
an objective function 
K stiffness matrix
l number of state variables
m surrogate model for high-fidelity function
M mesh 
M∞ Mach number 
n number of design variables
q number of calibration points
r set of residual equations
R correlation matrix
s optimisation step
u vector of state variables
w structural weight
x design vector
y Kriging values to interpolate
z a vector of ones and zeros
α flow turning angle
β Kriging constant
γ trust region size update ratio
δ finite change
Δ trust region size
ε termination tolerance
θ a positive constant
Θ likelihood
κ bound related to function smoothness
λ eigenvalue of Rc

ABSTRACT

Optimisation of complex systems frequently requires evaluating a
computationally expensive high-fidelity function to estimate a
system metric of interest. Although design sensitivities may be
available through either direct or adjoint methods, the use of formal
optimisation methods may remain too costly. Incorporating low-
fidelity performance estimates can substantially reduce the cost of
the high-fidelity optimisation. In this paper we present a provably
convergent multifidelity optimisation method that uses Cokriging
Bayesian model calibration and first-order consistent trust regions.
The technique is compared with a single-fidelity sequential quadratic
programming method and a conventional first-order trust-region
method on both a two-dimensional structural optimisation and an
aerofoil design problem. In both problems adjoint formulations are
used to provide inexpensive sensitivity information.

NOMENCLATURE

c a positive constant
C output matrix
Cp pressure coefficient
d radial distance
e error model
f an objective function
f applied force vector
g an inequality constraint
h an equality constraint
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uses a combination of a regression model and an uncertainty
estimate based on distance from known points as a way to find better
points. An improvement to Jones’ approach is to use model
calibration techniques to model the difference or quotient between a
high- and low-fidelity function as opposed to modeling the high-
fidelity function itself(19,20). In this way, a low-fidelity model can
increase the efficiency of finding an optimum of a high-fidelity
function in situations where using only a regression surface requires
a considerable number of function evaluations for calibration. These
techniques have been used for both derivative-free(22) and derivative-
based(11) optimisation. Model calibration techniques are generally
based on heuristic methods and are not provably convergent to an
optimum of the high-fidelity function.

In this paper, we present a gradient-based multifidelity optimi-
sation algorithm using model calibration and trust-regions that is
globally convergent to a high-fidelity optimum. The first-order-
consistent trust-region methods mentioned above can be thought of
as employing model calibration; however, the calibration is only
local and temporary, since sample points from previous iterations are
not re-used. The challenge we address here is to produce a surrogate
model that captures local function behavior sufficiently well to prove
convergence, while capturing sufficient global function behavior to
speed convergence. Robinson et al showed that when using globally
calibrated models, for instance, interpolation or least-squares fits, the
first-order-consistency requirement is typically detrimental to the
performance and the fit of the model to the high-fidelity function(31).
However, Gano et al have successfully demonstrated globally
calibrated models in a trust-region framework using Kriging-based
additive, multiplicative and hybrid correction schemes(12). We
propose to use the model calibration approach of Kennedy and
O’Hagan(19); however, instead of using an ordinary Kriging model
for calibration, we use a Cokriging model. A Kriging model interpo-
lates a function exactly at all calibration points, but a Cokriging
model interpolates a function exactly at all calibration points and
with the same derivative as the function. The Cokriging technique
enables us to satisfy the first-order-consistency requirements of a
trust-region algorithm while maintaining a ‘global’ fit of the the
high-fidelity function.

Cokriging surrogate models have been used to optimise expensive
functions; however, typically in a heuristic manner. For instance, it
has been shown that when using the same number of high-fidelity
sample points, a Cokriging model will typically provide a better
estimate of the optimum compared with other surrogates(13,14). In
addition, by updating Cokriging models during an optimisation using
adjoint-based gradient estimates, Cokriging methods converge faster
to a high-fidelity optimum than other calibration methods(23); this
was even found to be true when the number of Cokriging calibration
points was limited to reduce computational cost(11). However, with
all of these Cokriging optimisation methods, convergence to a high-
fidelity optimum is still not guaranteed because arbitrarily poor steps
may occur during the optimisation process which could increase the
high-fidelity function value, or the algorithm could take an infinite
number of small steps and never reach an optimum.

This paper combines the provably convergent optimisation trust
region frameworks of Alexandrov et al(2-4) and Conn et al(8) with
Cokriging Bayesian model calibration ideas to create a provably
convergent multifidelity optimisation algorithm. The calibration
employed is only done within the vicinity of a trust-region to reduce
the cost of constructing the surrogate model. In addition, techniques
are developed to ensure the conditioning of the Cokriging model
satisfy all requirements for convergence in a trust region framework.

Section 2 of this paper provides an overview of the trust-region
algorithm, the fundamental ideas of Bayesian model calibration and
the technique developed to construct the Cokriging surrogate.
Section 3 demonstrates this algorithm on a 26-dimensional structural
design problem and Section 4 demonstrates this method on an 11-
dimensional aerofoil design problem. Both sample problems
estimate gradients using adjoint solutions.

μ penalty parameter
ξ spatial correlation parameter
ρ trust region update parameter
σ2 mean square error/variance
σ2 max. likelihood estimate of δ2

ϒ penalty function
ϒ surrogate penalty function
φ correlation function
Φ correlation vector
Ψ adjoint variable

Superscript
(p) Vector component  
(1:p) Vector components  
q q -component vector

Subscript

0 Initial iterate
bhm Bound for Hessian of the surrogate model
c Cokriging
high Relating to the high-fidelity function
k Index of trust-region iteration number
low Relating to a lower-fidelity function
max User-set maximum value

1.0 INTRODUCTION

In the design of complex systems, such as aircraft, a high-fidelity
simulation often appears as part of a design objective or constraint.
Conveniently, in many applications these simulations provide design
sensitivity information. For example, in structural design both direct
and adjoint methods have been used to estimate sensitivity to the
design parameters(15,16). Similarly, in aerodynamic design, adjoint
solutions are now quite common within computational fluid
dynamics solvers and provide a means of estimating design sensitiv-
ities(17,28). The challenge with designing aero-structural and other
complex systems is that even with first-order design sensitivities
provided inexpensively, the computational expense of these high-
fidelity simulations coupled with the number of high-fidelity evalua-
tions required still makes formal design optimisation intractable.

Fortunately, most system designers have other lower-fidelity
models available to them that provide estimates of system perfor-
mance with considerably lower computational requirements. These
lower-fidelity models may be simplified physics models, or approx-
imate models generated using methods such as response
surfaces(9,33,34), reduced-order models(5), or coarse discretisations(4). It
is desirable to optimise a design with respect to the best available
model of reality, typically the high-fidelity model, but lower-fidelity
models may provide valuable information that can speed the optimi-
sation process.

There are several different multifidelity optimisation strategies
that optimise a high-fidelity function using a low-fidelity surrogate.
One class of approaches uses trust regions. These methods are
provably convergent to a local optimum of the high-fidelity function,
if at the center of the trust region the low-fidelity function value and
gradient are scaled or shifted to be equal to the high-fidelity function
value and gradient(2-4). Another multifidelity approach is to combine
a pattern-search with optimisation of a surrogate model included as
an additional pattern-search location. This derivative-free method is
also provably convergent to an optimum of the high-fidelity
function(6,7). A third general approach is Efficient Global
Optimisation (EGO) developed by Jones et al(18). In this method, a
Bayesian uncertainty approach is used to find regions in the design
space with a high likelihood of having an optimal solution. EGO
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parameter. In addition, a surrogate penalty function, ϒ (x,μk) , which
replaces the high-fidelity function value with the surrogate model
value, is needed for trust region updating,  

. . . (7)

The penalty parameter, μk, must be larger than the smallest Lagrange
multiplier associated with Equation (1)(4).

From an initial design vector x0, trust-region size Δ0, and penalty
μ0, the trust-region iterates are generated by finding a step, sk, that
minimises the surrogate model subject to linearised design
constraints and trust-region constraint,  

min mk(xk + sk)

s.t.  ∇h(xk)Tsk + h(xk) = 0

∇g(xk)Tsk + g(xk) ≤ 0

║sk║∞ ≤ Δk

or subject to the full design constraints and trust-region constraint,  

min mk(xk + sk)

s.t.  h(xk + sk) = 0

g(xk + sk) ≤ 0

║sk║∞ ≤ Δk

Equation (8) is the general subproblem which allows for the current
iterate to be infeasible and for first-order consistent surrogate models
of the constraints to be used. However, if the constraints are
inexpensive compared to the high-fidelity objective function and the
current iterate is feasible, Equation (9) can speed finding the optimal
high-fidelity design since the constraints are included explicitly in
the trust region subproblem. After either subproblem has been
solved, the performance of the surrogate model is estimated with the
parameter ρk, which is the ratio of the actual improvement in the
high-fidelity penalty function with the improvement estimated by the
surrogate penalty function,  

The size of the trust region is updated based on the performance of
the surrogate model. If the surrogate model predicted the high-
fidelity behaviour well, the trust region is expanded, if the prediction
is poor the trust region is contracted. Specifically, we update the
trust region size according to,  

where 0 < c2 < c1 < 1, γ0 < 1 and γ1 > 1. In addition we move the trust
region if the step results in a decrease in the penalty function,  

We then create a new surrogate model mk+1(x) on the new trust
region {x: ║x – xk+1║∞ ≤ Δk+1}. If the optimality conditions are not
satisfied we repeat the algorithm. In addition, if the size of the trust
region becomes sufficiently small we also terminate the algorithm.
The trust-region algorithm is summarised as Algorithm 1.

2.0 OPTIMISATION METHOD

In this section we consider a setting where we have two (or more)
models that represent the physical system of interest: a high-fidelity
model that accurately estimates system metrics of interest but is
expensive to solve, denoted fhigh(x), and a low-fidelity model with
lower accuracy but cheaper to solve, denoted flow(x). The high-
fidelity model is any function that maps a design vector, x, of n
design variables, to a scalar output. Accordingly, the optimisation
problem considered is to minimise the high-fidelity objective
function subject to equality constraints, h(x), and inequality
constraints g(x):

min  fhigh (x)

s.t. h(x) = 0

g(x) ≤ 0.

Of specific interest in this paper is the equivalent optimisation
problem when the high-fidelity function comes from the solution of a
partial differential equation or includes state variables. For example,
we may have a problem with a high-fidelity objective high(x,u) with
a vector u of l state variables set by l residual or state equations
rhigh(x,u) = 0. In problems of this form we rewrite the optimisation
formulation as, 

min high (x,u)

s.t. rhigh(x, u) = 0

h(x) = 0

g(x) ≤ 0.

When considering problems of the form of Equation (2) we can
eliminate the state variables by solving the residual equations. Thus,
these systems can be written in the form of Equation. (1), as in the
following presentation of the multifidelity optimisation method.

2.1 Trust region method

To solve Equation (1) we may use any of the trust-region algorithms
presented in Refs 3 or 4. This paper uses a modified form of
sequential quadratic programming (SQP) approximation model
management, which generates a sequence of design iterates xk that
converge to an optimum of the high-fidelity problem Equation (1).
At each trust-region iteration we minimise a surrogate model mk(x)
of the high-fidelity function. We define the surrogate model to have
an additive error model, ek(x), 

mk(x) = flow(x) + ek(x) ≈ fhigh(x). . . . (3)

The requirements for convergence of this algorithm are that, (i) at
each trust-region iteration the surrogate model satisfies first-order
consistency requirements,  

mk(xk) = fhigh(xk) . . . (4)

∇mk(xk) = ∇fhigh(xk) . . . (5)

and (ii) that there exists a constant kbhm < ∞ that is an upper bound for
the 2-norm of the surrogate model Hessian(2,8).

The trust-region algorithm uses the l1 penalty function,  

. . . (6)

where g+(x) is the inequality constraint violation and μk is a penalty
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technique. The first drawback is that the calibration may only be
first-order, which means in the worst case the convergence rate
could be linear and extremely slow, although we note that quasi-
second-order trust region calibration approaches have been proposed
in the literature(10). The second drawback is that both the function
value and gradient are known at all previous design iterates encoun-
tered by the trust region algorithm and this information is typically
not used.

The idea of Bayesian model calibration is to use all available
information to estimate unknown high-fidelity information. In the
multifidelity setting, this translates to using all previous information
about the error between the high- and low-fidelity models to
calibrate the low-fidelity model. The calibrated model provides an
estimate of the new design that has the largest high-fidelity

2.2 Bayesian model calibration

In conventional trust-region algorithms the surrogate model for
optimisation is created by correcting the low-fidelity model such that
at the center of the trust-region the first-order consistency require-
ments, Equations (4) and (5), are satisfied. Using the additive
correction in this paper, Equation (3), this would correspond to;  

ek(x) = fhigh(xk) – flow(xk) . . . (13)
+ [∇fhigh(xk) – ∇flow(xk)]T (x – xk)

In the trust-region framework presented in Section 2.1, this
calibration approach is provably convergent to a high-fidelity
optimum. There are two possible drawbacks with this calibration
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ALGORITHM 1: ITERATION K OF A TRUST-REGION ALGORITHM

0. Choose initial design vector x0, initial trust region size Δ0, initial penalty μ0 and initial surrogate model m0(x) that satisfies Equations (4) and
(5) at x0 (Algorithm 2 can be used to create m0(x)).

1. Solve the trust-region subproblem using nonlinear programming techniques to find the step, sk, that solves,

2. Evaluate penalty functions ϒ(xk + sk, μk) and ϒ(xk + sk, μk).
3. Compute the ratio of actual improvement to predicted improvement,  

4. Update the trust region size according to ρk ,  

5. Accept or reject the trial point,  

6. Create a new surrogate model mk+1(x)  that satisfies Equations (4) and (5) using Algorithm 2 on the trust-region {x: ║x – xk+1║∞ ≤ Δk+1}.
7. Check for convergence. If the solution is not optimal and the trust-region size is sufficient, return to step 1.

min mk(xk + sk)

s.t.  ∇h(xk)Tsk + h(xk) = 0

∇g(xk)Tsk + g(xk) ≤ 0

║sk║∞ ≤ Δk

min mk(xk + sk)

s.t.  h(xk + sk) = 0

g(xk + sk) ≤ 0

║sk║∞ ≤ Δk.
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ALGORITHM 2: PROCEDURE TO GENERATE A COKRIGING MODEL

0. Select initial calibration point at xk and initial correlation vector ξ.
1. Randomly order all high-fidelity sample points within ║x – xk║ ≤ θ1Δk.
2. Maximise the likelihood function of the Cokriging model using an optimisation algorithm that is robust to non-smoothness, such as a pattern-

search or simulated annealing.
(a) For a given ξ, test each high-fidelity sample point in the order chosen in step 1 to see if after adding that point to the Cokriging model

the eigenvalues of Rc with smallest absolute value and the largest absolute value satisfy, |λ1| ≥ θ2 and |λq(n+1) | ≤ θ3|λ1|. If the conditions
are satisfied, add that calibration point (up to user set maximum, qmax calibration points), if the conditions are not satisfied reject that
calibration point.

(b) Compute the likelihood of the Cokriging model, Θ, using Equation (21).
3. If more than one calibration point is in the Cokriging model, compute Rc

–1 and βc using the maximum likelihood correlation vector, ξ.
Otherwise use the additive correction given in Equation (13).

sk∈Rn sk∈Rn

or 

ˆ

if



by defining the vector of ones and zeros,  

zc = [1q,0q.n]T . . . (18)

and a generalised least-squares constant term,  

βc = (zT
c Rc

–1 zc)–1 zT
c Rc

–1yc  . . . . (19)

This leads to a final Cokriging error model that has the form,  

ek(x) = βc + Φ(x)TRc
–1 (yc – zcβc) . . . . (20)

To estimate the spatial correlation parameters ξ we maximise the
likelihood function, Θ, which is the probability of observing these
data if these data had been generated by a Gaussian process(14,30). The
likelihood is only a function of the observed data and the correlation
parameters ξ. Ignoring the contribution of the gradient to the
likelihood, the partial likelihood only depends on the Kriging portion
of the Cokriging model, so Rc

(1:q×1:q) indicates that only the first q
terms of the Cokriging vectors are used,  

Where σ2 maximises the Kriging portion of the likelihood function,
Equation (21)(32).  

. . . (22)

and 

. . . (23)

To use a Cokriging model within a trust-region algorithm we must
ensure the first-order consistency requirements, Equations (4) and
(5), are satisfied, and that the norm of the Cokriging Hessian is
bounded. The first-order consistency requirements are satisfied
provided the current trust-region iterate, xk, is a calibration point and
that Rc is not ill-conditioned. To satisfy the requirement that the
Hessian of the surrogate model has bounded norm, we first assume
that both the high- and low-fidelity functions have bounded Hessian
norms for all  x. What must follow is that the Hessian of ek(x) has
bounded norm, or equivalently the Hessian of Φ(x)TRc

–1(yc – zcβc) has
bounded norm. The vector (yc – zcβc) has bounded norm by virtue of
assumptions on the high- and low-fidelity function. Furthermore, it

improvement. However, the amount of high-fidelity information
collected during an optimisation is likely too much to use when
creating a surrogate model that will only be used for one trust-region
iteration. Therefore, the next section addresses how high-fidelity
information is selected for a calibration procedure that guarantees
convergence to a high-fidelity optimum and limits the computational
effort required to construct a surrogate model.

2.3 Cokriging

The Cokriging Bayesian model calibration technique is demon-
strated in Figure 1. The figure shows that at all calibration points the
surrogate model exactly interpolates the high-fidelity function and it
has the same gradient as the high-fidelity function. The Cokriging
model also estimates the uncertainty in its prediction using a
maximum likelihood variance estimate. It can be observed that the
uncertainty in the Cokriging estimates are zero at all calibration
points and increase with distance away from the calibration points.
There are two Cokriging formulations, direct(11,14), and indirect(21,25).
The former augments a Kriging model with analytical gradients and
the latter adds additional sample points to a Kriging fit such that the
Cokriging model interpolates points replicating a Taylor series. This
paper uses the direct Cokriging formulation. We first summarise the
Cokriging method, then we present the requirements for conver-
gence in a trust-region framework, and we finally present our
method to construct Cokriging models that satisfies both the conver-
gence requirements of a trust-region algorithm and limits the compu-
tational effort required to construct the surrogate models.

Kriging methods come from the field of Geostatistics and have the
underlying assumption that function values from nearby samples are
correlated(27). The correlation function we use is an anisotropic Gaussian,  

where the correlation between points xi and xj, φ(xi, xj), has n spatial
tuning parameters, ξ(p) for each design variable x(p). The tuning
parameters are estimated using a Bayesian maximum likelihood
estimator.

A Cokriging model uses q calibration points in Rn to generate a
correlation vector with length q(1 + n), 

where all derivatives of φ(x,xj) are with respect to x. In addition, we
need to define the Cokriging correlation matrix that describes the
influence of each calibration point on the other calibration points,  

where all first and second derivatives of φ(·,·) are with respect to the
first variable. Using the correlation vector and correlation matrix we
can interpolate the values in the vector,  

yc = [fhigh(x1) – flow(x1),...,fhigh(xq) – flow(xq), 

∇fhigh(x1) – ∇flow(x1),..., ∇fhigh(xq) – ∇flow(xq)]T,
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Figure 1. Demonstration of a Cokriging surrogate 
model for the simple univariate function fhigh(x) = x2.


 

2
(1: ) (1: 1: ) 1 (1: )

= ,
y 1 R y 1c

q q T

c
q q

c
q q

q
      

 = [ ] [ ] .(1: 1: ) 1 1
(1: 1: ) 1 (1: )

1 R 1 1 R y
q T

c
q q q q T

c
q q

c
q  

     

ˆ

ˆ

ˆ

Rc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q︷ ︸︸ ︷
φ(x1,x1). . .φ(x1,xq)

...
. . .

...
φ(xq,x1). . .φ(xq,xq)

∣∣∣∣∣∣∣∣

n× q︷ ︸︸ ︷
∇φ(x1,x1)

T . . .∇φ(x1,xq)
T

...
. . .

...
∇φ(xq,x1)

T . . .∇φ(xq,xq)
T

⎫⎪⎬
⎪⎭ q

∇φ(x1,x1). . .∇φ(x1,xq)
...

. . .
...

∇φ(xq,x1). . .∇φ(xq,xq)

∣∣∣∣∣∣∣∣

∇2φ(x1,x1). . .∇2φ(x1,xq)
...

. . .
...

∇2φ(xq,x1). . .∇2φ(xq,xq)

⎫⎪⎬
⎪⎭
n
×
q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,



considered the calibration points used may vary. This means that the
likelihood function will likely have non-smooth features. A
summary of the procedure to generate Cokriging models is presented
as Algorithm 2. Table 1 lists the parameter values used for the
sample problems presented in the next two sections.

3.0 STRUCTURAL DESIGN PROBLEM

Typical structural design problems have deflection or stress require-
ments with low-weight as an objective or additional constraint. As
an example problem we minimise the deflection of a two-dimen-
sional hook subjected to a bearing load and maximum weight
constraint. This objective function is linear in the state variables,
however, a nonlinear objective will not change the derivation. In the
finite element formulation used, the state variables are nodal
displacements, u, and our objective function can be written as; 

high(x, u) = C (x)u, . . . (24)

where C(x) is an output matrix that only depends on the 26 design
variables representing the geometry of the hook, x, and not the state
variables. In lieu of computing displacements the output matrix
could easily be modified to compute element stresses using Hooke’s
Law. The equations of state are obtained using a Ritz finite element
formulation to minimise the potential energy of the system, and in
discretised form are  

rhigh(x,u) = K(x)u – f = 0

where K(x) is the stiffness matrix and f is the vector of applied nodal
forces. The formal structural optimisation problem to minimise the
deflection of the hook subjected to a bearing load is,  

min C(x)u

s.t. K(x)u – f = 0

w(x) – wmax ≤ 0

g(x) ≤ 0

where w(x) is the weight of the structure, wmax is the maximum
allowable weight, and g(x) ≤ 0 represents 31 constraints ensuring
geometric feasibility of the hook – positive thickness and clearance
to apply the bearing load.

To use our multifidelity optimisation method, we combine our
objective function high(x,u) and state equations rhigh(x,u) = 0 into a
single function of the design variables fhigh(x) that is the value of our
objective function after the state equations have been satisfied. To
compute the gradient of fhigh(x), we solve the adjoint equation,  

for the adjoint variables, Ψ. For this structural optimisation problem
the adjoint equation is;  

KT(x) Ψ (x) = CT(x). . . . (28)

The gradient of our objective function with respect to the design
variables can be written as,  

and similarly, the gradient of the equations of state with respect to

can be shown by differentiating the correlation function in Equation
(14) four times that the maximum absolute value of any second
derivative term for the first q components of Φ(x)T is less than
maxp2ξ(p), and the maximum absolute value of any second derivative
term for the remaining qn components is less than maxp3·904(ξ(p)3/2.
Therefore, using properties of the 2-norm and ∞-norm, we can
establish that the 2-norm of the Hessian of Φ(x)T1 is bounded by [q(1
+ n)]3/2 max{maxp2ξ(p), maxp3·904(ξ(p))3/2}. Now, provided ║Rc

–1║2 is
bounded, we have ensured that the 2-norm of the Cokriging model
Hessian is bounded. We address both this criterion and the condi-
tioning of Rc during the construction of the Cokriging model.

To construct the Cokriging model, we want to limit the number of
calibration points so the size of Rc remains tractable to invert
repeatedly. Therefore, we set a maximum number of calibration
points that we may use, qmax. In addition, because the trust-region
algorithm only requires accuracy within the trust-region we only
want to include points in the calibration that will affect the shape of
the surrogate model within the trust region. So we allow a user-set
distance parameter, θ1, that controls the extent to which the
Cokriging model calibrates locally as opposed to globally.
Specifically, any point at which the high-fidelity function value and
gradient are known that is located within ║x – xk║ ≤ θ1Δk, θ1 > 0 is a
candidate calibration point. The first-step in constructing the
Cokriging model is to select an initial vector of correlation
parameters ξ0 and to select xk as the initial calibration point. We then
randomly order all candidate calibration points.

To find the Cokriging model with the maximum likelihood corre-
lation parameters and that satisfies all trust-region requirements, we
use a greedy approach. We add any candidate calibration point to the
Cokriging model provided that we remain able to bound the
condition number of Rc and to bound ║Rc

–1║2. These two criteria are
satisfied if the eigenvalue of Rc with the smallest absolute value, ⏐λ1⏐,
is greater than a constant, θ2 > 0, and the eigenvalue with the greatest
absolute value, λq(n+1), is less than or equal to θ3⏐λ1⏐, for a constant θ3

> 1. This means the parameter θ3 represents the maximum allowable
condition number for the correlation matrix. The upper limit for θ3

depends on the numerical precision and inversion algorithm used.
After all the candidate points have been tested or qmax points have
been selected, the likelihood of the Cokriging model, Θ is computed.
A pattern-search algorithm is used to find the correlation vector, ξ,
giving the Cokriging model with the maximum likelihood. An
optimisation algorithm that is not highly sensitive to non-smooth
functions must be used because for each correlation vector
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Table 1
Values of the optimisation parameters used

Parameter Description value

qmax Maximum calibration points 10

c1 Trust-region expansion criteria 0·75

c2 Trust-region contraction criteria 0·25

Δ0 Initial trust region size max{5, ║x0║∞}

Δmax Maximum trust region size 20

Δmin Minimum trust region size 10–6

γ0 Trust region contraction ratio 0·5

γ1 Trust region expansion ratio 2

ε Termination tolerances 1 × 10–4

θ1 Trust-region neighborhood size 103

θ2 Min eigenvalue 10–9

θ3 Max condition number 108

Max pattern-search iterations 10n

. . . (26)

. . . (25)

x∈R26 , u∈Rl

. . . (27)






J high T high

u

r

u
= ,

. . . (29)
d

d
high high highJ J J
x x u

u

x
=












approach reduces the number of high-fidelity function calls by 31%
compared with the conventional first-order consistent trust region
method. We note that when the geometry of the hook is physically
infeasible, it is possible that the stiffness matrix is nearly singular
and in these cases the gradient computed using the adjoint approach
is inaccurate. Accordingly, our strategy is to not use the gradient for
calibration at previously visited designs sites where the geometry
was infeasible.

To analyse the total computational effort required to solve this
structural design problem using a multifidelity method in lieu of a
single-fidelity scheme, we consider the total effort of the optimisation.
As a reference, a general purpose structural finite element solver,
Nastran, uses a conjugate gradient method with an incomplete
Cholesky factorisation preconditioner to solve the linear finite-element
system. So the effort for a forward solve scales with    (dof2)(1). Using
this scaling, the forward solution for the high-fidelity structural model
is about 41 times as costly as the forward solution for the low-
fidelity structural model. In addition, a conservative estimate on the
number of low-fidelity function calls used to find the optimal high-
fidelity hook design is approximately 3,200. The computational
effort for these low-fidelity solves is equivalent to about 80 high-
fidelity forward solves. Therefore the total effort of the multifidelity
approach is equivalent to approximately 110 high-fidelity forward
solves, and for comparison the single-fidelity SQP optimisation
required 232 high-fidelity evaluations. Therefore, excluding the cost
of constructing the surrogate models the multifidelity approaches
correspond to about a 50% decrease in computational effort
compared with a single-fidelity approach.

4.0 AERODYNAMIC DESIGN PROBLEM

Aerodynamic design is a computationally expensive process because
high-fidelity computational fluid dynamics (CFD) must repeatedly
solve nonlinear governing equations for a large number of degrees of
freedom. This section presents an adjoint-based formulation for an

the design variables can be written,  

Substituting Equations (27) and (30) into Equation (29), we obtain
the gradient of our objective function with the state equations
satisfied as; 

or for this structural optimisation problem,  

The objective function being linear in u(x) is a simplification, and a
typical problem will likely be to minimise the maximum stress in the
material. Although maximum stress is a non-smooth objective,
Kreisselmeier-Steinhauser functions could be used to lump element
stresses into a single smooth maximum stress objective(26,29), or a
high-norm, such as ║·║8, could be used to smoothly approximate the
maximum stress(35). Using these functions as objectives does not alter
the derivation of the gradient, provided the chain rule is used in
computing the derivatives. In the general case, this adjoint-based
gradient calculation requires only two forward solves, or one
inversion, of the stiffness matrix to compute the gradient of the
objective, regardless of the number of design variables. By
comparison, the method of direct sensitivities requires evaluation

of the term , and finite difference approximations require at

least n + 1,where n is the number of design variables, function evalu-
ations.

To find the optimal hook design, we use both high- and low-
fidelity finite element models of the hook. The two models are
shown in Fig. 2, the high-fidelity model has a state vector with 1,770
degrees of freedom (dof) and the low-fidelity model has a state
vector with 276 dof. 

For the optimal hook design, the coarse discretisation of the low-
fidelity model leads to a 31·6% lower deflection estimate than the
high-fidelity model. In addition, for this hook design, Fig. 3 shows that
the two models predict significantly different stress distributions.

Table 2 shows that using this coarsely discretised low-fidelity
model, the conventional first-order consistent trust-region and our
Bayesian calibration approach are able to significantly reduce the
number of high-fidelity function calls compared with a single-
fidelity SQP method. In addition, the Bayesian model calibration
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Figure 2. Comparison of the high- and low-fidelity structural
models. Both models have the same 26 design variables.

Figure 3. Comparison of the stress estimated by the high- and low-fidelity
structural models shown on the deformed hook, the deformation is

scaled by a factor of 123·5. The deflection at the midpoint of the bearing
load application estimated by the two models differs by 31·6%.

Table 2
The average number of high-fidelity function evaluations to

minimise the deflection of a hook subjected to a bearing load
from random initial geometries. The numbers in parentheses

indicate the percentage reduction in high-fidelity function 
evaluations relative to SQP

SQP First-Order TR Calibration

Mean 232 (–) 40 (–83%) 27·5 (–88%) 
Std Dev 171 12·7 10·2



multiplications shown above. Therefore, the gradient of the objective
with respect to all of the design variables requires the computational
effort of about two flow solutions plus n/500 flow solutions, where
is the number of design variables. For comparison, a finite difference
gradient estimate requires at least n + 1 flow solutions, so this is a
considerable savings and shows the cost of the gradient estimate
using an adjoint solution is almost independent of the number of
design variables.

In addition to the Euler equations as the high-fidelity method, we
use a panel method as a low-fidelity analysis. A supersonic panel
method can be derived from supersonic small-disturbance theory,
and is only a function of the aerofoil geometry, the freestream Mach
number, M∞, and the gas specific heat ratio. In small disturbance
theory, the change in the pressure coefficient, δCp is proportional, to
the flow turning angle δα,  

and by integrating the pressure coefficient around the aerofoil
surface the wave drag can be easily estimated(24). Since the drag
coefficient is only a function of the freestream Mach number and
aerofoil geometry, the analytical derivative of drag coefficient with
respect to the aerofoil shape design parameters is easy to compute.

The aerofoil optimisation problem is to minimise the drag of an
aerofoil at M∞ = 1·5. by changing the angle of attack, five upper
surface spline points, and five lower surface spline points. The
aerofoil is required to have positive thickness everywhere, and to
have a maximum thickness to chord ratio that is at least five percent.
Figure 4 shows the optimal aerofoil and spline control points for the
panel method. Figure 5 shows the optimal aerofoil pressure contours
and adjoint solution for the streamwise momentum from the Euler
method solutions.

Table 3 presents the number of high-fidelity function calls to find
the minimum drag aerofoil with respect to the Euler code. The
results show that the conventional first-order consistent trust-region
and the Bayesian model calibration approach reduce the number of
high-fidelity function calls by nearly the same amount, about 80%.
In addition, because the low-fidelity model is computationally very
inexpensive, and the dimension of the parameter space is small, this
is nearly a 70% reduction in wall-clock time. However, it should be
noted that the conventional trust-region approach does use on
average fewer high-fidelity function calls than the Bayesian
calibration method for the ten random initial aerofoils.

Table 3
The average number of high-fidelity function evaluations to

minimise the drag of a supersonic aerofoil with respect to an
Euler solution using a panel method as a low-fidelity estimate.

The numbers in parentheses indicate the percentage reduction in
high-fidelity function evaluations relative to SQP

SQP First-Order TR Calibration

Mean 81·5 (-) 12·9 (–84%) 14·7 (–82%) 
Std Dev 14·0 2·86 4·19 

The same optimisation problem is solved using the same methods,
but without any low-fidelity information. The results of this optimi-
sation using flow(x) = 0 as the low-fidelity function are presented in
Table 4. In this case the Bayesian model calibration approach
performed noticeably better than the conventional trust-region
method. The results suggest that when using a ‘good’ low-fidelity
model, the Bayesian calibration approach is not necessary and the
computational effort of constructing the Cokriging surrogates is not
worthwhile. However, when the low-fidelity function is poor, or
when the error between the high- and low-fidelity function behaves
in a highly non-linear fashion, then the Bayesian calibration
approach may provide a computational savings for low-dimensional

aerodynamic design problem described by a CFD model and then
presents results of a multifidelity supersonic aerofoil design problem.

To minimise the drag of a supersonic aerofoil we formulate an
optimisation problem in the form given in Equation (2).    high(x,u) is the
surface integral of pressure acting in the flow direction, rhigh(x,u) = 0
represents the discretised Euler equations, and g(x) ≤ 0 comprises two
constraints on the aerofoil geometry. The state variables u are the
primal flow variables for all of the control volumes in a finite volume
discretisation of the governing equations. In order to use the multifi-
delity optimisation technique presented, we need to compute the
gradient of    high(x,u) with respect to the design variables x given that
rhigh(x,u). We start by writing the gradient of     high(x,u),

where M(x) represents the dependence of each nodal vertex in the
volume mesh on the design vector. For this analysis, a meshing tool
was developed that created a volume mesh around the aerofoil with
an analytical derivative. Accordingly, for any aerofoil that could be
generated with the parameterisation used, the volume mesh and
mesh derivative were known a priori.

Since the flow residual must always be zero for a converged
solution we know that,  

Therefore, combing Equations (33) and (34) with the adjoint
equation, Equation (27), we may write the gradient of an objective
function with the state equations satisfied as

This reformulation shows how to convert the constrained objective
function into an objective function from which the state variables
have been eliminated through the solution of the residual equations.
Accordingly, the gradient dfhigh/dx represents the gradient of drag
with respect to the design variables given that the discretised Euler
equations are satisfied. For further discussion see Refs 17, 28. The
computational effort required to compute this gradient requires one
flow solution, one adjoint solution, one flow iteration per design
variable (about 1/500 the effort of a flow solution), and the matrix
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Figure 4. Minimum drag aerofoil computed with the 
supersonic panel method showing the spline control points.
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5.0 CONCLUSION

This paper has presented a multifidelity optimisation algorithm using
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problem. The paper demonstrated how to compute gradients
inexpensively for both a structural design and an aerofoil shape
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