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Abstract— The method of proper orthogonal decomposition experimental data, so as to capture and order, in a well de-
(POD) has been proven to be very useful for constructing low  fined sense, relevant information from the spatial dynamics
dimensional models of large scale systems. However, desplteof the system. The reduced order model is obtained by a

the model order reduction, low-order models derived from Galerki ect] fth tem d . the first f
truncations of POD bases remain computationally intensive alerkin projection of the system dynamics on the hrst few,

for the simulation of large scale linear time-varying (LTV) and ~ @nd most relevant basis functions.

nonlinear models. The main bottleneck lies in the requirement In this paper, we mainly consider linear time-varying
to have full spatial information from the original model to  (LTV) systems obtained from a discretization of the PDE-
construct the reduced-order models. In this paper, we propose based models. Suppose the general full order modeFhas

criteria to select a suitable subset of the original spatial K .
coordinate system using information from the snapshot matrix states, where the state vectdik) € R™, representing the

and the POD basis functions. We show that the states of the Spatial information at time:, evolves according to:

POD-based reduced order model can be estimated much more

efficiently by conducting projections on these selected states. A(k)z(k + 1) = Ao(k)z(k) + Bu(k)
y(k) = Cz(k).

The method is applied to a representative industrial model of
a glass feeder.
Here, the matricesA(-), Ao(-), B(-), and C are derived
|. INTRODUCTION from the PDE’s governing the system. The veaiaontains
The vast development of computing resources has ethe system inputs, and the vectprcontains the outputs of
abled the simulation of complex physical processes, sudhterest.
as systems whose behavior is governed by coupled massThe reduced order model is obtained by projecting the
momentum, and energy balances. Such systems are 8fatez of (1) onto the firstn basis vectors in a POD basis
ten described by nonlinear partial differential equation§f the state space. b € R**" is the matrix containing
(PDE’s). Prominent examples of large scale PDE-basdhe n relevant POD basis vectors, then the reduced model
models include computational fluid dynamics (CFD) modis given by
els. Such models are widely applied in diverse engineering
fields including the chemical, aerospace, mechanical, and { Ar(Rja(k + 1) = Ao, (k)a(k) + Bru(k)
seismographical domains. y(k) = Cra(k)
CFD models typically include variables in both spatialyhere
and temporal coordinates. The spatial domains of the gov- T T
erning PDE’s are discretized typically inti®3 to 105 grid Ar(k) =2 A(R)D; Agr(k) = Ag(k)®
cells to attain a required level of accuracy. Due to this B, = ¢ 'B; C,=Co
discretization, CFD models tend to be of high order and The reduced order model has dimension< K. For

complex. In addition, these models require considerab . . - .
piex. . q . Lel'v systems, the information from the original model is
computational effort, so that implementation of fast predic-

. . . . . changing constantly because the matrices in (1) are also up-
tions and on-line model-based control is often infeasible : . )
T . dated at each timestep. Therefore, except in the special case
Reduced order modeling is therefore an essential tool for, : ; : .
g of linear systems, low-order modeling techniques remain
model-based control design of such systems.

Proper orthogonal decomposition (POD), also known a%omzléz“g::jae"ry demanding despite the dramatic reduction
Karhunen-L&ve expansions or principal component analy- ; ' .
. . . ) In this paper, we propose a reduced order modeling
sis, have been applied as a model reduction technique for , . . ; .
: . technique which estimates the POD coefficiex(g) based
large-scale models. The method is data based, in that a o ) )
; . . on a selected number of points in the spatial domain. These
suitable orthonormal basis is determined from observed Qr . .
points must be selected in such a way that the global
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Estimation (MPE) is described as an extension of POD fdre a singular value decompositionDfnap The matrix® =
incomplete data. The criterion to select relevant ponts in th(eal, e @K) is unitary and contains the POD basisRf
spatial coordinate system is discussed in the next sectiaas its columns. The truncation @f to its first n columns
followed by an application that demonstrates the featureés based on the ordered singular valugs> oo > --- >
of the method in an industrial model of a glass feederrx > 0 in ¥ wheren < K is selected such that

Finally, in the last section, the conclusions and outlook are

presented.

Il. PROPERORTHOGONAL DECOMPOSITION

Consider a continuous PDE model for a functioh:
X x T — R defined on a spatial séf and a time set
T C R given by

oT

5 ®3)

= D(T)

whereD(-) is a nonlinear partial differential operator in the

(8)

is close to 1.

In the next section, we discuss how information of a
subsetX, C X of the spatial domain can be used to estimate
a(k) = col;a;(ty) in the discretized reduced order model

).

IIl. MISSINGPOINT ESTIMATION

spatial variable. We assume that for any relevant time instant o subsetX, of X is called a mask. Le&, C X be the

t € T, the solutionT'(.,t) of (3) belongs to a separable Hijlbert space of the restricted mappings:= T |x, with
Hilbert spaceY whenT'(-,t) is viewed as a mapping from 7 ¢ x. That is, A, is a Hilbert space whose inner product

XtoR. Let(-,-) and| - || denote the inner product and the( 7 7)., = (f,g)~ if f andg are the natural injections of
induced norm associated wih. For a suitable orthonormal f andg in X. Similarly, let; := ¢; |x, be the restrictions

basis {; }ic1, (I a countable index set), ot a spectral

of the basis functiong to X,. Note thatp;, i > 1, will be

decomposition of solution§” of (3) exists, is unique and 3 pasis forX,, but in general this will be neither a minimal

can be written as
o0
T(z,t) =Y ai(t)pi(z), zeXteT.
i=1
Here we refer to the functionp; } ;<1 asbasis functionsr
the POD basisand toa; as theFourier spectrumor modal

coefficientsof T with respect to the basi§p; };c1. Let the
partial sum

T (z,t) = iai(t)%(iﬂ), reXteT (4)
i=1

denote the truncated-th order expansion of".

The POD method requires that the Galerkin projection of

the residual% — D(T,,) onto the space spanned by (-)
with i = 1,...,n vanishes. That is,

o1, .

Given the basis functiong;, this projection leads to am-th
order ordinary differential equation in the coefficient$t)
given by

.

n

DY aj(t)p(x) | i (x)

j=1

a; (t) = (6)

wherei =1,...,n.

For numerical implementation, (3) and (6) are discretised,

resulting in (2). Suppose that the daféz,t) is given for

z € X, t € T where bothX andT are finite sets of cardi-

nality K and L, respectively. LetT'(¢t) = col,ex T(z,t)

denote the vector (of dimensiok’) of stacked spatial
measurements and l€lspyp = [T(1)---T(L)] be the
shapshot matrixLet

Tsnap= OXUT, & € RE*E ¥ ¢ REXLunitary  (7)

nor an orthonormal one.
Given the orthonormal basigp;}X , of X and a mea-
surementl” on the maskX,, our objective is to estimate

n

i=1
where the coefficients; (¢) minimize the least squares error
E(t) = ||T(z,t) — Tu(x,t)||%, (10)

for ¢t € T. From the coefficientg; in (9), an estimate of’
is represented by

x € Xy

9)

n

To(x,t) =Y ai(t)pi(x),

i=1

reX

We will refer to7,, as themissing point estimatioof T,
based onn modes. The optimal coefficients (¢) in the
criterion (10) satisfy the linear system of equations

Do (1) (Bl@), 25(w)) g, = (T(a:0).85()

Xo

which can be written as

Ma*(t) = f(t) (11)
where
M;j = (@i(z), §; (x))xo
and
150 = (T(@.0.8,@) (12)

Thus, with the knowledge of limited information, we can
estimate the basis coefficienig(t) and in this way recon-
struct T' on the firstn POD basis functions through the
estimatel}, at every time-step. This method was initiated



in [9] for image reconstructions. For flow reconstruction Define, for each poink; € X, the L x L matrix E(xy)
problems, the method was first applied to steady flow recomvhose(i, j)-th entry is
struction problem [4] and to unsteady flow sensing in [1].

The paper of [3] presents application of MPE techniques Eij(wy) = Jij — a (L) By Span(t;). (14)
to accelerate dynamic simulation. In [3], a criterion baseghen, fork = 1,..., K, definee; by setting:

on the magnitude of POD basis elements at every state is

proposed to reduce the set of original equations in (2). er =l E(zx) || (15)

In this paper, we propose a slightly different _criteria toWhere the norm| X || is defined as
that applied in [3], where we also pay attention to the
weighted POD basis and well-posedness of the niasls L L )
briefly discussed in the final chapter of [11]. X1 =>> x7

i=1 j=1

IV. POINT SELECTION CRITERIA . .
h bl f voi lecti h .. Then e, in (15) represents the total output correlation
The problem of point selection amounts to characterizingy,iinaq by ignoring the point; ¢ X. The point with

masksX, of fixed dimension say, so that the missing the loweste;, is the one that maximizes the output energy,

point estimatiori’, based on the measuremént= Ty, xr i.e., the one which is most relevant in comparison with other

provides a good estimate @f. This problem is of evident oints. Let us re-index the points laszy, ,. .., %, such
interest for the characterization of suitable sensor Iocatiorfﬁat PR

for which the system dynamics can be recovered.

In [3], the selection criterion is based on the magnitude
of the POD basis. This is based on the assumption thafter e, has been ordered, we will choose the migt
all POD basis functions are @fqualimportance while in  such that the inner product of the incomplete basis in (11)
the SVD of the snapshot data, the POD basis functions aite well-conditioned. Otherwise, the solution of (11) is not

ey S epy <o S epye

weighted by the singular values. unique. This relates to the importance of well-posedness of
In this paper, we propose a criterion based on ththe maskX, which is discussed very briefly in [11].
correlation of output energy over the various poidits= The procedure of choosing points can be further opti-
{z1,...,zK} in the spatial domain. For this define a matrixmized by first choosing the first point with minimugg,.
J € REXL whose(i, j)-th entry is given by: The second point is chosen as the one which minimizes the
K condition number of\/ in (11) or the one which is ‘mostly
Jij = ZT(fEk,ti)T(fﬂk,tj) orthogonal’ to the already chosen point. This similar to the
1 algorithm implemented in [1]. This approach is conceptually

similar to the derivation of the POD basis, where the first
. basis vector is chosen to maximiZeand the second basis
J = Tgpapl'snap vector is the one which maximizes but orthogonal to the
first one.

or, in matrix form,

where Tsnap € RE*L is the snapshot matrix obtained by
collecting the simulation data fak time samples. V. THE FEEDERMODEL
Since T(t) = ®a(t) with ® the POD basis matrix of

dimensionk x K, we can decomposé as: The missing point estimation approach is implemented on

o the CFD model of a glass feeder. The glass feeder is a part
J=J+J of a glass furnace where the temperature difference in glass
is controlled very tightly. The feeder is located between
the refiner, where bubbles in the molten glass are released,
Jij =a) (t)®) ®a,(t;);  Ji; = a (t:)®/] Brag(t;) and the spout or the glass outlet point, which consists of
a refractory block with an outlet orifice and a plunger as
a dosing mechanism. A schematic figure of a glass feeder
with the spout is shown in Figure 1. The upper part of the
feeder is divided into several sections, where thr temperature
distribution is imposed differently in each section to control
the distribution in the feeder. The dimensions of the feeder
Jij = a) (t)®] ®ra,(t;) +--- +a, (t;)® L Pran(t;) are 8.5 m x0.55 m x2 m in length, height, and width,
K respectively [5]. The total number of grid points involved
= a) ()] Pran(t)) (13) in the computation i$800. Figure 2 which shows the grid
k=1 division of the glass feeder. The temperature distribution
where each term in the right hand side of (13) denotes tHe(«,?) in the feeder is described by the following PDE:

contribution of one point;;, € X to the correlation output d (pe,T) . _
energyj_ T = —div (,OCpTu) + div (ngadl“) +4q (16)

where the(i, j)-th entry of J and J are given by:

where ® and a(¢) are decomposed a8 = [®,, ®;] and
a(t) = col(a,(t),a(t)) with &, € RE*" having n
columns anch,, (t) havingn entries.

Let @), € R'*™ be thek-th row of &,,. Then.J;; can be
expanded as

t),
t)
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Fig. 4. The temperature variations of the four crown temperature zones.
The crown temperature distribution is divided into four zones from the
feeder inlet to the feeder outlet. Zone 1 includes the inlet, zone 2 and 3
are located in the middle and zone 4 includes the outlet

model is obtained by integrating (16) for a specified time
stepAt and for every volume unit of a grid poidt V" using
the finite volume method [10].

The integrated equations can be written as

Fig. 2. Sketch of the Grid Division for Glass Feeder model, red grids
belong to the glass domain and yellow grids to the feeder walls t+At 9 (pc T) t+At
/ / P avdt = + / / qdVdt
t av Ot t AV

wherep i; the density, which is Femperature depend_er)t for /Hm div (pc, Tu) dV dt

glass, ¢, is the heat-capacitys is the heat conductivity ¢ AV

which is also temperature dependent for glass, @aadm- t+At ,

prises the external energy sources applied to the feeder, such*/t /AV div (kgrad T)dVdt a7)

as a stirrer or a set of electrical boosting. The termefers After calculating (17) for every grid poinP, the following

to the velocity vector. In a Cartesian coordinate system, the S . " i
o . ; . N general expression is obtained at evifih time step [10]:

velocity is a 3 dimensional vector in, y, z directions.

To manipulate the temperature distribution in the feedetp (k)Tp(k) = aw (k)Tw (k) + ap(k)Tr(k) + an (k)TN (k)
channel, the crown temperature is varied. The crown tem- +as(k)Ts(k) +ap(k)Tp(k) + ar(k)Tr (k)
perature is divided into four vertical zones, from the inlet to o
the outlet of the feeder with temperature variations from the +ap(k)Tp(k—1) (18)
nominal condition as shown in Figure 4. The nominal crownvhere Tp is the temperature at a specified grid point,
temperature distribution is shown in Figure 3. The variation$y;,, T, T, Ty, T, T+ are the the temperatures of the
of each zone are depicted in Figure 4. The numerical CFldest, east, north, south, bottom, and top neighbor-
ing points, andS is the source term. The coefficients
aw,agE,an,as,ar,ag denote the contributions from the
central, west, east, north, south, top, and bottom neighboring
50 points. These coefficients are also functions of temperature
that they are also time-dependent.

Simultaneous expression of (18) for the whole compu-
tational domainX, results in a linear time varying model
(LTV) to be solved at every time step. The general form of
the LTV model can be expressed as [10]:

A(k)T(k+1) = Ao(k)T(k) + S(k) (19)

where the elements i, Ap, S are updated at every time
step.
In the feeder model, the sampling time is 1 minute and
Fig. 3. Nominal crown temperature in Kelvin, the sections are along th8imulation is run for 112 minutes with crown temperature
feeder Iength, start from the inlet to the outlet of the feeder Variations as depicted in Figure 4. The eigenva'ue Spectrum
of the collected snapshots is shown in Figure 5. From the
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Fig. 5. Eigenvalue Spectrum from the singular value decomposition of )
simulation data with excitation signals as shown in Figure 4 Fig. 6. Plot of the orderedy;, the left part corresponds to relevant points,
the right part to irrelevant points

SVD of the temperature data collected in 112 minutes, Wt ere M is constructed by the 265 obligatory points and
choose 18 POD basis functions corresponding to 18 Iarg%ﬁg extra points taken from the orderegl is shown in
singular values. The basis functions are collectedbire Fiqure 7. From the condition number plot in Eiqure 7. it
R3800x18 " The classical POD approach results in reduced 9 ' P 9 :
order models of the form:

dTA(k)Pa(k + 1) = T Ag(k)Pa(k) + ®"S(k) (20)

where® = (o1 @2 ...¢n).

By taking into account the symmetry along the feeder
width, we can reduce the number of states to 1900. With
1900 points and 18 basis functions, the reduced order model
is only 2.23 faster than the original model of the temperature
field in the feeder. To enhance the computational speed of
the reduced order model, the Missing Point Estimation is
applied.

Condition number

0 560 1000 1560 2000
VI. | MPLEMENTATION OF MPE n-th point

The main objective of MPE implementation in this papety 7 the condition number obT& obtained by ordering:;, and
is to construct a fast reduced order model. If MPE isdding the 265 obligatory boundary points
used in the context of state reconstruction from sensor o
measurements, then the righthand-side term of (11) is exdstclear that after formingd " from the first 1000 points
since 7' is measured directly from the physical processwith smalleste;, and the 265 obligatory boundary points,
However, for the case of model acceleration considered there is relatively little change of the condition number. The
this paper,T" is not known exactly, unless the full state isnumber of points can be further reduced by conducting the
computed. To avoid this costly computation, the stateB in algorithm as implemented in [1].
are found by projecting just the part of (19) that corresponds First we take the point with the smallest valueepf The
to the selected points onto a set of incomplete (gappy) POgecond point is chosen to be the one which has minimal
basis vectors. condition number with the already chosen points, and this

The fast reduced order model is also desired to bis continued until in total, 565 points are taken, including
sufficiently reliable in simulating the global dynamics wherthe 265 obligatory points. The condition numbegt)/) of
boundary conditions change. Based on this motivation, it i3/ defined in (11) is3.18.
very important to have the information from the boundary By MPE, we have the following reduced-order model to
conditions also transferred to the MPE-based model. Felerive and to solve [2]
the glass feeder, there are 265 points which are adjacentto =7+, - =T =T
the boundary points defining the crown temperature and the P ARak+1) = @ Ao(k)a(k)+ 2 S(k)(21)
inlet temperature of the glass. Since we selected 565 point$, ¢ R*5%18 and the CFD

The remaining points (1635 points) are then ranked basedatrices are also adjusted accordingly. By comparing (20)
oneg in (15). The plot of the orderee, is shown in Figure and (21), it is clear that (21) is more attractive from a
6. The plot of the condition number dff = &' ® ((11)) computational point of view. The chosen points in the glass



domain are shown in Figure 8. The plot shows half of the

TABLE |
COMPARISON BETWEENPODAND MPE MODELS

plane because we consider the symmetry along the feeder

width.

The deviation of the MPE-based reduced order model from

2-SEP- 2004 04: 30 WPE2_565. ps
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Fig. 8. Chosen points at the glasd cm below the surface for MPE with
565 points, marked by the grey cells

Model Type  Maximum Absolute Average Error  Gain
POD 0.007° C 226%
MPE-1265 0.007° C 335%
MPE-566 0.012° C 620%

of points is based on the snapshot data, the MPE method
proposed in this paper will be effective if it is used for
predictions in the same operating range. For most industrial
cases, however, the typical operating condition is known and
extreme changes are rarely imposed on the system under
investigation.

VIl. CONCLUSION AND OUTLOOK

A missing point estimation algorithm has been proposed
based on an output energy and condition number criterion.
The method modifies the classical POD procedure so that
the reduced states or the POD basis coefficients can be
obtained for large scale LTV and also large scale nonlinear

the original model is negligible as clearly shown in Figuresystems based on information from limited or observed
9. Figure 9 shows the responses of the three measuremedata. The approach is transferrable to other reduced order
points on the feeder outlet using the original, the MPHEnodeling techniques such as Balanced Truncation where
model with 1265 points, and the MPE model with 565ransformation matrices are derived to transform the original

points.

model into a reduced order model. In the future, it would

be interesting to use the empirical balanced truncation basis
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Fig. 9. The responses of the three measurement points at the feeder outlet,
calculated using three models: original, MPE with 1265 points and MPE[4]
with 565 points

Table | summarizes the maximum absolute error and thébl
computational gain with respect to the original model in
calculating temperature distribution of the feeder for variousg)
reduced order models. The maximum absolute average error
€ is calculated as:

TRRLE: [7]
€= —_— — [8]
€=max -5 ; | T(z, k) — Tp(z, k)|, z€X o

whereT is the temperature field calculated by the originall0]
model andT;, is the temperature calculated by the reduced
models. [11]
The effectiveness of MPE-based model depends heavily
on the quality of the POD-based model. Since the choice

functions as proposed in [6] for the MPE models.
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