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a b s t r a c t

We present an implicit immersed boundary method for the incompressible Navier–Stokes
equations capable of handling three-dimensional membrane–fluid flow interactions. The
goal of our approach is to greatly improve the time step by using the Jacobian-free
Newton–Krylov method (JFNK) to advance the location of the elastic membrane implicitly.
The most attractive feature of this Jacobian-free approach is Newton-like nonlinear conver-
gence without the cost of forming and storing the true Jacobian. The Generalized Minimal
Residual method (GMRES), which is a widely used Krylov-subspace iterative method, is
used to update the search direction required for each Newton iteration. Each GMRES iter-
ation only requires the action of the Jacobian in the form of matrix–vector products and
therefore avoids the need of forming and storing the Jacobian matrix explicitly. Once the
location of the boundary is obtained, the elastic forces acting at the discrete nodes of the
membrane are computed using a finite element model. We then use the immersed bound-
ary method to calculate the hydrodynamic effects and fluid–structure interaction effects
such as membrane deformation. The present scheme has been validated by several exam-
ples including an oscillatory membrane initially placed in a still fluid, capsule membranes
in shear flows and large deformation of red blood cells subjected to stretching force.

! 2009 Elsevier Inc. All rights reserved.

1. Introduction

This paper considers an implicit immersed boundary method for simulating viscous incompressible flows with immersed
elastic membranes. The immersed boundary (IB) method was originally developed by Peskin [36] to study the fluid dynamics
of blood flow in the human heart. Peskin’s immersed boundary method has proven to be a very useful method for modeling
fluid–structure interaction involving large geometry variations. The original method has been developed further and applied
to many biological problems including platelet aggregation [14,15,52], the deformation of red blood cells in a shear flow [11],
the swimming of bacterial organisms and others [10,13]. More details on the immersed boundary method can be found in
[37] and the references therein.

Typically, in the framework of the IB method, the elastic boundary is treated as a collection of elastic fibers. Alternatively,
the elastic boundary is also modeled as an elastic membrane [11] or a thin shell [17]. These models are used to compute the
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forces acting at the discrete nodes representing the immersed boundary. For most biological tissues, their membranes are
stiff and therefore a small perturbation of the boundary can lead to large elastic forces. This causes a severe restriction in
time step required to maintain stability of the immersed boundary method. Much effort has been made to analyze the stiff-
ness of the IB method and remove this restriction [18,22,33,47,48]. Several semi-implicit and implicit methods have been
developed to alleviate this problem [12,21,31,35,51]. Comparisons of the explicit method and the implicit methods in the
context of moving immersed boundaries have been presented in [35,51]. In the context of immersed interface methods
(IIM) a quasi-Newton method has been proposed [27–29] to improve time stability. However, for very stiff problems, small
time steps are still required. In order to alleviate this problem, an unconditionally stable discretization of the immersed
boundary equations has been proposed [34]. In this scheme, an approximate Newton solver is employed to advance the loca-
tion of the boundary. The Newton method, however, requires a Jacobian matrix which is extremely expensive to compute
explicitly for every time step. To avoid forming the Jacobian matrix explicitly, an iterative matrix-free method has been
introduced in the context of the immersed continuum method [53]. Another strategy for solving the implicit IB equations
involves deriving Schur complement equations by eliminating one or more of the unknown variables [33,35]. Several meth-
ods have been employed to solve the Schur complement equations such as fixed point methods, projectionmethods and Kry-
lov-subspace methods.

Recently, an efficient semi-implicit IB method with arclength–tangent angle formulation has been proposed for two-
dimensional Navier–Stokes equations [21]. In this formulation, an unconditionally stable semi-implicit discretization is de-
rived and the small scale decomposition technique [20] is applied to the discretization. This semi-implicit scheme has much
better stability property than the explicit scheme and therefore offers a substantial computational cost saving. We note that
the stability of this scheme is weaker than the unconditionally stable scheme proposed in [34] because this scheme treats
only the leading order term implicitly [21].

In the present paper, an implicit immersed boundary method is presented with vastly improved time step by using the
Jacobian-free Newton–Krylov method (JFNK) [24] to advance the location of the elastic membrane implicitly. This matrix-
free approach has many advantages. The most attractive is Newton-like nonlinear convergence without the cost of forming
and storing the true Jacobian. In this Jacobian-free method, the search direction required for each Newton iteration is up-
dated using the Generalized Minimal Residual method (GMRES) [44], which is a widely used Krylov-subspace iterative meth-
od. Each GMRES iteration only requires the action of the Jacobian in the form of matrix–vector products and therefore avoids
the need of forming and storing the Jacobian matrix explicitly. The JFNK method has become established in computational
fluid dynamics (CFD) to deal with the nonlinear convection term [3,6,16,25]. In this paper, we employ the JFNK method to
advance the membrane location implicitly while still approximating the convection term explicitly. Once the location of the
boundary is obtained, the elastic forces acting at the discrete nodes of the membrane are computed. In the present work, an
elastic membrane model with bending stiffness proposed in [38,42] is employed. In our numerical studies, the immersed
boundary method provides the means of calculating the hydrodynamics and fluid–structure interaction effects such as mem-
brane deformation, and the finite element method with membrane model is used to calculate the elastic forces on the
membrane.

The remainder of this paper is organized as follow. In Section 2, we describe the governing equations, the immersed
boundary algorithm, the discrete model of capsule membranes and the method for advancing the membrane evolution in
time. We then present a detailed implementation of the present method in Section 3. In Section 4, some numerical examples
are presented and finally, some conclusions are given in Section 5.

2. Numerical methods

2.1. Governing equations

In a three-dimensional bounded domain X that contains an enclosed membrane CðtÞ, we consider the incompressible
Navier–Stokes equations formulated in primitive variables, written as

qðut þ ðu $rÞuÞ ¼ &rpþ lDuþ F; ð1Þ
r $ u ¼ 0 ð2Þ

with boundary conditions

uj@X ¼ ub; ð3Þ

where u is the fluid velocity, p is the pressure, q and l are constant density and viscosity of the fluid, respectively. The effect
of the membrane CðtÞ immersed in the fluid results in a singular force F which has the form

Fðx; tÞ ¼
Z

CðtÞ
f ðq; r; s; tÞdðx& Xðq; r; s; tÞÞdqd rds; ð4Þ

where ðq; r; sÞ are curvilinear coordinates attached to the membrane at a material point, Xðq; r; s; tÞ is the position at time t in
Cartesian coordinates of the material point whose label is ðq; r; sÞ; x ¼ ðx; y; zÞ is spatial position, and f ðq; r; s; tÞ is the force
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strength. Here, dðxÞ is the three-dimensional Dirac function. The motion of the boundary can be determined by integrating
the equation

dXðq; r; s; tÞ
dt

¼
Z

X
uðx; tÞdðx& Xðq; r; s; tÞÞdx: ð5Þ

2.2. Description of the IB and projection methods

The immersed boundary method uses a set of N control points Xl; l ¼ 1; . . . ;N to represent the immersed boundary. The
force density is computed at these control points and is distributed to the Cartesian grid points using a discrete representa-
tion of the delta function,

Fðxði; j; kÞ; tÞ ¼
XN

l¼1

f lðq; r; s; tÞDhðxði; j; kÞ & XlðtÞÞDqDrDs; ð6Þ

where f lðq; r; s; tÞ is the force density at the control point Xl whose label is ðq; r; sÞ; xði; j; kÞ and Fðxði; j; kÞÞ are the coordinate
of grid point ði; j; kÞ and the force at that point, respectively. DhðxÞ is a three-dimensional discrete delta function,

DhðxÞ ¼
1
h3u

x
h

! "
u y

h

! "
u z

h

! "
; ð7Þ

where h is the grid size, x; y and z are the Cartesian components of x and u is a continuous function which is taken from [43]
and given by

uðdÞ ¼

1
6 5& 3jdj&

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& 3ð1& jdjÞ2

q$ %
; 0:5 6 jdj 6 1:5;

1
3 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
&3d2 þ 1

p! "
; jdj 6 0:5;

0; otherwise:

8
>>>><

>>>>:

ð8Þ

Once the force density is computed at the control points and distributed to the grid, the Navier–Stokes equations with the
forcing terms are then solved for the pressure and velocity field at the Cartesian grid points using the projection method [4].
Our numerical algorithm is based on the pressure-increment projection algorithm for the discretization of the Navier–Stokes
equations. The spatial discretization is carried out on a standard marker-and-cell (MAC) staggered grid similar to that
described in Kim and Moin [23]. Given the velocity un, the pressure pn&1=2 and the forcing term Fnþ1=2, we compute the inter-
mediate velocity u' as follows:

qu' & un

Dt
¼ &qðu $ruÞnþ

1
2 & GMACpn&1

2 þ l
2

r2
hu

' þr2
hu

n
! "

þ Fnþ1=2; ð9Þ

u'j@X ¼ unþ1
b ;

where the advective term is extrapolated using the formula,

ðu $ruÞnþ
1
2 ¼ 3

2
ðu $rhuÞn &

1
2
ðu $rhuÞn&1: ð10Þ

This intermediate velocity field, in general, does not satisfy the divergence-free condition (2). Therefore, we compute a pres-
sure-increment /nþ1 and update the pressure and velocity field as

r2
h/

nþ1 ¼ qDMACu'

Dt
; n $r/nþ1j@X ¼ 0; ð11Þ

unþ1 ¼ u' & 1
qDtGMAC/nþ1; ð12Þ

pnþ1=2 ¼ pn&1=2 þ /nþ1 & l
2q ðDMACu'Þ: ð13Þ

We note that the above projection method is analogous to the pressure-increment projection method presented in [4]. In the
above expressions, rh and r2

h are the standard central difference operators, GMAC and DMAC are the MAC gradient and diver-
gence operators, respectively [26].

The velocity field is then interpolated to find the velocity at the control points as,

uðX l; tÞ ¼
X

i;j;k

uðxði; j; kÞ; tÞDhðxði; j; kÞ & XlðtÞÞh
3; ð14Þ

and this velocity is used to advance the position of the membrane.
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2.3. Discrete model of the capsule membrane

2.3.1. Membrane tensions
Following the standard procedure [2,42], in order to keep track of the position of a material point on the membrane, let X

and XðX; tÞ be its positions in the unstressed state and after deformation at time t, respectively. Let C be the deformation
gradient tensor defined as

C ¼ @X
@X

: ð15Þ

Following [2], the surface deformation gradient tensor is defined as

A ¼ ðI & nnÞ $ C $ ðI & !n!nÞ; ð16Þ

where !n and n are the unit normal vector to the undeformed and deformed membranes, respectively. The left Cauchy–Green
strain tensor is then defined as

B ¼ K2 ¼ A $ AT : ð17Þ

The membrane tension tensor s is related to the surface strain energy function WðK1;K2Þ and B by

s ¼ e&K1
@W
@K1

P þ @W
@K2

B
$ %

; ð18Þ

where P ¼ I & nn and K1; K2 are the strain invariants

K1 ¼ log k1k2 ¼ 1
2
log

1
2
ðtrðBÞ2 & trðB2ÞÞ

$ %
; ð19Þ

K2 ¼ 1
2

k21 þ k22
& '

& 1 ¼ 1
2
trB& 1: ð20Þ

Here, the eigenvalues k1; k2 of K are the principle planar stretches. The strain energy function for a neo-Hookean membrane
is given by

W ¼ E!h
6

ð2K2 þ e&2K1 & 1Þ; ð21Þ

where E is the Young’s modulus and !h is the membrane thickness. For a thin membrane,

W ¼ Es

6
ð2K2 þ e&2K1 & 1Þ; ð22Þ

where Es ¼ E!h is the surface elastic modulus, to be distinguished from the volume modulus of elasticity of a three-dimen-
sional material [40]. Alternative constitutive equations for hyperelastic materials such as biological membranes can be used.
For example, the Yeoh form of strain energy function [54] given by

W ¼ C10ð2K2 þ e&2K1 & 1Þ þ C30ð2K2 þ e&2K1 & 1Þ3; ð23Þ

where C10 and C30 are constants, can be used to model red blood cell (RBC) deformation. Another strain energy function for
the red blood cell membrane which conforms to deformation measurements for human RBCs has been developed in [46]

W ¼ C11

4
ð2K2ðK2 þ 1Þ þ 1& e2K1 Þ þ C21

8
ðe2K1 & 1Þ2; ð24Þ

where C11 and C21 are model constants and typically C11 ( C21.

2.3.2. Membrane bending moments
The bending moments developing along the edges of a membrane patch in the deformed state depend on the instanta-

neous edge curvature, as well as on the edge curvature in the rest state. For sufficiently small bending deformations, but not
necessarily small in-plane deformations, the bending moments may be approximated with the linear constitutive equation

m ¼ jB j& jR
mP

& '
; ð25Þ

where jB is the bending modulus, j is the Cartesian curvature tensor and jR
m are the position dependent mean curvatures of

the resting configurations. More details on the derivation of Eq. (25) can be found in [40,41].
Finally, the local force density f exerted by the membrane is given by

f ¼ rs $ ðsþ qnÞ; ð26Þ

where rs is the surface gradient operator rs ¼ ðI & nnÞ $r and q is the transverse shear tension. The expression for the
transverse shear tension vector in terms of the surface divergence of the tensor of the bending moments is

q ¼ ½ðP $rÞ $m* $ P ¼ tr½ðP $rÞm* $ P: ð27Þ
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2.4. Advancing the membrane

2.4.1. Explicit method
The simplest version of the immersed boundary method is the explicit scheme in which the forward Euler method is used

to advance the location of the membrane. This explicit scheme includes the following steps:

+ Advance the control points as

Xnþ1 ¼ Xn þ DtunðXnÞ: ð28Þ

+ Use Xnþ1 to compute the boundary force as described in Section 2.3. Distribute the boundary force to the nearby Cartesian
grid points using discrete delta function.

+ Solve the Navier–Stokes equations using the projection method to calculate the velocity field and pressure field.
+ Interpolate the velocity field to determine the velocity at the control points unþ1ðXnþ1Þ.

This method is simple, but for problems where the membrane is stiff, a very small time step is required to maintain sta-
bility. Details on the stability issues of the explicit immersed boundary method are discussed in [51].

2.4.2. Quasi-Newton method
In order to improve the time step, one could use an implicit method. The position of the control points is updated using

the trapezoidal rule

Xnþ1 ¼ Xn þ 1
2
DtðunðXnÞ þ unþ1ðXnþ1ÞÞ: ð29Þ

Eq. (29) is implicit and couples the motion of the membrane with the solution at all grid points. Therefore at each time step,
we need to solve a nonlinear system of equations for the position of the control points of the form

gðXnþ1Þ ¼ 0; ð30Þ

where

gðXÞ ¼ X & Xn & 1
2
DtðunðXnÞ þ unþ1ðXÞÞ: ð31Þ

Normally this nonlinear system of equations is solved by a Newton’s method in which the Jacobian matrix is required,

JðXÞ ¼ g0ðXÞ ¼ I & 1
2
Dtu0ðXÞ: ð32Þ

Starting from Xð0Þ a Newton iteration involves a sequence of linear systems given by

JðXðkÞÞdXðkÞ ¼ &gðXðkÞÞ; ð33Þ

Xðkþ1Þ ¼ XðkÞ þ dXðkÞ; k ¼ 0;1; . . . ð34Þ

However, the evaluation of the Jacobian matrix and its inverse can be time consuming for many applications. A quasi-New-
ton method has been devised wherein the inverse Jacobian matrix J&1 is replaced by a suitable matrix H, which is easy to
compute. The matrix H at iteration (k + 1)th, Hkþ1, is updated from the matrix Hk at the previous iteration as follows

Hkþ1 ¼ ckHk þ 1þ ckhk
qT
kHkqk

pT
kqk

$ %
pkpT

k

pT
kqk

& ck
ð1& hkÞ
qT
kHkqk

Hkqk $ qT
kHk &

ckhk
pT
kqk

pkq
T
kHk þ Hkqkp

T
k

& '
; ð35Þ

where

pk :¼ Xðkþ1Þ & XðkÞ; qk :¼ gðkþ1Þ & gðkÞ;

and the parameters ck P 0; hk P 0. With ck ¼ 1; hk ¼ 1, we have the rank two method of Broyden, Fletcher, Goldfard and
Shanno (BFGS method) [49]. In practice, the BFGS method requires only a few iterations to converge as the solution at
the previous time step provides a very good initial guess for the iteration. This has been observed in [27–29] for two-dimen-
sional problems in the context of the immersed interface method. Note that the BFGS method needs to form and store the
inverse Jacobian matrix H, and consequently it requires a large storage in three-dimensional problems especially for those
with multiple membranes in the fluid domain. The quasi-Newton method was not used in the present work for three-dimen-
sional problems because of the limitations in computer memory. In order to avoid such large storage, we employ a Jacobian-
free Newton–Krylov method as described in the next section.

2.4.3. Jacobian-free Newton–Krylov method
An alternative approach to solve (30) is the Jacobian-free Newton–Krylov (JFNK) method [24]. In the JFNK approach, the

GMRES method is used to solve the sequence of linear systems given by Eq. (33). The GMRES method requires the action of
the Jacobian only in the form of a matrix–vector product, which may be approximated by [5,7]:
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J Xð Þy , gðX þ !yÞ & gðXÞ
!

; ð36Þ

where ! is a small perturbation. The error of this approximation is proportional to !. In [7], ! was set equal to something
larger than the square root of machine error ð!machÞ. Another effective formula for the evaluation of ! is

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ kXkÞ!mach

p

kyk
: ð37Þ

More details on the Jacobian-free Newton–Krylov can be found in [24] and the references therein.

3. Implementation

The present implicit immersed boundary method involves the following steps:

1. Trace the immersed boundary using a collection of control points that define an unstructured grid of triangular elements
as shown in Fig. 1.

2. Compute the surface forces at the control points.
3. Solve the Navier–Stokes equations to compute the velocity and pressure fields.
4. Advance the position of the control points.

In the numerical implementation, the immersed boundary is discretized into a mesh of six-node curved triangles. A func-
tion uðn;gÞ defined over a triangle is approximated as

uðn;gÞ ¼
X6

i¼1

uiNiðn;gÞ; ð38Þ

where ðn;gÞ are the local parametric coordinates, ui is the value of u at node i and Niðn;gÞ are the basis functions for a qua-
dratic six-node triangular finite element [39]. To evaluate the membrane tension tensor s, one needs to calculate the left Cau-
chy–Green strain tensor, which is determined from the surface deformation gradient tensor, A. For each element, the surface
deformation gradient tensors at the nodes are obtained by solving the following system of equations,

A $ @X
@n

¼ @X
@n

; A $ @X
@g ¼ @X

@g ; A $ !n ¼ 0; ð39Þ

at each node of the element [42]. The components of A are then averaged over the elements sharing the node to obtain a
smooth distribution. Once the deformation tensor has been determined, the strain and stress tensors follow from (17)
and (18).

The transverse shear tension is computed from the bending moment, which is determined from the Cartesian curvature
tensor, j. To evaluate the curvature tensor j at a point, one needs to solve

@X
@n

$ j ¼ @n
@n

;
@X
@g $ j ¼ @n

@g ; n $ j ¼ 0; ð40Þ

at each element node and then average over the elements sharing that node [40]. Having computed the curvature tensor, one
can evaluate the bending momentsm using the constitutive equation (25). To evaluate the transverse shear tension, we need
to compute the surface gradient of the bending moments denoted by K - ðP $rÞm, using the relations

Fig. 1. (a) Discretization of a sphere. (b) Discretization of a biconcave shape.
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@X
@n

$ K ¼ @m
@n

;
@X
@g $ K ¼ @m

@g ; n $ K ¼ 0: ð41Þ

The evaluation of K at each element node requires solving nine systems of 3 linear equations [40]. The components of K are
also averaged over the elements sharing the node, and the transverse shear tension can then be calculated using Eq. (27).

To evaluate the force density, we adopt the method developed in [38] where the average value of the force is evaluated on
an element. The average value of the force on the element En with area Sn enclosed by the contour Cn is computed from the
line integral

Df ¼ 1
Sn

I

Cn

½b $ sþ ðb $ qÞn*d!l; ð42Þ

where !l is the arclength along the element contour, b - t . n is the cross-product of the unit tangential vector t along the
contour Cn and the surface unit normal vector n.

Once the forces are computed over all elements and distributed to the grid, the Navier–Stokes equations with the forcing
terms are then solved for the pressure and velocity at the Cartesian grid points. This velocity field is interpolated to find the
velocity at the control points, and the position of the control points is updated implicitly using the trapezoidal rule (29). In
summary, given the location of the control points, Xn, the velocity field, un and the pressure field pn&1=2, the process of com-
puting the new velocity unþ1, pressure field pnþ1=2 and the location of the control points Xnþ1 can be summarized as follows:

Step 1: Set k :¼ 0 and make an initial guess for Xnþ1, i.e. Xð0Þ as

Xð0Þ ¼ 2Xn & Xn&1:

Step 2: Evaluate the forces over all elements using Eq. (42).
Step 3:

+ Distribute the forces to the nearby Cartesian grid points using (6).
+ Solve the Navier–Stokes equations using the projection method as described in Section 2.2.
+ Compute the velocity at the control points, unþ1ðXðkÞÞ by interpolating from the velocity at the surrounding grid

points using (14).
Step 4:

+ Evaluate

gðXðkÞÞ ¼ XðkÞ & Xn & 1
2
DtðunðXnÞ þ unþ1ðXðkÞÞÞ:

+ If kgðkÞk < ! then Xnþ1 ¼ XðkÞ and stop the iteration. Otherwise, update Xðkþ1Þ by solving (33) using GMRES. Note
that the matrix–vector product required by GMRES is approximated as show in (36). Set k :¼ kþ 1 and go to step
2.

We note that solving the Navier–Stokes equations using the projection method involves solving three Helmholtz equa-
tions for the intermediate velocity and one Poisson equation for the pressure-increment. These equations are solved using
a Fast Fourier Transform algorithm. For the numerical computations presented we employ the subroutines from the FISH-
PACK library [1,45] especially adapted to our grid arrangement.

4. Numerical results

In this section, we present some numerical experiments involving membrane capsules immersed in a three-dimensional
fluid domain. The biconcave-shape membranes are governed by the Yeoh form of the strain energy function (23) while the
other capsules are modeled as neo-Hookean membranes. The relative tolerance for stopping the GMRES solver is chosen to
be 10&3 and the Newton iteration converges when kgðkÞk=kXk < 10&8. All the calculations in this section were performed on a
Dual-core AMD Opteron 2 GHz Processor. Most simulations were completed within a couple of minutes to hours.

4.1. Oscillatory membrane

Our first numerical experiment involves an elastic membrane initially placed in a still fluid. The initial configuration of the
membrane is an ellipsoid,

X2

a2
þ Y2

b2 þ Z2

c2
¼ 1; ð43Þ

with semi-axes ða; b; cÞ ¼ ð0:25;0:22;0:2Þ. The domain of the experiment is the 1. 1. 1 cube. The domain is discretized
with a 64. 64. 64 uniform grid. The membrane is located at the center of the domain and is discretized into 8192 quadratic
triangular elements connecting 16,386 nodes distributed over the membrane. The initial configuration of the membrane is
stretched from an undeformed reference configuration which is a spherical membrane of radius 0.2. Because of the
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incompressibility condition, we expect that the membrane should perform damped oscillations and relax to the spherical
equilibrium state of radius r ¼

ffiffiffiffiffiffiffiffi
abc3

p
, 0:2224. We start our simulation by setting the velocity and pressure fields to zero,

and a homogeneous Dirichlet boundary condition for the velocity is applied at all boundaries. We assume that the surface
is a neo-Hookean membrane with the surface elastic modulus Es ¼ 0:1. In this simulation, the fluid density is q ¼ 1, the fluid
viscosity is l ¼ 0:01 and the time step is Dt ¼ Dx. With the Jacobian-free Newton–Krylov implicit method, we are able to
increase the time step further without loss of stability. Fig. 2(a) and (b) show the number of iterations required at each time
step to run the simulations to t ¼ 10 using Dt ¼ Dx and Dt ¼ 4Dx, respectively. It can be seen that we only need 1–4 Newton
and GMRES iterations for both time steps. At the first 10 time steps, the Newton and GMRES iterations are zeros because we
use a very small time step initially to start the simulation.

Fig. 3 shows the configurations of the elastic membrane at different times. The evolution of the three axes of the ellip-
soidal membrane is shown in Fig. 4. It can be seen that the membrane oscillates before settling down to the equilibrium
state. Fig. 5 shows the time evolution of the three semi-axes of the membrane at l ¼ 0:1. In this case, the Reynolds number
is smaller and the membrane relaxes gradually to the equilibrium state without oscillations.

For sufficiently small time steps, the explicit and the JFNK implicit method are stable as expected. For larger time steps,
we expect that the explicit method will become unstable. For example, when Dt ¼ 4Dx the JFNKmethod gives good results as
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(b) Dt ¼ 4Dx.
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that obtained at a smaller time step, but the explicit method is unstable. Fig. 6 shows the time evolution of the membrane for
both methods before the explicit method goes unstable. The figure shows that the explicit method quickly diverges at step
12 and assumes an erroneous geometry. The JFNKmethod is stable and the ellipsoidal membrane gradually assumes a spher-
ical configuration.

In this example, we study the convergence rate of our scheme in time with l ¼ 0:01;0:05. Following [21,33], we compute
the time discretization error at time T as follows:

eTðv ;DtÞ ¼ kvðT;DtÞ & vðT;Dt=2ÞkL2 :

For a vector field wðxÞ ¼ ðw1ðxÞ;w2ðxÞ;w3ðxÞÞ defined on the Cartesian grid, the discrete L2 norm is defined as follows

kwkL2 ¼
X

i;j;k

w2
1ðxði; j; kÞÞ þw2

2ðxði; j; kÞÞ þw2
3ðxði; j; kÞÞ

& '
h3

 !1=2

:

Similarly, the discrete L2 norm for a vector field WðXÞ ¼ ðW1ðXÞ;W2ðXÞ;W3ðXÞÞ defined on the interface CðtÞ is defined as
follows

kWkL2 ¼
X

l

W2
1ðX lÞ þW2

2ðX lÞ þW2
3ðXlÞ
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Fig. 3. Configurations of the membrane at different times.
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We calculate the convergence rate in time at T ¼ 1 by varying the time steps in powers of 2 from Dt ¼ 1=16 to Dt ¼ 1=128.
The results are shown in Table 1. We can see the second-order convergence in time for both the velocity field and the inter-
face location.

4.2. Membrane capsule in simple shear flow

4.2.1. Spherical membrane
In this example, we study the deformation of a spherical neo-Hookean membrane in a shear flow given by the velocity

u ¼ ðkz;0;0Þ, where k is the shear rate. We compare the results with the linear theory [2] and those obtained by the bound-
ary element method (BEM) [42]. A spherical membrane of radius a is discretized into 5120 quadratic triangular elements
connecting 10,242 nodes. This spherical shape is taken to be a strain free state and the shape factors for each element are
obtained from this undeformed configuration. The radius of the spherical membrane is chosen to be sufficiently small so that
the Reynolds number of the flow is effectively zero; in this work, it is set at Re ¼ 0:001. Hence, the inertia effect is negligible
and the results can be compared with those obtained by the linear theory [2] or the BEM [40,42]. The center of the membrane
is placed at the center of a cube whose side is 10a and the cube is discretized with 64. 64. 64 uniform grid. The compu-
tational domain is chosen to be large enough so that boundary effects are not important. Boundary conditions for the velocity
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Fig. 4. The evolution of the membrane axes with l ¼ 0:01. The membrane oscillates as it converges to the equilibrium state.
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Fig. 6. Configurations of the membrane at different times with explicit method and implicit method.
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are of the Dirichlet type at z ¼ /5a and periodic at other boundaries. The deformation of the membrane is described by the
Taylor shape parameter Dxz ¼ ðL& BÞ=ðLþ BÞ, where L and B are the maximum and minimum radial distances from the origin
in the plane of shear, respectively. We consider the deformation of the membrane for a wide range of dimensionless shear
rates,

G ¼ lka
Es

; ð44Þ

Table 1
Numerical errors of X and u with different time steps.

l Dt ¼ 1=16 Dt ¼ 1=32 Dt ¼ 1=64 Convergence rate

X 0.01 1:3600. 10&4 3:3555. 10&5 8:3011. 10&6 2.02
0.005 2:9613 . 10&4 6:2315. 10&5 1:4922. 10&5 2.06

u 0.01 4:2159. 10&4 1:0016. 10&4 2:4759. 10&5 2.02
0.005 8:6409. 10&4 2:0554. 10&4 5:0726. 10&5 2.02
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Fig. 7. The evolution of the Taylor shape parameter Dxz at a sequence of dimensionless shear rates G. The solid lines are the results obtained by the present
algorithm, the dashed lines are obtained with the linear theory, and the circles are found using the BEM [42].
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which expresses the ratio of external viscous stresses to restoring elastic tensions. The time evolution of the Taylor shape
parameter with several values of the dimensionless parameter G is shown in Fig. 7. There is excellent agreement with the
linear theory at small G ðG < 0:025Þ since deformations are small. Simulation results for very small G ðG ¼ 0:001Þ show that
the present implicit immersed boundary method can give good results for stiff problems at relatively large time steps. As the
value of G increases the deformations increase and the linear theory does not apply. For larger values of G, we compare our
results with those obtained in [42] and Fig. 7 shows good agreement between the two methods for G ¼ 0:05.

4.2.2. Oblate spherical
Spherical capsules have been considered initially because of their simple geometry which allows analytical methods to

yield deformations histories. Here, we simulate capsules whose initial shapes are oblate spheroids with different aspect ra-
tios. To describe an oblate spheroid with aspect ratio of b=a, we use the mapping xobl ¼ Rx; yobl ¼ Ry; zobl ¼ ðb=aÞRz where
ðx; y; zÞ is the coordinate of a point on the unit sphere and the radius R is adjusted to preserve the volume. For an oblate
spheroid of volume V, the dimensionless shear rate G is defined in term of the radius of an isovolumic sphere,
a ¼ ð3V=4pÞ1=3. The strain energy function for the neo-Hookean membrane is employed.

First, we consider an oblate spheroid of aspect ratio b=a ¼ 0:9, inclined at the angle h0 ¼ p=4 with respect to the stream-
lines of the unperturbed flow. These parameters were chosen to compare the evolution of the deformation parameter with
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Fig. 9. The evolution of the Taylor shape parameter Dxz for oblate spheroidal capsules with b=a ¼ 0:5 at G ¼ 0:2.
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those calculate using the BEM [42] and the Lattice Boltzmann method (LBM) [50] under the same conditions. A 64. 64. 64
fluid grid and membrane discretization of 10,242 nodes and 5120 quadratic triangular elements was employed. The defor-
mation parameter Dxz is calculated for two shear rates G ¼ 0:1 and 0.2 and is shown in Fig. 8 as solid lines. Unlike the spher-
ical capsule, the oblate spheroid capsule undergoes oscillations in the deformation parameter. This has also been observed in
[42,50]. Fig. 8 shows good agreement between our results and those obtained in [50]. The BEM [42] predicts smaller defor-
mations than the present method and the LBM [50].

Next, we consider an oblate spheroid capsule with more-oblate unstressed shape of aspect ratio b=a ¼ 0:5, inclined at the
angle h0 ¼ p=4 with respect to the streamlines of the unperturbed flow. The deformation parameter Dxz is calculated for
G ¼ 0:2 and is shown in Fig. 9 as a solid line. The oblate spheroid capsule undergoes oscillation with larger amplitude in
the deformation parameter. Good agreement between our result and that obtained in [50] can be seen in Fig. 9. And again,
the BEM [42] predicts smaller deformations than the present method and the LBM [50].

To determine if numerical errors lead to the differences between the present method and the BEM, a grid refinement
study was conducted for the oblate spheroid capsule with aspect ratio b=a ¼ 0:9 at G ¼ 0:2. The results are shown in
Fig. 10. First a coarser fluid grid, 64. 64. 64 with a coarser membrane discretization (4098 nodes, 2048 elements) was
used. Then, on the 96. 96. 96 fluid grid, a finer membrane discretization (10,242 nodes, 5120 elements) was employed.
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Finally, the simulation was performed on the 128. 128. 128 fluid grid with the finest membrane discretization (16,386
nodes, 8192 elements). The results show that the numerical error using the implicit immersed boundary method for the ob-
late spheroid capsule with aspect ratio b=a ¼ 0:9 at G ¼ 0:2 using these meshes, is small.

4.2.3. Effect of membrane bending stiffness
Bending stiffness is believed to play a central role in determining the equilibrium configuration and the shape oscillations

of biological membranes. Here, we consider the effect of membrane bending stiffness on the flow-induced deformation of
spherical capsules in simple shear flows. We expect that the bending stiffness will restrict the overall capsule deformation.
The deformation of the capsule is determined by the dimensionless shear rate G and the reduced ratio of the bending mod-
ulus to the elastic modulus, ĵB - jB=ða2ESÞ. The reference state for computing the bending moment is the membrane with
flat resting shape, corresponding to zero reference curvature. The reference configuration for calculating the in-plane elastic
tension is the membrane of an initially spherical capsule of radius a. We note that the reference state of the bending mo-
ments is not necessarily the same as that of the elastic tensions, reflecting differences in the physical mechanisms that
are responsible for their respective development [40]. Simulations were performed for spherical capsules with different
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shear rates and reduced bending modulus. Fig. 11(a) shows a family of Taylor shape parameters for reduced bending mod-
ulus ĵB ¼ 0, 0.01, 0.025 and 0.0375 at the low shear rate of G ¼ 0:05. Fig. 11(b) illustrates a family of Taylor shape parameters
for reduced bending modulus ĵB ¼ 0, 0.04, 0.1 and 0.15 at the higher shear rate of G ¼ 0:2. We note that the line thickness
increases as the magnitude of the bending modulus increases. The Taylor shape parameters reveal that spherical capsules
deform and reach stationary shapes and that raising the bending modulus reduces the capsule deformation.

4.3. Red blood cell deformed by optical tweezers

Next, we consider the deformation of human red blood cells subjected to direct stretching by optical tweezers. Numerical
simulations were performed to extract the large deformation elastic properties from the experimental results obtained in
[9,30,32] during loading as well as upon relaxation of the load. Direct tensile stretching of the human red blood cell using
optical tweezers to extract elastic properties was first reported by Henon et al. [19] who attached two silica beads non-spe-
cifically to diametrically opposite ends of the cell, trapped both beads with laser beams, and imposed tensile elastic defor-
mation on the cell by moving the trapped beads in opposite directions. In [9,30,32], the optical tweezers system is designed
to consist only of a single optical trap, one of the beads is adhered to the glass surface while the other is free to be trapped
using the laser beam. By moving one of the beads with the laser beam, the cell is directly stretched.

Fig. 12(a) shows the variation of axial and transverse diameters of the red blood cell against the stretching force obtained
by both numerical simulations and experimental measurements [32]. In [32], the numerical simulations were performed
using the commercially available general purpose finite element package ABAQUS for red blood cells with an initial diameter
of 7.82 lm. The shape of the red blood cell is a biconcave shape given as

ZðRÞ ¼ /0:5R0 1& R
R0

$ %2
" #1

2

C0 þ C1
R
R0

$ %2

þ C2
R
R0

$ %4
" #

; ð45Þ

where R2 ¼ X2 þ Y2 6 R2
0; R0 ¼ 3:91 lm; C0 ¼ 0:207161; C1 ¼ 2:002558, and C2 ¼ &1:122762. The contact dimension be-

tween the beads and the cell was taken to be 2 lm in the simulations. The strain energy function (23) was employed with
C10 ¼ l0=2!h0 and C30 ¼ l0=30!h0, where l0 is the initial in-plane shear modulus and !h0 is the initial membrane thickness. The
results for the in-plane shear modulus l0 ¼ 5:3—11:3 lN=m are shown in Fig. 12(a). These values are comparable to the
range of 4.0–10 lN/m reported in the literature where the estimates have been principally based on micropipette aspiration
experiments.

Fig. 12(b) illustrates the variation of the axial and transverse diameters of the red blood cell against the stretching force
obtained in [8] by numerical simulations. Computational results from [8] were obtained using the finite element code ADINA
8.3 with the same strain energy function (23). The model proposed in [8] consists of a deformable liquid capsule modeled as
Newtonian fluid enclosed by a hyperelastic membrane with viscoelastic properties. The membrane shear modulus was
estimated to range between 3.7 and 9.0 lN/m. This range also compares well with the reported results obtained from
micropipette aspiration experiments.
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In the present paper, we employ the implicit immersed boundary method to study the deformation of human red blood
cells subjected to the direct stretching by optical tweezers in order to extract the membrane shear modulus from the exper-
imental results. The tensile forces are applied uniformly on the contact areas of sizes 2 lm between the cell and the beads at
opposite ends of the cell. The red blood cell of diameter 7.82 lm is discretized with 16,386 nodes and 8192 quadratic trian-
gular elements. The red blood cell is placed initially at the center of a cube whose side is 8R0. The computational domain is
discretized with 128. 128. 128 uniform grid. The computational domain is filled with the fluid whose density and viscos-
ity are given as 1050 kg m&3 and 4:1 mPa s. These are typical values for the red blood cell cytoplasm density and viscosity.
Comparisons of predicted and measured changes in the axial and transverse diameters of the red blood cell using the (Yeoh)
strain energy function (23) are plotted in Fig. 13 for l0 ¼ 4:8, 7.3 and 10 lN/m. The simulation is able to capture the exper-
imental trend over the entire range of experimental data well, including the small deformation range and the error bars. The
in-plane shear modulus l0 ¼ 4:8—10 lN=m are well comparable to the range of 4.0–10 lN/m obtained from micropipette
aspiration experiments. Comparing Figs. 12 and 13, it is apparent that our results are closer to those obtained in [32] than

Initial undeformed shape 38.9 pN

194 pN110 pN
Fig. 14. The deformed shapes of the red blood cell under the stretching forces.

Fig. 15. Positions of the red blood cells at different times.
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those in [8]. Fig. 14 illustrates the initial undeformed shape and the deformed shapes of the red blood cell under the stretch-
ing force of 38.9, 110 and 194 pN.

4.4. Red blood cells in pressure-driven flow

Using the shear modulus obtained from the previous example, we perform a simulation of the pressure-driven flow
involving 32 red blood cells (RBCs) immersed in the fluid. The purpose of this simulation is to illustrate the performance
of the present implicit immersed boundary method. Specifically, we compare the CPU time that is required for the present
implicit scheme and the second-order Runge–Kutta scheme used in [37] to obtain a solution at a given time. In the simula-
tion, the RBCs are initially placed in a box of size 24 lm. 48 lm. 12 lm as shown in Fig. 15(a). The computational domain
is discretized with 64. 128. 32 uniform grid. The fluid viscosity and density are the same as those in the previous example.
The pressure drop is maintained at 10 cm of water column. Each red blood cell is discretized with 10,242 nodes and 5120
quadratic triangular elements. We measure the computational times required for each scheme to obtain the solution at
t = 0.05 s with the in-plane shear modulus of 10 lN/m. We used Dt ¼ 4:5. 10&4 for our implicit scheme. We can actually
choose larger time step while still maintain the stability, but this choice of Dt is due to the accuracy considerations. The max-
imum time step that is required for the second-order Runge–Kutta scheme to maintain the stability is Dt ¼ 1:875. 10&6. All
the simulations are performed on a Dual-core AMD Opteron 2 GHz Processor. The positions of the RBCs at t ¼ 0:05 s are
shown in Fig. 15(b), applicable for the two different time schemes. We consider periodic boundary conditions for the cells
so that the cells which exit at one end of the channel will enter at the other end. We observe that the CPU time for our im-
plicit scheme is about 22 min and this CPU time is about 43 times faster than that of the explicit scheme. The gain over the
explicit scheme is even more substantial with larger shear modulus.

5. Conclusions

In this paper, we have presented the implicit immersed boundary method for the incompressible Navier–Stokes equa-
tions capable of handling three-dimensional membrane–fluid flow interactions. The present study was undertaken with
the objective of eliminating time step restrictions by using the Jacobian-free Newton–Krylov method (JFNK) to advance
the location of the elastic membrane implicitly.

We have shown the capability of the present technique by applying it to the viscous flow problems involving elastic
membranes with bending stiffness in three-dimensional domains. Numerical simulations have been performed for the oscil-
latory membrane in viscous flow to illustrate that the method can maintain stability under relatively large time steps. Sim-
ulations have also been performed to reproduce some results for the membrane capsule in simple shear flow as a validation
test for our method. It is found that our numerical results are in good agreement with those reported in literature. The pres-
ent method was also used to simulate the large deformation of human red blood cells subjected to direct stretching by opti-
cal tweezers. We have compared the in-plane shear modulus of the normal human red blood cell with that determined by
experimental measurements. The range of shear modulus obtained by the present method compares well to that reported
previously in the literature. With the obtained shear modulus, the present implicit method has been used to perform sim-
ulations of red blood cells in the pressure-driven flow to further demonstrate the performance of the method.

The present algorithm does not include any preconditioned techniques with the GMRES solver. We expect to improve the
time step further without increasing the number of GMRES iterations by applying appropriate preconditioners. This will be
the subject of future work.
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