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Abstract

An anisotropic, unstructured grid adaptive method is presented for improving the accuracy of functional outputs of

viscous, compressible flow simulations for general discretizations. The procedure merges output error control with

Hessian-based anisotropic grid adaptation. An adjoint formulation is used to relate the estimated functional error to

the local residual errors of both the primal and adjoint solutions. This relationship allows local error contributions to be

used as indicators in a grid adaptive method designed to produce specially tuned grids for accurately estimating the

chosen functional. Element stretching and orientation information is obtained from interpolation error estimates for

linear triangular finite elements. The proposed adaptive method is implemented using a standard second-order upwind

finite volume discretization, although the procedure is applicable to other types of discretizations such as the finite

element method. A series of airfoil test cases, including separated, high-lift flows, are presented to demonstrate the

approach; the functionals considered are the lift and drag coefficients. The proposed adaptive method is shown to be

superior in terms of reliability and output accuracy relative to pure Hessian-based adaptation.
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1. Introduction

Inappropriate grid resolution has been identified as one of the dominant reasons for inaccurate com-

putational fluid dynamics (CFDs) predictions of aerodynamic forces in the published literature. Rumsey

and Ying [44] have conducted a survey of recent CFD methods applied to high-lift configurations and have

concluded that numerical error often supersedes modeling error as the primary reason for inconsistent lift
predictions. Similarly, grid quality has been cited as a contributing factor to the undesirable level of scatter
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in the estimation of drag during a recent CFD drag prediction workshop [27]. While automatic grid ad-

aptation has shown significant potential for improving the accuracy of CFD [1,7,12,13,22,30,

39,41,53,54,56], to date these methods have not been able to demonstrate reliable improvements in the

solution accuracy.

A major difficulty in achieving definite improvements using current adaptive methods for Euler and

Navier–Stokes calculations is the lack of reliable error indicators with which to drive the adaptive algo-

rithms. For example, a common strategy has been to adapt to certain physical features of the flow, such as

shock waves and boundary layers, by employing indicators based on large flow gradients or undivided
differences [7,41,53]. Unfortunately, continuous local refinement of the dominant features of the flow does

not necessarily guarantee a corresponding reduction in the overall discretization error. In some cases this

procedure may even lead to incorrect results [53]. An alternate approach has been to use adaptive indicators

based on interpolation error estimates for linear finite elements [13,22,39,53,55]. These indicators essentially

adapt to the curvature of the solution and share some of the potential deficiencies associated with feature-

based indicators for nonlinear flow problems.

Even within the setting of finite-element-discretized elliptic problems, where rigorous error estimates

have been available for decades [2,46], one can argue that a global error norm based directly on the solution
and its derivatives may not be optimal within an engineering context. The issue is even less clear for

practical Euler and Navier–Stokes computations that exhibit multiple length scales and isolated flow

features throughout complicated, multidimensional domains. Adaptation based on an error norm of this

nature generally leads to a somewhat uniform consideration of all the features in a flow, which may not be

desirable. For example, if one is interested in computing the drag on an aircraft, it may not be optimal, or

even appropriate, to refine all the shocks and wakes in the flow field to the same extent.

An alternate approach to making error estimation more relevant for engineering applications is to assess

the error made in predicting an integral quantity representing an engineering output. Examples include the
lift and drag forces on aircraft configurations, the total heat flux to a high-pressure turbine blade, the

acoustic noise levels at an airport terminal due to an aircraft taking off, or the rate of ice formation on an

aircraft wing during adverse flight conditions. There has been a significant volume of research into a

posteriori error analysis and optimal grid adaptation for functional outputs within the context of finite

element methods for fluid dynamics. Becker, Rannacher and collaborators [8,9,11,42] have developed an

optimal control approach for output-based grid adaptation within a Galerkin finite element framework.

Patera, Peraire and collaborators [29,37,38] have established an implicit a posteriori procedure for com-

puting upper and lower bounds on functional outputs of finite element solutions. Other researchers in the
area include S€uuli and co-workers [18,24,47], Larson and Barth [25], and Formaggia et al. [16]. For general

discretizations, Pierce and Giles [19–21,40] have developed an adjoint-based error correction technique for

functional outputs that extends superconvergence properties, automatically inherent in many finite element

methods, to cover numerical results from any numerical method, including finite difference, finite volume,

or finite element without natural superconvergence.

The goal of our work is to improve the reliability, accuracy, and efficiency of CFD through the de-

velopment and application of an error estimation and grid adaptive method for improving the accuracy of

functional outputs. The error estimation procedure is based on an algebraic version of the Pierce and Giles
correction technique. It shares the advantage of being applicable to any type of discretization method,

including finite volume methods which are widely used for the simulation of compressible flows. The

functional correction terms and adaptive indicators used in this work have already been incorporated into

isotropic adaptive schemes for finite volume discretizations of quasi-one-dimensional [51], two-dimensional

[52], and three-dimensional [36] inviscid flows, and for a Galerkin finite element discretization for low-

Peclet-number convection–diffusion [50].

This paper focuses on a finite volume implementation of the proposed adaptive method for two-

dimensional, viscous (laminar and turbulent), compressible flows and generalizes the approach for
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anisotropic adaptation. The proposed anisotropic adaptive procedure and laminar results were first pre-

sented in [50]. The method can be viewed as a merging of output error control with Hessian-based an-

isotropic grid adaptation. The local element size in the grid is determined from output-based error

estimates, whereas stretching and orientation information is obtained from interpolation error estimates for

linear finite elements [13,22,39]. To the authors� knowledge, this work represents the first implementation of
output-based grid adaptation for viscous flows within a finite volume framework. It is also the first an-

isotropic adaptive procedure for functional outputs of compressible Navier–Stokes simulations for either

the finite volume or finite element methods, and represents the first application of adjoint error correction
for Navier–Stokes outputs.

The paper is organized as follows: Section 2 presents the a posteriori error estimation/correction pro-

cedure for functional outputs that is used to drive the proposed adaptive algorithm. The presentation is cast

in a general framework, without reference to a particular discretization method. The procedure is based on

a discrete adjoint formulation that relates the local residual errors in the flow solution to the global error in

the output. The functional error is decomposed into two contributions: a computable term and a remaining

error term. The computable term approximates the leading order error in the functional to high accuracy

and is, therefore, used to correct the functional explicitly. The proposed output-based adaptive method-
ology, described in Section 3, is designed to enhance the accuracy of the corrected functional by working to

reduce the magnitude of the remaining error after correction. Local elemental contributions to the re-

maining error are driven towards the same value throughout the domain, while the estimated global re-

maining error is reduced towards a user-specified tolerance. Section 4 discusses several issues pertaining to

the application of the proposed output-based adaptive methodology to viscous flows. Section 5 presents the

proposed procedure for incorporating output error control into a Hessian-based framework for anisotropic

adaptation. Numerical results are presented in Section 6. The proposed output-based adaptive method is

applied to a series of laminar and turbulent airfoil test cases and comparisons are made with pure Hessian-
based adaptation [13,22,39]. The proposed method is shown to be superior in terms of reliability and output

accuracy relative to pure Hessian-based adaptation.

2. Functional error estimation

The primary goal is the robust, accurate estimation of an integral output f ðUÞ that can be written as a

nonlinear functional of the solution U to a system of partial differential equations (PDEs) defined over
a physical domain X. Consider two distinct computational grids that approximate the physical domain: a

coarse grid XH and a fine grid Xh. The parameters H and h (H > h) represent characteristic lengths asso-
ciated with each grid such as the average edge length in a finite element or finite volume triangulation, or

the average grid spacing in a finite difference approximation. The nonlinear system of discrete residual

equations arising from some discretization of the original PDEs on the coarse grid is denoted RHðUHÞ ¼ 0,

where UH is the corresponding discrete solution on that grid. The discrete approximation of f ðUÞ on the

coarse grid using a prescribed quadrature rule is denoted fH ðUH Þ. Analogous quantities are defined for the

fine grid as summarized in Table 1.

Table 1

Nomenclature associated with coarse- and fine-grid quantities

Coarse grid (XH ) Fine grid (Xh)

Characteristic element size H h
Discrete solution UH Uh

Residual equations RH ðUH Þ ¼ 0 RhðUhÞ ¼ 0

Functional output fH ðUH Þ fhðUhÞ
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Consider the coarse grid as being representative of a typical working grid. While the coarse grid

may be regarded as affordable with respect to available computing resources and allowable solution

times, it may not provide sufficient accuracy for the predicted output fH ðUHÞ. The fine grid is con-

sidered to be a grid of improved resolution relative to the coarse grid. Solving on the fine grid would

generally be expensive, however, if the discrete solution were obtained on this grid, the computed

output would have increased accuracy for the particular application. In the present work, the fine grid

is taken to be a uniform refinement of the coarse grid. For two-dimensional triangulations, Xh can be

constructed by subdividing each of the triangles of XH into an integer number, N 2, of self-similar
triangles where N ¼ H=h. At the boundaries, the fine grid is made to conform to the physical

boundary oX.

2.1. Functional correction

In the following development, the focus will be on deriving a correction term for the error in the fine-grid

output due to a perturbation in the fine-grid solution. In the present context, the perturbed solution will be

obtained by prolongating the coarse-grid solution onto the fine grid using polynomial reconstruction, as

described in Section 2.2. In general, however, it could be obtained from other sources such as an asymptotic

expansion, a reduced order model, or an entirely different discretization. The impetus for this procedure is

the correction technique of Pierce and Giles [21,40].

Let dUh represent a small perturbation in the primal solution. Each component of the vector dUh cor-
responds to the local error in the perturbed solution relative to the exact solution of the primal residual

equations on the fine grid. The perturbed solution is denoted ~UUh and is defined by

~UUh � Uh þ dUh: ð1Þ

In practice, the fine-grid solution Uh and the error dUh are not known, whereas, the approximate solution
~UUh is assumed given. The resulting perturbations in the functional and residual operators due to the per-

turbation in the solution are, respectively,

dfh � fhð ~UUhÞ � fhðUhÞ; ð2Þ

and,

dRh � Rhð ~UUhÞ � RhðUhÞ ¼ Rhð ~UUhÞ: ð3Þ

The last equality holds due to the fact that the fine-grid solution satisfies the residual equations RhðUhÞ ¼ 0.

Linearizing about the perturbed solution yields,

dfh �
ofh
oUh

dUh; ð4Þ

and,

Rhð ~UUhÞ �
oRh

oUh
dUh: ð5Þ

The row vector, ofh=oUh, contains the linear sensitivities of the functional with respect to the solution

vector. The square matrix oRh=oUh is the Jacobian of the residual operator. Both quantities are evaluated

using the perturbed solution.

The discrete adjoint system of equations associated with the primal residual operator and functional is

given by
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oRh

oUh

T

Wh ¼
ofh
oUh

T

; ð6Þ

where Wh is the discrete adjoint solution on the fine grid. Using (4)–(6), the perturbation in the functional

can be expressed as the inner product of the adjoint solution and the primal residual error,

dfh � WT
h Rhð ~UUhÞ: ð7Þ

This expression is exact for linear functionals and residuals. To compute this estimate would require the

solution of the adjoint problem on the fine grid, which is undesirable. Instead, it is assumed that an ap-

proximate adjoint solution ~WWh is available as a substitute. In a fashion analogous to (1), we define the

adjoint perturbation dWh by

~WWh � Wh þ dWh: ð8Þ

Note that the perturbation in the adjoint is independent of the perturbation in the primal. Using (7) and (8),

the perturbation in the functional can be expanded as

dfh � WT
h Rhð ~UUhÞ ¼ ~WWT

h Rhð ~UUhÞ � dWT
h Rhð ~UUhÞ: ð9Þ

The term, ~WWT
h Rhð ~UUhÞ, is computable given the approximate solutions ~UUh and ~WWh. This term can be used to

correct the perturbed functional yielding the following estimate for the fine-grid output:

fhðUhÞ � fhð ~UUhÞ � ~WWT
h Rhð ~UUhÞ: ð10Þ

Supplemental discussion pertaining to computer implementation and comparisons with the Pierce and

Giles correction technique can be found in [50,52].

2.2. Prolongation operators

This section describes the linear and quadratic operators, LH
h and QH

h , respectively, used for prolongating

the coarse-grid primal solution onto the fine grid. Polynomial interpolants are constructed over each

coarse-grid element and then used to inject values directly onto the embedded fine grid nodes within that

coarse-grid element. The adjoint prolongation operators �LLH
h and �QQH

h are modified for extrapolation at the

primal Dirichlet boundaries to account for the non-uniform character of the discrete adjoint at those

boundaries, as discussed in Section 4.2.

The linear operator LH
h represents simple linear interpolation over each coarse-grid element. The re-

sulting interpolant matches the data at the coarse-grid nodes exactly and is, therefore, continuous across

element edges. This operator is used for computing the adaptive parameters described in Section 3.2.

The quadratic prolongation operator QH
h is defined by a local least squares procedure [50,52]. A qua-

dratic profile is obtained over each coarse-grid element using a local error-minimization process involving

the nodal values and slopes of the function being interpolated. This process produces a piecewise quadratic

interpolant that is discontinuous across element edges. Values on edges are obtained by taking the arith-

metic average of the interpolant values from the two adjacent elements associated with that edge. Values at

coarse-grid nodes are similarly obtained by taking the arithmetic average of the interpolant values from the
patch of elements surrounding that node. The least squares problem can be solved efficiently by inverting

the associated normal equations. Unfortunately, the normal equations become severely ill-conditioned on

highly stretched elements resulting in numerical instabilities. To circumvent this issue, the least squares

problem is solved using a singular value decomposition (SVD) algorithm [49]. The quadratic prolongation

operator is used for evaluating the correction term in (10), and for computing the adaptive parameters

described in Section 3.2.
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3. Output-based adaptive methodology

The proposed output-based adaptive methodology is designed to compliment the functional correction

procedure of Section 2.1. The goal of the adaptive algorithm is to improve the accuracy of the corrected

output in (10) by reducing the remaining error after correction.

3.1. Remaining error

As shown in (9), the error in the functional can be expressed as the sum of two terms: a computable

correction that can be evaluated given the approximate solutions ~UUh and ~WWh, and a remaining error term

that generally cannot be evaluated without solving for quantities on the fine grid. The remaining error can

be written in several different forms. Two forms that are particularly useful in the present context are,

dfh|{z}
Error

� ~WWT
hRhð ~UUhÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Correction

� �dWT
hRhð ~UUhÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Remaining Error

� �RW
h ð ~WWhÞT dUh|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Remaining Error

; ð11Þ

where RW
h ð�Þ is the adjoint residual operator defined as

RW
h ð�Þ �

oRh

oUh

T

ð�Þ � ofh
oUh

T

; ð12Þ

so that RW
h ðWhÞ ¼ 0. We see from (11) that the remaining error can be expressed as the inner product of the

adjoint solution-error and the primal residual-error, or as the inner product of the adjoint residual-error

and the primal solution-error. Neglecting nonlinear terms, these two inner products are equal. This illus-

trates the duality between the primal and adjoint residual operators. If nonlinear effects are accounted for, a

duality gap, D 6¼ 0, will exist between the two inner products. By retaining nonlinear terms in the expansion
for the residual operator in (5), one can obtain the following expression for the duality gap:

D � RW
h ð ~WWhÞT dUh � dWT

h Rhð ~UUhÞ;¼ dWT
h W ; ð13Þ

where W is a vector containing quadratic forms of the primal error. An explicit expression for W is given in

[50,51]. The proposed adaptive procedure is based on reducing and equidistributing the magnitudes of the
components of each of the inner products on the right-hand-side of (13). In addition to improving the

quality of the computable correction, this will lead to a reduction in the magnitude of the duality gap, and

hence, a reduction in the nonlinear contribution to the functional error. The primal form of the remaining

error, dWT
h Rhð ~UUhÞ, is essentially what is used by Becker and Rannacher [8,9] in their finite-element output-

based adaptive strategy. The addition of the dual term in the current approach is a natural way of in-

corporating the adjoint residual error into the adaptive scheme. Utilizing information from both the primal

and adjoint residuals is expected to lead to a more robust adaptive algorithm.

M€uuller and Giles [31] have adopted a somewhat different philosophy in their adaptive strategy for
functional outputs. Instead of using the remaining error in the functional as an adaptive sensor, they focus

directly on the correction term ~WWT
h Rhð ~UUhÞ. In principle, this leads to an adaptive algorithm for minimizing

the magnitude of the correction term. However, if one is to preserve the role of this term as an accurate

correction for the functional, it may not be advantageous to minimize its magnitude. Unlike the remaining

error terms, the correction term is computable and generally approximates the leading order error in the

functional to high accuracy (for example, see the functional convergence results in [21,40,51,52]). The

strategy in the present work, therefore, is to take advantage of the improved accuracy from correcting the

functional, and to use the adaptive process to further enhance this accuracy by reducing the remaining
error.
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3.2. Adaptive criteria and parameters

In the proposed adaptive strategy, we seek to reduce and equidistribute the value of an adaptation

parameter throughout the computational domain while simultaneously monitoring and reducing an upper

bound on the estimated remaining error in the functional of interest. The iterative adaptive algorithm

works to reduce this bound until it falls below a user-specified tolerance, e0.
Consider the operation of computing an inner product over the fine grid, Xh, embedded within XH . For

each coarse-grid element, k, there are N 2 (in two dimensions) fine-grid elements over which a partial inner

product must be computed. For each fine-grid node, lðkÞ, within element k, there are r subcomponents to
the primal and adjoint residual vectors where r ¼ 4 for the two-dimensional (laminar) Navier–Stokes
equations (corresponding to the mass, x-momentum, y-momentum and energy conservation equations),

and r ¼ 5 for the Reynolds-averaged Navier–Stokes (RANS) equations and transport equation for the

turbulence model. Eq. (13) suggests the following definition for the adaptation parameter, ek, at element k:

ek ¼
1

2

X
lðkÞ

½RW
h ð�LLH

h WH Þ�TlðkÞ½QH
h UH

���n � LH
h UH �lðkÞ

���þ ½ �QQH
h WH

��� � �LLH
h WH �TlðkÞ½RhðLH

h UH Þ�lðkÞ
���o: ð14Þ

In this last expression, a term of the form, ½Vh�lðkÞ, for some generic vector, Vh, on Xh, refers to the r � 1

subvector (component) of Vh corresponding to the fine-grid node, lðkÞ, within the coarse-grid element, k.
The summation in (14) is over all fine-grid nodes within the kth coarse element. For those nodes on the

boundary of k, a partial contribution may be implied depending on how the nodal residual is defined for the

particular discretization. For example, in the case of a vertex-based finite volume discretization, the frac-

tional contribution from a node on the boundary of element k is proportional to the fraction of the as-
sociated control volume within that element. The prolongation operators LH

h and QH
h map the coarse-grid

primal solution onto the fine grid via linear and quadratic interpolation, respectively. The corresponding

adjoint prolongation operators are denoted �LLH
h and �QQH

h , respectively. These operators are described in

Section 2.2.

The adaptation parameter in (14) is a crude approximation of the magnitudes of the primal and dual

forms of the remaining error in the functional. The intention here is not to obtain a quantitative estimate of

these terms, but rather to establish an indication of how they are distributed throughout the domain. The

residual operators in the expression for the adaptation parameter are evaluated using linear prolongations
of the respective coarse-grid solutions. Linear prolongation is chosen over quadratic in this case because the

magnitudes of the residuals tend to be larger, giving a more conservative bound on the remaining error

terms. The perturbations dUh and dWh in (13) have been replaced by measures of the local interpolation

error in the primal and adjoint solutions, respectively. In particular, setting dUh � QH
h UH � LH

h UH and

dWh � QH
h WH � LH

h WH amounts to the assumption that the dominant component of the local error in the

primal and adjoint solutions is characterized by the interpolation error.

Let e denote the summation of ek over all elements in XH . That is,

e ¼
X
k

ek: ð15Þ

With the presence of the absolute value signs in (14), e represents an upper bound on the estimated re-
maining error in the functional. In light of this, a global adaptation parameter can be defined as

gg ¼
e
e0
; ð16Þ

where e0 is the user-specified desired error level. The global error criterion is satisfied if gg 6 1 while further
refinement is required if gg > 1. Using this measure alone would lead to uniform grid-refinement only. To
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complete the h-refinement strategy a local adaptation parameter must also be defined. An appropriate local

error measure can be determined by invoking the principle of error equidistribution [7,57]. In particular, an

attempt is made to equidistribute ek over all elements in the domain. In this vein, a local adaptation pa-

rameter is defined as

gk ¼
ek
�ee0
; ð17Þ

where �ee0 ¼ e0=Ne is the target error for each element and Ne is the total number of elements in the current

grid, XH . The local criterion is satisfied if gk 6 1 while further refinement of element k is indicated if gk > 1.

Finally, at each adaptive iteration, a new desired element size, H 0
k is computed from the old one, Hk, ac-

cording to

H 0
k ¼ Hk

1

gggk

 !x

: ð18Þ

The underrelaxation parameter x controls how aggressively each subsequent grid is refined during the

iterative adaptive process. An inappropriately large value of x would lead to oscillatory grid convergence,

whereby the grid is continually over- and under-refined in an alternating fashion. Conversely, an inap-

propriately small value for x would prolong the adaptive process by increasing the total number of

adaptive iterations to convergence. An appropriate value for x can be deduced by examining the asymp-

totic convergence rates of the global and local adaptation parameters, and by choosing x such that

H 0
k � Oð1Þ. We assume a convergence rate of gggk � OðH 4

k Þ yielding a heuristic value of x ¼ 1=4, which is
used for the laminar test cases in Section 6. Due to higher anisotropy requirements and limitations asso-

ciated with the grid generator, values as low as x ¼ 1=8 are used for the turbulent simulations in order to

slow down changes in the grid from one adaptive iteration to the next. Onate and Bugeda [35] provides

further discussion on grid convergence for adaptive methods.

4. Application to viscous flow

This section discusses several issues pertaining to the application of the proposed output-based adaptive

methodology to two-dimensional, viscous, compressible flow simulations using an unstructured, upwind,

finite volume discretization.

4.1. Flow and adjoint solvers

The governing equations for the turbulent simulations are the compressible, Reynolds-averaged Navier–

Stokes (RANS) equations. The eddy viscosity is obtained using the one-equation turbulence model of

Spalart and Allmaras [45] in fully turbulent mode. Laminar solutions are obtained by omitting the tur-

bulence transport equation and setting the eddy viscosity to zero.

The flow and adjoint solvers used in this work are part of the FUN2D suite of codes [32]. The FUN2D

flow solver is a two-dimensional, implicit finite volume scheme that employs unstructured grids composed

of triangular elements. Non-overlapping control volumes are constructed around each node in the grid by
connecting the centroid of each triangle to the midpoints of its edges. The discrete residual equations as-

sociated with each interior node are obtained by numerically integrating the steady form of the governing

equations over the control volume surrounding that node. The Roe upwind scheme [43] is used to evaluate

the inviscid fluxes at control volume interfaces. States immediately adjacent to the interfaces are obtained

by linear extrapolation of the primitive variables from associated vertices. Limiters are not employed in the
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present work. A Galerkin-type formulation is used to approximate the viscous terms. Farfield fluxes are

evaluated using characteristic reconstructions. The convective terms in the turbulence model are discretized

using first-order upwind differencing and the higher-order derivatives are evaluated in the same manner as

in the flow solver. The solution is driven to steady state using a backward-Euler local time-stepping method.

Further details pertaining to the flow solver can be found in [4]. The adjoint solver utilizes an exact line-

arization of the flow (primal) residual operator described above. Further details pertaining the adjoint

solver can be found in [33,34].

4.2. Strong boundary conditions

The imposition of boundary conditions in a strong sense refers to the explicit modification of the form of

the residual equations at boundary nodes relative to their counterparts in the interior. This has implications
on the character of the discrete adjoint at the corresponding nodes. For RANS simulations, the issue arises

when the momentum and energy residuals associated with nodes on solid boundaries are discarded in favor

of imposing no-slip and specified temperature conditions, respectively. The same issue arises with the

transport equation for the turbulence model when homogeneous Dirichlet conditions are applied to the

dependent variable at the walls. Given a perturbation dUh, the residual on the boundary represents the error

in the Dirichlet data, whereas in the remainder of the domain the residual represents a lack of conservation.

Correspondingly, the discrete adjoint takes on a different character on the boundary relative to the interior.

This behavior has been observed previously [6]. Mathematical illustrations are provided in [17,50].
Fig. 1 shows contour distributions (middle and right plots) of the discrete adjoint x-momentum variable

for a simulation of laminar flow past a cylinder. The corresponding grid is plotted on the left. In this case,

Re ¼ 10,M1 ¼ 0:38 and the adjoint is based on the drag. The distinction between the boundary adjoint and
the interior adjoint is clear from the clustering of contour lines near the boundary. The contour levels in this

plot are distributed linearly within each element, however, the sharp variations within the elements adjacent

to the boundary are meaningless since two entirely different quantities are being interpolated within these

elements.

For the purposes of building a fine-grid representation of the discrete adjoint near strong primal
boundaries, direct interpolation of the coarse-grid adjoint is not appropriate. A viable alternative is to

extrapolate the interior adjoint to the boundary of the coarse grid and prolongate the extrapolant onto the

fine grid. Once the prolongation is performed, the only remaining task is to postprocess the boundary

adjoint on the fine grid. A formula for recovering the boundary adjoint given an approximation of the

interior adjoint on the fine grid is given in [50] and is based on the derivation presented in [17].

Fig. 1. Comparison of the x-momentum adjoint variable based on a non-conservative (center) and a conservative (right) evaluation of

the drag for viscous flow past a circular cylinder (Re ¼ 10, M1 ¼ 0:38). The computation grid is plotted on the left.
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4.3. Conservative functional evaluation

Aerodynamic outputs often involve boundary integrals of diffusive-type fluxes which involve gradients

of the solution normal to the boundary. In viscous applications, the skin friction contribution to the

aerodynamic forces on a body can be expressed as a contour integral involving the gradients of the velocity

components at the surface of the body. One method of computing these forces is to differentiate the solution

within the elements adjacent to the body, and then integrate the result. Evaluating the forces in this manner

generally results in poor convergence of the output. This type of functional definition may also lead to

irregularities in the adjoint variables near the corresponding boundaries resulting in compromised accuracy

of the corrected functionals and diminished effectiveness of the adaptive algorithm. A more natural and
accurate method of evaluating the aerodynamic forces, which is both bounded and conservative, is to define

them as residual balances as described below.

Let �RRhðUhÞ represent the vector of residual equations prior to imposing no-slip conditions, specified

temperature, and zero eddy viscosity in a strong sense at the solid boundaries. A typical way of constructing

these equations in a finite volume method is to loop over all edges in the grid and add the corresponding

flux contributions to the associated nodes. The resulting equations are discrete conservation statements

defined over control volumes surrounding each interior node in the grid. At the boundary nodes, the

momentum, energy, and turbulence model residuals are typically missing flux contributions from the wall.
In the case of the momentum residuals, these missing fluxes correspond to the pressure and shear forces that

would be needed in order to maintain momentum conservation over the control volumes surrounding the

boundary nodes. The sum of these forces over all boundary nodes corresponds to the total pressure and

skin friction forces on the body. In this vein [17], the forces can be defined as

fhðUhÞ ¼ cTh Bh
�RRhðUhÞ; ð19Þ

where Bh is a projection matrix with unit diagonal entries on the rows where Dirichlet conditions are

imposed strongly and zeros everywhere else. The vector ch takes the appropriate component of the mo-
mentum residuals into the selected force direction (for example, lift or drag). The right hand side for the

discrete adjoint system is given by

ofh
oUh

T

¼ o�RRh

oUh

T

Bhch: ð20Þ

Fortunately, this expression can be evaluated using existing subroutines from the discrete adjoint code.

Fig. 1 compares the computed x-momentum adjoint variable near the boundary of a circular cylinder for

a non-conservative evaluation (center plot) and a conservative evaluation (right plot) of the drag. The

conditions for this laminar flow simulation are Re ¼ 10 and M1 ¼ 0:38. The computational grid is plotted
on the left. In the center plot, irregularities in the adjoint are observed in the second layer of elements away

from the boundary. These irregularities are not present in the right plot, illustrating that the conservative

evaluation of the drag leads to an interior adjoint with better smoothness properties. The clustering of

contour lines in the first layer of elements reflects the presence of the boundary adjoint, which is a separate

issue as discussed in Section 4.2.

Fig. 2 compares lift and drag convergence plots for the same test case using both types of functional

evaluations. These values are obtained from simulations on a series of uniformly refined grids. The farfield

boundary is placed at 22.5 diameters. The coarsest grid in the series contains 800 nodes and is shown in Fig.
1. The nth grid in the series is constructed by subdividing each triangle in the coarsest grid into n2 self-
similar triangles for values of n ¼ 2, 4, and 8. Boundary edges are made to conform to the circular cylinder.

The lift and drag errors are plotted versus a characteristic length parameter h associated with each grid in

the series. A value of h1 ¼ 1 is arbitrarily assigned to the coarsest grid. The length parameter associated
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with the nth grid is given by hn ¼ h1=n. The true lift and drag values used to measure the errors in Fig. 2 are
taken as CL ¼ 0 and CD ¼ 2:99165, respectively. The true drag value is obtained as a Richardson ex-

trapolation of the conservative drag values from the three finest grids. The implied convergence rate from

the extrapolation is approximately third order. We see from Fig. 2 that the non-conservative evaluation

produces essentially first-order-accurate values for the forces whereas the conservative evaluation is es-

sentially third order.

5. Anisotropic adaptation

This section presents the proposed output-based, anisotropic adaptive procedure. The section begins by

reviewing some of the key elements of anisotropic adaptation based exclusively on interpolation error

estimates for linear triangular finite elements [13,22,39]. Then the incorporation of output error control into

the Hessian-based framework is described.

5.1. Pure Hessian-based adaptation

Error indicators for driving anisotropic adaptation of unstructured triangular and tetrahedral grids have

often been based on the interpolation error incurred by approximating continuous functions using piece-

wise-linear interpolation [13,22,39,55].

Consider the two-dimensional function uðx; yÞ and a piecewise-linear approximation uLhðx; yÞ of this
function over a given triangulation. Assuming zero error at the nodes, the maximum interpolation error

over an edge E in the triangulation, with unit tangent vector ŝs and length h, is given by [46]

max
ðx;yÞ2E

uðx; yÞ
�� � uLhðx; yÞ

��6 1

8
h2 max

ðx;yÞ2E
ussj j; ð21Þ

In this last expression uss is the directional second derivative of u in the direction ŝs, which can be expressed

as

Fig. 2. Convergence of the error in the lift and drag on a series of uniformly refined grids for viscous flow past a circular cylinder

(Re ¼ 10, M1 ¼ 0:38). The conservative and non-conservative evaluations of the forces are compared.

32 D.A. Venditti, D.L. Darmofal / Journal of Computational Physics 187 (2003) 22–46



uss ¼ ŝsTHŝs; ð22Þ

where

H ¼ uxx uxy
uxy uyy

� 

; ð23Þ

is the Hessian matrix of second derivatives.

A geometric interpretation of the interpolation error along an edge can be made by considering the

length of that edge in a Riemannian space [10,13,15,22]. The transformation from the physical space to the

Riemannian space is specified by a symmetric positive-definite matrix M,

M ¼ a b
b c

� 

: ð24Þ

For constant M, the generalized length lM of edge E in the transformed space is given by

l2M ¼ ŝsTMŝs h2: ð25Þ

Note that if M is the identity matrix, the physical (Euclidean) length l2E ¼ ŝsTI ŝsh2 ¼ h2 is recovered.
To illustrate the directional properties of the metric M, consider the unit phasor êe ¼ ðx; yÞT stemming

from the origin in the metric space. The square of its metric length is given by

êeTMêe ¼ ax2 þ 2bxy þ cy2 ¼ 1: ð26Þ

This is the equation of an ellipse centered at the origin in the physical space. The major axis is rotated by an

angle h to the x-axis, and has major and minor principal lengths h1 and h2, respectively. These parameters
are related to the metric components ða; b; cÞ as follows:

M ¼ a b
b c

� 

¼ R

1=h21 0
0 1=h22

� 

RT; ð27Þ

where

R ¼ cos h � sin h
sin h cos h

� 

: ð28Þ

Comparing (21) and (22) with (25), the interpolation error along edge E is analogous to the square of the

metric length of that edge if M is chosen to be a modification of the Hessian matrix. In particular, the

Hessian is modified by taking the absolute value of its eigenvalues, resulting in a symmetric positive-definite

matrix. Let R be the orthonormal matrix containing the eigenvectors of H as its columns, and let K be the

corresponding diagonal matrix containing its eigenvalues. The symmetric Hessian is diagonalized by

H ¼ RKRT; ð29Þ

and the Hessian-based metric can be defined as

MH ¼ RjKjRT: ð30Þ

One possible strategy for anisotropic adaptation is to equidistribute the error along edges in the grid by

equidistributing the length of the edges in the Riemannian space governed by MH [10,13,15,22]. This
strategy is implemented here for the purposes of comparing the effectiveness of the output-based strategy

described in Section 5.2. The algorithm attempts to equidistribute the interpolation error in the computed

Mach number over each edge in the grid. Different error tolerances are achieved by scaling the metrics
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associated with each element by a constant multiplicative factor j. Larger values of j correspond to more

stringent tolerances on the estimated interpolation error. The Mach-number Hessian is obtained using the

quadratic reconstruction procedure described in Section 2.2. Piecewise quadratic Mach number profiles are

constructed over each element and differentiated twice yielding piecewise constant second derivatives.

Nodal values of the second derivatives are obtained using an area-weighted average of the piecewise-

constant values over each element surrounding the node. To avoid excessive element sizes in the farfield, the

eigenvalues of the metric are bounded from below so that h2 6 h1 6 hmax, where hmax is a specified maximum
element length for the domain.

Adaptation based on the Mach-number Hessian alone is known to have several deficiencies. For ex-

ample, curves of inflection in the Mach-number distribution may lead to inappropriate grid stretching in

certain regions of the domain, and inadequate resolution of the flow field may occur in regions where the

magnitude of the Hessian is close to zero. Heuristic remedies for these deficiencies have been proposed in

the literature [13,55], however, no explicit steps are taken in the current implementation to deal with them.

Results show (see Section 6) that the proposed output-based method is able to mitigate these effects while

maintaining effective control of the functional error.

5.2. Output error control

The output-based adaptive parameters derived in Section 3.2 are incorporated into an anisotropic grid-

adaptive framework for functional outputs.
The Riemannian metric introduced in Section 5.1 contains three independent pieces of information that

can be used for anisotropic grid adaptation. In its original form the metric is specified by the components

ða; b; cÞ. Through diagonalization, the metric can also be characterized by the parameters ðh1; h2; hÞ, as
shown in (27) and (28). In the present context it is convenient to decompose the metric into the parameters

ðH ; b; hÞ, which represent the local size, stretching, and orientation of the elements, respectively. These

parameters are defined by

ðH ; b; hÞ � ðh2; h1=h2; hÞ ð31Þ

In the proposed output-based adaptive method, the stretching and orientation parameters, b and h, are
obtained from the Mach number Hessian whereas the local size parameter H is determined from the adjoint

criteria.

In a typical output-based adaptive simulation, several adaptive iterations are required in order to achieve

grid convergence. Each iteration involves a flow and adjoint solution on the current grid, and an adaptive

step in which a new grid is generated. For each element in the current grid, the new size, stretching and

orientation parameters ðH 0; b0; h0Þ are computed for the proposed new grid. The stretching and orientation

parameters, b0 and h0, are obtained directly from the Hessian-based metric. The new size parameter H 0 is

expressed as the product of an adjoint-based factor and the current element-size parameter H .
The following describes a method for determining the size parameter H associated with an element in the

current grid. If it is assumed that the current grid is optimal in some metric, then the metric lengths of all the

edges in the grid are constant. Correspondingly, the local metric value for an element can be approximated

using (26). Specifically, consider the triangle shown in Fig. 3. For each of its edges k 2 ½1; 3�, the following
holds, approximately 1:

aðDxkÞ2 þ 2bDxkDyk þ cðDykÞ2 ¼ 1: ð32Þ

1 The appropriate constant on the right-hand-side of (32) is dependent on the standard employed by the particular grid generator. In

BL2D and BAMG, physical lengths are mapped onto a metric length of unity [23,26].

34 D.A. Venditti, D.L. Darmofal / Journal of Computational Physics 187 (2003) 22–46



This results in the system of equations

ðDx1Þ2 2Dx1Dy1 ðDy1Þ2

ðDx2Þ2 2Dx2Dy2 ðDy2Þ2

ðDx3Þ2 2Dx3Dy3 ðDy3Þ2

2
4

3
5 a

b
c

0
@

1
A ¼

1

1

1

0
@

1
A; ð33Þ

which can be solved for the metric components ða; b; cÞ. These components represent an average metric for

the triangle. The size parameter H can be obtained from the largest singular value rmax of the implied metric

via 2

H ¼ 1

r1=2
max

: ð34Þ

The approximate grid-implied metric for a tetrahedron can be obtained in an analogous fashion. In three

dimensions, the Riemannian metric is a symmetric positive-definite 3� 3 matrix specified by six compo-

nents. Tetrahedra have six edges over which six equations analogous to (32) can be written and solved for

the six unknown components.

5.3. Proposed adaptive procedure

Prior to an output-based adaptive simulation, one must specify the functional of interest f ðUÞ, a desired
tolerance on the functional error e0, and a scalar field for the Hessian calculations. For the test cases in this
paper, the Hessians are computed from the Mach number distribution.

A single iteration in the output-based procedure is comprised of the following steps:

1. Obtain the flow and adjoint solutions on the current grid.

2. For each element, compute the piecewise-constant Mach number Hessians using the quadratic recon-
struction procedure described in Section 2.2.

3. For each element, compute the Hessian-based metric MH using (30), by diagonalizing the Hessian

and taking the absolute value of its eigenvalues. Compute the desired new stretching and orientation

parameters, b0 and h0, using (27), (28) and (31).

4. For each element, estimate the grid-implied metric as described in Section 5.2, and compute the cur-

rent element-size parameter H .

5. Compute the adjoint-based adaptation parameters gg and gk derived in Section 3.2. Specifically,

gg ¼ e=e0 and gk ¼ ek=�ee0 for each element k, where �ee0 ¼ e0=Ne is the element target error, Ne is the total
number of elements in the current grid, e ¼

P
k ek, and ek is obtained from (14).

2 The true metric is symmetric positive-definite; its eigenvalues are positive and equal to its singular values. The implied metric is not

guaranteed to be positive definite, therefore, the size parameter H is computed in terms of the largest singular value, which is equal to

the absolute value of the largest eigenvalue in magnitude.

Fig. 3. Typical triangle in the current grid.
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6. For each element, the desired new element size H 0 is obtained in terms of the current size H using (18).

7. For each element, construct the new output-based metric M0 for the next grid using the parameters

ðH 0; b0; h0Þ. Transfer the elemental metric components to the nodes using area-weighted averages of

the piecewise-constant values over the elements surrounding each node.
8. Input the nodal metrics into the anisotropic grid generator and regenerate the grid.

The iterative process is considered converged when the change in the total number of nodes from one grid

to the next is on the order of 1% or less (� 5% for very coarse grids). If the desired error tolerance e0 is very
low relative to the resolution of the initial grid, excessive overrefinement may result in the early stages of the

adaptive process. To overcome this difficulty, a modest (large) value for e0 can be prescribed initially and

then gradually ramped down to the desired error level over the course of several iterations.

The grid generators used for the laminar and turbulent adaptive simulations in this work are BL2D

[10,26] and BAMG [23], respectively. These grid generators are incorporated into the current adaptive
framework using shell scripts. Information regarding their usage, capabilities, and algorithms can be found

in the references.

6. Numerical results

Several test cases are presented to demonstrate the performance of the proposed output-based, aniso-

tropic adaptive method. Comparisons are made with a standard adaptive method based exclusively on the
Mach-number Hessian (see Section 5.1). Pure Hessian-based adaptation is essentially what is used in

[13,22,39,55] although their methodologies and implementations differ to varying degrees.

6.1. Laminar flow adaptive results

6.1.1. Re ¼ 5000, M1 ¼ 0:5, a ¼ 3� NACA 0012 airfoil
Adaptive simulations are performed for laminar flow over a NACA 0012 airfoil with free stream con-

ditions Re ¼ 5000, M1 ¼ 0:5 and a ¼ 3�. Under these conditions, the flow separates from the suction side

of the airfoil at approximately the 50% chord position while remaining attached on the lower surface. The

functionals considered for this test case are the lift and drag coefficients. The initial grid in the adaptive

simulations for this case is the coarse, inviscid-style grid shown in Fig. 4. The farfield boundary is placed at

15 chords.

Fig. 4. NACA 0012 airfoil test case: Re ¼ 5000, M1 ¼ 0:5, a ¼ 3�. Initial grid in the adaptive runs for this test case.
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Lift-based simulations are performed for five different error tolerances: e0 ¼ 0:05, 0.025, 0.0125, 0.00625,
and 0.003125. The final adapted grids range in size from 392 nodes (e0 ¼ 0:05) to 4745 nodes

(e0 ¼ 0:003125). Drag-based simulations are performed for e0 ¼ 0:005, 0.0025, 0.00125, 0.000625, and
0.0003125 with final grids ranging in size from 358 nodes (e0 ¼ 0:005) to 3479 nodes (e0 ¼ 0:0003125). Pure
Hessian-based adaptation is performed for five multiplicative factors: j ¼ 25, 50, 100, 200, and 400. The

final grids range in size from 263 nodes (j ¼ 25) to 6395 nodes (j ¼ 400).

The left plot in Fig. 5 shows the final base and corrected lift values from the lift-based and Hessian-based

adaptive simulations. The fine-grid value is computed on a single fine-grid (N ¼ 2) corresponding to the

finest adapted grid from the lift-based simulations. This fine grid contains 18746 nodes. The Swanson et al.
value is obtained from [48]. Swanson et al. use a finite volume discretization that employs a structured C-

type grid with 512� 128 cells and farfield boundary at 10 chords. The right plot in Fig. 5 shows analogous

results for the drag. The fine-grid value is computed on an N ¼ 2 subdivision of the finest adapted grid from

the drag-based simulations. This fine grid contains 13 716 nodes. As is evident from Fig. 5, the output-based

scheme offers a considerable improvement in accuracy over pure Hessian-based adaptation for grids of

comparable size. Furthermore, the requested error tolerance is surpassed for each of the output-based

adaptive simulations performed for this test case.

Fig. 6 compares the final adapted grids from the e0 ¼ 0:00625 lift-based simulation (top) and the j ¼ 200
Hessian-based simulation (bottom). The inaccurate lift prediction from the Hessian-based simulation is

attributed to insufficient grid resolution in the inviscid regions of the flow, and to insufficient resolution of

the separation zone on the suction side of the airfoil. The elements adjacent to the upper surface near the

trailing edge are inappropriately large, resulting in unacceptable discretization errors in both the flow

solution and in the geometric representation of the airfoil.

6.1.2. Re ¼ 5000, M1 ¼ 0:5, a ¼ 3� two element airfoil
Adaptive simulations of laminar flow past two NACA 0012 airfoil elements are presented. The leading

edge of the downstream element is positioned four chord-lengths aft of the trailing edge of the upstream

element. The flow conditions are Re ¼ 5000 (based on the chord of a single element), M1 ¼ 0:5 and a ¼ 3�.
At this angle of attack, the wake from the upstream element passes directly over the suction side of the

downstream element.

Fig. 5. NACA 0012 airfoil test case: Re ¼ 5000, M1 ¼ 0:5, a ¼ 3�. Plots comparing the uncorrected and corrected lift and drag from

five lift-based, five drag-based, and five Hessian-based adaptive simulations. The fine-grid values are computed on N ¼ 2 subdivisions

of the finest adapted grids from the output-based simulations. The Swanson et al. values are obtained from [48].
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Adaptive simulations are performed to demonstrate the ability of the output-based scheme to provide
appropriate grid resolution for three different outputs. The output-based scheme is applied, independently,

to the left-element drag, the right-element drag, and the total drag (both elements). In each case, the

prescribed error tolerance on the output is e0 ¼ 0:0005. For comparison, an additional simulation is per-

formed using pure Hessian-based adaptation. The farfield boundary is placed at 15 chords from the origin.

Fig. 7 shows the final adapted grids for each case.

Output-based adaptation on the left-element drag alone produces a final grid with limited wake reso-

lution beyond two chord-lengths downstream of the left element. The left-element drag is relatively in-

sensitive to discretization errors downstream of that point. Correspondingly, the grid near the downstream
element is only marginally refined. Output-based adaptation on the right-element drag produces a grid with

significant wake resolution over the entire length of the inter-element gap, and beyond. The drag on the

downstream element is more strongly effected by discretization errors in the vicinity of the upstream ele-

ment. The adaptive algorithm responds accordingly by providing moderate grid resolution around the

upstream element. Output-based adaptation applied to the total drag produces significant grid resolution

near both elements. The wake from the upstream element is resolved well past the downstream element.

Adaptation based on the Mach number Hessian yields a final grid with higher resolution in the leading edge

and boundary layer regions relative to any of the output-based simulations. However, the inviscid regions
further away from the elements are relatively underresolved. The multiplicative factor for this case is

j ¼ 325.

The left-element, right-element, and total drag computed from each adaptive simulation is presented in

Table 2 Numbers in brackets correspond to corrected values using the associated adjoint correction term (see

Section 5.3). The drag values from the adaptive simulations are compared with the drag computed on a single

fine grid obtained by uniformly refining (N ¼ 2) the adapted grid corresponding to output-based adaptation

on both airfoil elements. In each case, the output-based method is effective at ensuring that the computed

Fig. 6. NACA 0012 airfoil test case: Re ¼ 5000, M1 ¼ 0:5, a ¼ 3�. Top: final adapted grid using lift-based adaptation with

e0 ¼ 0:00625. Bottom: final grid using pure Hessian-based adaptation with j ¼ 200.
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output (after correction) from the final adapted grid meets the imposed error tolerance. The adaptive al-

gorithm resolves only those regions of the flow that are crucial for accurately computing the prescribed

output. For the case where the output-based method is applied to the left-element drag alone, accuracy in the
right-element drag is sacrificed in favor of a considerable reduction in grid size. This effect is not as severe in

the opposite case, when the output-based method is applied to the right-element drag alone, for reasons

Fig. 7. Two element (NACA 0012) airfoil test case: Re ¼ 5000, M1 ¼ 0:5, a ¼ 3�. Final adapted grids from four different adaptive

runs. The proposed output-based method is applied to the left-element drag (top), the right-element drag (second from top), and the

total drag (third from top). The bottom plot corresponds to pure Hessian-based adaptation.
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outlined earlier. For grids of comparable size, output-based adaptation on both elements yields drag esti-

mates that are dramatically more accurate than those obtained from pure Hessian-based adaptation.

6.2. Turbulent flow adaptive results

6.2.1. Re ¼ 6:5� 106, M1 ¼ 0:725, a ¼ 2:466� RAE 2822 airfoil
Adaptive simulations are performed for turbulent flow over an RAE 2822 airfoil. The Reynolds number

and free stream Mach number are Re ¼ 6:5� 106 and M1 ¼ 0:725, respectively, corresponding to Case 6
conditions in [14]. The angle of attack is fixed at a ¼ 2:466�, corresponding to the computation by Allmaras
[3] in which the Case 6 lift is matched. Under these conditions, a shock appears on the suction side of the

airfoil near the mid-chord position. The functionals considered for this test case are the lift and drag co-

efficients. The farfield boundary is placed at 100 chords. The initial grid for the adaptive simulations is a

relatively coarse, inviscid-style grid analogous to the one shown in Fig. 4.

Lift-based simulations are performed for six different error tolerances ranging from e0 ¼ 0:05 to

e0 ¼ 0:0025. The final adapted grids range in size from 668 nodes (e0 ¼ 0:05) to 22 159 nodes (e0 ¼ 0:0025).
Drag-based simulations are performed for error tolerances ranging from e0 ¼ 0:0025 to e0 ¼ 0:0001 with
final grids ranging in size from 741 nodes (e0 ¼ 0:0025) to 18 691 nodes (e0 ¼ 0:0001). Pure Hessian-based
adaptation is performed for nine multiplicative factors ranging from j ¼ 25 to j ¼ 300. The final grids

range in size from 2752 nodes (j ¼ 25) to 37 681 nodes (j ¼ 300).

Fig. 8 shows the base and corrected values of the computed lift and drag using the proposed output-

based method and pure Hessian-based adaptation. The experimental values correspond to Case 6 in [14].

The Allmaras values [3] are obtained from an independent computation. Allmaras uses an upwind, second-

order finite-volume discretization for the conservation equations and a first-order discretization for the

Spalart-Allmaras turbulence model [45]. A structured C-type grid comprised of 768� 192 cells is employed.
The farfield boundary is placed at 20 chords and a point vortex correction is applied to the farfield

boundary conditions.

The proposed output-based adaptive method offers a substantial improvement in accuracy over pure

Hessian-based adaptation for both the lift and drag. Unlike the laminar test case presented in Section 6.1.1,

the errors in the corrected outputs for this test case appear to be higher than the corresponding tolerances, at

Table 2

Two element (NACA 0012) airfoil test case: Re ¼ 5000, M1 ¼ 0:5, a ¼ 3�

Grid Drag (error)

Adaptive criteria Nodes Left element Right element Total

Pure Hessian-based 10561 0.06049 (4.2%) 0.06148 (7.5%) 0.1220 (5.8%)

Output based

Left-element adjoint 3015 0.05847 (0.7%) 0.07265 (27.0%) 0.1311 (13.7%)

0.05821 (0.3%)

Right-element adjoint 4526 0.06018 (3.7%) 0.05800 (1.4%) 0.1182 (2.6%)

0.05741 (0.3%)

Based on both elements 9758 0.05820 (0.3%) 0.05756 (0.6%) 0.1158 (0.5%)

0.1153 (0.0%)

Fine grid 38 574 0.05804 0.05722 0.1153

Computed drag from four different adaptive runs: output-based adaptation on the left-element drag, right-element drag, and total

drag (both elements), and pure Hessian-based adaptation. Numbers in bold face correspond to corrected drag values using the

associated adjoint correction term. Numbers in brackets are the percentage error in the drag measured with respect to the fine grid

value. The fine grid is obtained by uniformly refining (N ¼ 2) the adapted grid corresponding to output-based adaptation on both

airfoil elements.
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least for the coarser grids in the adaptive series. Recall, however, that the prescribed error tolerance is

measured with respect to the associated N ¼ 2 fine-grid. It is likely that the fine grids associated with the

three coarsest lift- and drag-based grids would themselves predict inaccurate output values for this problem.

Fig. 9 compares the final adapted grids from the e0 ¼ 0:0025 lift-based simulation (top), the e0 ¼ 0:0001
drag-based simulation (middle), and the j ¼ 300 Hessian-based simulation (bottom). The inaccurate lift

and drag predictions from the Hessian-based simulation are primarily attributed to insufficient grid reso-
lution in the inviscid portions of the flow, particularly near the leading edge and immediately adjacent to

the boundary layer regions. Conversely, although it is not perceivable from the figure, the near-wall region

in the boundary layer is significantly over-refined relative to the output-based grids, resulting in a larger

overall grid size. Further, the wake is resolved farther downstream in the output-based grids relative to the

Hessian-based grid where the wake appears to be truncated prematurely. In this region, wake refinement

gets propagated downstream by the Hessian-based algorithm at a very slow rate. In comparison, the

output-based algorithm is able to detect and resolve the wake far more rapidly over a comparable number

of adaptive iterations.

6.2.2. Re ¼ 9� 106, M1 ¼ 0:26, a ¼ 8� advanced EET three element airfoil
Adaptive simulations are performed for turbulent flow over the advanced energy efficient transport

(EET) three element airfoil [28]. The Reynolds number (based on the chord of the EET with elements
retracted), free stream Mach number, and angle of attack are Re ¼ 9� 106, M1 ¼ 0:26, and a ¼ 8�, re-
spectively. The functional of interest for this test case is the total lift coefficient (all three elements). The

farfield boundary is placed at 100 chords. The initial grid for the adaptive simulations is a relatively coarse,

inviscid-style grid analogous to the one shown in Fig. 4.

Output-based simulations are performed for seven different error tolerances ranging from e0 ¼ 0:1 to

e0 ¼ 0:01. The final adapted grids range in size from 1200 nodes (e0 ¼ 0:1) to 59 132 nodes (e0 ¼ 0:01). Pure
Hessian-based adaptation is performed for six multiplicative factors ranging from j ¼ 50 to j ¼ 300. The

final grids range in size from 8489 nodes (j ¼ 50) to 52 235 nodes (j ¼ 300).
Fig. 10 shows the base and corrected values of the computed lift using the proposed output-based

method and pure Hessian-based adaptation. The experimental lift value is obtained from [28]. The

Fig. 8. RAE 2822 airfoil test case: Re ¼ 6:5� 106, M1 ¼ 0:725, a ¼ 2:466�. Plots comparing the uncorrected and corrected lift and

drag from six lift-based, six drag-based, and nine Hessian-based adaptive simulations. The experimental values correspond to Case 6 in

[14]. The Allmaras values are obtained from an independent computation [3] (see accompanying text).
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Anderson et al. [5] value is obtained from an independent computation. Anderson et al. use the FUN2D
flow solver (see Section 4.1). An unstructured grid comprised of 70 686 nodes is employed for the com-

putation. The grid has regular spacing near the airfoil boundaries with a minimum normal spacing of

2� 10�6 chord units adjacent to the wall.

Lift predictions from the output-based grids are dramatically superior to those computed from the

Hessian-based grids. Output-based grids with greater than 20 000 nodes are essentially converged with

respect to the computed lift. Conversely, the uncorrected lift value from the finest of the Hessian-based

grids is still in error by nearly 20%.

Fig. 11 compares the final adapted grids from a lift-based simulation corresponding to e0 ¼ 0:02 (top)
and a Hessian-based simulation corresponding to j ¼ 300 (bottom). Fig. 12 shows near-field views of the

same grids in the slat region (top) and flap region (bottom). As in previous test cases, the inaccurate lift

prediction from the Hessian-based simulation is attributed, in part, to insufficient grid resolution in the

inviscid regions of the flow. Furthermore, the near-wall boundary layer regions are generally overrefined

relative to the output-based grid, resulting in unnecessary computing costs. Additional reasons for the poor

lift prediction from the Hessian-based grid can be deduced from Fig. 12. In contrast to the output-based

method, the Hessian-based method incorrectly predicts the location of the lower slat wake. As a result, the

Fig. 9. RAE 2822 airfoil test case: Re ¼ 6:5� 106, M1 ¼ 0:725, a ¼ 2:466�. Comparison of final adapted grids using the proposed

output-based method on the lift (top), and drag (middle), and using pure Hessian-based adaptation (bottom).
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flow at the leading-edge and upper surface of the main element has larger total pressure loss than the actual

flow which would tend to lower the predicted lift generated by the airfoil. In fact, the results from Fig. 10

show that the lift is greatly under-predicted by the Hessian-based method. The severe lack of resolution

in the cavity region at the rear of the main element is also a likely source of error in the Hessian-based
grid.

Fig. 11. Advanced EET three element airfoil test case: Re ¼ 9� 106, M1 ¼ 0:26, a ¼ 8�. Final adapted grids using the proposed

output-based method (top), and pure Hessian-based adaptation (bottom).

Fig. 10. Advanced EET three element airfoil test case: Re ¼ 9� 106, M1 ¼ 0:26, a ¼ 8�. Comparison of the uncorrected and corrected
lift from seven output-based adaptive simulations and six Hessian-based simulations. The experimental lift value is obtained from [28].

The Anderson et al. value is obtained from an independent computation [5] (see accompanying text).
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7. Conclusion

A novel anisotropic grid adaptive procedure was presented for improving the accuracy of functional
outputs from numerical simulations of viscous, compressible flows. The method was demonstrated by

application to two-dimensional laminar and turbulent airfoil test cases using a standard finite volume

discretization. The proposed method was shown to be superior in terms of reliability, output accuracy and

computational efficiency relative to pure Hessian-based adaptation.

The algorithms and procedures outlined in this paper are all extendible to three dimensions. Park [36]

has implemented an extension of the proposed output-based procedure for isotropic adaptive refinement of

three-dimensional Euler simulations. The proposed anisotropic adaptive method is expected to be partic-

ularly beneficial for three-dimensional Navier–Stokes applications, where the resolution requirements for
the computational grid often become exceedingly unintuitive, and for which the current technology is often

unreliable or inadequate [44].
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