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This paper presents a provably convergent multifidelity optimization algorithm for unconstrained problems that

does not require high-fidelity gradients. The method uses a radial basis function interpolation to capture the error

between a high-fidelity function and a low-fidelity function. The error interpolation is added to the low-fidelity

function to create a surrogate model of the high-fidelity function in the neighborhood of a trust region. When

appropriately distributed spatial calibration points are used, the low-fidelity function and radial basis function

interpolation generate a fully linear model. This condition is sufficient to prove convergence in a trust region

framework. In the case when there are multiple lower-fidelity models, the predictions of all calibrated lower-fidelity

models can be combinedwith amaximum likelihood estimator constructed using kriging variance estimates from the

radial basis function models. This procedure allows for flexibility in sampling lower-fidelity functions, does not alter

the convergence proof of the optimization algorithm, and is shown to be robust to poor low-fidelity information. The

algorithm is comparedwith a single-fidelity quasi-Newton algorithmand twofirst-order consistentmultifidelity trust

region algorithms. For simple functions the quasi-Newton algorithm uses slightly fewer high-fidelity function

evaluations; however, for more complex supersonic airfoil design problems it uses significantly more. In all cases

tested, our radial basis function calibration approach uses fewer high-fidelity function evaluations when compared

with first-order consistent trust region schemes.

Nomenclature

B = a closed and bounded set in Rn

B = trust region
C = differentiability class
c = constant ratio to the l2 norm
d = high-fidelity function sample point
e�x� = error model
f�x� = objective function
H = Hessian of the surrogate model
L = expanded level-set in Rn

L = level-set in Rn

M = space of all fully linear models
m�x� = surrogate model of the high-fidelity function
N ��; �� = normal distribution
n = number of design variables
pmax = maximum number of points to be used in the

interpolation
r = radial distance between two points
s = trust region step
x = design vector
xi = component i of the design vector
Y = set of calibration vectors used in an error model
y = vector from current iterate to a high-fidelity sample

point
� = trust region contraction ratio used in convergence

check
�0 = trust region contraction ratio

�1 = trust region expansion ratio
� = trust region radius
�x = finite difference step size
� = termination tolerance for gradient norm
�2 = termination tolerance for trust region size
� = trust region update criterion
� = positive constant, used to build fully linear

models
� = bound related to function smoothness
� = coefficient of the radial basis function interpolants
	 = radial basis function correlation length
� = polynomial basis for Rn


 = component of the polynomial basis
� = ratio of actual to predicted improvement in high-

fidelity function value
�2 = variance of a Gaussian process
 = coefficients of the polynomial interpolant
� = radial basis function

Superscript

� = optimal

Subscripts

0 = initial iterate
bhm = bound for Hessian of the surrogate model
blg = upper bound on the Lipschitz constant
est = maximum likelihood estimate
f = relating to function
FCD = fraction of Cauchy decrease
g = relating to gradient
high = relating to the high-fidelity function
i = index of a point included in the current error model

basis
j = index of any high-fidelity sample point
k = index of trust region iteration number
low = relating to a lower-fidelity function
max = user-set maximum value of that parameter
min = user-set minimum value of that parameter
med = relating to an intermediate-fidelity function
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I. Introduction

T HE expense of either building or testing a complex system
drives their designers to use computational algorithms to model

their systems with as much accuracy as possible. The computational
requirements of these high-fidelity analyses can be immense and
designing systems using formal optimization methods with them
is difficult, if not impractical. However, most system designers
have other lower-fidelity models available that provide estimates
of system performance with considerably lower computational
requirements. Even if such models are not available, other ap-
proaches such as response surface methodology [1–3], reduced-
order modeling [4], or using coarser discretizations [5], can generate
surrogates of high-fidelity analyses that may be treated as lower-
fidelity models. This paper presents a multifidelity optimization
approach that employs low-fidelity information to systematically
reduce use of the high-fidelity analysis during the optimization, but
guarantees convergence to a high-fidelity optimal design.

There are several different multifidelity optimization strategies
that optimize a high-fidelity function using a lower-fidelity surrogate.
One class of approaches uses trust regions. These methods are
provably convergent to a local optimum of the high-fidelity function,
if at the center of the trust region the low-fidelity function value and
derivative are scaled or shifted to be equal to the high-fidelity
function and gradient [5–7]. However, often in engineering design
the objectives are nonsmooth, or the high-fidelity analyses are
experimental results, black box codes, or numerical methods that
contain noise or that may fail to return a solution. In all of these
situations, the gradient of the high-fidelity function is unavailable
and estimating the gradient may be unreliable. In such cases,
multifidelity methods such as sequential approximate optimization
(SAO) [8], efficient global optimization (EGO) [9], or surrogate
management framework (SMF) [10] can be used as they do not
require high-fidelity gradient estimates. Though rigorous con-
vergence guarantees of such derivative-free methods only holds for
certain types of noise/nonsmoothness (for example, that discussed in
[[11], section 9.3]) the motivation for these derivative-free methods
over derivative-based methods is the robustness often observed
in practice.

SAO is a term often used to describe engineering design
optimization that uses low-fidelity models in place of high-fidelity
simulation [5]. SAO techniques generally fit response surfaces to
simulation results, perform optimization on the response surfaces,
and then update the response surfaces until some stopping criterion is
satisfied.A gradient-free class of SAO algorithms offers good perfor-
mance for problems with multiple local minima and noisy simu-
lations; however, these techniques are heuristic and convergence is
problem dependent [12,13]. In EGO a Gaussian process regression
model is fit to the high-fidelity objective function. The mean of the
Gaussian process interpolates the value of the high-fidelity function,
while the mean square error of the Gaussian process models the
uncertainty in the high-fidelity function value. This error is zero at all
locations where the value of the high-fidelity function is known and
increases with distance away from sample points. Optimization is
then performed on the Gaussian process model, and the high-fidelity
function is sampled at locations likely to reduce to the value of the
function over the current observed minimum. This technique works
well in practice, can be proven to find a globally optimal solution
(withmodifications to the common definition of themethod) [14,15],
can be used in a multifidelity setting using Bayesian model
calibration methods [16–18], and does not require a high-fidelity
derivative estimate. However, themethodmay be globally biased and
attempt to explore the entire design space as opposed to simply
reducing the objective function. In addition, the method has been
shown to be sensitive to both the initial high-fidelity samples [15] and
to the exact metric of selecting points likely to improve the high-
fidelity function value [19]. SMF is a derivative-free pattern-search
method augmentedwith a prediction of a locally optimal design from
a surrogate model. The underlying pattern-search method ensures
convergence, so a broad range of surrogate models are allowable. Of
specific interest is conformal space mapping where a low-fidelity

function is calibrated to the high-fidelity function at locations where
the function value is known [20].

In this paper, we present a provably convergent multifidelity
optimization algorithm based on model calibration that does not
require high-fidelity derivative estimates. The first-order-consistent
trust region methods mentioned above can be thought of as
employing model calibration; however, the calibration is only local
and temporary, since sample points from previous iterations are not
reused. The challenge we address here is twofold, first we must
produce a surrogate model that captures local function behavior
sufficiently well to prove convergence without requiring a high-
fidelity gradient estimate, and secondly wemust ensure the surrogate
captures some global function behavior to speed convergence to a
stationary point of the high-fidelity function. A trust region algorithm
is convergent provided either the error between the gradient of the
function and the gradient of surrogatemodel is bounded by a constant
times the gradient of the function [21] or provided the accuracy of the
surrogate can be improved dynamically within the trust region
framework [[22], section 10.6]. Oeuvray [23] showed that a radial
basis function interpolation satisfies these criteria, provided the
interpolation points satisfy certain conditions. Conn et al. [24] then
showed that both the error between a function and a smooth
interpolation model as well as the error between the function’s
derivative and the interpolation model’s derivative can be bounded
by appropriately selecting interpolation points. Conn et al. [25] also
proved that any interpolation model that can locally be made fully
linear (defined in the next section) can be used in a provably
convergent derivative-free trust region framework. Wild et al. [26],
Wild [27], and Wild and Shoemaker [28] then developed an
algorithm to produce fully linear radial basis function interpolation
models and showed that their method could be used within Conn’s
provably convergent optimization framework.

This paper combines the provably convergent optimization
frameworks of Wild et al. [26] and Conn et al. [25] with Bayesian
model calibration ideas to result in a provably convergent multi-
fidelity optimization approach that does not require high-fidelity
gradient information. Section II provides an overview of the
derivative-free trust region algorithm using fully linear models
proposed by Conn et al. [25]. Section III discusses the approach of
Wild et al. to build a fully linear model using RBF functions, and
presents our extension to the case of multifidelity model calibration.
Section IV provides an overview of the computational implement-
ation of the method and suggests a way to incorporate the method of
generating fully linear models from Wild and Shoemaker [28] with
flexible Bayesian model calibration techniques. Section V
demonstrates the multifidelity optimization algorithm on an ana-
lytical example and a supersonic airfoil design problem. Section VI
then develops the extension of our approach to the case when there
are multiple lower-fidelity models. Finally, Sec. VII concludes
the paper.

II. Trust-Region-Based Multifidelity Optimization

We consider a setting where we have two (or more) models that
represent the physical system of interest: a high-fidelity function that
accurately estimates system metrics of interest but is expensive to
evaluate, and a low-fidelity function with lower accuracy but cheaper
evaluation cost. We define our high-fidelity function as fhigh�x�
and our low-fidelity function as flow�x�, where x 2 Rn is the vector
of n design variables. Our goal is to solve the unconstrained
optimization problem

min
x2Rn

fhigh�x� (1)

using information from evaluations of flow�x� to reduce the required
number of evaluations of fhigh�x�.

We use the derivative-free trust region algorithmofConn et al. [25]
to solve Eq. (1). From an initial design vector x0, the trust region
method generates a sequence of design vectors that each reduce the
high-fidelity function value, where we denote xk to be this design
vector on the kth trust region iteration. Following the general
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Bayesian calibration approach in [17], we define ek�x� to be a model
of the error between the high- and low-fidelity functions on the kth
trust region iteration, and we construct a surrogate model mk�x� for
fhigh�x� as

mk�x� � flow�x� � ek�x� (2)

We define the trust region at iteration k, Bk, to be the region
centered at xk with size �k

B k � fx: kx � xkk � �kg (3)

where any norm can be used, provided there exist constants c1 and c2
such that k � k2 � c1k � k and k � k � c2k � k2. The trust region is a
portion of the design space where the surrogate model is considered
an accurate representation of the high-fidelity function. The accuracy
is ensured with a local calibration, in this case updating the error
model, ek�x�. To improve the high-fidelity function value, the
surrogate model is minimized, or approximately minimized, within
the trust region. The size of the trust region is updated dynamically
based on the quality of the surrogate model estimate of the high-
fidelity function value; good estimates cause the size of the trust
region to increase and poor estimates cause the size of the trust region
to decrease. Therefore, the trust region serves as both a means to
control the size of the allowable optimization step and as a means to
control the accuracy of the surrogate model predictions. For a
detailed discussion of trust region algorithms see [22] or [29].

If the high-fidelity function fhigh�x� and the surrogate models
mk�x� satisfy certain conditions, this framework provides a
guarantee of convergence to a stationary point of the high-fidelity
function fhigh�x�. Specifically, the convergence proof requires that
the high-fidelity function fhigh�x� be 1) continuously differentiable,
2) have a Lipschitz continuous derivative, and 3) be bounded from
below within a region of a relaxed level-set L�x0�, defined as

L�x0� � fx 2 Rn: fhigh�x� � fhigh�x0�g (4)

B�xk� � fx 2 Rn: kx � xkk � �maxg (5)

L �x0� � L�x0�
[

xk2L�x0�
B�xk� (6)

where�max is the maximum allowable trust region size. The relaxed
level-set is required because the trust region algorithmmay attempt to
evaluate the high-fidelity function at points outside of the level set at
x0. The convergence proof further requires that the surrogate models
mk�x� are fully linear, where the following definition of a fully linear
model is from Conn et al. [25]:

Definition 1 Let a function fhigh�x�: Rn ! R that satisfies the

conditions 1–3 above, be given. A set of model functions M�
fm: Rn ! R; m 2 C1g is called a fully linear class of models if the
following occur:

There exist positive constants �f, �g and �blg such that for any

x 2 L�x0� and�k 2 �0;�max	 there exists amodel functionmk�x� in
M with Lipschitz continuous gradient and corresponding Lipschitz
constant bounded by kblg, and such that the error between the

gradient of the model and the gradient of the function satisfies

krfhigh�x� � rmk�x�k � �g�k 8 x 2 Bk (7)

and the error between the model and the function satisfies

jfhigh�x� �mk�x�j � �f�2
k 8 x 2 Bk (8)

Such a model mk�x� is called fully linear on Bk [25].
At iteration k, the trust region algorithm solves the subproblem

min
sk

mk�xk � sk� s:t:kskk � �k (9)

to determine the trust region step sk. If the subproblem is not solved
exactly, the minimum requirement is that the steps found in the trust

region subproblem must satisfy a sufficient decrease condition.
At iteration k, we require that the model mk�x� have a finite upper
bound on the norm of its Hessian matrix evaluated at xk:
kHk�xk�k � �bhm <1. This bound on the Hessian may be viewed
as a bound on the Lipschitz constant of the gradient of mk�xk� [25].
The sufficient decrease condition requires the step to satisfy the
fraction ofCauchy decrease.As given in [25,27], this requires that for
some constant, �FCD 2 �0; 1�, the step sk satisfies

mk�xk� �mk�xk � sk� 

�FCD
2
krmk�xk�kmin

�
krmk�xk�k
�bhm

;�k

�

(10)

The high-fidelity function fhigh is then evaluated at the new point,
xk � sk. We compare the actual improvement in the function value
with the improvement predicted by the model by defining

�k �
fhigh�xk� � fhigh�xk � sk�
mk�xk� �mk�xk � sk�

(11)

The trial point is accepted or rejected according to

x k�1 �
�
xk � sk if �k > 0

xk otherwise
(12)

If the step is accepted, then the trust region is updated to be
centered on the new iterate xk�1. The size of the trust region�k must
now be updated based on the quality of the surrogate model
prediction. The size of the trust region is increased if the surrogate
model predicts the change in the function value well and the trust
region is contracted if the model predicts the function change poorly.
Specifically, we update the trust region size using

�k�1 �
�
minf�1�k;�maxg if �k 
 �
�0�k if �k < �

(13)

where 0< � < 1, 0< �0 < 1, and �1 > 1.
A new fully linear model mk�1�x� is then built using the radial

basis function interpolation approach described in the next section.
That surrogate model will be fully linear on a region Bk�1 having
center xk�1 and size �k�1.

To check for algorithm termination, the gradient of the model is
computed at xk�1. If krmk�1�xk�1�k > � for a small �, the trust
region algorithmwill continue to iterate, solving the next subproblem
on the new trust region, Bk�1, with the updated model, mk�1�x�.
However, if krmk�1�xk�1�k � �, we need to confirm that the
algorithm has reached a stationary point of fhigh�x�. If gradients of
the high-fidelity function are available, one could evaluate if
krfhigh�xk�1�k � � directly. In the general derivative-free case, we
use the condition in Eq. (7), and show that if �k�1 ! 0 then
krfhigh�xk�1� � rmk�1�xk�1�k ! 0. In practice we achieve this by
updating the model to be fully linear on a trust region with size some
fraction, 0< � < 1, of �k�1. This process continues until either
krmk�1�xk�1�k> �, in which case the trust region algorithm will
continue with the updated model and updated �k�1, or �k�1 � �2,
for a small �2, which terminates the algorithm. This process of
checking for convergence is referred to as the criticality check in
Conn et al. [25].

III. Interpolation-Based Multifidelity Models

In this section we discuss a method of creating surrogate models
that satisfy the conditions for provable convergence presented in
Sec. II. This section first presents an overview of the radial basis
function (RBF) interpolation approach of Wild et al. [26], where the
interpolation points are chosen so that the resulting model is fully
linear. Next, we present an extension of this approach to the case of
multifidelity models.

Define dj to be the jth point in the set of designs at which the high-
fidelity and low-fidelity functions have been sampled. Define yi to be
the vector from the current iterate (i.e., center of the current trust
region), xk, to any sample point inside or within the vicinity of the
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current trust region, di, that is selected to be an interpolation point.
Also define Y to be the set of the zero vector (i.e., y � 0 corresponds
to xk) and all of the vectors yi. This notation is shown graphically in
Fig. 1.

The RBF interpolation is defined so that by construction the
surrogate model is equal to the high-fidelity function at all inter-
polation points. That is, the error between the high- and low-fidelity
functions is interpolated exactly for all points defined by the vectors
within Y:

ek�xk � yi� � fhigh�xk � yi� � flow�xk � yi� 8 yi 2 Y (14)

The RBF interpolation has the form

ek�x� �
XjYj
i�1

�i��kx � xk � yik� �
Xn�1
i�1

i
i�x � xk� (15)

where � is any positive definite, twice continuously differentiable
RBF with �0�0� � 0, and the second term in Eq. (15) represents a
linear tail, where 
i denotes the ith component of the vector
��x � xk� � � 1 �x � xk� 	T . The coefficients �i and i represent
the RBF interpolation, and are found by the QR-factorization
technique ofWild et al. [26]. For themodel to be fully linear, the RBF
coefficients�i and imust be bounded inmagnitude. This is achieved
by using the interpolation point selection method in Wild et al. The
process can be summarized as follows. First, the existing high-
fidelity sample points dj in the vicinity of the trust region are tested
to see if there are n� 1 affinely independent vectors. (This test
is carried out using singular value decomposition of a matrix
containing as columns the vectors yj and is computationally inex-
pensive compared with the typical cost of a high-fidelity solve.) If
fewer than n� 1 affinely independent points are found, additional
high-fidelity function evaluations are required to generate additional
interpolation points. Second, we test all other points dj at which the
high-fidelity function value is known, by measuring the impact of
their addition as interpolation points on the RBF coefficients �i and
i. Those points that ensure the RBF coefficients remain bounded are
used as additional interpolation points to update the model. Wild
proved that this RBF interpolation model construction algorithm
produces a fully linear model for a function satisfying conditions 1
and 2 above [27]. An illustration of the calibrated models resulting
from this process is presented as Fig. 2.

ForWild’s interpolation approach to be applicable in our Bayesian
calibration setting, we require that the error function defined by
fhigh�x� � flow�x� satisfies conditions 1 and 2 above. Condition 1,
that the function is continuously differentiable, is satisfied if both
fhigh�x� and flow�x� are continuously differentiable. To establish
condition 2, that the derivative of fhigh�x� � flow�x� is Lipschitz
continuous,we require that bothrfhigh�x� andrflow�x�beLipschitz
continuous in the relaxed level set defined in Eq. (6). For the high-
fidelity function we require

krfhigh�x1� � rfhigh�x2�k
kx1 � x2k

� �high 8 x1;x2 2 L�x0� (16)

and for the low-fidelity function

krflow�x1� � rflow�x2�k
kx1 � x2k

� �low 8 x1;x2 2 L�x0� (17)

with Lipschitz constants �high and �low, respectively. Therefore, by
the triangle inequality, we obtain

k�rfhigh�x1� � rflow�x1�	 � �rfhigh�x2� � rflow�x2�	k
kx1 � x2k

� �high � �low 8 x1;x2 2 L�x0� (18)

where the Lipschitz constant of the difference is bounded by
�high � �low. Accordingly, the convergence proof for the trust region
algorithm used in Conn et al. [25] holds.

IV. Numerical Implementation of Algorithms

This section represents an overview of the numerical imple-
mentation of the multifidelity optimization algorithm and suggests a
manner inwhich themethod ofWild and Shoemaker [28] to generate
fully linear models can be used in a flexible Bayesian calibration
setting. The first subsection, Sec. IV.A, implements the trust
region-based optimization algorithm presented in Sec. II. Whenever
creation of a new fully linear model is needed, the method
discussed in Sec. III is implemented using the algorithm presented in
Sec. IV.B.

A. Trust Region Implementation

Algorithm 1 provides an overview of the numerical imple-
mentation of the trust region optimization method presented in
Sec. II. For each trust region iteration, the algorithm guarantees that a
step is found that satisfies the fraction of Cauchy decrease, Eq. (10).
The algorithm only samples the high-fidelity function when
necessary for convergence, and it stores all high-fidelity function
evaluations in a database so that design points are never reevaluated.
Whenever an updated surrogate model is needed, the model
generation method described in the following subsection creates a
surrogate model using this database of high-fidelity function evalu-
ations together with new high-fidelity evaluations when necessary.
The parameters of the trust region optimization algorithm were
defined in Sec. II, while recommended values and sensitivity of
results to those values will be presented in Sec. V.

Fig. 1 Graphical representation of the notation used to define points

and vectors in and around the trust region.

Fig. 2 An illustration of the surrogate model of a high-fidelity function
created using a radial basis function interpolation of the error between a

high- and low-fidelity function. The high-fidelity function is in blue, the

low-fidelity function is in black, the fully linear surrogate model is in red,

the uncertainty estimate of the surrogate model is in pink, and the
calibration points are circled.
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B. Fully Linear Bayesian Calibration Models

Algorithm 2 presents the numerical implementation of themethod
to generate fully linear surrogate models, allowing for a Bayesian
maximum likelihood estimate of the RBF correlation length. The
RBF models used in Bayesian model calibration have a length scale
parameter that provides flexibility. For instance, in theGaussianRBF

model ��r� � e�r2=	2 , the parameter 	 is a variable length scale that
can alter the shape of the correlation structure. If the interpolation
errors are assumed to have a Gaussian distribution, then a maximum
likelihood estimate can be used to estimate the value of 	 that best
represents the data [30,31]. Therefore, our process to generate a fully
linear surrogate model uses the method of Wild et al. [26] on a set of
candidate length scales, 	i 2 f	1; . . . ; 	ng. A fully linear model is
constructed for each candidate length scale, and the likelihood of
each length scale is computed. The trust region algorithm then uses
the surrogate model constructed with 	�, where 	� is chosen as the
value of 	 corresponding to themaximum likelihood. Thismaximum
likelihood approach can improve the model calibration, and also
provides flexibility in selecting sample points in the extension to the
case when there are multiple lower-fidelity models (as will be
discussed in Sec. VI).

V. Multifidelity Optimization Examples

This section demonstrates the multifidelity optimization scheme
for two examples. The first is an analytical example considering the
Rosenbrock function and the second is a supersonic airfoil design
problem.

A. Rosenbrock Function

The first example multifidelity optimization example is the
Rosenbrock function

min
x2R2

fhigh�x� � �x2 � x21�2 � �1 � x1�2 (19)

The minimum of the Rosenbrock function is at x� � �1; 1� and
f�x�� � 0. For this simple analytical function with only two design
variables, we do not expect the multifidelity method to significantly
outperform a quasi-Newton method, however, the example is useful

to illustrate the multifidelity approach and to demonstrate effects of
algorithm parameters. Table 1 presents the number of high-fidelity
function evaluations required to optimize the Rosenbrock function
using a variety of low-fidelity functions. All of the low-fidelity
functions have a different minimum than the Rosenbrock function,
with the exception of the case when the low-fidelity function is
set equal to the Rosenbrock function, corresponding to a perfect
low-fidelity function. For all of the examples in this section the
optimization parameters used are given in Table 2 and are discussed
in the remainder of this subsection.

We use a Gaussian RBF, ��r� � e�r2=	2 , to build the RBF error
interpolation and two methods of selecting the spatial correlation
length, 	. The first method is to fix a value of 	, and the second
approach is based on kriging methods, which assume interpolation
errors are normally distributed and maximize the likelihood that
the RBF surface predicts the function [30,31]. To save computation
time, the maximum likelihood correlation length is estimated by
examining 10 correlation lengths between 0.1 and 5.1, and the
correlation length that has the maximum likelihood is chosen. If
all correlation lengths have the same likelihood, the maximum
correlation length is used. The results in Table 1 show that the
correlation length has a moderate impact on the convergence rate of
themethod. For this problem, using either 	� 2 or 	�, the correlation
length that maximizes the likelihood at each trust region iteration,
leads to the best result.

Table 1 demonstrates that the quality of the low-fidelity function
can significantly impact the number of required high-fidelity func-
tion evaluations. As a baseline, the average number of function calls
for a quasi-Newton method [32] directly optimizing the Rosenbrock
function is 69 and for the global optimization method, DIRECT [33],
is 565. The Bayesian calibration approach uses between 5 and
250 high-fidelity function evaluations depending on the quality of
the low-fidelity model. The worst case, 250 high-fidelity function

Algorithm 1 Trust-Region Algorithm for Iteration k

1: Compute a step, sk, that satisfies the fraction of Cauchy decrease
requirement, Eq. (10), for the trust region subproblem, by solving

min
sk

mk�xk � sk� s:t: kskk � �k

2: If fhigh�xk � sk� has not been evaluated previously, evaluate
the high-fidelity function at that point.
2a: Store fhigh�xk � sk� in database.

3: Compute the ratio of actual improvement to predicted improvement

�k �
fhigh�xk� � fhigh�xk � sk�
mk�xk� �mk�xk � sk�

4: Accept or reject the trial point according to �k

x k�1 �
�
xk � sk if �k > 0

xk otherwise

5: Update the trust region size according to �k

�k�1 �
�
minf�1�k;�maxg if �k 
 �
�0�k if �k < �

6: Create a new model mk�1�x� that is fully linear on
fx: kx � xk�1k � �k�1g using Algorithm 2.

7: Check for convergence: if krmk�1�xk�1�k > �, algorithm has not
converged—go to step 1. Otherwise,
7a: While krmk�1�xk�1�k � � and �k�1 > �2,
7b: Reduce the trust region size, ��k�1 ! �k�1.
7c: Update model mk�1�x� to be fully linear on
fx: kx � xk�1k � �k�1g using Algorithm 2.

Algorithm 2 Create Fully Linear Models Allowing Maximum

Likelihood Correlation Lengths

1: Compute the likelihood for all RBF correlation lengths,
	i 2 f	1; . . . ; 	ng with steps 2–5.

2: Generate a set of n� 1 affinely independent points in the vicinity of
the trust region:
2a: Set y1 � 0, and add y1 to the set of calibration vectors Y.
2b: Randomly select any high-fidelity sample point, d2, within the
current trust region and add the vector y2 � d2 � xk to Y.

2c: For all unused high-fidelity sample points within the current
trust region, add the vector y � dj � xk to Y if the projection of y
onto the nullspace of the span of the vectors in the current Y is
greater than �1�k, 0< �1 < 1.

2d: If fewer than n� 1 vectors are in calibration set, repeat step 2c
allowing a larger search region of size �3�k, �3 > 1.

2e: While fewer than n� 1 vectors are in Y,
2f: Evaluate the high-fidelity function at a point within the nullspace
of the span of the vectors in Y and add y � d � xk to Y.

2g: Store the results of all high-fidelity function evaluations in the
database.

3: Consider the remaining unused high-fidelity sample points within a
region centered at the current iterate with size �4�k, �4 > 1. Add
points so that the total number of interpolation points does not
exceed pmax, the RBF coefficients remain bounded, and the
surrogate model is fully linear (using, for example, the AddPoints
algorithm of Wild et al. [28]).

4: Compute the RBF coefficients using the QR factorization technique of
Wild et al. [26].

5: If only n� 1 vectors are in the calibration set, Y, assign the likelihood
of the current correlation length, 	i, to �1. Otherwise compute the
likelihood of the RBF interpolation using standard methods [30,31].

6: Select the 	i with the maximum likelihood.
6a: If the maximum likelihood is �1 choose the largest 	i. This
model typically occurs if exactly n� 1 points are in the
neighborhood of the trust region and corresponds to a linear
regression of the high-fidelity function at the calibration points
included in Y, but it still satisfies conditions for convergence.

7: Return the set of calibration vectors Y, RBF coefficients, and updated
database of high-fidelity function evaluations.
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evaluations, corresponds to having a poor low-fidelity model, one
with opposite trends in most of the design space. The best case, 5
high-fidelity evaluations, corresponds to the case when the low-
fidelity function exactly models the high-fidelity function. With a
rather good low-fidelity function, for example a fourth degree
polynomial, themultifidelitymethod performs similarly to the quasi-
Newton method. Clearly the performance of this method compared
with conventional optimization methods depends considerably on
the quality of the low-fidelity function used. Results for two first-
order consistent multifidelity trust region methods and multifidelity
EGO are presented in Table 1 along with the results of the Bayesian
calibration method. The multifidelity EGO method creates a kriging
model of the error between the high- and low-fidelity functions and
maximizes the expected improvement [9] of the low-fidelity function
plus the kriging model to select additional high-fidelity evaluations
and to update the kriging model. The kriging model is initialized
using a Latin hypercube sampling of the design space with four
function evaluations. The first of the gradient-based multifidelity
methods creates a trust region surrogate by multiplying the low-
fidelity function by a correction such that the surrogate matches both
the high-fidelity function value and gradient at the current iterate [5].
The second creates the trust region surrogate by adding a linear
function with the error between the high- and low-fidelity function
value and gradient at the current iterate to the low-fidelity function.
Though an analytical gradient is available for this simple case, when
comparing gradient-based multifidelity methods to gradient-free
multifidelity methods, we estimate the high-fidelity gradient at each
xk using a finite difference approximation (requiring n additional
high-fidelity function evaluations). This gradient estimate is inexact;
however, it is necessary when using a gradient-based optimization
method for a function that does not have an available derivative.

The general result for this test problem is that the Bayesian
calibration approach uses fewer high-fidelity function evaluations
than the first-order consistent trust region approaches of Alexandrov
et al. [5] but more than multifidelity EGO.

For this simple high-fidelity function, the first-order consistent
trust region methods and the quasi-Newton method require less than
half the wall-clock time that the Bayesian calibration method
requires (EGO takes roughly twice as long as the Bayesian cali-
bration method). Building the RBF models requires multiple matrix
inversions, each of which requires O�pmax�pmax � n� 1�3� oper-
ations, where n is the number of designvariables andpmax is the user-
set maximum number of calibration points allowed in a model.
Accordingly, the Bayesian calibration method is only recommended
for high-fidelity functions that are expensive compared with the cost
of repeatedly solving for RBF coefficients, which is the case of
interest in this paper.

As with any optimization algorithm, tuning parameters can affect
performance significantly; however, the best choices for these tuning
parameters can be highly problem dependent. A sensitivity study
measured the impact of algorithm parameters on the number of high-
fidelity function evaluations for the Rosenbrock example using
flow�x� � x21 � x22 as the low-fidelity function. For all of these tests,
one parameter is varied and the remainder are all set to the values in
Table 2. The conclusions drawn are based on the average of at
least ten runs with random initial conditions on the interval
x1; x2 2 ��5; 5	.While these conclusions may provide general useful
guidance for setting algorithm parameters, similar sensitivity studies
are recommended for application to other problems.

The parameter � is the trust region expansion criterion, where
the trust region expands if �k 
 � and contracts otherwise. The
sensitivity results show that lower values of � have the fewest high-
fidelity function calls, and any value 0 � � � 0:2 performs well. For
the trust region expansion ratio �1 the best results are at �1 � 2, and
high-fidelity function evaluations increase substantially for other
values. Similarly, for the contraction ratio �0 the best results are
observed at �0 � 0:5, with a large increase in high-fidelity function
evaluations otherwise. For the fraction of Cauchy decrease �FCD the
results show the number of high-fidelity evaluations is fairly
insensitive to any value 0< �FCD < 10�2. Similarly, for the trust
region contraction ratio used in the algorithm convergence check �
the number of high-fidelity function evaluations is insensitive to any
value 0:5< � < 0:95.

The method of Wild et al. [26,28] to generate fully linear models
requires four tuning parameters, �1, �2, �3, and �4. The parameter �1
(0< �1 < 1) determines the acceptable points when finding the
affinely independent basis in the vicinity of the trust region in
Algorithm 2.As �1 increases, the calibration points added to the basis
must have a larger projection onto the nullspace of the current basis,
and therefore fewer points are admitted to the basis. We find for the
Rosenbrock example that the fewest function evaluations occurswith
�1 � 10�3; however, for any value of �1 within 2 orders of magnitude
of this value, the number of function evaluations increases by less
than 50%. The second parameter �2 (0< �2 < 1) is used in the
AddPoints algorithm of Wild and Shoemaker [28] to ensure that the
RBF coefficients remain bounded when adding additional

Table 1 Table of average number of function evaluations required to minimize the Rosenbrock function, Eq. (19), from a random initial point on

x1; x2 2 ��5; 5�. Results for a selection of Gaussian radial bases function spatial parameters, �, are shown. �� corresponds to optimizing the spatial

parameter according to a maximum likelihood criteria [30]. Also included are the number of function evaluations required using Efficient Global
Optimization (EGO) and first-order consistent trust region methods with a multiplicative correction and an additive correction. The gradient-free

calibration uses only additive corrections. For a standard quasi-Newton method the average number of function evaluations is 69 and

using DIRECT requires 565 function evaluations

Gradient-Free (calibration) Gradient-Based

Low-Fidelity function 	� 1 	� 2 	� 3 	� 5 	� EGO Add-Corr. Mult.-Corr.

flow�x� � 0 148 107 177 223 178 27 503 289a

flow�x� � x21 � x22 129 77 106 203 76 28 401 312
flow�x� � x41 � x22 74 74 73 87 65 27 289 171
flow�x� � fhigh�x� 5 5 5 5 7 fail 6 7
flow�x� � �x21 � x22 195 130 132 250 100 27 fail 352

aIndicates flow�x� � 1 had to be used.

Table 2 Optimization parameters used in the Rosenbrock

function demonstration

Parameter Description Value

��r� RBF correlation e�r
2=	2

	 RBF spatial correlation length See Table 1
�0 Initial trust region size max�10; kx0k1	
�max Maximum trust region size 103�0

�, �2 Termination tolerances 5  10�4

�0 Trust region contraction ratio 0.5
�1 Trust region expansion ratio 2
� Trust region expansion criterion 0.2
� Trust region contraction ratio used in

convergence check
0.9

�FCD Fraction of Cauchy decrease requirement 10�4

pmax Maximum number of calibration points 50
�1 Minimum projection into nullspace of

calibration vectors
10�3

�2 RBF coefficient conditioning parameter 10�4

�3 Expanded trust region size to find basis,
�3�k

10

�4 Maximum calibration region size, �4�k 10
�x Finite difference step size 10�6
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calibration points. The number of allowable calibration points
increases as �2 decreases to zero; however, the matrix used to
compute the RBF coefficients also becomes more ill-conditioned.
For our problem, we find that �2 � 10�4 enables a large number of
calibration points while providing acceptable matrix conditioning.
The two other parameters, �3 and �4, used in the calibration point
selection algorithm, are significant to the algorithm’s performance.
The parameter �3 (�3 > 1) is used if n� 1 affinely independent
previous high-fidelity sample points do not exist within the current
trust region. If fewer than n� 1 points are found, the calibration
algorithm allows a search region of increased size fx: kx � xkk �
�3�kg tofind n� 1 affinely independent points before evaluating the
high-fidelity function in additional locations. The results show that
the number of function calls is insensitive to �3 for 1< �3 � 10, with
�3 � 3 yielding the best results. The parameter �4 (�4 > 1) represents
the balance between global and local model calibration, as it
determines how far points can be from the current iterate, xk, and still
be included in the RBF interpolation. Points that lie within a region
fx: kx � xkk � �4�kg are all candidates to be added to the inter-
polation. Calibration points outside of the trust region will affect the
shape of the model within the trust region, but the solution to the
subproblemmust liewithin the current trust region. The results of our
analysis show that �4 � 10 offers the best performance, with the
number of high-fidelity function calls increasing substantially if
�4 < 5or �4 > 15.Wealso note that the parameter values suggested in
this section are similar to the values recommended byWild et al. [26].

B. Supersonic Airfoil Optimization

As an engineering example, a supersonic airfoil is optimized for
minimum drag at Mach 1.5. Three analysis tools are available: a
supersonic linear panel method, a shock-expansion theory panel
method, and a computational fluid dynamicsmodel Cart3D [34]. The
linear panel method and shock-expansion theory method only
compute flow quantities on the surface of the airfoil. The panel
method assumes that all changes in geometry are small, so that the
local surface pressure varies linearly with the slope changes in
the airfoil surface. Shock-Expansion theory computes the change in
the local surface pressure by solving nonlinear equations associated
with compression and expansion waves related to the surface slope
changes. Cart3D uses a finite volume method to approximate the
Euler equations and solve for the flowfield in a domain around
the airfoil. Cart3D uses an adjoint-based mesh refinement approach.
The refinement ismanaged so that the error in theflow solution due to
spatial approximation on the computational mesh is less than a set
tolerance. (The smallest tolerance we were able to consistently
achieve was about O�10�5� for drag.)

Figure 3 shows the approximate level of detail used in the models,
and Table 3 compares the lift and drag estimates from each of the
models for a 5% thick biconvex airfoil atMach 1.5 and 2 deg angle of
attack. The linear panel method and shock-expansion theory both
require sharp leading and trailing edges on the airfoil, so the airfoils
are parameterized by a set of spline points on the upper and lower
surfaces and the angle of attack. The leading- and trailing-edge points
of both surfaces are constrained to be coincident tomaintain the sharp

leading and trailing edges.Accordingly, an airfoil with 11 variables is
parameterized by the angle of attack, and has seven spline points on
the upper and lower surfaces, but only five points on each surface can
be varied.

To demonstrate the RBF calibration approach to optimization, the
linear supersonic panel method is used as the low-fidelity function
and shock-expansion theory is used as the high-fidelity function. For
supersonic flow, a zero thickness airfoil will have the minimum drag,
so the airfoil must be constrained to have a thickness to chord ratio
greater than 5%. This is accomplished by adding a penalty function,
so that if the maximum thickness of the airfoil is less than 5%,
the penalty term 1000�t=c� 0:05�2 is added to the drag. A
similar penalty is added if the thickness anywhere on the airfoil is
less than zero.

The optimization parameters used by this method are the same as
in Table 2, with the exception that theRBF correlation length is either
	� 2 or optimized at each iteration. A consecutive step size of less
than 5  10�6 is an additional termination criteria for all of the
multifidelity methods compared. The number of high-fidelity
function evaluations required to optimize the airfoil for each of the
methods using a different number of design variables is presented in
Fig. 4. The airfoil optimization shows that both the first-order
consistent methods and the RBF calibration method perform
significantly better than the quasi-Newton method. This is largely
because the multifidelity methods have a significant advantage over
the single-fidelity methods in that the physics-based low-fidelity
model is a reasonable representation of the high-fidelity model.
However, the RBF calibration approach uses less than half the
number of function evaluations as the multiplicative-correction
approach. In addition, the additive correction outperforms the
multiplicative correction for this problem, but the RBF calibration
outperformed both. The method of maximizing the likelihood of the
RBF calibration performs slightly better than just using a fixed
correlation length. The results in Fig. 4 are also better than two global
optimization methods, DIRECT [33] and a multifidelity formulation
of EGO [9]. DIRECT requires significantly more high-fidelity
evaluations than the quasi-Newton method and all of the trust region
approaches. For example to get within 1% of the optimal function
value with 11 design variables, DIRECT requires over 13,000
evaluations. We are unable to get the multifidelity formulation of

Fig. 3 Supersonic airfoil model comparisons at Mach 1.5 and 2 deg angle of attack.

Table 3 Five-percent-thick biconvex airfoil results comparison at

Mach 1.5 and 2 deg angle of attack. Percent difference is taken
with respect to the Cart3D results. These results are typical for

“well-designed” airfoils, however, in other parts of the feasible

design space a discrepancy of over 33% error has been

observed for drag and of at least 0.058 (47%) for lift
between the panel method and shock-expansion theory

Panel Shock-Expansion Cart3D

CL 0.1244 0.1278 0.1250
Percent difference 0.46% 2.26% 0.00%

CD 0.0164 0.0167 0.01666
Percent difference 1.56% 0.24% 0.00%

MARCH ANDWILLCOX 1085



EGO to find an airfoil design having a drag coefficient within 20% of
the optimal value for a variety of low-fidelity functions and a budget
of 1500 high-fidelity evaluations. Many EGO implementations have
been attempted, including initializing the kriging model with a Latin
hypercube sample using 3n, 4n, and 5n high-fidelity evaluations and
maximizing the expected improvement using DIRECTand a genetic
algorithm.

As a second test case, the panel method was used as a low-fidelity
function to minimize the drag of an airfoil with Cart3D as the high-
fidelity function. Cart3D has an adjoint-based mesh refinement,
which ensures the error caused by the discretization is less than a
tolerance. Accordingly, the drag computed by Cart3D is only to
within a tolerance. The drag is therefore not Lipschitz continuous
due to the finite precision. In the execution of our multifidelity
optimization algorithm, the gradient of the surrogate model does not
go to zero. However, no progress is made and the trust region radius
converges to zero. This forces the algorithm to take small steps and
the combination of a small step size and small trust region is a
supplemental termination criteria. On average, the airfoil param-
eterizedwith 11 variables requires 88 high-fidelity (Cart3D) function
evaluations. A comparison of the minimum drag airfoils from the
panel method, shock-expansion theory, and Cart3D is presented in
Fig. 5. The airfoils all resemble the expected diamond shape.

To compare this gradient-free approach on a problem with
multiple local minima, we change the objective to find an airfoil with
a lift coefficient of 0.3 and a drag coefficient of less than 0.05,
minimizing �CL � 0:3�2 �maxfCD � 0:05; 0g2, and retain the same

penalty function to ensure positive thickness and at least 5%
thickness to chord ratio. There are numerous airfoil designs in
the design space that have the optimal function value, zero (approx-
imately, due to the penalty function). Considering shock-expansion
theory as the high-fidelity analysis and the panel method as the low-
fidelity analysis, Table 4 compares the average number of high-
fidelity evaluations from random initial airfoils parametrized by the
angle of attack and ten surface spline points. Two low-fidelity
functions are used, �CL � 0:3�2 �maxfCD � 0:05; 0g2, which is the
same as the objective function except computed with the panel
method instead of shock-expansion theory, and �CL � 0:4�2 �
maxfCD � 0:05; 0g2 also computed by the panel method. Both of
these low-fidelity objectives are augmented with the penalty
function. The first low-fidelity objective has minima near the high-
fidelity minima; however, the second low-fidelity objective has
multiple local minima that are all separate from the high-fidelity
minima. For comparison, from random initial airfoil designs a quasi-
Newton method [32] requires 643 shock-expansion evaluations, and
the global optimization method, DIRECT, requires over 1000
evaluations to find an objective value of 1  10�5, and over 8000
evaluations for 1  10�8. The results show that on average with a
“good” low-fidelity model the RBF calibration approach uses the
fewest high-fidelity evaluations to find a locally optimal solution.
For this problem, with a “poor” low-fidelity model the RBF
calibration approach finished second to the first-order consistent
trust region approach using an additive correction. We also observe
that the RBF calibration approach is not significantly affected by
either choosing a correlation length, 	� 2, or by using themaximum
likelihood correlation length, 	� 	�. For the EGO implementation,
4n high-fidelity evaluations are used for the initial Latin hypercube
sample and a genetic algorithm is used to maximize the expected
improvement.

VI. Combining Multiple Fidelity Levels

This section addresses how the radial basis function interpolation
technique can be extended to optimize a function when there are
multiple lower-fidelity functions. For instance, consider the case
when our goal is to find the x� that minimizes fhigh�x�, and there
exists two or more lower-fidelity functions, an intermediate-fidelity,
fmed�x�, and a low-fidelity, flow�x�.

The typical approach to solve this problem is to nest the lower-
fidelity function; that is, to use the intermediate-fidelity function as
the low-fidelity model of the high-fidelity function, and to use the
lowest-fidelity function as the low-fidelitymodel of the intermediate-
fidelity function. To do this, two calibration models are needed

fhigh�x� � fmed�x� � emed�x� (20)

Fig. 4 Number of shock-expansion theory evaluations required to

minimize the drag of a supersonic airfoil verse the number of

parameters. The low-fidelity model is the supersonic panel method.

Fig. 5 Minimum drag airfoils from each of the three analysis models. The panel method airfoil is generated by solving a single-fidelity optimization

problem with a quasi-Newton method. The shock-expansion method and Cart3D airfoils are generated with this multifidelity approach and spatial

correlation length �� 2 with the panel method as a low-fidelity model.
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fmed�x� � flow�x� � elow�x� (21)

In the nested approach, the high-fidelity optimization is performed
on the approximate high-fidelity function, which is the medium-
fidelity function plus the calibration model emed. However, to deter-
mine the steps in that optimization, another optimization is
performed on a lower-fidelity model. This low-fidelity optimization
is performed on the model

m�x� � flow�x� � elow�x� � emed�x� (22)

but only the low-fidelity calibration model elow is adjusted. The
nested approach can quickly become computationally inefficient. To
take one step in the high-fidelity space, an optimization is required on
the medium-fidelity function. However, for each step in medium-
fidelity space, an optimization is required on the lower-fidelity
function. Even if the medium and low-fidelity models are cheap to
evaluate compared with the high-fidelity model, the potential
exponential scaling in the number of lower-fidelity function
evaluations required between fidelity levels can counter computa-
tional gains.

An alternative to nesting multiple lower-fidelity functions is to use
a maximum likelihood estimator to estimate the high-fidelity
function. Since the multifidelity optimization method proposed in
this paper uses radial basis function interpolants, a variance estimate
of the interpolation error can be created using standard Gaussian
process techniques [30,31]. This variance estimate reflects the
overall level of variability in the observed data (roughly the average
error between models) and the observed correlations (how smoothly
the error changes in the design space). It is therefore zero at
all sampled points and grows with distance away from sampled
points [9]. Figure 2 presents an illustration of this. In the case of
multiple fidelity levels, the lower-fidelity estimates of fhigh�x�, for
example flow�x� � ek�x�, are assumed to have uncertainty that is
normally distributed with zero mean and variance �2k�x�, denoted
N �0; �2k�x��. In the two-fidelity optimization, only the value of the
surrogate model is used, but in the following, both the value of the
surrogate model and the uncertainty estimate are used.

For two lower-fidelity models, the estimates of the high-fidelity
function are

fhigh�x� � fmed�x� � emed;k�x� �N �0; �2med;k�x�� (23)

fhigh�x� � flow�x� � elow;k�x� �N �0; �2low;k�x�� (24)

From these two or more models, a maximum likelihood estimate
of the high-fidelity function weights each prediction according to a
function of the variance estimates. The high-fidelity maximum
likelihood estimate has a mean fest;k, given by

fest;k�x� � �fmed�x� � emed;k�x��
�

�2low;k�x�
�2low;k�x� � �2med;k�x�

�

� �flow�x� � elow;k�x��
�

�2med;k�x�
�2low;k�x� � �2med;k�x�

�
(25)

The estimate of the high-fidelity function also has a variance
�2est;k, which is less than either of the variances of the lower-fidelity
models since

1

�2est;k�x�
� 1

�2low;k�x�
� 1

�2med;k�x�
(26)

A thorough discussion of using a maximum likelihood estimator
to combine two or more estimates with normally distributed uncer-
tainties is available in [[35], Chapter 1]. We note that naming the two
lower-fidelity estimates flow�x� and fmed�x� may be misleading,
since the maximum likelihood estimator makes no hierarchical
distinction betweenmodels. In fact, our approach applies naturally to
the case where different models have varying relative levels of
fidelity over different regions of the design space.

We present a schematic of the behavior of this maximum
likelihood estimator in Fig. 6. In the first case with two similar
models, the combined estimate has a similar mean with a reduced
variance. In the second case with two dissimilar estimates, the
combined estimate has the average mean of the two models again
with lower variance. In the third case when one model has a con-
siderably smaller variance than the other model, the combined
estimate has a similar mean and slightly reduced variance than the
model with the lower variance. Accordingly, the maximum like-
lihood estimate is the best probabilistic guess of the high-fidelity
function at a noncalibrated point.

This method provides flexibility while still being provably
convergent to a high-fidelity optimum using our multifidelity opti-
mization approach. The requirements for convergence are that the

Table 4 Average number of shock-expansion theory evaluations required to find an airfoil (angle of attack and ten surface spline points, 11 design

parameters) with a target lift coefficient of 0.3 and maximum drag coefficient of 0.05. The low-fidelity analysis is the panel method, and two

low-fidelity objective functions are used to demonstrate the influence of low-fidelity model quality. For comparison, a quasi-Newton method
requires 643 evaluations and the global optimization method, DIRECT, requires 1031 evaluations to get within 1 � 10�5 of the optimal

objective, and 8215 evaluations to get within 1 � 10�8 of the optimal objective

Gradient-Free (calibration) Gradient-Based

Low-Fidelity function 	� 2 	� 	� EGO Add-Corr. Mult.-Corr.
�CL � 0:3�2 �maxfCD � 0:05; 0g2 78 54 118 80 123a

�CL � 0:4�2 �maxfCD � 0:05; 0g2 152 147 285 83 642a

aIndicates 1  10�4 was added to the low-fidelity objective function.

Fig. 6 Behavior of the combined maximum likelihood estimate given the behavior of the individual estimates.
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surrogate model upon which the optimization is performed be
smooth and exactly interpolate the function at the necessary
calibration points. Using this maximum likelihood estimator, only
one of the lower-fidelity functions needs to be sampled at the cali-
bration points because at a calibration point an individual Gaussian
process model has zero variance. Accordingly, at that calibration
point the model is known to be correct and the other lower-fidelity
information is not used. Therefore, the user hasflexibility in selecting
which of the lower-fidelity models are calibrated at a calibration
point. For example, the calibration procedure could choose a ratio,
such as one intermediate-fidelity update for every three low-fidelity
updates, or simply update both the intermediate-fidelity and low-
fidelity models each time a new calibration point is needed.

The changes to Algorithm 1 necessary to use multiple low-fidelity
models are minimal. In steps 1, 3, and 7, fest;k�x� should be used in
lieu ofmk�x�, and in step 6 at least one of the error models, emed;k�x�
or elow;k�x�, needs to be updated using Algorithm 2 to make
fest;k�1�x� fully linear on the updated trust region.

Optimization results show that the nesting approach suffers from
poor scaling betweenfidelity levels and that themaximum likelihood
approach speeds convergence of our multifidelity optimization
method even if the lowest-fidelity function is a poor representation of
the high-fidelity function. In all examples presented, the calibration
strategy employed for the maximum likelihood method is to update
all lower-fidelity models whenever the optimization method requires
a new calibration point.

The first example is an optimization of the Rosenbrock function
with two parabolic lower-fidelity functions. The number of required
function evaluations for each fidelity level is presented in Table 5.
Using the maximum likelihood approach, the number of high-
fidelity function evaluations has been reduced by 34%, and the
number of combined lower-fidelity evaluations has been reduced by
27%. However, combining the multiple lower-fidelity functions
through nesting leads to a large increase in the number of function
evaluations at each level.

The second example is to optimize a supersonic airfoil for
minimum drag with respect to an Euler code, Cart3D. Two lower-
fidelity methods are used: shock-expansion theory and a panel
method. These results, presented in Table 6, also show that the
maximum likelihood approach converges faster and with fewer
calibration points than the original multifidelity method using only
the panelmethod. The nesting approach failed to converge as the step
size required in the intermediate-fidelity optimization became too
small. The likely cause of this is that the adjoint-based mesh
refinement used inCart3D allows numerical oscillations in the output
functional at a level that is still significant in the optimization, and this
makes the necessary calibration surface nonsmooth. The lack of
smoothness violates the convergence criteria of this method.

The final example demonstrates that the maximum likelihood
approach can still benefit from a poor low-fidelity model. The results
in Table 7 are for minimizing the drag of a supersonic airfoil using
shock-expansion theory, with the panel method as an intermediate-
fidelity function; however, unlike the preceding example, the lowest-
fidelity model is quite poor and uses the panel method only on the
camberline of the airfoil. Using this method, any symmetric airfoil at
zero angle of attack has no drag and many of the predicted trends
are incorrect compared with the panel method or shock-expansion
theory. The optimization results show an important benefit of this
maximum likelihood approach: even adding this additional bad
information, the number of high-fidelity function calls has been
reduced by 33%, and the number of intermediate-fidelity function
calls has decreased by 31%. An additional point of note is the
magnitude to which the nested approach suffers by adding poor low-
fidelity information. In most test problems, the nested optimization
was terminated due to an exceptionally large number of function
evaluations. The results presented are the minimum number of
function evaluations the nested approach required to converge.

From this observed behavior, we recommend the use of the two-
fidelity optimization approach demonstrated in Sec. V for the
optimization of any computationally expensive function for which
accurate gradient information is not available. When considering the
addition of a third or fourth fidelity level, we note there are
diminishing returns for each additional fidelity level. In the three-
fidelity examples presented, the third fidelity level reduced the
number of high-fidelity evaluations in the two-fidelity case by about
30%,which is about an 8% additional reduction over a single-fidelity
method. We therefore expect the greatest multifidelity benefit when
going from a single-fidelity level to two-fidelity levels, and
diminishing benefit for each additional level. However, if high-
fidelity function evaluations are extremely costly (e.g., requiring
hours or days on a supercomputer), then the additional reductionmay
certainly be worthwhile. Since the reduction in high-fidelity
evaluations using gradient-free methods is similar to what has been
observed using gradient-based multifidelity optimization methods
[5], we expect similar returns for additional fidelity levels in the
gradient-based case.

VII. Conclusions

This paper has presented a provably convergent multifidelity
optimizationmethod that does not require computation of derivatives
of the high-fidelity function. The optimization results show that this
method reduces the number of high-fidelity function calls required to
find a local minimum compared with other state-of-the-art methods.
The method creates surrogate models that retain accurate local
behavior while also capturing some global behavior of the high-
fidelity function. However, some downfalls of the method are that its
performance is sensitive to the quality of the low-fidelity model and
that its overhead increases dramatically with the number of design
variables and the number of calibration points used to build the
radial basis function model. Accordingly, this approach is only
recommended for high-fidelity functions that require a considerable
wall-clock time. Furthermore, in this unconstrained optimization
algorithm engineering design constraints are handled with a penalty
method, but using surrogate models for the constraints and objective
may be desirable. While trust region methods exist for constrained
optimization problems, incorporating multifidelity models in both

Table 5 Number of function calls required to optimize the Rosenbrock

function using multiple lower-fidelity functions. The maximum
likelihood approach requires the least high-fidelity function

evaluations to converge and the nested approach the most

Method �x2 � x21�2 � �1 � x1�2 �x1 � 1�2 � x22 x21 � x22
Two-Fidelities 87 0 6975
Max. likelihood 57 2533 2533
Nested 137 4880 50,455

Table 6 Number of function calls required to optimize an airfoil

for minimum drag using the Euler equations (Cart3D)
with multiple lower-fidelity models

Method Cart3D Shock-Expansion Panel method

Two-Fidelities 88 0 47,679
Max. likelihood 66 23,297 23,297
Nested 66a 7920a 167,644a

aIndicates that solution was not converged due to numerical limitations.

Table 7 Number of function calls required to optimize an airfoil

for minimum drag using shock-expansion theory with multiple

lower-fidelity models

Method Shock-Expansion Panel method Camberline

Two-Fidelities 126 43665 0
Max. Likelihood 84 30057 30057
Nested 212a 59217a 342916a

aIndicates a minimum number of function evaluations as opposed to an average value
from random starting points.
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objective function and constraints presents several challenges for
future work.

This paper has also shown that amultifidelity optimizationmethod
based on a maximum likelihood estimator is an effective way of
combining many fidelity levels to optimize a high-fidelity function.
The maximum likelihood estimator permits flexible sampling
strategies among the low-fidelitymodels and is robust with respect to
poor low-fidelity estimates. In addition, the estimator offers a natural
and automated way of selecting among different models that are
known to be accurate in different parts of the design space, which is
frequently the case in engineering design.
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