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ABSTRACT 
This paper lays the groundwork for a design and 
analysis tool that applies multidisciplinary design 
optimization techniques to commercial aircraft 
development.  While multidisciplinary analysis and 
optimization has seen extensive use for technical design 
problems in aerospace, there has been less emphasis on 
applying these techniques to larger scope system 
design.  Specifically, the relationship of elements such 
as cost, revenue, and uncertainty to engineering is in 
large part unexplored.  The models presented here may 
be used as the sub-components of a valuation tool to 
enable the design and optimization of an entire aircraft 
program.  While they are not high fidelity, their 
purpose is to establish a useful foundation for further 
study and to gain insight into the interactions between 
technical and program design. 
 

INTRODUCTION 
Traditional methods for creating a commercial aircraft 
program typically consist of at least two distinct design 
efforts—the engineering development of the airframe 
itself, and the strategic development of the aircraft 
program.  The latter addresses questions like which 
aircraft designs to invest in (product mix), how much 
production to plan for (sales volume), what prices and 
costs to expect (profitability), and how to plan for 
unforeseen market developments (flexibility). 
In the past, the above two elements of program 
design—engineering development and strategic 
development—have often been executed entirely 
separately from each other.  Engineering and finance 
are often handled by different groups and at different 

times.  By uncoupling engineering and finance, a firm 
runs the risk of overlooking important interactions 
between the two.  A design system that performs 
engineering and financial analysis simultaneously may 
improve upon the efficiency and effectiveness of the 
traditional methods.   
Numerous advances have been made in the application 
of multidisciplinary techniques to the engineering facet 
of aircraft development. The field of multidisciplinary 
design optimization (MDO) combines engineering 
disciplines, such as aerodynamics, structural dynamics 
and controls, to provide a design framework that 
“coherently exploits the synergism of mutually 
interacting phenomena”1. MDO has been implemented 
across a wide range of applications for aircraft design 
2,3.  However, there has been less exploration of the 
interactions between engineering design and financial 
design.  These interactions may be specified as follows.  
The technical performance of an aircraft, which may be 
a combination of range, capacity, and operating cost, 
will affect the demand for the aircraft, and 
consequently the price and/or quantity of aircraft sold.  
The same elements of technical performance will also 
affect the cost of the aircraft—both manufacturing 
(recurring) and development (nonrecurring).  Thus, cost 
and revenue—that is, finance—are linked by 
performance—that is, engineering. 
The objective, then, is to couple engineering and 
financial design—or, phrased differently, product and 
program design—to extract maximum value from the 
commercial aircraft design process. This coupling will 
be effected by expanding an MDO framework to 
include financial considerations. 
The next section summarizes the multidisciplinary 
approach taken to accomplish the above objective.  An 
overview is given of three distinct analytical models 
used to solve the problem, as well as a scheme for 
linking them into one program value analysis tool.  A 
more in-depth discussion of each of the models 
follows:  performance, cost, and revenue estimation.  
Several ways of combining the three models to measure 
program value are then described, and two examples 
are given to demonstrate the linking process for 
analysis of a Blended-Wing-Body (BWB) family of 
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aircraft4.  Finally, results for the more substantive 
example are presented and discussed, and conclusions 
are drawn. 
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APPROACH 
The multidisciplinary analysis is synthesized by 
creating several free-standing analytical models and 
linking them to compute a measure of program value.  
While this paper focuses on the models themselves, the 
linking process and the resulting valuation tool are 
described in more detail in Markish and Willcox5. 
The analysis uses three analytical models, each of 
which can be considered a standalone tool, but can also 
be integrated with the others:  a performance model, a 
cost model, and a revenue model.  The performance 
model is a sizing and configuration tool, which closes 
the engineering design loop between technical 
parameters and performance metrics (range, capacity, 
fuel burn).  The cost model generates estimates of 
manufacturing and development costs given the 
technical parameters specified in the performance 
model.  The revenue model captures the behavior of the 
market for commercial aircraft, and characterizes the 
airline demand for the aircraft in question, given the 
performance predicted by the performance model.  
In order to link the above three models into an 
integrated multidisciplinary analysis tool, consideration 
must be given to the program structure—i.e., the 
decision structure affecting product mix, design and 
production plans, and pricing strategy.  With this 
element in place, the stage is set for a quantitative 
valuation of the program.  The ability to calculate 
program value based on technical and program-based 
elements of the system enables both technical and 
program-based trade studies to search for an optimal 
system design.  This conceptual process is illustrated in 
Figure 1. 
There are several possibilities for the actual 
implementation of the program valuation.  The most 
straightforward is a Net Present Value (NPV) analysis, 
using an assumed discount rate and forecasted cash 
flows.  There are also other alternatives, which may 
capture not only the time value of money but also more 
explicitly account for the effect of uncertainty and the 
effect of program flexibility—i.e., management’s 
ability to make program decisions in real time as the 
market evolves.  Two such alternatives are Monte Carlo 
simulation and dynamic programming.   
The remainder of the paper presents and describes each 
of the models—performance, cost, and revenue.  
Subsequently, a simplified NPV-based technique is 
shown for linking the three models and performing a 
program valuation.  The technique is illustrated with a 
brief example case study.  A more complex technique, 

based on dynamic programming, is detailed in Markish 
and Willcox5. 
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Figure 1:  Value-Based Design Process. 

PERFORMANCE ESTIMATOR 
The performance estimator is based on the WingMOD 
aircraft design tool.  WingMOD is an MDO code that 
optimizes aircraft wings and horizontal tails subject to a 
wide array of practical constraints6,7. The BWB 
planform is modeled as a series of spanwise elements 
as shown in Figure 2. Optimization services for 
WingMOD are provided by the Genie framework8. 
WingMOD uses intermediate fidelity analyses to 
quickly analyze an aircraft in over twenty design 
conditions that are needed to address issues from 
performance, aerodynamics, loads, weights, balance, 
stability and control. The low computational cost of the 
intermediate fidelity analyses allows the examination of 
all these issues in an optimization with over a hundred 
design variables while achieving reasonable 
computation time. 
The basic WingMOD method models an aircraft wing 
and tail with a simple vortex-lattice code and 
monocoque beam analysis, coupled to give static 
aeroelastic loads. The model is trimmed at several flight 
conditions to obtain load and induced drag data. Profile 
and compressibility drag are evaluated at stations 
across the span of the wing with empirical relations 
using the lift coefficients obtained from the vortex 
lattice code. Structural weight is calculated from the 
maximum elastic loads encountered through a range of 
flight conditions, including maneuver, vertical gust, and 
lateral gust. The structure is sized based on bending 
strength and buckling stability considerations. 
Maximum lift is evaluated using a critical section 



method that declares the wing to be at its maximum 
useable lift when any section reaches its maximum lift 
coefficient, which is calculated from empirical data. 
Balance is evaluated by distributing weight over the 
planform as described in Wakayama9. 
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Figure 3:  Estimated empty weight breakdown      
(two-engine transport) Figure 2:  WingMOD BWB Model. 
  
The manufacturing cost model is described below, 
followed by the development cost model. 

The WingMOD optimization framework takes a set of 
constraints representing mission requirements (range, 
payload capacity, cruise speed, approach speed, 
balance, etc.); and finds an optimal aerodynamic and 
structural configuration such that the resulting aircraft 
satisfies the constraints.  Among the outputs of the 
optimization are weight characteristics, planform 
geometry, and fuel burn. 

Manufacturing cost is the cash needed to build an 
aircraft.  This number is built up as the sum of the 
component parts.  Each component baseline cost per 
pound is split into three primary cost categories:  labor, 
materials, and support.  As recurring costs, each of 
these categories exhibits a learning curve effect, where 
the marginal cost decreases with the number of units 
built to date.  However, the effect is generally seen as 
significant only for the labor category.  The marginal 
cost of the Qth unit is given by  

 
COST MODEL 

The cost model has two components:  manufacturing 
cost and development cost.  The goal of the model is to 
determine the cost characteristics of an aircraft given its 
technical parameters.  Importantly, these cost 
characteristics include the effect of commonality 
between several different airframes.  In general, then, 
both the development cost and manufacturing cost of a 
new aircraft will depend upon (a) the aircraft’s 
technical parameters and (b) the technical parameters of 
other aircraft types that have already been designed. 

  (1) ln( ) / ln(2)sMC TFU Q= ×
where MC is marginal (unit) cost; TFU is theoretical 
first unit cost; Q is quantity built to date; and s is the 
learning curve slope parameter.  Thus, when the 
number of units built doubles, the marginal cost of 
producing one additional unit is s percent of its original 
value.  Table 1 shows the value of the learning curve 
slope parameters used here. 

Both cost models are based upon the decomposition of 
the aircraft into a set of components.  Existing cost 
models and statistical data are used for calibration, 
resulting in a baseline cost per pound for each aircraft 
component.  This cost per pound is converted to a total 
cost through the technical parameters of the aircraft 
(i.e., component weight), and further modified based on 
other factors, such as other aircraft types already 
designed.  Figure 3 shows the estimated weight fraction 
breakdown between components for a modern two-
engine jet transport.  The breakdown was constructed 
using weight data from Raymer10 and Roskam11.  

Table 1.  Learning curve slope assumptions 

Labor Materials Support 
85% 95% 95% 

 
As additional aircraft are built, the number of new 
components used for the aircraft is accrued separately 
for each component, and learning curve effects are 
applied by component instead of by aircraft.  Thus, if 
two aircraft types share some, but not all, components, 
having built a number of one type of aircraft will affect 
the recurring cost of some, but not all, of the 
components of the second type of aircraft.   
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Development cost is the non-recurring effort required 
to bring the aircraft concept to production.  It includes 
preliminary design, detail design, tooling, testing, and 
certification.  Like the manufacturing cost model, the 
development cost model is built up by component, and 
by cost category within each component.  The 
categories are engineering, manufacturing engineering, 
tooling, and support.  For each (category, component) 
pair, a factor is specified by which the cost is reduced 
in that category if that component has already been 
designed for an older aircraft.   
To model the time distribution of development costs, 
each non-recurring category is assigned a baseline 
duration and start time, with a cost profile over the 
duration defined by a beta curve, 

 , (2) 11 )1()( −− −= βα tKttc
where c is the cost; t is the normalized time; K is a 
scaling parameter; and α, β are curve shape parameters.  
The parameters K, α, and β were chosen to 
approximate a typical development effort12.  Figure 4 
shows the model output of the overall baseline cost 
profile for all the non-recurring cost categories.  Note 
that this illustration assumes there are no cost 
reductions due to commonality (previously designed 
components). 
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The cost per pound values for each component were 
calibrated by using the DAPCA IV model10 to estimate 
the total development cost for a Boeing 777-200, for 
which the operating empty weight (OEW) is known to 
be ~305,000 lb13.  From the estimated weight 
breakdown shown in Figure 3 and an estimated 
fractional cost breakdown by component, baseline cost 
per pound values were calculated. 
As any cost estimation expert will agree, calculating 
aircraft component cost as a linear function of its 
weight is a crude approximation at best.  However, 
there are several reasons why this approach was chosen 

over a more rigorous one.  First, it is worth pointing out 
that only so-called “baseline” values for component 
costs are calculated as a linear function of their weight.  
Actual cost values also take into account learning curve  
(for recurring costs) and commonality effects.  Second, 
a higher-fidelity model, while conceivable, would be 
impractical for the purposes of this study.  Specifically, 
a more accurate model would consider the geometric 
complexity of the components and the materials used, it 
would use nonlinear cost-estimating relationships 
(CERs), and, by necessity, it would split the aircraft 
into a much finer (more numerous) set of components.  
Because this study focuses on the conceptual design 
stage, many of these cost modeling techniques are very 
difficult to implement.  The aircraft may not be well 
defined enough to break down into smaller components 
and classify all of them.  Further, a bottoms-up parts-
based cost buildup would be impractical for conducting 
trade studies because such a buildup is not readily 
automated. 
 

REVENUE MODEL 
Given an aircraft design, a production rate, and a time 
horizon, the revenue model must provide the following 
three outputs:  potential revenue cashflow for the 
current time period, the expected value of future 
revenue cashflows, and a measure of the uncertainty of 
the future cashflows.  Further, the model must 
demonstrate realistic sensitivities to changes in aircraft 
performance (e.g., reduction in fuel burn), changes in 
the aircraft target market (e.g. 100 v. 250 passengers), 
and changes in aircraft price charged (i.e., demand 
price elasticity). 
To achieve the functionality described above, the model 
development is broken up into a static analysis and a 
dynamic analysis.   
 
Static Demand Analysis 
The static analysis estimates a baseline price and 
corresponding quantity demanded, along with a 
demand growth rate over the specified time horizon.  
The price estimator relies on a regression of known sale 
prices for existing aircraft on several parameters 
believed to represent the aircraft’s value to airlines.  
The quantity estimator relies on a simple average of 
three separate 20-year aircraft sales forecasts released 
by Boeing14, Airbus15, and a third source—the Airline 
Monitor16.  Estimated growth rate in demand is little 
more than an input, as forecasts of the distribution of 
20-year aircraft sales over time are scarce, and thus 
very little hard data is available. 
Price is modeled as a function of several variables 
representing an aircraft’s value to its operator, an 
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airline.  Several sets of variables and several functional 
forms were tested by applying the price model to 23 
existing aircraft:  11 narrowbodies and 12 widebodies.  
The outputs generated by the price model were 
compared to best estimates for the actual sale prices for 
each of the aircraft, compiled from two sources17,18.  
For each functional form tested, the function 
parameters were adjusted to minimize the mean squared 
error of estimated price. The function sought is of the 
form 
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Figure 5:  Narrowbody price model results 
 Seats =   Passenger capacity 
 Range =   Design range 
 CAROC =  Cash Airplane-Related   
   Operating Costs     
  = Total Operating Costs   
   less Ownership Costs 
The resulting function and its variables are shown 
below.  Note that speed (or Mach number) is not one of 
the variables.  No significant statistical relationship 
between price and speed was found in the range of 
available data. 
 (1 2   
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Figure 6:  Widebody price model results 

where   
While the aircraft seat count and range are provided by 
the outputs of the performance model, its CAROC must 
be estimated separately.  For the example used in this 
paper, the assumption is made that fuel costs for a 
reference mission (3,000 nm) represent 20% of 
CAROC‡.  Fuel burn is calculated using the Breguet 
range equation, and a fuel price of $.65 per gallon.   

 Seats, Range =  Aircraft seat count and range (nm); 
   input variables. 
 Seats_ref =  Reference value used   
   to normalize seat count. 
 Range_ref =  Reference value used   
   to normalize range. 
 Price_ref =  Reference value used   
   to normalize price. 

Quantity data is based on three distinct forecasts of 
quantities of aircraft to be delivered from 2000 through 
201914,15,16.    k1, k2, α =  Model parameters, selected to 

   minimize mean squared error  
   of estimated prices. 

Each forecast has a different set of aircraft categories 
which comprise the global airline fleet.  All three 
forecasts were recast into a single, consistent set of 
aircraft categories based on aircraft class (narrowbody 
or widebody) and seat count.  Forecasted deliveries are 
assumed equivalent with quantities demanded at current 
market prices.  The results are shown in Figure 7.   

 ∆(LC) =  Increment in lifecycle cost due to 
    off-nominal CAROC. 
The last term in the equation, increment in lifecycle 
cost, refers to the additional cost the operator incurs if 
the aircraft’s CAROC is “off-nominal”—that is, greater 
than the industry average CAROC for an aircraft of its 
size.  This term is a function of the difference between 
the aircraft’s CAROC and the least squares estimate for 
the CAROC of an aircraft with the same capacity. 

Depending on seat category, there is considerable 
variance between the three forecasts.  This reflects 
differences in the forecasters’ assumptions, 
methodology, and to some extent, corporate strategy.  

The prices generated by the above function are 
compared to the best estimates of the actual aircraft 
prices in Figure 5 and Figure 6. 

                                                           
‡ The figure of 20% is based on empirical data for 
several existing aircraft.  See Markish19 for details. 



Table 2.  Dynamic demand analysis outputs Further, the high variance reflects the high degree of 
uncertainty regarding future revenue cashflows. 

Average volatility, σ, per annum 45.57% 

Average growth rate, α, per annum 4.43% 
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PROGRAM VALUE ANALYSIS 
The most straightforward scheme for combining the 
above models into an analysis tool for the entire 
program is to perform a discounted cash flow 
calculation, assuming an accurate value is known for 
the cost of capital.  This calculation is performed in a 
simple example below.  A second example follows, 
which shows several results from a more complex 
scheme of linking the models and valuing the program.  
Specifically, the alternate valuation scheme addresses 
the effects of uncertainty and managerial decision-
making throughout the duration of the program.   Figure 7:  20-year gross demand—forecasted 

deliveries through 2019 
 

For a given aircraft design, the quantity model proceeds 
as follows: Example 1:  Discounted Cash Flow 

For the first example, a medium-gross weight aircraft is 
initiated at time 0, followed four years later by a larger 
aircraft.  The aircraft are given values for CAROC, 
range, and capacity, as well as inputs specifying a 
production schedule once design is complete.  These 
inputs are contrived only to demonstrate the basic 
functionality rather than to model an actual aircraft 
program.  With an assumed discount rate of 15%, 
discounted cashflow values can be found for each time 
period of the program.  The 20-year time horizon is 
broken up into months, and the program simulation is 
implemented in C, cycling over each period and calling 
each model as necessary.  The output of a trial run is 
shown in Figure 8. 

1. Assign given aircraft to a seat category. 
2. 20-year gross demand for that category = 

mean of three forecasts. 
3. Assume a market share in that category. 
4. Quantity demanded = (market share)*(20-year 

gross demand) 
If several designs are considered for production 
simultaneously, fractions of seat category demands are 
assigned to each design, such that total quantity 
demanded will not exceed the product of market share 
and 20-year gross demand. 
 
Dynamic Demand Analysis 
The dynamic analysis aims to quantify the stochastic 
behavior of the market for commercial aircraft.  As 
detailed in Markish19, it is observed that quantities of 
aircraft purchased fluctuate significantly from year to 
year, and exhibit some cyclical properties.  Thus, given 
a forecast for year 0, it is impossible to predict with 
certainty what the quantity of aircraft demanded will be 
in year 10.  However, based on historical data, some 
representative characteristics were found to describe 
historical aircraft demand levels as geometric Brownian 
motions, not unlike stock prices.  Therefore, as shown 
in Table 2, the dynamic analysis identifies an average 
annual growth rate and average annual volatility for 
typical demand evolution patterns for wide body 
aircraft.   
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Figure 8:  Cumulative discounted cashflow (2-
aircraft example scenario). 
Note that the cumulative discounted present value of 
the project does not become positive (“break even”) 
until well into the project.  The two “dips” in the curve 
are the non-recurring development efforts for each of 
the two aircraft, while the persistent upward trend is the 
profit from monthly sales, dictated by demand and by 
planned production capacity. 
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Example 2:  Dynamic Programming 
The second example uses the same set of models, 
presented above, as the first example, but employs a 
more sophisticated valuation scheme than NPV.   
The valuation is based upon a dynamic programming 
algorithm that treats the aircraft project as an 
optimization problem with continuous decision-making 
by the aircraft manufacturer.  The problem time horizon 
is split into periods, and demand for aircraft is treated 
as a semi-random process, starting from a deterministic 
initial value and evolving stochastically during every 
period.  Depending on the level of aircraft demand in 
any given period at any given time, an optimal course 
of action is identified for the firm.  For example, given 
that demand is low, it may not be optimal for the firm 
to develop a given aircraft.  However, if demand is 
high, it may be optimal to commit to development.  The 
threshold levels of demand that affect these optimal 
decisions are also, in general, functions of time—that 
is, a decision to develop an aircraft may depend on the 
number of periods left until the end of the time horizon.  
The end of the time horizon may be thought of as the 
point at which the product will be rendered obsolete, 
possibly by new technology or competition.   
In brief, the dynamic programming algorithm is a more 
sophisticated valuation method than NPV, explicitly 
accounting for the uncertainty inherent in an aircraft 
program and the flexibility of managerial decision-
making that can be used to cope with uncertainty.  For 
a more detailed discussion of the dynamic 
programming algorithm, refer to Markish and Willcox5 
and Markish19. 
The inputs used in the example use three different 
aircraft designs, all based upon the BWB concept.  
Table 3 summarizes the key characteristics of the 
designs.§  Three different airframes are possible:  one 
large, 747-class vehicle (BWB-450), and two smaller, 
250-passenger class designs.  One of the smaller 
designs, the BWB-250C shares 39.7% of its parts, by 
weight, with the BWB-450.  The other has no 
commonality with the BWB-450, being a point design, 
optimized without consideration for commonality.  
Note that the point design results in a lighter airframe, 
because the commonality constraint placed upon the 
BWB-250C results in a weight penalty.  Specifically, 
the BWB-250C uses the same wing as the BWB-450 to 
save on development cost, but an individually 
optimized design for the BWB-250 would not need as 
much wing area. 

                                                           
§ The example designs are purely hypothetical and 
significantly simplified.  They do not represent actual 
current Blended-Wing-Body configurations. 

Table 3.  BWB example key characteristics 

Design BWB-   
450 

BWB-
250C 

BWB- 
250P 

Seat count 475 272 272 
Range (nm) 8550 8550 8550 
GTOW 
(normalized) 

1 0.756 0.624 

commonality 
(by weight) 

N/A 39.7% 0% 

 
Using the dynamic programming method, the above 
three designs are evaluated in several different 
combinations to find program value.  First, each of the 
designs is evaluated on an individual basis, as though it 
is the only design option available to the firm.  Then, 
the BWB-450 and BWB-250C are evaluated 
simultaneously, to investigate any synergies that may 
exist as a result of commonality.  In this case, both 
designs are available to the firm to develop and produce 
at its discretion.  Finally, the BWB-450 and BWB-250P 
are also evaluated simultaneously.  The key input 
parameters used for all test cases are listed in Table 4.   

Table 4.  Key input parameters for all test cases 

Number of periods 30 
Timestep per period 1 year 
Risk-free rate, rf 5.5% 
Annual aircraft price inflation 1.2% 
Annual aircraft demand volatility 19.6% 

 

RESULTS AND DISCUSSION 
The intermediate results of the test runs described 
above are summarized in Table 5.  These represent the 
primary outputs of the models described in this paper:  
cost characteristics and demand characteristics (price 
and quantity) based upon a particular airframe and its 
performance.  It can be seen that there is greater annual 
demand for the smaller-capacity wide bodies (BWB-
250) than for the high-end BWB-450.  Note that 
quantity demanded is modeled as independent of 
operating characteristics (i.e., performance)—rather, 
the quantity estimator considers only the size class of 
the aircraft.  However, the price estimator distinguishes 
between all three vehicles.  The baseline price is 
expectedly high for the BWB-450, as it is a much larger 
aircraft.  However, while the two smaller aircraft have 
identical seat counts, the BWB-250P is significantly 
higher priced.  This effect is due to its lighter weight, 
which results in significantly reduced fuel burn, and 
therefore a lower operating cost.   



8 
American Institute of Aeronautics and Astronautics 

Table 5.  Intermediate results for Example 2: 
demand characteristics. 

 Baseline 
quantity 

demanded 

Long-run 
marginal 

cost 

Baseline 
price 

 
 (units/yr) ($M) ($M) 
BWB-450 16.7 139.0 195.0 
BWB-250C 27.6 93.8 116.1 
BWB-250P 27.6 84.9 142.2 

 
Predictably, the long-run marginal cost (LRMC) scales 
with the vehicles’ weight.  LRMC is defined here as a 
limiting unit cost which the manufacturing process 
approaches as more and more units are produced.  For 
this example, it is defined as the marginal cost of unit 
100, produced without any commonality effects.  Thus, 
because the point-designed BWB-250P is lighter than 
the derivative BWB-250C, its long-run cost of 
production is smaller.  However, commonality should 
result in a reduced development cost and a reduced 
learning effort for the BWB-250C.  That is, the 
marginal cost should reach LRMC faster.   
Table 6 shows the final results of this example:  the 
program values resulting from the several different 
combinations of designs evaluated.   

Table 6.  Final results for Example 2:  program 
value ($B) 

(1) BWB-450 5.95 
(2) BWB-250C 2.26 
(3) BWB-250P 14.62 
 (1) + (2) 8.21 
 BWB-450 & BWB-250C 8.95 
 Commonality premium 9% 

 
The first result to consider is the extremely high 
program value found for the BWB-250P.  While it is 
probably too high to be realistic, it highlights the key 
design issues in this example:  a considerable sacrifice 
was made in the 250-passenger class aircraft design to 
accommodate commonality.  A modest increase in 
empty weight translated to a medium increase in 
takeoff weight, which translated to a significant 
difference in fuel burn and operating cost**, and an 
even greater difference in market price.  The sensitivity 
of price to operating cost is difficult to observe in 
practice, and these results suggest that it is 
                                                           

                                                          

** Refer to Markish19 for details on operating cost 
calculations. 

overestimated by this pricing model.  However, 
regardless of the accuracy of the model, this 
snowballing phenomenon underscores the importance 
of considering the downstream effects of a design 
change on program value.   
The other side of the coin is the value benefit gained by 
commonality: a savings in development and 
manufacturing costs.  This is reflected in the existence 
of a commonality premium, albeit a modest one in this 
example.  The value of the program with both designs 
(BWB-450 and BWB-250C) considered simultaneously 
is greater than the sum of the values of their individual 
programs.  The program value of the BWB-450 and 
BWB-250P considered simultaneously is not shown, as 
it would be identical to the sum of their individual 
values, because there is no interaction between those 
two aircraft.†† 
Within the framework of flexibility and decision-
making used by the dynamic programming algorithm, 
the choice to use commonality may be framed using 
real options.  When the firm develops the BWB-450, it 
acquires an option to develop the BWB-250C for a 
reduced cost and at a time of its choosing.  The penalty 
paid—i.e., the price of the option—is the present value 
of additional profits the firm would receive had it 
instead developed the BWB-250P as a point design to 
maximize its performance.  From a program flexibility 
standpoint, the firm still has an option to develop a 
second aircraft even if there is no commonality—in 
such a case, the exercise price of the option is simply 
higher by the amount of cost savings from 
commonality.   
The conclusion of this example, therefore, is not that 
commonality isn’t justifiable.  Rather, for commonality 
to be justifiable, the benefits must outweigh the costs.  
The benefits include the development and 
manufacturing cost savings gained if the derivative 
aircraft is in fact built.  The costs include any additional 
design or manufacturing costs as a result of 
commonality, but most importantly, any resulting 
performance penalty on the aircraft.  This performance 
penalty must be translated into an opportunity cost:  the 
revenues foregone by not selling a higher-performance 
aircraft.  The set of aircraft designs used in this 
example, with the baseline parameters specified, did 
not indicate a higher program value for commonality, 

 
†† It would be interesting to consider interactions in 
program value arising not from physical commonality 
but from market effects (e.g., complements or 
substitutes). 
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because the opportunity cost of lost revenues was very 
high‡‡. 

CONCLUSIONS 
This paper presents a combination of three analytical 
models.  Linked through one of several possible 
schemes, the models may be used to aid in the 
conceptual design effort of one or more commercial 
aircraft.  Two of the method’s distinguishing features 
are:  (1) the combination of economic analysis with 
engineering analysis; and (2) explicit consideration of 
management’s ability to make and defer decisions in 
“real time” in response to unfolding market conditions.   
The dynamic programming algorithm used in this 
method is relatively fast:  each test case took 
approximately ten minutes to solve, implemented in C 
on a Pentium III laptop.   
Thus, this paper demonstrates the feasibility of an 
analytical tool that combines technical-level and 
program-level trade studies using the metric of value as 
the objective function.  The tool allows for truly 
multidisciplinary analysis of the system being created, 
and forces designers to focus on the true objective 
function for the system: value to the company.  If 
applied correctly, the method of system design to 
maximize program value will encapsulate multiple 
traditional objective functions—minimum gross 
weight, maximum performance, minimum cost, 
maximum revenue, etc.—but it will not place 
disproportionate weight on any one objective in 
particular.  Rather, the maximum program value 
solution will optimize the entire system design. 
For this work, the technical design was fixed (and was 
the output of a prior optimization that focused only on 
performance). In future work, the cost and revenue 
models presented here will be coupled with an 
optimizer that can make not only program-level 
decisions, but also technical design decisions. In this 
way, engineering design decisions will be effected 
using a true multidisciplinary system analysis. 
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