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Abstract— The method of proper orthogonal decomposition
(POD) has been proven to be very useful for constructing low
dimensional models of large scale systems. However, despite
the model order reduction, low-order models derived from
truncations of POD bases remain computationally intensive
for the simulation of large scale linear time-varying (LTV) and
nonlinear models. The main bottleneck lies in the requirement
to have full spatial information from the original model to
construct the reduced-order models. In this paper, we propose
criteria to select a suitable subset of the original spatial
coordinate system using information from the snapshot matrix
and the POD basis functions. We show that the states of the
POD-based reduced order model can be estimated much more
efficiently by conducting projections on these selected states.
The method is applied to a representative industrial model of
a glass feeder.

I. I NTRODUCTION

The vast development of computing resources has en-
abled the simulation of complex physical processes, such
as systems whose behavior is governed by coupled mass,
momentum, and energy balances. Such systems are of-
ten described by nonlinear partial differential equations
(PDE’s). Prominent examples of large scale PDE-based
models include computational fluid dynamics (CFD) mod-
els. Such models are widely applied in diverse engineering
fields including the chemical, aerospace, mechanical, and
seismographical domains.

CFD models typically include variables in both spatial
and temporal coordinates. The spatial domains of the gov-
erning PDE’s are discretized typically into103 to 106 grid
cells to attain a required level of accuracy. Due to this
discretization, CFD models tend to be of high order and
complex. In addition, these models require considerable
computational effort, so that implementation of fast predic-
tions and on-line model-based control is often infeasible.
Reduced order modeling is therefore an essential tool for
model-based control design of such systems.

Proper orthogonal decomposition (POD), also known as
Karhunen-Lòeve expansions or principal component analy-
sis, have been applied as a model reduction technique for
large-scale models. The method is data based, in that a
suitable orthonormal basis is determined from observed or
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experimental data, so as to capture and order, in a well de-
fined sense, relevant information from the spatial dynamics
of the system. The reduced order model is obtained by a
Galerkin projection of the system dynamics on the first few,
and most relevant basis functions.

In this paper, we mainly consider linear time-varying
(LTV) systems obtained from a discretization of the PDE-
based models. Suppose the general full order model hasK
states, where the state vectorz(k) ∈ RK , representing the
spatial information at timek, evolves according to:

{
A(k)z(k + 1) = A0(k)z(k) + Bu(k)
y(k) = Cz(k).

(1)

Here, the matricesA(·), A0(·), B(·), and C are derived
from the PDE’s governing the system. The vectoru contains
the system inputs, and the vectory contains the outputs of
interest.

The reduced order model is obtained by projecting the
statez of (1) onto the firstn basis vectors in a POD basis
of the state space. IfΦ ∈ RK×n is the matrix containing
the n relevant POD basis vectors, then the reduced model
is given by

{
Ar(k)a(k + 1) = A0r(k)a(k) + Bru(k)
y(k) = Cra(k)

(2)

where

Ar(k) = Φ>A(k)Φ; A0r(k) = Φ>A0(k)Φ

Br = Φ>B; Cr = CΦ

The reduced order model has dimensionn ¿ K. For
LTV systems, the information from the original model is
changing constantly because the matrices in (1) are also up-
dated at each timestep. Therefore, except in the special case
of linear systems, low-order modeling techniques remain
computationally demanding despite the dramatic reduction
in model order.

In this paper, we propose a reduced order modeling
technique which estimates the POD coefficientsa(k) based
on a selected number of points in the spatial domain. These
points must be selected in such a way that the global
dynamics is still approximated well. The selection problem
is similar to finding suitable sensor locations from which the
global dynamics can be inferred. In this case the objective is
to save the computational effort needed to build the reduced
order model.

The paper is organized as follows. First, a brief introduc-
tion of POD is given. Then the method of Missing Point



Estimation (MPE) is described as an extension of POD for
incomplete data. The criterion to select relevant ponts in the
spatial coordinate system is discussed in the next section,
followed by an application that demonstrates the features
of the method in an industrial model of a glass feeder.
Finally, in the last section, the conclusions and outlook are
presented.

II. PROPERORTHOGONAL DECOMPOSITION

Consider a continuous PDE model for a functionT :
X × T → R defined on a spatial setX and a time set
T ⊆ R given by

∂T

∂t
= D(T ) (3)

whereD(·) is a nonlinear partial differential operator in the
spatial variable. We assume that for any relevant time instant
t ∈ T, the solutionT (., t) of (3) belongs to a separable
Hilbert spaceX whenT (·, t) is viewed as a mapping from
X to R. Let (·, ·) and‖ · ‖ denote the inner product and the
induced norm associated withX . For a suitable orthonormal
basis{ϕi}i∈I, (I a countable index set), ofX a spectral
decomposition of solutionsT of (3) exists, is unique and
can be written as

T (x, t) =
∞∑

i=1

ai(t)ϕi(x), x ∈ X, t ∈ T.

Here we refer to the functions{ϕi}i∈I asbasis functionsor
the POD basisand toai as theFourier spectrumor modal
coefficientsof T with respect to the basis{ϕi}i∈I. Let the
partial sum

Tn (x, t) =
n∑

i=1

ai(t)ϕi(x), x ∈ X, t ∈ T (4)

denote the truncatedn-th order expansion ofT .
The POD method requires that the Galerkin projection of

the residual∂Tn

∂t −D(Tn) onto the space spanned byϕi (·)
with i = 1, . . . , n vanishes. That is,(

∂Tn

∂t
−D(Tn), ϕi

)
= 0 i = 1, . . . , n. (5)

Given the basis functionsϕi, this projection leads to ann-th
order ordinary differential equation in the coefficientsai(t)
given by

ȧi (t) =


D




n∑

j=1

aj(t)ϕj(x)


 , ϕi (x)


 (6)

wherei = 1, . . . , n.
For numerical implementation, (3) and (6) are discretised,

resulting in (2). Suppose that the dataT (x, t) is given for
x ∈ X, t ∈ T where bothX andT are finite sets of cardi-
nality K and L, respectively. LetT(t) = colx∈X T (x, t)
denote the vector (of dimensionK) of stacked spatial
measurements and letTsnap = [T(1) · · ·T(L)] be the
snapshot matrix. Let

Tsnap= ΦΣΨT , Φ ∈ RK×K Ψ ∈ RL×Lunitary (7)

be a singular value decomposition ofTsnap. The matrixΦ =(
ϕ1, . . . ϕK

)
is unitary and contains the POD basis ofRK

as its columns. The truncation ofΦ to its first n columns
is based on the ordered singular valuesσ1 ≥ σ2 ≥ · · · ≥
σK ≥ 0 in Σ wheren < K is selected such that

Pn =
∑n

i=1 σ2
i∑K

i=1 σ2
i

(8)

is close to 1.
In the next section, we discuss how information of a

subsetX0 ⊂ X of the spatial domain can be used to estimate
a(k) = coliai(tk) in the discretized reduced order model
(2).

III. M ISSING POINT ESTIMATION

A subsetX0 of X is called a mask. LetX0 ⊂ X be the
Hilbert space of the restricted mappings̃T := T |X0 with
T ∈ X . That is,X0 is a Hilbert space whose inner product
(f̃ , g̃)X0 = (f, g)X if f andg are the natural injections of
f̃ and g̃ in X . Similarly, let ϕ̃i := ϕi |X0 be the restrictions
of the basis functionsϕ to X0. Note thatϕ̃i, i ≥ 1, will be
a basis forX0, but in general this will be neither a minimal
nor an orthonormal one.

Given the orthonormal basis{ϕi}K
i=1 of X and a mea-

surementT̃ on the maskX0, our objective is to estimate

T̃n(x, t) =
n∑

i=1

ãi(t)ϕ̃i(x), x ∈ X0 (9)

where the coefficients̃ai(t) minimize the least squares error

E(t) = ‖T̃ (x, t)− T̃n(x, t)‖2X0
(10)

for t ∈ T. From the coefficients̃ai in (9), an estimate ofT
is represented by

T̂n(x, t) =
n∑

i=1

ãi(t)ϕi(x), x ∈ X

We will refer to T̂n as themissing point estimationof T ,
based onn modes. The optimal coefficients̃a∗i (t) in the
criterion (10) satisfy the linear system of equations

n∑

i=1

ã∗i (t) (ϕ̃i(x), ϕ̃j(x))X0
=

(
T̃ (x, t), ϕ̃j(x)

)
X0

which can be written as

Mã∗(t) = f(t) (11)

where
Mij = (ϕ̃i(x), ϕ̃j(x))X0

and
fj(t) =

(
T̃ (x, t), ϕ̃j(x)

)
X0

(12)

Thus, with the knowledge of limited information, we can
estimate the basis coefficientsãi(t) and in this way recon-
struct T on the firstn POD basis functions through the
estimateT̂n at every time-stept. This method was initiated



in [9] for image reconstructions. For flow reconstruction
problems, the method was first applied to steady flow recon-
struction problem [4] and to unsteady flow sensing in [1].
The paper of [3] presents application of MPE techniques
to accelerate dynamic simulation. In [3], a criterion based
on the magnitude of POD basis elements at every state is
proposed to reduce the set of original equations in (2).

In this paper, we propose a slightly different criteria to
that applied in [3], where we also pay attention to the
weighted POD basis and well-posedness of the maskX as
briefly discussed in the final chapter of [11].

IV. POINT SELECTION CRITERIA

The problem of point selection amounts to characterizing
masksX0 of fixed dimension,̀ say, so that the missing
point estimationT̂n based on the measurementT̃ = T |X0×T
provides a good estimate ofT . This problem is of evident
interest for the characterization of suitable sensor locations
for which the system dynamics can be recovered.

In [3], the selection criterion is based on the magnitude
of the POD basis. This is based on the assumption that
all POD basis functions are ofequal importance while in
the SVD of the snapshot data, the POD basis functions are
weighted by the singular values.

In this paper, we propose a criterion based on the
correlation of output energy over the various pointsX =
{x1, . . . , xK} in the spatial domain. For this define a matrix
J ∈ RL×L whose(i, j)-th entry is given by:

Jij :=
K∑

k=1

T (xk, ti)T (xk, tj)

or, in matrix form,

J = T>snapTsnap

whereTsnap ∈ RK×L is the snapshot matrix obtained by
collecting the simulation data forL time samples.

Since T(t) = Φa(t) with Φ the POD basis matrix of
dimensionK ×K, we can decomposeJ as:

J = J̃ + Ĵ

where the(i, j)-th entry of J̃ and Ĵ are given by:

J̃ij = a>n (ti)Φ>n Φnan(tj); Ĵij = a>t (ti)Φ>t Φtat(tj)

where Φ and a(t) are decomposed asΦ = [Φn Φt] and
a(t) = col(an(t),at(t)) with Φn ∈ RK×n having n
columns andan(t) havingn entries.

Let Φ̃k ∈ R1×n be thek-th row of Φn. Then J̃ij can be
expanded as

J̃ij = a>n (ti)Φ̃>1 Φ̃1an(tj) + · · ·+ a>n (ti)Φ̃>KΦ̃Kan(tj)

=
K∑

k=1

a>n (ti)Φ̃>k Φ̃kan(tj) (13)

where each term in the right hand side of (13) denotes the
contribution of one pointxk ∈ X to the correlation output
energyJ̃ .

Define, for each pointxk ∈ X, the L× L matrix E(xk)
whose(i, j)-th entry is

Eij(xk) := J̃ij − a>n (ti)Φ̃>k Φ̃kan(tj). (14)

Then, fork = 1, . . . ,K, defineek by setting:

ek :=‖ E(xk) ‖ (15)

where the norm‖X‖ is defined as

‖X‖ =
L∑

i=1

L∑

j=1

X2
ij

Then ek in (15) represents the total output correlation
obtained by ignoring the pointxk ∈ X. The point with
the lowestek is the one that maximizes the output energy,
i.e., the one which is most relevant in comparison with other
points. Let us re-index the points inX asxk1 , . . . , xkK

such
that

ek1 ≤ ek2 ≤ · · · ≤ ekK

After ek has been ordered, we will choose the mastX0

such that the inner product of the incomplete basis in (11)
is well-conditioned. Otherwise, the solution of (11) is not
unique. This relates to the importance of well-posedness of
the maskX0 which is discussed very briefly in [11].

The procedure of choosing points can be further opti-
mized by first choosing the first point with minimumek.
The second point is chosen as the one which minimizes the
condition number ofM in (11) or the one which is ‘mostly
orthogonal’ to the already chosen point. This similar to the
algorithm implemented in [1]. This approach is conceptually
similar to the derivation of the POD basis, where the first
basis vector is chosen to maximizeJ and the second basis
vector is the one which maximizesJ but orthogonal to the
first one.

V. THE FEEDERMODEL

The missing point estimation approach is implemented on
the CFD model of a glass feeder. The glass feeder is a part
of a glass furnace where the temperature difference in glass
is controlled very tightly. The feeder is located between
the refiner, where bubbles in the molten glass are released,
and the spout or the glass outlet point, which consists of
a refractory block with an outlet orifice and a plunger as
a dosing mechanism. A schematic figure of a glass feeder
with the spout is shown in Figure 1. The upper part of the
feeder is divided into several sections, where thr temperature
distribution is imposed differently in each section to control
the distribution in the feeder. The dimensions of the feeder
are 8.5 m ×0.55 m ×2 m in length, height, and width,
respectively [5]. The total number of grid points involved
in the computation is3800. Figure 2 which shows the grid
division of the glass feeder. The temperature distribution
T (x, t) in the feeder is described by the following PDE:

∂ (ρcpT )
∂t

= −div (ρcpTu) + div (κgradT ) + q (16)



Fig. 1. Schematic Figure of a glass feeder
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Fig. 2. Sketch of the Grid Division for Glass Feeder model, red grids
belong to the glass domain and yellow grids to the feeder walls

whereρ is the density, which is temperature dependent for
glass, cp is the heat-capacity,κ is the heat conductivity
which is also temperature dependent for glass, andq com-
prises the external energy sources applied to the feeder, such
as a stirrer or a set of electrical boosting. The termu refers
to the velocity vector. In a Cartesian coordinate system, the
velocity is a 3 dimensional vector inx, y, z directions.

To manipulate the temperature distribution in the feeder
channel, the crown temperature is varied. The crown tem-
perature is divided into four vertical zones, from the inlet to
the outlet of the feeder with temperature variations from the
nominal condition as shown in Figure 4. The nominal crown
temperature distribution is shown in Figure 3. The variations
of each zone are depicted in Figure 4. The numerical CFD
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Fig. 4. The temperature variations of the four crown temperature zones.
The crown temperature distribution is divided into four zones from the
feeder inlet to the feeder outlet. Zone 1 includes the inlet, zone 2 and 3
are located in the middle and zone 4 includes the outlet

model is obtained by integrating (16) for a specified time
step∆t and for every volume unit of a grid point∆V using
the finite volume method [10].

The integrated equations can be written as
∫ t+∆t

t

∫

∆V

∂ (ρcpT )
∂t

dV dt = +
∫ t+∆t

t

∫

∆V

qdV dt

−
∫ t+∆t

t

∫

∆V

div (ρcpTu) dV dt

+
∫ t+∆t

t

∫

∆V

div (κgrad T ) dV dt (17)

After calculating (17) for every grid pointP , the following
general expression is obtained at everyk-th time step [10]:

aP (k)TP (k) = aW (k)TW (k) + aE(k)TE(k) + aN (k)TN (k)
+ aS(k)TS(k) + aB(k)TB(k) + aT (k)TT (k)

+ a0
P (k)TP (k − 1) (18)

where TP is the temperature at a specified grid point,
TW , TE , TN , TS , TB , TT are the the temperatures of the
west, east, north, south, bottom, and top neighbor-
ing points, andS is the source term. The coefficients
aW , aE , aN , aS , aT , aB denote the contributions from the
central, west, east, north, south, top, and bottom neighboring
points. These coefficients are also functions of temperature
that they are also time-dependent.

Simultaneous expression of (18) for the whole compu-
tational domainX0 results in a linear time varying model
(LTV) to be solved at every time step. The general form of
the LTV model can be expressed as [10]:

A(k)T(k + 1) = A0(k)T(k) + S(k) (19)

where the elements ofA,A0,S are updated at every time
step.

In the feeder model, the sampling time is 1 minute and
simulation is run for 112 minutes with crown temperature
variations as depicted in Figure 4. The eigenvalue spectrum
of the collected snapshots is shown in Figure 5. From the
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SVD of the temperature data collected in 112 minutes, we
choose 18 POD basis functions corresponding to 18 largest
singular values. The basis functions are collected inΦ ∈
R3800×18. The classical POD approach results in reduced
order models of the form:

ΦT A(k)Φa(k + 1) = ΦT A0(k)Φa(k) + ΦT S(k) (20)

whereΦ =
(
ϕ1 ϕ2 . . . ϕn

)
.

By taking into account the symmetry along the feeder
width, we can reduce the number of states to 1900. With
1900 points and 18 basis functions, the reduced order model
is only 2.23 faster than the original model of the temperature
field in the feeder. To enhance the computational speed of
the reduced order model, the Missing Point Estimation is
applied.

VI. I MPLEMENTATION OF MPE

The main objective of MPE implementation in this paper
is to construct a fast reduced order model. If MPE is
used in the context of state reconstruction from sensor
measurements, then the righthand-side term of (11) is exact
since T̃ is measured directly from the physical process.
However, for the case of model acceleration considered in
this paper,T̃ is not known exactly, unless the full state is
computed. To avoid this costly computation, the states inT̃
are found by projecting just the part of (19) that corresponds
to the selected points onto a set of incomplete (gappy) POD
basis vectors.

The fast reduced order model is also desired to be
sufficiently reliable in simulating the global dynamics when
boundary conditions change. Based on this motivation, it is
very important to have the information from the boundary
conditions also transferred to the MPE-based model. For
the glass feeder, there are 265 points which are adjacent to
the boundary points defining the crown temperature and the
inlet temperature of the glass.

The remaining points (1635 points) are then ranked based
on ek in (15). The plot of the orderedek is shown in Figure
6. The plot of the condition number ofM = Φ̃>Φ̃ ((11))
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Fig. 6. Plot of the orderedek, the left part corresponds to relevant points,
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whereM is constructed by the 265 obligatory points and
the extra points taken from the orderedek is shown in
Figure 7. From the condition number plot in Figure 7, it
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Fig. 7. The condition number of̃Φ>Φ̃ obtained by orderingek and
adding the 265 obligatory boundary points

is clear that after forming̃Φ>Φ̃ from the first 1000 points
with smallestek and the 265 obligatory boundary points,
there is relatively little change of the condition number. The
number of points can be further reduced by conducting the
algorithm as implemented in [1].

First we take the point with the smallest value ofek. The
second point is chosen to be the one which has minimal
condition number with the already chosen points, and this
is continued until in total, 565 points are taken, including
the 265 obligatory points. The condition numberκ(M) of
M defined in (11) is3.18.

By MPE, we have the following reduced-order model to
derive and to solve [2]

Φ̃T Ã(k)ã(k + 1) = Φ̃>Ã0(k)a(k) + Φ̃>S(k) (21)

Since we selected 565 points,Φ̃ ∈ R565×18 and the CFD
matrices are also adjusted accordingly. By comparing (20)
and (21), it is clear that (21) is more attractive from a
computational point of view. The chosen points in the glass



domain are shown in Figure 8. The plot shows half of the
plane because we consider the symmetry along the feeder
width.
The deviation of the MPE-based reduced order model from
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Fig. 8. Chosen points at the glass10 cm below the surface for MPE with
565 points, marked by the grey cells

the original model is negligible as clearly shown in Figure
9. Figure 9 shows the responses of the three measurement
points on the feeder outlet using the original, the MPE
model with 1265 points, and the MPE model with 565
points.
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Fig. 9. The responses of the three measurement points at the feeder outlet,
calculated using three models: original, MPE with 1265 points and MPE
with 565 points

Table I summarizes the maximum absolute error and the
computational gain with respect to the original model in
calculating temperature distribution of the feeder for various
reduced order models. The maximum absolute average error
ε̄ is calculated as:

ε̄ = max
x∈X

1
112

112∑

k=1

| T (x, k)− Tn(x, k) |, x ∈ X

whereT is the temperature field calculated by the original
model andTn is the temperature calculated by the reduced
models.

The effectiveness of MPE-based model depends heavily
on the quality of the POD-based model. Since the choice

TABLE I

COMPARISON BETWEENPOD AND MPE MODELS

Model Type Maximum Absolute Average Error Gain
POD 0.007◦ C 226%
MPE-1265 0.007◦ C 335%
MPE-566 0.012◦ C 620%

of points is based on the snapshot data, the MPE method
proposed in this paper will be effective if it is used for
predictions in the same operating range. For most industrial
cases, however, the typical operating condition is known and
extreme changes are rarely imposed on the system under
investigation.

VII. C ONCLUSION AND OUTLOOK

A missing point estimation algorithm has been proposed
based on an output energy and condition number criterion.
The method modifies the classical POD procedure so that
the reduced states or the POD basis coefficients can be
obtained for large scale LTV and also large scale nonlinear
systems based on information from limited or observed
data. The approach is transferrable to other reduced order
modeling techniques such as Balanced Truncation where
transformation matrices are derived to transform the original
model into a reduced order model. In the future, it would
be interesting to use the empirical balanced truncation basis
functions as proposed in [6] for the MPE models.
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