal airfoil shape can be determined
by appropriate interpolation of known designs. Finally, data might
be incomplete as a result of damage of storage facilities.

Many of the current methods for airfoil design focus on the use
of optimization. Lighthill11 developed pioneering work using the
method of conformal mapping, which was later extended to com-
pressible flows by McFadden.12 By introducing the finite difference
method to evaluate sensitivity derivatives, Hicks and Henne13 first
attempted to solve the airfoil design problem as a constrained opti-
mization. Since then, gradient-based methods have been widely used
for aerodynamic design. More recently, Jameson14 applied control
theory to shape design optimization for Euler and Navier–Stokes
problems, using an efficient adjoint approach to obtain gradient in-
formation. To reduce the computational cost of solving the design
optimization problem, Legresley and Alonso2 used the POD tech-
nique for both direct and inverse designs. The gappy POD method
presented here for the inverse design problem is fast compared with
other optimization methods, which is an advantage for routine use
in design. In addition, the gappy approach allows for both computa-
tional and prior experimental data to be utilized in the design process.

In this paper, the basic POD approach is first outlined, followed
by a description of the gappy POD method. A series of examples
that demonstrate how the gappy POD method can be used for re-
construction of flowfield data and extended for airfoil inverse design
are then presented. Finally, we present some conclusions.

Proper Orthogonal Decomposition
Theory and Extensions

Proper Orthogonal Decomposition
The basic POD procedure is summarized briefly here. The optimal

POD basis vectors � are chosen to maximize the cost1:

max
�

〈|(U,Ψ)2|〉
(Ψ,Ψ)

= 〈|(U,Φ)2|〉
(Φ,Φ)

(1)
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where (U,Φ) is the inner product of the basis vector Φ with the
field U(x, t), x represents the spatial coordinates, t is time, and 〈 〉
is the time-averaging operation. It can be shown that the POD basis
vectors are eigenfunctions of the kernel K given by

K (x, x ′) = 〈U(x, t), U∗(x ′, t)〉 (2)

where U∗ denotes the hermitian of U. The method of snapshots,
introduced by Sirovich,5 is a way of determining the eigenfunctions
Φ without explicitly calculating the kernel K . Consider an ensemble
of instantaneous field solutions, or snapshots. It can be shown that
the eigenfunctions of K are linear combinations of the snapshots as
follows:

Φ =
m∑

i = 1

βi Ui (3)

where Ui is the solution at a time ti and the number of snapshots m
is large. For fluid dynamic applications, the vector Ui contains the
flow unknowns at a given time at each point in the computational
grid. The coefficients βi can be shown to satisfy the eigenproblem

Rβ = �β (4)

where R is known as the correlation matrix

Rik = (1/m)(Ui , Uk) (5)

The eigenvectors of R determine how to construct the POD basis
vectors [using Eq. (3)], while the eigenvalues of R determine the
importance of the basis vectors. The relative “energy” (measured by
the 2-norm) captured by the i th basis vector is given by

λi

/ m∑

j = 1

λ j

The approximate prediction of the field U is then given by a linear
combination of the eigenfunctions

U ≈
p∑

i = 1

αiΦi (6)

where p � m is chosen to capture the desired level of energy, Φi

is the i th POD basis vector, and the POD coefficients αi must be
determined as a function of time.

The basic POD procedure just outlined considers time-varying
flows by taking a series of flow solutions at different instants in time.
The procedure can also be applied in parameter space as in Epureanu
et al.,15 that is, obtaining flow snapshots while allowing a parameter
to vary. The parameter of interest could, for example, be the flow
freestream Mach number, airfoil angle of attack, or airfoil shape.

POD for Reconstruction of Missing Data
In CFD applications, the POD has predominantly been used for

deriving reduced-order models via projection of the governing equa-
tions onto the reduced space spanned by the basis vectors. Here, we
consider a different application of the method, which is based on the
gappy POD procedure developed by Everson and Sirovich10 for the
reconstruction of human face images from incomplete data sets. In
this paper, the gappy POD methodology will be extended for con-
sideration of fluid dynamic applications. The gappy POD procedure
is first described.

The first step is to define a “mask” vector, which describes for a
particular flow vector where data are available and where data are
missing. For the flow solution Uk , the corresponding mask vector
nk is defined as follows:

nk
i = 0 if U k

i is missing or incorrect

nk
i = 1 if U k

i is known

where U k
i denotes the i th element of the vector Uk . For convenience

in formulation and programming, zero values are assigned to the
elements of the vector Uk , where the data are missing, and pointwise

multiplication is defined as (nk, Uk)i = nk
i U k

i . Then the gappy inner
product is defined as (u, v)n = [(n, u), (n, v)], and the induced norm
is (‖v‖n)

2 = (v, v)n .
Let {Φi }m

i = 1 be the POD basis for the snapshot set {Ui }m
i = 1, where

all snapshots are completely known. Let g be another solution vector
that has some elements missing, with corresponding mask vector n.
Assume that there is a need to reconstruct the full or “repaired”
vector from the incomplete vector g. Assuming that the vector g
represents a solution whose behavior can be characterized with the
existing snapshot set, an expansion of the form (6) can be used to
represent the intermediate repaired vector g̃ in terms of p POD basis
functions as follows:

g̃ ≈
p∑

i = 1

biΦi (7)

To compute the POD coefficients bi , the error E between the original
and repaired vectors must be minimized. The error is defined as

E = ‖g − g̃‖2
n (8)

using the gappy norm so that only the original existing data elements
in g are compared. The coefficients bi that minimize the error E can
be found by differentiating Eq. (8) with respect to each of the bi in
turn. This leads to the linear system of equations

Mb = f (9)

where Mi j = (Φi ,Φ j )n and fi = (g,Φi )n . Solving Eq. (9) for b and
using Eq. (7), the intermediate repaired vector g̃ can be obtained.
Finally, the complete g is reconstructed by replacing the missing
elements in g by the corresponding repaired elements in g̃, that is,
gi = g̃i if ni = 0.

POD with an Incomplete Snapshot Set
The gappy POD procedure can be extended to the case where the

snapshots themselves are not completely known. In this case, the
POD basis can be constructed using an iterative procedure. Consider
a collection of incomplete data {gk}m

k = 1, with an associated set of
masks {nk}m

k = 1. The first step is to fill in the missing elements of the
snapshots using average values as follows:

hk
i (0) =

{
gk

i if nk
i = 1

ḡi if nk
i = 0 (10)

where

ḡi = 1

Pi

m∑

k = 1

gk
i , Pi =

m∑

k = 1

nk
i

and hk(l) denotes the lth iterative guess for the vector hk . A set
of POD basis vectors can now be computed for this snapshot set
and iteratively used to refine the guess for the incomplete data. The
procedure can be summarized as follows, beginning with l = 0:

1) Use the basic POD procedure on the snapshot set {hk(l)}m
k = 1 to

obtain the POD basis vectors for the current iteration, {Φk(l)}m
k = 1.

2) Use the first p of these POD basis vectors to repair each member
of the snapshot ensemble, as described in the preceding section. The
intermediate repaired data for the current iteration are given by

h̃k(l) =
p∑

i = 1

bk
i (l)Φ

i (l) (11)

3) The values from these intermediate repaired data are now used
to reconstruct the missing data for the next iteration as follows:

hk
i (l + 1) =

{
hk

i (l) if nk
i = 1

h̃k
i (l) if nk

i = 0 (12)

4) Set l = l + 1 and go to step 1.
The preceding iterative procedure should be repeated until the

maximum number of iterations is reached or until the algorithm has
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converged. When evaluating convergence, one can consider both the
POD eigenvalues and the POD eigenvectors as will be demonstrated
in the results.

Inverse Design via the Gappy POD Method
We now describe how the gappy POD method can be extended for

fluid dynamic applications. In particular, a new variant of the method
is proposed to perform inverse design of a two-dimensional airfoil.
Typically, given a target pressure distribution P∗, the inverse design
problem is to find an optimal airfoil shape whose surface pressure
distribution P minimizes the cost:

J = ‖P∗ − P‖2
2 (13)

To solve this inverse design problem using the gappy POD
method, the snapshots are first redefined. Rather than containing
only flow variables, each snapshot is augmented to also contain air-
foil coordinates. For example, consider the augmented snapshot set
{Vi }m

i=1, where each snapshot contains a surface-pressure distribu-
tion Pi and corresponding set of airfoil coordinates Ci :

Vi =
[

Ci

Pi

]
(14)

The target vector V∗ = [C∗T P∗T ]T can then be considered as an
incomplete data vector, where P∗ is known and C∗ must be deter-
mined. Thus, the gappy POD procedure can be used to determine

a) Points on the airfoil where pressure values are available b) Reconstruction with four POD modes

c) Reconstruction with six POD modes

Fig. 1 Reconstruction of the pressure field from the airfoil surface pressure distribution (– – –), compared with the original contours (——).

the optimal airfoil shape, using the procedure outlined in the pre-
ceding section and minimizing the cost in Eq. (13) with respect to
the gappy norm:

J = ‖V∗ − Ṽ‖2
n (15)

where n is the mask vector corresponding to V∗ and the intermediate
repaired vector Ṽ is represented by a linear combination of basis
vectors as in Eq. (7).

The inverse design problem has thus been converted into a prob-
lem of reconstructing missing data. To determine the airfoil shape,
a system of linear equations must be solved, with size equal to the
number of POD basis functions. The gappy POD method will then
produce not only the optimal airfoil shape but also the correspond-
ing surface-pressure distribution. If further flowfield information is
desired, such as pressure distribution off the surface or other flow
variables, these data could also be included in the augmented snap-
shot set.

The POD eigenvalues give guidance as to how many POD eigen-
functions should be included in the basis. Typically, one will include
p basis vectors so that the relative energy captured,

p∑

i = 1

λi

/ m∑

j = 1

λ j

is greater than some threshold, typically taken to be 99% or higher.
This energy measure determines how accurately a snapshot in the
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original ensemble can be reconstructed using the POD basis; how-
ever, it does not give any information regarding the accuracy of re-
constructing a new vector. In the inverse design problem just stated,
it is therefore important to monitor the value of the cost function
J . One can choose enough POD basis functions to capture 99% or
more of the snapshot energy, but the optimal value of J remains
unacceptably high. This indicates that the subspace spanned by the
chosen snapshots is not sufficiently rich to capture the desired de-
sign airfoil. Approaches for addressing this issue will be presented
in the results section, which now follows.

Results and Discussion
Results will now be presented to demonstrate how the gappy POD

method can be used for fluid dynamic applications. We first con-
sider a series of examples that show how the gappy POD can be
used to reconstruct incomplete flowfield data. Second, we consider
the application of the gappy POD to the problem of inverse de-
sign. All flow solutions were obtained from an inviscid steady-state
CFD code, which uses a finite volume formulation as presented in
Jameson et al.16 A standard C-grid with 192 × 32 elements is used
for all examples.

Reconstruction of Flowfield Data
The case considered is the NACA 0012 airfoil at a freestream

Mach number of 0.8. To create the POD basis, 51 snapshots are com-
puted at uniformly spaced values of angle of attack in the interval
α = [−1.25 deg, 1.25 deg] with a step of 0.05 deg. The six dominant
POD modes contain, respectively, 85.76, 9.31, 3.26, 1.09, 0.38, and
0.13% of the snapshot ensemble energy. An incomplete flowfield
was then generated by computing the flow solution at α = 0.77 deg
(which is not one of the snapshots) and then retaining only the
pressure values on the surface of the airfoil. The total number of
pressure values in the full flowfield is 6369, and the number of pres-
sure values on the airfoils surface is 121; hence, 98.1% of the data is
missing. The goal, then, is to reconstruct the full pressure flowfield
using the gappy POD method. Such a problem might occur, for ex-
ample, when analyzing experimental data. Typically, experimental
measurements will provide only the airfoil surface-pressure distri-
bution while the gappy POD method provides a way to combine this
experimental data with computational results in order to reconstruct
the entire flowfield. Figure 1a shows the points on the NACA 0012
airfoil surface where pressure field values are available. Figures 1b
and 1c show the reconstructed pressure contours with four and six
POD modes, respectively, compared with the original contours of
the CFD solution. As expected, the more modes used, the more
accurate is the reconstruction. With just limited surface-pressure
data available, the complete pressure field can be determined very
accurately with only six POD modes, showing that the gappy POD
methodology for data reconstruction works effectively for an aero-
dynamic application.

Sensitivity to Available Data
In the preceding example, it has been assumed that surface-

pressure measurements are available over the entire airfoil surface;
however, in practice, the number of available surface measurements
is limited to only a few points on the surface. Hence, it is important to
assess the sensitivity of the reconstruction result to both the quantity
and the locations of these available surface data. To select a limited
number of pressure measurements, a heuristic approach used by Co-
hen et al.17 for unsteady flows is used in this study. This approach
is based on an analogy with structural sensing, which suggests that
sensors should be located in areas of high modal activity. The POD
modes of a flow often exhibit sinusoidal spatial variation, and it has
been shown that sensors placed at local POD modal minima and
maxima yield effective flow sensing results.

This heuristic procedure is applied here to study the sensitivity of
the reconstruction results to the amount of available data. An initial
configuration of 11 measurement points corresponding to spatial
optima of the first POD mode plus a few points near the leading
edge, where all POD modes were seen to vary rapidly, is first cho-
sen. Additional measurements are then considered by adding in turn

the spatial optima of modes 2, 3, 4, 5, and 6, resulting in configura-
tions with 15, 21, 29, 31, and 39 sensing points, respectively. Fig-
ure 2 shows the resulting error between the exact and reconstructed
pressure field for each of these configurations and compares it with
the case where all 121 surface points have been used. The percentage
error is defined as

e = ‖p − p̃‖/‖p‖ × 100% (16)

where p and p̃ are vectors containing the actual and reconstructed
pressure measurements, respectively. For all of the cases, six POD
modes have been used for the reconstruction using the gappy system.
It can be seen that even with a very small number of sensors the
entire flowfield can be reconstructed very accurately, confirming
the effectiveness of the heuristic sensor placement algorithm. The
figure also shows that subsequent reductions in the error diminishes
as higher modes are considered in the sensing. This is consistent
with the fact that subsequent modes constitute progressively less of
the total energy. The POD eigenvalues can therefore be used not
only to select the number of modes in the gappy system but also to
choose an appropriate number of sensors.

Sensitivity to Experimental Error
Another practical consideration is the effect of experimental error.

In the preceding examples, CFD data have been used to simulate

Fig. 2 Percentage pressure reconstruction error vs the number of
available surface measurement points. Six POD modes were used in
the reconstruction.

Fig. 3 Percentage pressure reconstruction error vs experimental error
in surface-pressure measurements. The noise level in the measurements
is given as a percentage of the freestream pressure value.
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measurements that might be available from an experiment; however,
in practice, these measurements are subject to sensor noise. This
effect is simulated artificially in this study by adding a random
noise component to each CFD pressure measurement. Maximum
noise levels, expressed as a percentage of the freestream pressure
value, of ±1, 2, 5, 10, and 20% are applied. This yields the results
shown in Fig. 3, which compares the reconstruction error arising
from using all 121 measurement points and with 2, 4, 6, and 8
POD modes. For all of the cases, the percentage error shown in
the plot is averaged over 200 random trials. A slight modification
to the final step of the reconstruction algorithm is applied in this
investigation. Rather than replacing only the missing pressure values
by the corresponding repaired values, the entire pressure field is
represented using the POD expansion given in Eq. (7). This avoids
filling the reconstructed flowfield with noisy data and allows the
reconstruction process to act as a filter when high noise levels are
present.

Figure 3 shows a number of interesting trends. As expected, as
the magnitude of the sensor noise increases, the magnitude of the
reconstruction error also increases, even though the prediction is still
very good with a relatively high noise level of 10%. Inspecting the
points corresponding to the nominal case with no sensor noise, it can
be seen that as more POD modes are used in the reconstruction the
error decreases; however, once again, subsequent gains are reduced
as a result of the small amount of additional flow energy associated
with higher modes. In particular, it can be seen that there is little
improvement in increasing the number of modes from six to eight
(as the first six modes already contain 99.9% energy).

a) Second snapshot with 30% data missing b) Reconstruction of the second snapshot after one iteration

c) Reconstruction of the second snapshot after 25 iterations

Fig. 4 Reconstruction of the second snapshot (– – –), compared with the original contours (——).

In contrast, the result is very different when sensor noise is con-
sidered. Figure 3 shows clearly that the sensitivity to noise is in-
creased as the number of POD modes increases. Using more POD
modes in the representation allows the flowfield to be represented
more accurately, but it also allows a greater degree of “data match-
ing” as the gappy formulation attempts to minimize the error be-
tween the measured and the reconstructed data. If very high levels
of noise are present, the reconstruction with a smaller number of
modes yields more accurate results. In most fluid applications, the
dominant POD modes tend to correspond to flow patterns with low
spatial frequency. These modes do not have the resolution to match
the high-frequency components of the sensor data, causing them to
naturally filter sensor noise. Although plots such as Fig. 3 are highly
problem dependent, in practice one should use the POD eigenval-
ues to select the minimum possible number of POD modes that will
achieve the desired resolution in nominal cases. For example, for
the problem considered here, the small additional advantage of in-
cluding modes 7 and 8 should be regarded with extreme caution.
Further, if very high levels of sensor noise are expected, considera-
tion should be given to reducing the number of modes beyond what
might be chosen under nominal circumstances.

Although Fig. 3 shows the trends clearly, it does not convey well
the absolute quality of the reconstruction, because the percentage
error defined in Eq. (16) contains many far-field points with a very
small error contribution. The pointwise percentage error can be de-
fined for point i as

êi = |pi − p̃i |/|pi | × 100% (17)
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where pi and p̃i are respectively the actual and the reconstructed
pressure values at point i . Table 1 shows the average and maximum
pointwise errors for the eight-mode case and compares them to the
overall percentage error computed using Eq. (16). From the table,
it can be seen that the average and overall error quantities are very
small, even for very high levels of noise. The maximum pointwise
error grows with noise level at roughly the same rate as the aver-
age error, but is much larger in magnitude. As might be expected,
the largest pointwise errors are observed on and near the airfoil
surface. Table 1 also shows the ability of the gappy reconstruction
method to act as a filter for noisy data. If the actual measurement
data are used in the final reconstructed pressure field (instead of
representing all points by the POD expansion), then the maximum
pointwise error is, as expected, observed to be of comparable mag-
nitude to the percentage noise level. Table 1 shows that by using

Table 1 Pressure reconstruction errors for various levels of sensor
noise with eight POD modes in the reconstruction (shown are

percentages for the average pointwise error, the maximum
pointwise error, and the 2-norm of the overall relative error)

Noise level, % Average ê, % max ê, % e, %

1 0.03 0.60 0.0814
2 0.06 1.01 0.15
5 0.1437 2.4228 0.355
10 0.2867 4.5145 0.7115
20 0.5715 9.7506 1.4058

a) 23rd snapshot with 30% data missing b) Reconstruction of 23rd snapshot after one iteration

c) Reconstruction of 23rd snapshot after seven iterations

Fig. 5 Reconstruction of the 23rd snapshot (– – –), compared with the original contours (——).

the reconstructed data this error is reduced by roughly a factor of
two.

Incomplete Snapshot Set
In the second example, the creation of a set of POD basis vectors

from an incomplete set of snapshots is investigated. This problem
might again be of interest if partial flowfield data are available from
experimental results. Using the gappy POD methodology, experi-
mental and computational data with differing levels of resolution
can be combined effectively to determine dominant flow modes.

Again, we consider the NACA 0012 airfoil at a freestream Mach
number of 0.8. A 26-member snapshot ensemble is used, corre-
sponding to steady pressure solutions at angles of attack in the range
α = [0 deg, 1.25 deg], uniformly spaced with an interval of 0.05 deg.
To create the incomplete snapshot set for this example, 30% of the
pressure data of each snapshot is discarded randomly. The algorithm
described in the theory is then used to repair the data as follows.
By first repairing the missing data points in each snapshot with the
average over available data at that point, a new ensemble of data is
created that has no missing values. With this new ensemble, a first
approximation to the POD basis is then constructed. Then, each
snapshot in the ensemble is repaired using the first approximation
of the POD basis. This repaired ensemble is then used to construct
a second approximation to the POD basis. For the example in this
section, the iterative procedure above is stopped after 50 iterations.

In Fig. 4, the second snapshot with 30% data missing is repaired
by the preceding procedure with five POD modes, which contain
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Fig. 6 Eigenvalue spectrum for construction of the POD basis from
an incomplete snapshot set. Shown are the POD eigenvalues at various
stages in the iterative process.

a) Construction of the first mode after two iterations (– – –), compared
with the exact contours (——)

b) Construction of the second mode after 10 iterations (–·–), after 31
iterations (– – –), and the exact contours (——)

c) Construction of the third mode after 50 iterations (– – –) compared
with the exact contours (——)

Fig. 7 Construction of POD modes from an incomplete snapshot set.

99.99% of the flow energy. Figure 4a shows the original dam-
aged snapshot. After one iteration, the repaired snapshot in Fig. 4b
begins to resemble the CFD solution; however, a large error remains.
Figure 4c shows the repaired snapshot after 25 iterations and can be
seen to match closely with the original. Figure 5 shows the repair-
ing process for the 23rd snapshot. Compared to the contours with
30% data missing in Fig. 5a, the reconstruction in Fig. 5c is already
close to the CFD result with only seven iterations. It can be seen
that the convergence of the reconstruction process depends on the
details of the particular snapshot under consideration. In particular,
it depends on the structure of the flow snapshot and how much data
are missing. For the 23rd snapshot shown in Fig. 5, the convergence
rate is much faster than for the second snapshot shown in Fig. 4.

The convergence of the POD eigenvalue spectrum of the incom-
plete ensemble is shown in Fig. 6. It can be seen that after one itera-
tion the first two eigenvalues have converged, whereas convergence
of subsequent eigenvalues requires more iterations. For example,
after 45 iterations it can be seen that only the first five eigenvalues
have converged; however, these five modes account for almost all
of the flow energy (99.99%).

The rate of convergence for the construction of the POD modes
is also investigated using this incomplete snapshot set. This is done
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a) Parameterized airfoils based on RAE 2822 (– – –) and the Korn airfoil
(——) b) Relative eigenvalues from RAE 2822 based snapshots

Fig. 8 Airfoil snapshots and corresponding POD eigenvalues.

a) Available pressure points on the surface of the Korn airfoil

b) Exact Korn airfoil (——) and the design airfoil (– – –) with one mode

c) Exact Korn airfoil (——) and the design airfoil (– – –) with 15 modes

d) Exact Korn airfoil (——) and the design airfoil (– – –) with 29 modes

Fig. 9 Inverse design of the Korn airfoil using gappy POD: M = 0.5; snapshots based on RAE 2822.
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by comparing the POD basis vectors constructed using a complete
data set with those constructed with the incomplete set. In Fig. 7a, it
can be seen that, after just two iterations, the first mode constructed
with incomplete data matches well with the desired result. However,
in Fig. 7b, the construction of the second mode after 10 iterations
still shows significant deviation from the actual mode. At least 31
iterations are needed to obtain the second mode accurately. Figure 7c
shows that after 50 iterations the estimate of the third POD mode is
reasonable but not fully converged.

It is observed that the more energetic a POD mode, the faster the
rate of construction from a given partial data set. The first mode,
which captures 90.65% energy, requires only two iterations to con-
verge very close to the desired result; however, the second and the
third modes, which capture 7.7 and 1.4%, require 31 and 50 iter-
ations, respectively. This trend is observed for subsequent modes
and might be related to the fact that successive POD modes often
correspond to higher spatial frequency flow structures. For exam-
ple, it can be seen in Fig. 7 that the second and third modes contain
progressively more high-frequency shock structure. It is therefore
not surprising that construction of higher modes requires more iter-
ations.

Finally, we comment on the computational cost of the iterative
gappy POD procedure. At each iteration, in order to reconstruct m
snapshots, m systems of the form (9) must be solved. Furthermore,
at each iteration, an eigenvalue problem of size m must be solved
to determine the POD modes. Using a 1.6-GHz Pentium 4 personal
computer, with six POD modes, each iteration took less than 2 s.

a) Exact NACA 63212 airfoil (——) and the design airfoil (– – –) with 29
modes

b) Exact HQ 2010 airfoil (——) and the design airfoil (– – –) with 29
modes

c) Exact GOE 117 airfoil (——) and the design airfoil (– – –) with 29
modes

Fig. 10 Inverse design of the NACA 63212, HQ 2010, and GOE 117 airfoils using gappy POD: M = 0.5; snapshots based on RAE 2822.

Inverse Design Problem
The final set of examples demonstrates how the gappy POD

method can be applied to the problem of inverse airfoil design.
A collection of snapshots is generated as in Eq. (14) by choosing
a set of airfoil shapes and obtaining their corresponding surface-
pressure distributions. (Other aspects of the flowfield could also be
included if they are of interest.) While in this paper, CFD results
were used to create the snapshots, in practice, the flow data could
be obtained from computational simulations, experimental results,
tabulated data, or a combination thereof. The goal, then, is to use
the gappy POD method to determine the optimal airfoil shape that
produces a given target pressure distribution, which is not contained
in the snapshot collection.

Subsonic Flow
Snapshots for subsonic airfoil design are created by consider-

ing the RAE 2822 airfoil and adding a series of Hicks–Henne
bump functions,13 which make smooth changes in the geometry.
The Hicks–Henne bump functions are given by

y(x) = A
{

sin
[
πx log( 1

2 )/ log(t1)
]}t2

, 0 ≤ x ≤ 1 (18)

where A is the maximum bump magnitude, t2 is used to control the
width of the bump, and x = t1 is the location of the maximum of
the bump. Thirty-one bump functions with t2 = 4, A = 0.005 were
added to each of the upper and lower surfaces of the RAE 2822 airfoil
to create a total of 63 airfoil snapshots, some of which are shown in



1514 BUI-THANH, DAMODARAN, AND WILLCOX

Fig. 8a. The flow solutions for these airfoils were computed using
the CFD model with zero angle of attack and a freestream Mach
number of 0.5.

The pressure distribution for the Korn airfoil, whose geometry
is also shown in Fig. 8a, is specified as the first design target. It
can be seen in Fig. 8a that, although the Korn airfoil shares some
similarities with the RAE 2822-based snapshot set, its camber and
thickness distribution are quite distinct. This example thus repre-
sents a challenge for the gappy POD inverse design methodology.
The first 32 POD eigenvalues corresponding to the snapshot set are
shown in Fig. 8b. It can be seen that the first 21 POD modes con-
tain 99% of the system energy. Figure 9a shows the points on the
Korn airfoil where target pressure values are specified. Using the
gappy POD procedure, the corresponding optimal airfoil shape can
then be determined. Figures 9b–9d compare the exact Korn airfoil
and the target pressure to the POD design results using one, 15,
and 29 modes, respectively. As the number of modes is increased,
the predicted shape and its pressure distribution agree more closely
with the exact solutions. The corresponding values of the cost J are
given in Table 2. Using 29 POD modes, which accounts for 99.97%
of the snapshot energy, it can be seen that the error in the pressure
distribution is very small.

Using the same ensemble of snapshots as in the preceding case,
three different target pressure distributions were considered, corre-
sponding to the NACA 63212, Quabeck 2.0/10 R/C sailplane HQ

a) Exact NACA 63212 airfoil (——) and the design airfoil (– – –) with 43
modes

b) Exact HQ 2010 airfoil (——) and the design airfoil (– – –) with 29
modes

c) Exact GOE 117 airfoil (——) and the design airfoil (– – –) with 34
modes

Fig. 11 Inverse design of the NACA 63212, HQ 2010, and GOE 117 airfoils using restarted gappy POD: M = 0.5; original snapshots based on RAE
2822 and restarted snapshots based on intermediate airfoils shown in Fig. 10.

2010, and GOE 117 airfoils. The resulting inverse design results are
shown in Fig. 10. Although 29 POD modes are used for the NACA
63212 in Fig. 10a, there is still a small region on the upper surface
near the leading edge that cannot be resolved accurately. The situ-
ation is worse for the HQ 2010 airfoil. As shown in Fig. 10b, there
are some regions on the upper and lower surfaces that need to be
improved. In Fig. 10c, the design airfoil is still far away from the
exact GOE 117 airfoil, indicating that this geometry, which differs
considerably from the baseline RAE 2822 airfoil, is not contained in
the subspace spanned by the snapshot set considered. From Table 2,
the values of the cost J can be seen to be larger than for the Korn

Table 2 Optimal cost vs number of POD modes for subsonic
inverse design cases

Airfoil Number of POD modes Cost, J

Korn 1 0.022
Korn 15 0.0047
Korn 29 2.9426e−004
NACA 63212 29 6.2673e−004
HQ 2010 29 0.0061
GOE 117 29 0.0056
NACA 63212 with restart 43 1.7435e−004
HQ 2010 with restart 32 2.0622e−004
GOE 117 with restart 39 6.8127e−004
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airfoil, especially in the case of the HQ 2010 and GOE 117 air-
foils. Therefore, a way to improve the design airfoil needs to be
developed.

One approach to improve the inverse design results is to increase
the richness of the subspace spanned by the POD basis vectors. This
can be achieved by including more snapshots in the ensemble. The
exact airfoil could be obtained if further snapshots were added to
the set; however, this implies some a priori knowledge of the desired
result so that appropriate snapshots can be chosen. A better way to
improve the design airfoil is proposed in Legresley and Alonso,2

where an available design airfoil at some iteration is used as an
intermediate baseline, to which some bump functions are added to
generate a new set of snapshots. This new snapshot collection is then
used to compute a new set of POD modes and thus restart the de-
sign procedure. Here, we make use of a similar method for the gappy
POD procedure. For the preceding case of the NACA 63212, the de-
sign airfoil with 29 POD modes is used as an intermediate baseline
airfoil, to which 60 bump functions with t2 = 4, A = 0.005 are added
to obtain a new collection of 61 snapshots. A similar procedure is
used for the intermediate design airfoils shown in Fig. 10 for the HQ
2010 and GOE 117 cases, respectively. It can be seen in Fig. 11 that
the design airfoils now match the exact airfoils very well. To obtain
a cost on the order 10−4, 43, 32, and 39 POD modes were required
for the NACA 63212, HQ 2010, and GOE 117 airfoils, respectively.
The costs are shown in Table 2. The results from this restarted gappy

a) Exact Korn airfoil (——) and the design airfoil (– – –) with one mode

b) Exact Korn airfoil (——) and the design airfoil (– – –) with 36 modes

c) Exact Korn airfoil (——) and the design airfoil (– – –) with 20 restarted
modes

d) Exact Korn airfoil (——) and the design airfoil (– – –) with 29
restarted modes

Fig. 12 Inverse design of the Korn airfoil using gappy POD with and without restarts: M = 0.8.

POD procedure are much better than those obtained from using the
preceding 60-snapshot ensemble. Moreover, by allowing multiple
restarts, this procedure enables the consideration of an inverse de-
sign whose geometry differs significantly from that of the baseline
airfoil.

Transonic Flow
All of the examples in the preceding section are at a freestream

Mach number of M = 0.5, hence, the flows are shock free. It is
expected that in the transonic regime the inverse design will be
more difficult because of the presence of shocks.

The initial snapshot ensemble from the preceding section is used,
consisting of 63 airfoils based on the RAE 2822 airfoil; however,
the flow solutions are now computed at a freestream Mach number
of M = 0.8. Figures 12a and 12b show the results for an inverse
design target corresponding to the Korn airfoil pressure distribution
at M = 0.8. It can be seen that, in the transonic case, even when
36 POD modes, which capture 99.997% of the energy, are used,
the lower surface cannot be resolved accurately, and the cost J of
0.0230 is still large. However, the design airfoil can be improved
by restarting the gappy POD method as described in the preced-
ing section. The design airfoil with 36 POD modes is now used
as the intermediate baseline, and 60 bump functions with t2 = 4,
A = 0.001 are added to create a new set of snapshots. Figures 12c
and 12d show the design airfoil using POD modes created from the
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new ensemble. The design airfoil with 20 POD modes is signifi-
cantly improved in Fig. 12c, whereas using 29 modes allows the
Korn airfoil to be captured almost exactly as shown in Fig. 12d.
This example shows that the design of a transonic airfoil is more
difficult than a subsonic airfoil. The restarted gappy POD proce-
dure can be used to obtain more accurate results, that is, smaller J ;
however, as more restarts are used, the design procedure becomes
more expensive.

In general, several restarts of the gappy POD could be required
in order to obtain the desired target pressure distribution, espe-
cially if the design airfoil is significantly different from those in-
cluded in the snapshot set, or if significant nonlinearities exist in
the flow. For each restart, the CFD solver must be used to obtain
the flow solutions corresponding to the new set of parameterized
airfoils: this is the most expensive part of the computation. One
could also utilize different approaches to generate the new airfoil
set. For example, the parameters A, t1, and t2 for the bump func-
tions could be varied. Considering more bump functions would re-
sult in a larger snapshot set but might reduce the number of restarts
required.

Conclusions
For the first time, the gappy POD has been applied to a num-

ber of steady aerodynamic applications. In particular, the method
has been shown to be very effective for reconstructing flowfields
from incomplete aerodynamic data sets. This approach is useful
for many real applications where there might be a need to com-
bine experimental and computational results. A heuristic approach
of placing sensors at the locations of POD modal optima has been
shown to be very effective at yielding accurate reconstruction results
with low sensitivity to the number of available measurement points.
Although results are problem dependent, a general strategy for re-
ducing the sensitivity of the reconstruction results to experimental
error has also been proposed. In the near future, based on this initial
investigation, ongoing research will address the question of devel-
oping improved sensor placement strategies in the context of gappy
framework, and the extension of the reconstruction approach to un-
steady flows. A new extension of the methodology has also been
proposed for the inverse design of airfoil shapes. Given a database
of airfoil shapes and pressure distributions, it has been shown that
the gappy POD approach can be used to design an airfoil to match
a specified pressure target. Even when the target airfoil is differ-
ent to those contained within the original database, a systematic
restart procedure can be used to improve the accuracy of the design
results.
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