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Abstract

This paper analyzes the Fourier model reduction (FMR) method from a rational Krylov projection framework and shows how the FMR
reduced model, which has guaranteed stability and a global error bound, can be computed in a numerically efficient and robust manner. By
monitoring the rank of the Krylov subspace that underlies the FMR model, the projection framework also provides an improved criterion for
determining the number of Fourier coefficients that are needed, and hence the size of the resulting reduced-order model. The advantages of
applying FMR in the rational Krylov projection framework are demonstrated on a simple example.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Model reduction entails the systematic generation of cost-
efficient representations of large-scale systems that result, for
example, from discretization of partial differential equations.
Reduction methods have been successfully applied in differ-
ent settings, including simulation, optimization, and control of
large-scale systems arising in applications such as fluid dynam-
ics, structural dynamics, and circuit design (Antoulas, 2005).
In the case of control, model reduction is essential since many
control design techniques, such as LQG and H∞ methods, lead
to controllers of complexity comparable to that of the original
system; hence, large-scale plants lead to large-scale controllers.
In real-time applications, high-order controllers are undesirable
due to factors such as a need for complex hardware and de-
graded computational speed.

Optimal Hankel model reduction (Adamjan, Arov, & Krein,
1971; Glover, 1984), balanced truncation (Moore, 1981; Mullis
& Roberts, 1976), and singular perturbation approximation

� This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Martin
Guay under the direction of Editor Frank Allgöwer.

∗ Corresponding author. Tel.: +1 617 253 3503; fax: +1 617 258 5143.
E-mail addresses: gugercin@math.vt.edu (S. Gugercin),

kwillcox@mit.edu (K. Willcox).

0005-1098/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2007.05.007

(Liu & Anderson, 1989) methods have rigorous guarantees of
quality and global error bounds on the resulting reduced mod-
els. Despite their appealing theoretical properties, the com-
putational requirements associated with these methods make
them impractical for application to large-scale systems of order
105 or higher. Several other methods have been developed that
are applicable to large-scale systems, including Krylov-based
methods (Gallivan, Grimme, & Van Dooren, 1994; Grimme,
1997), approximate balanced truncation (Gugercin, Sorensen,
& Antoulas, 2003; Gugercin & Antoulas, 2004; Li & White,
2002), and proper orthogonal decomposition (Holmes, Lumley,
& Berkooz, 1996; Kunisch & Volkwein, 1999; Sirovich, 1987).
In many cases, this latter group of methods trades computa-
tional efficiency for a lack of rigorous guarantees and global
error bounds.

In this paper, we investigate the Fourier model reduction
(FMR) method (Willcox & Megretski, 2005). FMR preserves
stability by performing a bilinear transformation and applying
reduction in the discrete-frequency domain via a truncated
Fourier expansion. Despite its theoretical properties such as
guaranteed stability and a global error bound, the underlying
projection framework and Krylov-based (interpolation) features
of FMR have gone unnoticed. This paper analyzes FMR from a
projection framework and shows the underlying rational Krylov
projection. Through this analysis, we illustrate the interpolation
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and restricted optimal H2 properties of FMR; and show how
the FMR reduced model can be computed in a numerically
efficient and robust manner in a Krylov-based model reduction
setting. Moreover, a new, more robust stopping criterion for
FMR is proposed.

2. Model reduction via projection

Consider a single-input/single-output (SISO) dynamical sys-
tem G(s) with transfer function

G(s) = h(sI − F)−1g + J, (1)

where F ∈ Rn×n, g, hT ∈ Rn, and J ∈ R. The goal of model
reduction, in this setting, is to produce a much smaller order
system Gr (s) with transfer function

Gr (s) = hr (sIr − Fr )
−1gr + Jr , (2)

where Fr ∈ Rr×r , g, hT ∈ Rr , and Jr ∈ R, such that the re-
duced system Gr (s) approximates G(s) well. In model reduc-
tion via projection, Gr (s) in (2) is obtained as

Fr = WTFV, gr = WTg, hr = hV and Jr = J, (3)

where V ∈ Rn×r and W ∈ Rn×r with WTV = Ir . The cor-
responding oblique projector is given by VWT. Since Jr = J,
without loss of generality, we assume that J = 0.

2.1. Rational Krylov-based model reduction

In model reduction by rational Krylov projection, the goal is
to find a reduced model Gr (s) as in (2) and (3) that interpolates
G(s) and a certain number of its derivatives (called moments)
at selected points sk in the complex plane. In other words,
the goal is to find the reduced system matrices Fr , gr , and hr

so that

(−1)j

j !
dj G(s)

dsj

∣∣∣∣∣
s=sk

= h(skIn − J)−(j+1)g

= hr (skIr − Fr )
−(j+1)gr

= (−1)j

j !
dj Gr (s)

dsj

∣∣∣∣∣
s=sk

(4)

for k = 1, . . . , K and for j = 1, . . . , J , where K and J de-
note, respectively, the number of interpolation points sk and
the number of moments to be matched at each sk . The quan-
tity h(skIn − F)−(j+1)g is the jth moment of G(s) at sk . If
sk = ∞, the moments are called Markov parameters and are
given by hFj g for j = 0, 1, 2, . . . . Since the moments are ex-
tremely ill-conditioned to compute, the goal in rational Krylov-
based model reduction is to find Gr (s) that satisfies (4) without
computing the moments explicitly. De Villemagne and Skelton

(1987) showed that the matrices V and W chosen so that

Ran(V) = Im{(s1I − F)−1g, . . . , (s1I − F)−K1 g,

. . . , (sJ I − F)−1g, . . . , (sJ I − F)−KJ g},
Ran(W) = Im{(s1I − FT)−1hT, . . . , (s1I − HT)−K1 hT,

. . . , (sJ I − FT)−1hT, . . . , (sJ I − FT)−KJ hT},
produce reduced-order models Gr (s) via (3) matching 2Ki mo-
ments of G(s) at the interpolation points si for i=1, . . . , J , i.e.
Gr (s) interpolates G(s) and its first 2Ki −1 derivatives at each
si ; hence matching the moments without ever computing them.
Grimme (1997) showed how one can obtain the required ma-
trices V and W as above in a numerically efficient way using
the rational Krylov method, and hence showed how to solve the
moment matching problem using Krylov projection methods in
an effective way.

3. Fourier model reduction

Given G(s) as in (1), let the nth-order discrete-time system
H(z) = c(zI − A)−1b + d be obtained from G(s) via a bilinear
transformation, i.e.

A = (�0I + F)(�0I − F)−1, b = √
2�0(�0I − F)−1g,

c = √
2�0h(�0I − F)−1, d = J + h(�0I − F)−1g,

where �0 > 0. It is well known that

G(s) = H
(

�0 + s

�0 − s

)
or G

(
�0

z − 1

z + 1

)
= H(z). (5)

Let �i denote the Markov parameters of the discrete-time sys-
tem H(z), i.e. �0 = d, and �i = cAi−1b, i�1.

FMR was proposed in Willcox and Megretski (2005)
as an efficient method to compute reduced models with
guaranteed stability and a rigorous error bound. FMR uses
discrete-time Fourier coefficients to compute an intermediate
discrete-time reduced model, to which balanced truncation can
be subsequently applied using explicit formulae. The rth-order
intermediate reduced model Hr (z) = cr (zIr − Ar )

−1br + d is
defined by

Hr (z) =
r∑

k=0

�kz
−k , (6)

and has the form

Ar = [e2, e3, . . . , er , 0], br = e1,

cr = [�1, �2, . . . , �r ] and dr = �0, (7)

where ei denotes the ith unit vector and 0 is a vector of ze-
roes. If desired, a continuous-time reduced model Gr (s) can
be obtained from Hr (z) by an inverse bilinear transformation.
As shown in Willcox and Megretski (2005), both the interme-
diate discrete-time model Hr (z) and the final continuous-time
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reduced model G(s) are stable. Moreover, let E(z) := H(z) −
Hr (z) be the discrete-time error system. Then,

‖E(z)‖2
H∞ � r1−2q

2�(2q − 1)

∫ �

−�
|H(q)(eE�)|2 d�, (8)

where H(q) is the qth derivative of H(eE�) with respect to �.
For the rest of the paper, H(z) denotes the discrete-time sys-

tem in (5) obtained via bilinear transformation of G(s). Hr (z)

denotes the intermediate reduced-order model as in (6) and
(7) obtained from H(z) via FMR. Finally, Gr (s) is the final
continuous-time reduced system obtained via inverse bilinear
transformation of Hr (z).

4. Interpolation and optimality properties of FMR and
H2/H∞ error bounds

It follows from the construction of Hr (z) in (6) and (7) that
Hr (z) matches the first r Markov parameters of H(z). Hence,
Gr (s) interpolates the first r moments of G(s) at s = �0. To
present the optimality properties of FMR, we recall the follow-
ing theorem slightly modified from Gaier (1987) and Meier and
Luenberger (1967):

Theorem 1 (Gaier, 1987; Meier and Luenberger, 1967). Given
a stable discrete-time dynamical system H(z)=c(zI−A)−1+d,
and a fixed stable pole �, define

Ĥr (z) := d + �0 + �1z + · · · + �r−1z
r−1

(z − �)r
.

Then ‖H − Ĥr‖H2 is minimized if and only if

dj H(z)

dzj
= dj Ĥr (z)

dzj
at z = 1

�
for j = 0, . . . , r − 1. (9)

Due to (7), Hr (z) has all of its poles located at z = 0. As
stated in the beginning of this section, Hr (z) interpolates first r
moments of H(z) at z=∞ (i.e. the first r Markov parameters).
Hence due to Theorem 1, Hr (z) is the rth-order optimal H2
approximation to H(z) among all models having all r poles
located at z = 0. In other words, if we define

H̃(z) = d + �1z
r−1 + �2z

r−2 + · · · + �r−1z
r−1

zr
= d + n(z)

zr
,

then, Hr (z) = arg minn(z) ‖H − H̃‖H2 .

Lemma 2. Given the above set-up,

‖H(z) − Hr (z)‖H2 =
∞∑

i=r+1

|�i |2. (10)

Moreover, let A be diagonalizable and let A = U�U−1 be the
eigenvalue decomposition with � = diag(�1, . . . , �n). Define
	A = ‖U‖‖U−1‖ and 
A = maxi |�i |. Then

‖H(z) − Hr (z)‖H2 �‖c‖2‖b‖2	2
A


2r
A

1 − 
2
A

. (11)

Proof. Eq. (10) follows from the fact that by definition of
Hr (z) in (6), H(z) − Hr (z) = ∑∞

k=r+1 �kz
−k . To prove (11),

first use the definition of �i = cAi−1b in (6) and note that
|�i |2 �‖c‖2‖b‖2‖Ai−1‖2. Plugging A = U�U−1 into the last
inequality and using ‖A‖�‖U‖‖�‖‖U−1‖ leads to the desired
formula (11) after realizing ‖�‖ = 
A < 1. �

Remark 3. Note that (10) is a global error expression, and does
not involve reduced-order matrices. Since 
(A) < 1, for suffi-
ciently large values of i, �2

i will decrease quickly. We note that
even though (10) contains an infinite sum, since �i = cAi−1b
and 
A < 1, it is always bounded as shown in (11). This be-
havior is similar to the decay of Hankel singular values and
the error bound (10) has a similar structure to that in the bal-
anced truncation framework. On the other hand, (11) gives an
a priori global error bound, which can be easily computable for
small-to-medium scale problems.

Remark 4. In the case that A is not diagonalizable, one could
use the Schur decomposition of A instead of the eigenvalue
decomposition. Let A = Y(� + N)YT be the Schur decompo-
sition of A, where YYT = I, � is diagonal, and N is strictly
upper triangular. Then in (11), 
A should be replaced by 
A +
ε, where ε > 0 with 
A + ε < 1, and 	A should be replaced
by 	ε = (‖N‖F /ε)2(n−1), where ‖N‖F denotes the Frobenius
norm of N. Note that such an ε always exists (Gugercin et al.,
2003).

Corollary 5. For q = 1, 2, . . . ,

‖G(s) − Gr (s)‖2
H∞ � r1−2q

2�(2q − 1)

∫ �

−�
|H(q)(eE�)|2 d�,

where H(q) is the qth derivative of H(eE�) with respect to �.

Proof. The result follows from combining (8) with the fact that
bilinear transformation preserves the H∞ norm. �

Remark 6. If the derivatives H(q) can be computed using some
quadrature rule, then Corollary 5 provides a computable H∞
error bound for the continuous-time error system.

5. Rational Krylov projection framework for FMR

In this section, we analyze FMR from a (rational Krylov)
projection framework and derive an algorithm that constructs
Hr (z) in (7) from H(z) using a Krylov-based algorithm without
directly computing the Markov parameters �i . The motivation
for this analysis is twofold. First, in the case where the spectral
radius of A is close to unity, the Krylov-based approach pro-
vides a numerically more robust way to compute the FMR re-
duced model. Second, in Willcox and Megretski (2005) it was
proposed that magnitudes of the Markov parameters should be
used as a guidance to select r, the size of the FMR reduced
model. We will show that the Krylov approach provides a bet-
ter way to determine an appropriate value of r.
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5.1. Projection matrices

To derive the rational Krylov framework for FMR, we must
construct matrices V and W, where V and/or W span a Krylov
subspace with WTV = Ir such that the projections

Ar = WTAV, br = WTb, cr = cV (12)

yield the matrices in (7). Since Hr (z) matches the first r Markov
parameters of H(z), it follows that the matrix V is given by

V = [b, Ab, A2b, . . . , Ar−1b]. (13)

Eq. (13) shows that V spans a regular Krylov subspace, hence
reflecting the underlying Krylov projection framework for
FMR. Next, we need to determine W. Let WT be any left
inverse of V. Since WTV = Ir , one has

[WTb, WTAb, WTA2b, . . . , WTAr−1b] = Ir ,

or equivalently WTAi−1b = ei , i = 1, . . . , r . For this selection
of W, the resulting reduced system matrices are given by

Ar = WTAV = WT[Ab, A2b, . . . , Arb]
= [e2, e3, . . . , er , WTArb], (14)

br = WTb = e1 and cr = cV = [�1, �2, . . . , �r ]. (15)

As can be seen from (15), br and cr are already in the desired
form (7) for any left inverse WT of V. Also, (14) shows that
the first r − 1 columns of Ar have the desired form. In order to
achieve the appropriate last column of Ar as in (7), we require
W to satisfy WTV = Ir and WTArb=0. The following lemma
specifies this selection of W:

Lemma 7. Let V be as given in (13). Moreover, let

[V Arb] = [Q1 q2]
[R1 x

0 �

]
(16)

be the QR-decomposition of [V Arb], i.e. QT
1 Q1 =Ir , qT

2 q2 =1,
QT

1 q2 = 0, R1 ∈ Rr×r is an upper-triangular matrix, x ∈ Rr ,
and � is a scalar. Then, using

W =
(

Q1 − 1

�
q2xT

)
(R−1

1 )T (17)

together with V in the projection (12) yields the desired
reduced-order matrices in (7), and thus an equivalent projec-
tion framework for FMR.

Proof. If we only required WT to be a left inverse of V, a
straightforward choice would be WT = R−1

1 QT
1 . However, to

force the additional constraint WTArb = 0, this selection must
be modified so that the left inverse property still holds with the
additional property that Arb is in the kernel of WT. To achieve
this, one needs to use the QR-decomposition of the appended
matrix [V Arb]. From (16), a potential selection is of the form

WT = R−1
1 (QT

1 + zqT
2 ). (18)

We observe that this selection still satisfies WTV =0. So, what
is left is to find the appropriate z so that WTArb=0. It follows
from (16) that Arb = Q1x + q2�. Plugging this expression,
together with WT as in (18), into the equation WTArb = 0 and
solving for z yields the solution z = −(1/�)x. Finally, using
this selection of z in (18) completes the proof. �

Remark 8. The formulation in Lemma 7 puts FMR into a ratio-
nal Krylov projection framework: one simply uses an Arnoldi-
type algorithm to compute an orthogonal basis for [V Arb] =
[b, Ab, A2b, . . . , Arb], which spans a Krylov subspace. Even
though the required subspace is a regular Krylov subspace in
terms of the discrete-time matrices, it is a rational Krylov sub-
space in terms of the original continuous-time matrices. How-
ever, only one shift has been used, and hence only one sparse
decomposition is required. Hence, this formulation of FMR can
be implemented in a numerically effective way. As noted above,
direct computation of the Markov parameters is avoided.

Remark 9. In a systems theoretical setting, going from H(z) to
Hr (z) amounts to direct truncation of the controllable canonical
form of H(z). Let Q be the full controllability matrix for H(z),
i.e. Q=[b, Ab, . . . , An−1b]. Then, the projection (12) amounts
to choosing V as the first r columns of Q and WT as the first r
rows of Q−1.

5.2. Computational implementation

Even though the above analysis puts FMR into Krylov pro-
jection framework, it uses the power basis V explicitly, which
is numerically ill-conditioned. Here, we will resolve this issue
and show how to avoid explicit computation of V while still
obtaining the quantities R1, x and � that result from the QR-
decomposition of V as defined in (16).

One can show that

A[V Arb] = [V Arb][e2, e3, . . . , er+1, hr+1] + feT
r+1, (19)

where hr+1 and f are vectors of appropriate size. Based on (16)
and (19), we make the following definitions:

Q := [Q1 q2], R :=
[R1 x

0 �

]
,

H := [e2, e3, . . . , er+1, hr+1]. (20)

Therefore, (19) becomes AQR = QRH + feT
r+1. Multiplying

this expression by R−1 from right, we obtain

AQ = Q RHR−1︸ ︷︷ ︸
:=Ĥ

+ feT
r+1R−1︸ ︷︷ ︸
:=f̂eT

r+1

, (21)

i.e.

AQ = QĤ + f̂eT
r+1. (22)

Eq. (22) is precisely what one would obtain if r +1 steps of the
Arnoldi algorithm were run on A and b. This is done without
explicitly forming the powers of A. However, to obtain the de-
sired matrix W in (17), we need to extract R from Ĥ. Because
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of the specific upper Hessenberg structures of H and Ĥ, this
can be done as follows. Note that, by definition, ĤR=RH. Let
ĥij and 
ij denote the (i, j)th entry of Ĥ and R, respectively.

Also, let ĥj and rj denote, respectively, the jth columns of Ĥ
and R. r1 is explicitly known: r1 = ‖b‖e1 (hence, 
11 = ‖b‖).
Multiplying ĤR = RH with e1 from the left yields 
11ĥ1 = r2;
hence, the second column of R is obtained. Then, similarly,
multiplication by e2 yields r3, and so on. Continuing in this
way, one extracts R from Ĥ iteratively without forming V as
desired. This approach of obtaining R is numerically efficient
since it only requires r matrix–vector multiplications with the
small matrix Ĥ ∈ R(r+1)×(r+1). Moreover, the vector multiply-
ing the matrix Ĥ at the kth step has only k non-zero entries.
Upon completion of the iterative process, one can construct the
required reduced model by re-defining V and W as

V = Q1 and W = Q1 − 1

�
q2xT, (23)

without forming the power basis. The resulting reduced model
will have the same transfer function Hr (z) as in (6) as desired
and be only a similarity transformation away from the state-
space matrices in (7). Eq. (23) completes the effective numerical
computation of FMR through rational Krylov projection. As
explained above, this is achieved by first running r + 1 steps
of Arnoldi algorithm on A and b, then extracting R from the
Arnoldi basis and finally reducing the system via projection
using V and W in (23).

5.3. A stopping criterion for FMR

Willcox and Megretski (2005) proposed that magnitudes of
the Markov parameters should be used as a guidance to select r,
the size of the FMR reduced model. Even though this approach
works effectively for the cases where the magnitudes of the
Markov parameters �i decrease rapidly, it might lead to unnec-
essarily large reduced-order dimension r when the �i decrease
very slowly. This can be explained by observing that even if
the magnitudes of the Markov parameters are not decreasing,
the Krylov subspace V underlying FMR will not necessarily
carry new information with the addition of another column; in
other words, even though the �i are not decreasing, it is pos-
sible that the Krylov subspace V is almost rank deficient and
another column does not bring any new information.

The new Krylov-based formulation of FMR provides an easy
and more effective way to determine an appropriate value of
r. We will simply monitor the rank of V and will use this
information as a stopping criterion without computing V. There
are two possible ways to achieve this goal. The first one is
simply to use the diagonal entries of R as a measure for the rank
deficiency of V. Note that R is obtained iteratively at each step.
Once the ratio R(1, 1)/R(k, k) drops below certain tolerance,
one can deduce that V is rank deficient and the reduced model
will not be improved with an additional step since no new
information will be added to V. The second way is to monitor
the condition number of V, which is equal to the condition
number of R, by computing the singular value decomposition
of R and examining the ratio �1(R)/�k(R). Once this number

is below a tolerance value, one can terminate the algorithm. We
note that at the kth step, R has dimension k × k, where k is
small; hence SVD of R is cheap. However, one still does not
need to re-compute the SVD of R at each step. The SVD of R
at the (k + 1)th step can be effectively updated using the SVD
of R from the kth step since each step corresponds adding one
column to R; see, for example, Gugercin et al. (2003).

6. Numerical example

In this section, we illustrate the concepts of Section 5 by a
numerical example. The full-order model we use describes the
dynamics between the lens actuator and the radial arm position
of a portable CD player; it has 120 states, i.e. n = 120, with a
single input and a single output. The goal is to create a reduced
model in order to control the arm position dynamics. For more
details on this system, see Grimme (1997).

We apply the original formulation of FMR and the new ra-
tional Krylov formulation, denoted by RK-FMR, with the fre-
quency �0 = 300 rad/s and reduce the order to k = 1 : 20.
The results are shown in Figs. 1(a) and (b). Fig. 1(a) depicts
how the two ratios R(1, 1)/R(k, k) and �1(V)/�k(V) evolve
as k increases. The figure reveals that the ratio R(1, 1)/R(k, k)

follows the behavior of the true condition number quite well.
Moreover, even for k = 20, the Krylov subspace V is full-rank,
which, in turn, implies that every iteration step brings in new
information. This can also be seen in Fig. 1(b) which shows
that the H∞ error is reduced after each step, i.e. the reduced
model is improved at each step. On the other hand, as Fig. 1(b)
illustrates, RK-FMR produces the same result as FMR without
explicit moment computation.

For the second case, we apply FMR and RK-FMR with the
frequency �0 = 1.5 rad/s and reduce the order to k = 1 : 20 as
above. The evolution of R(1, 1)/R(k, k) and �1(V)/�k(V), and
the relative H∞ error are depicted in Figs. 2(a) and (b), respec-
tively. As Fig. 2(a) illustrates, for this choice of �0, the Krylov
subspace V becomes numerically rank deficient after a small
number of iterations. Once more, the ratio R(1, 1)/R(k, k)

predicts the behavior of true condition number well. We set
a tolerance value as 
 = 10−10 and terminate RK-FMR once
R(1, 1)/R(k, k) is below 
; this is the reason why the graph of
R(1, 1)/R(k, k) stays constant after k =9 (since no more steps
are taken in RK-FMR). However, as Fig. 2(b) reveals there is
almost no loss of accuracy in terms of the H∞ norm of the er-
ror. Since V becomes almost rank-deficient, running FMR after
k = 9 barely improves the quality of the resulting error system.
As can be seen from Fig. 2(b), with k = 9, RK-FMR yields a
relative H∞ error of 0.9997, while FMR with k =20 results in
0.9995. This indicates that, as expected from the conditioning
of the Krylov subspace V, almost no improvement has occurred
despite increasing the reduced model size from k = 9 to 20.

Finally, we examine if the behavior of V for the second
case, i.e. for �0 = 1.5, can be recovered from inspecting the
Markov parameters �i of H(z); in other words, we examine
if magnitudes of �i would be a reasonable stopping criterion.
Fig. 3 plots the Markov parameters �i of H(z) for �0 = 1.5
and shows that the �i do not decay at all; on the contrary, they
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Fig. 2. FMR vs. Krylov-FMR for �0 = 1.5 (a) − Numerical rank of V, (b) − Relative H∞ error.

grow even until k = 40. This means that a stopping criterion
based on the decay of �i will yield unnecessarily large reduced
order, even though this does not improve the quality of the
reduced-order model as shown in Fig. 2(b). Hence, the Krylov-
based stopping criterion is more appropriate and numerically
effective for FMR. Moreover, monitoring the rank of V as done
in RK-FMR can also be used to determine if the choice of �0
is poor at a much earlier stage. In this case, simply looking

at the H∞ error behavior in Fig. 2(b) and the decay of �i in
Fig. 3, one might decide to continue the FMR steps expecting
that the error will decay. However, monitoring �1(V)/�k(V) as
in Fig. 2(a) reveals that the subspace has become rank-deficient,
and that the next step will not bring in new information; hence
one should choose a different frequency �0.



Author's personal copy

S. Gugercin, K. Willcox / Automatica 44 (2008) 209 – 215 215

5 10 15 20 25 30 35 40
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

k

| 
η i

 |

| ηi | of H (z) for ω 0 = 1.5

Fig. 3. FMR vs. Krylov-FMR for �0 = 1.5.

7. Conclusions

In this note, we have developed the rational Krylov projection
framework for FMR, and introduced its interpolation and opti-
mality properties. A numerically efficient Krylov-based setting
has been illustrated to perform FMR and a new, more robust
stopping criterion has been proposed.
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