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Overview

� Motivation: Why develop another CFD algorithm?

� Finite volume methods for hyperbolic conservation laws

� Discontinuous Galerkin (DG) for hyperbolic conservation laws

� DG for elliptic problems

� p-multigrid for higher-order DG discretizations

� Conclusions and future work
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Motivation for higher order

� State of CFD in applied aerodynamics
I Finite-volume with at best second order accuracy
I Questions exist whether current discretizations are capable of

achieving desired accuracy levels in practical time

� Decrease computational time and gridding requirements by
increasing solution order

log T = wd
(
− 1

p
logE + log p

)
− logF + const

� T = time to solution
� p = discretization order

� E = desired error level (E << 1)

� w = solution complexity

� d = dimension of problem

� F = computational speed
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Project-X Goal

� Project X Team Goal:
I To improve the aerothermal design process for complex 3D

configurations by significantly reducing the time from geometry
to solution at engineering-required accuracy using high-order
adaptive methods
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Previous Work

� Extensive work on DG for hyperbolic equations
I Bassi and Rebay (1997)
I Cockburn and Shu (1998, 2001)
I Karniadakis et al. (1998, 1999)

� More recently work begun on elliptic equations
I Bassi and Rebay (1997,1998)
I Cockburn and Shu (1998, 2001)
I Baumann and Oden (1997)
I Brezzi et al. (1997)

� Only Bassi and Rebay have published RANS results (1997, 2003)
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Integral Form of Hyperbolic Conservation
Laws

2

0
1

3

Apply integral conservation law
on triangle 0:

d

dt

∫

A0

u dx+
3∑

k=1

∫

0k
Fi(u)·n̂ ds = 0

For Euler equations:

u = (ρ, ρu, ρv, ρE)T

Fi = (Fx
i ,F

y
i )
T

Fx
i =

(
ρu, ρu2 + p, ρuv, ρuH

)T

Fy
i =

(
ρv, ρuv, ρv2 + p, ρvH

)T
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First-order Accurate Finite Volume

2

0
1

3

In each triangle, assume u is constant.

Apply conservation law on triangle:

du0

dt
A0 +

3∑

k=1

∫

0k
Hi(u0,uk, n̂0k) ds = 0

Hi(uL,uR, n̂LR) is flux function that
determines inviscid flux in n̂LR direction
from left and right states, uL and uR.

Example flux functions: Godunov, Roe,
Osher, Van Leer, Lax-Friedrichs, etc.

This discretization has a solution error
which is O(h) where h is mesh size.
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Second-order Accurate Finite Volume
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In each triangle, reconstruct a linear so-
lution, ũ, using neighboring averages:

ũ0 ≡ u0 + (x− x0) · ∇u0,

∇u0 ≡ ∇u0 (u0,u1,u2,u3) .

Apply conservation law on triangle:

du0

dt
A0 +

3∑

k=1

∫

0k
Hi(ũ0, ũk, n̂0k) ds = 0

On smooth meshes and flows, solution
error is O(h2).
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Pros/Cons of Higher-order Finite Volume
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+ Increased accuracy on given mesh
without additional degrees of free-
dom

− Difficulty in achieving higher-order
on unstructured meshes and near
boundaries

− Stabilizing multi-stage methods nec-
essary for local iterative schemes

− Matrix fill-in increased resulting in
high-memory requirements
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Instability of Local Iterative Methods

Consider steady state problem and define discrete residual for cell j,

Rj(u) ≡
3∑

k=1

∫

jk
Hi(ũj , ũk, n̂jk) ds = 0.

A Jacobi iterative method to solve this problem is,

un+1
j = unj − ω (∂Rj/∂uj)

−1 Rj(u).

For any finite ω, Jacobi is unstable for higher-order. One solution is a
multi-stage method,

ûj = unj − ω̂ (∂Rj/∂uj)
−1 Rj(u

n)

un+1
j = unj − ω (∂Rj/∂uj)

−1 Rj(û)

⇐ Requires two residual
evaluations.
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Matrix Fill for Higher-order Finite Volume
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Discontinuous Polynomial Basis

� Triangulate domain Ω into non-overlapping elements κ ∈ Th
� Define function space: Element-wise discontinuous polynomials

of degree p

Vph = {v ∈ L2(Ω) : v|κ ∈ P p(κ) : ∀κ ∈ Th}

Example of One-Dimensional Bases

p = 0 basis

1 DOF/element

p = 1 basis

2 DOF/element
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DG for Hyperbolic Conservation Laws:
Derivation

� Start from strong form of governing equations:

ut +∇ · Fi(u) = 0.

� Look for a solution uh ∈ Vph.

� Multiply governing equation by weight function vh ∈ Vph and
integrate over element κ ∈ Th:

∫

κ
vTh [(uh)t +∇ · Fi] dx = 0.

� Integrate second term by parts (assume interior element):
∫

κ
vTh (uh)t dx−

∫

κ
∇vTh · Fi dx +

∫

∂κ
v+
h
THi(u+

h ,u
−
h , n̂)ds = 0.
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Relationship of DG to other methods

� Recall DG weighted residual (Reed & Hill, 1973):
∫

κ
vTh (uh)t dx−

∫

κ
∇vTh · Fi dx +

∫

∂κ
v+
h
THi(u+

h ,u
−
h , n̂)ds = 0.

� For p = 0 solution, this reduces to:

(uκ)tAκ +

∫

∂κ
Hi(u+

h ,u
−
h , n̂)ds = 0.

� Thus, p = 0 DG is identical to first-order finite volume.

� For p > 0, DG can be intrepreted as a moment method.

� Moment methods for hyperbolic problems were first suggested by
Van Leer (1977) and then developed for the Euler equations by
Allmaras (1987, 1989) and later Holt (1992).
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DG discretization: Global view

� Find uh ∈ Vph such that ∀vh ∈ Vph,

∑

κ∈Th

{∫

κ
vTh (uh)t dx−

∫

κ
∇vTh · Fi dx

}

+

∫

Γi

v+
h
THi(u+

h ,u
−
h , n̂) ds+

∫

∂Ω
v+
h
THbi (u+

h ,u
b
h, n̂) ds = 0.

� Boundary conditions enforced weakly through Hbi (u+
h ,u

b
h, n̂)

where ubh is determined from desired boundary conditions and
outgoing characteristics.

� For smooth problems, the error of this scheme is expected to be
O(hp+1).
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Pros/Cons of Higher-order DG

− Increased accuracy on given mesh requires additional degrees of
freedom

+ Higher-order accuracy not hampered on unstructured meshes nor
near boundaries

+ Local iterative methods are stable

+ Matrix fill-in maintains block sparsity of p = 0

∫

κ
vTh (uh)t dx−

∫

κ
∇vTh · Fi dx +

∫

∂κ
v+
h
THi(u+

h ,u
−
h , n̂)ds = 0.
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Stability of Local Iterative Methods for DG

An elemental block Jacobi iterative method to solve this problem is,

un+1
j = unj − ω (∂Rj/∂uj)

−1 Rj(u).

where ∂Rj/∂uj is the diagonal block for the element j.

For 0 < ω < 1, elemental block Jacobi is stable independent of p.
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Matrix Fill for Higher-order DG
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Navier-Stokes Equations

� Navier-Stokes Equations: ut +∇ · Fi(u)−∇ · Fv(u,∇u) = 0

� Fv = Av∇u = (Fx
v ,F

y
v) is the viscous flux vector

Fx
v =




0
2
3µ(2∂u∂x − ∂v

∂y )

µ(∂u∂y + ∂v
∂x)

2
3µ(2∂u∂x − ∂v

∂y )u+ µ(∂u∂y + ∂v
∂x)v + κ∂T∂x


 ,

Fy
v =




0

µ(∂u∂y + ∂v
∂x)

2
3µ(2∂v∂y − ∂u

∂x)
2
3µ(2∂v∂y − ∂u

∂x)v + µ(∂u∂y + ∂v
∂x)u+ κ∂T∂y
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DG for Elliptic Operators: First Attempt

� Model problem for viscous terms of N-S: 1-D, scalar Poisson’s
equation

−uxx = f on [−1, 1]

� Proceed as for Euler:
I Triangulate domain into non-overlapping elements κ ∈ Th
I Define solution and test function space Vph

� Discrete formulation: Find uh ∈ Vph such that ∀vh ∈ Vph,

∑

κ∈Th

{
−
[
vhûx

]xκ+1/2

xκ−1/2
+

∫

κ
(vh)x(uh)xdx

}
=
∑

κ∈Th

{∫

κ
vhfdx

}

� Need to define ûx
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DG for Elliptic Operators: First Attempt

� No upwinding mechanism⇒ choose central flux

ûx =
1

2
((uh)Lx + (uh)Rx )

� Discrete formulation becomes: Find uh ∈ Vph such that ∀vh ∈ Vph,

∑

κ∈Th

{
−
[1

2
vh((uh)Lx + (uh)Rx )

]xκ+1/2

xκ−1/2

+

∫

κ
(vh)x(uh)xdx

}
=
∑

κ∈Th

{∫

κ
vhfdx

}

� PROBLEM: Scheme is inconsistent!
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Inconsistency

� Examine Laplace’s equation with homogeneous Dirichlet BCs

− uxx = 0 on [−1, 1]

u(−1) = u(1) = 0

� Exact solution: u(x) = 0

u h
R(u  )=0h

x

� If (uh)x = 0 everywhere, discrete equations satisfied exactly
regardless of magnitude of uh
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First Order System Approach

� Introduce new variable, q = ux, such that

− qx = f

q − ux = 0

� Discrete formulation: Find uh ∈ Vph and qh ∈ Vph such that ∀vh ∈ Vph
and ∀τh ∈ Vph,

∑

κ∈Th

{
−
[
vhq̂
]xκ+1/2

xκ−1/2

+

∫

κ
(vh)xqhdx

}
−
∑

κ∈Th

{∫

κ
vhfdx

}
= 0

∑

κ∈Th

{∫

κ
τhqhdx+

∫

κ
(τh)xuhdx−

[
τhû
]xκ+1/2

xκ−1/2

}
= 0

� Need to choose q̂ and û
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BR1 Scheme

� No upwinding mechanism⇒ choose central fluxes

û =
1

2
(uLh + uRh ); q̂ =

1

2
(qLh + qRh )

� Sub-optimal order of accuracy for odd p

� Stencil no longer compact

Rk

q
k-1k

q
+1k

q

-1k
q

u k-2 -1ku u k

+1k
q

u k +1ku u k+2

q
k

-1ku u k +1ku
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BR1 Scheme

� Define jump, J·K, and average, {·}, operators:

JsK = sL − sR and {s} =
1

2
(sL + sR)

� Central fluxes become

û = {uh}; q̂ = {(uh)x} − {δ}

� δ given by following problem: Find δ ∈ Vph such that ∀τh ∈ Vph,

∑

κ∈Th

∫

κ
τhδdx =

∑

n

[
JuhK{τh}

]
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BR1 Scheme

� BR1 becomes: Find uh ∈ Vph and such that ∀vh ∈ Vph,

∑

κ∈Th

∫

κ
(vh)x(uh)xdx

−
∑

n

[
JuhK{(vh)x}+ JvhK({(uh)x} − {δ})

]
=
∑

κ∈Th

∫

κ
vhfdx

� Stencil extended by δ de-
pendence on uh

-1ku u k +1ku
δk

u k-2 -1ku u k

δk-1

Rk

-1ku u kδk-1 δk δk+1+1ku

u k +1ku u k+2

δk+1
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BR2 Scheme

� Goal: Eliminate extended stencil
� Approach: Modify auxiliary variable, δ, previously defined by:

∑

κ∈Th

∫

κ
τhδdx =

∑

n

[
JuhK{τh}

]

� New variable, δf , given by: Find δf ∈ Vph such that ∀τh ∈ Vph,
∫

κL/R
τhδ

L/R
f dx =

[
JuhK{τh}L/R

]
nf

� New fluxes have same form as before

û = {uh}; q̂ = {(uh)x} − ηf{δf}
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BR2 Scheme

� Replacing {δ} in BR1 by ηf{δf} gives BR2

� For proper choice of ηf , can prove optimal order of accuracy

� Stencil is compact

δk-1/2
L/R

-1ku u k

δk+1/2
L/R

u k +1ku

Rk

δk-1/2
L/R-1ku

δk+1/2
L/R +1kuu k
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Iterative Solver

� Use work by Fidkowski and Darmofal (2004) on solution of DG
discretization of Euler equations

� Nonlinear discrete equations can be written

R(uh) = 0

� Use a preconditioned iterative scheme

un+1
h = unh −P−1R(unh)

� Preconditioner
I Block-element smoothing
� P = Mblock ⇒ Block diagonal of the Jacobian

I Line-element smoothing
� P = Mline ⇒ Block tridiagonal systems from Jacobian
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Line Solver

� Motivation: Transport of information in Navier-Stokes equations
characterized by convection-diffusion like phenomena
I Inviscid regions: Information follows characteristic directions

set by convection
I Viscous regions: Diffusion effects can be as strong or stronger

than convection
� Procedure:
I Construct lines of elements based on measure of influence
I Build and invert Mline, which is a set of block tridiagonal

systems from the full Jacobian
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Example Lines and Performance
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p-Multigrid: Motivation

� Observation: Smoothers are inefficient at eliminating low
frequency error modes on fine level

� h-Multigrid
I Spatially coarse grid used to correct solution on fine grid
I Grid coarsening is complex on unstructured meshes

� p-Multigrid (Ronquist & Patera, Helenbrook et al., Fidkowski &
Darmofal)
I Low order (p− 1) approximation used to correct high order (p)

solution
I Natural implementation in DG FEM discretization on

unstructured meshes
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p-Multigrid: Full Multigrid

� Full Approximation Scheme (FAS) used

� Line solver used as smoother

p=0

p=1

p=2

p=3
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NACA 0012 Test Case

M = 0.5, Re = 5000, α = 0
Grids are from Swanson at NASA Langley

2112 element mesh Mach contours

ACDL Seminar 34/38



AEROSPACE COMPUTATIONAL DESIGN LAB

Drag Error Convergence
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CPU Timing
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Future Work

� Turbulence modeling (Todd)

� Shocks (Jean-Baptiste & Garrett)

� Adaptation (Chris & Mike)

� Optimization (James)

� Many others

Thanks to the entire Project-X crew... this is their work!
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