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Abstract

The present work aims to address the problem of fluid-structure interaction using
a discontinuous Galerkin approach. Starting from the Navier-Stokes equations on a
fixed domain, an arbitrary Lagrangian Eulerian (ALE) approach is used to derive the
equations for the deforming domain. A geometric conservation law (GCL) is then
introduced, which guarantees freestream preservation of the numerical scheme. The
space discretization is performed using a discontinuous Galerkin method and time
integration is performed using either an explicit four stage Runge-Kutta scheme or
an implicit BDF2 scheme. The mapping parameters for the ALE formulation are then
obtained using algorithms based on radial basis functions (RBF) or linear elasticity.
These strategies are robust and can be applied to bodies with arbitrary shapes and
undergoing arbitrary motions. The robustnesss and accuracy of the ALE scheme
coupled with these mapping strategies is then demonstrated by solving some model
problems. The ability of the scheme to handle complex flow problems is demonstrated
by analyzing the low Reynolds number flow over an oscillating circular cylinder.
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Chapter 1

Introduction

There is a growing interest in high-order numerical methods, such as discontinu-

ous Galerkin (DG), for fluid problems mainly because of their capability to produce

highly accurate solutions with minimum numerical dissipation. An important area

for such methods is problems involving time-varying geometries such as rotor-stator

interactions, flapping flight or fluid-structure interactions.

One of the approaches to solve problems involving moving geometries is to find

a time-varying mapping between the fixed reference domain and the physical time-

varying domain. The original conservation law is then transformed using this mapping

to the reference configuration, which is then solved using a high-order scheme. In this

method, the actual computation is carried out on a fixed mesh and the variable domain

geometry is accounted for through a modification of the fluxes in the conservation

law. This approach is simple and allows for arbitrarily high-order solutions of the

Navier-Stokes equations.

Ref. [1] describes a methodology to perform the above mentioned transforma-

tions. Figure 1, taken from [1], shows a solution of the compressible Navier-Stokes

equations on a deformable mesh. The front cylinder oscillates thus creating a strong

vortex street which interacts with an oscillating plunging and pitching airfoil. For

appropriate distances between the two objects, substantial thrust can be produced

on the foil. The plot shows the mesh used and the vorticity distribution. The map-

ping parameters in this example are obtained using an explicit algebraic blending

13



(a) Deformed mesh (b) Vorticity

Figure 1-1: Cylinder and foil oscillating in a viscous fluid, with thrust being generated
at the foil.

approach. This method though easy to implement, cannot be extended to arbitrary

movements of the boundaries and geometries. Hence a robust strategy to obtain the

mapping parameters is required.

The problem of obtaining the mapping parameters is similar to the problem of

mesh movement. Ref. [2] gives an overview of commonly used unstructured mesh

movement strategies. In the present work, we study approaches based on radial basis

functions (Refs. [3], [4]) and linear elasticity (Refs. [2], [5], [6], [7], [8]).

The radial basis function based approach is a multivariate interpolation scheme

and is commonly used in fluid-structure interaction problems to transfer informa-

tion between the structural and the aerodynamic mesh[9]. This method requires no

grid connectivity, which makes it very attractive for unstructured mesh movement

applications.

In the linear elasticity approach, the space occupied by the mesh is assumed to

be an elastic medium which deforms according to the linear elasticity equations. The

elasticity equations are then discretized using the existing mesh and displacements

are calculated at the nodes. To obtain additional grid control, body forces can be

added. We note that in a time varying setting the elasticity equations are non-

dissipative and hence waves generated during the motion are not damped and stay

in the computational domain. To remedy this situation we incorporate a dissipative

linear viscoelastic model which has the desired effect of attenuating the waves over

time.

The objective of this work is to investigate various approaches to obtain the map-

14



ping parameters for the ALE approach. The ALE approach, along with the modified

Navier-Stokes equations and the geometric conservation law (GCL) are discussed in

chapter 2. Chapter 3 contains the details on obtaining the mapping parameters using

the radial basis function and linear elasticity approaches.

In chapter 4, we solve the flow equations with these mapping techniques and

present results demonstrating high-order accuracy and robustness of these schemes.

We also present a coupled ALE-linear elasticity formulation, in which the equations

for the flow and mesh movement are solved simultaneously.

Finally, to demonstrate the capability to solve real problems, we obtain solutions

for flow over an oscillating cylinder for various low Reynolds number flow regimes.

15
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Chapter 2

Governing Equations

In the chapter, governing equations for two dimensional unsteady flow on a deformable

domain are presented. Starting from the Navier-Stokes equations on a fixed domain,

an arbitrary Lagrangian Eulerian (ALE) approach is used to derive the equations on

the deformable domain. The modified equations are always solved on the reference

domain which is fixed in space and time. The solution of these transformed equations

on the reference domain fails to exactly preserve the freestream solution. This situ-

ation is remedied by introducing an additional equation or the so called, geometric

conservation law (GCL). The transformed Navier-Stokes equations along with GCL,

are discretized on an unstructured triangular reference grid using the discontinuous

Galerkin technique. Time integration is performed using either an explicit four stage

Runge-Kutta method or an implicit BDF scheme.

2.1 Navier-Stokes Equations on a Deformable Do-

main

The Navier-Stokes equations in the physical domain (x, t) can be written in an

integral form as,

∫
v(t)

∂U

∂t
dv +

∫
∂v

F · n da = 0, (2.1)

17



where v(t) is the control volume with boundary ∂v, n is the outward unit normal

in v(t), U is the vector of conserved variables and F are the corresponding fluxes

in each of the spatial coordinate directions. Here, F incorporates both inviscid and

viscous contributions, i.e., F = F inv(U) + F vis(U ,∇U), where ∇ represents the

spatial gradient operator in the x variables. The detailed expressions for the vector

U and the fluxes F are given in appendix A.

In the following sections, we transform the Navier-Stokes equations to a fixed

reference domain. This derivation is taken from reference [1] and is presented here

for completeness.

2.1.1 Preliminaries

Given the physical domain, v(t), we introduce an arbitrary reference domain V and a

time dependent one-to-one mapping G(X, t) between V and v(t) as shown in figure 2-

1. Thus, a point X in V is uniquely mapped to a point x(t) in v(t), which is given by

x(t) = G(X, t). Next, we introduce, the mapping deformation gradient G, mapping

velocity vX and the jacobian of the mapping as,

G = ∇XG, vX =
∂G
∂t

∣∣∣∣
X

, g = det(G). (2.2)

Let dA = NdA denote an area element which after deformation becomes da = nda,

where N and n are the outward unit normals in V and v(t), respectively. We note

that the infinitesimal vectors dL in V and dl in v(t) are related as dl = GdL and

the corresponding elemental volumes, dV = dL · dA and dv = dl · da, are related as

dv = gdV . Therefore, we must have

n da = gG−TNdA, and N dA = g−1GTn da. (2.3)

2.1.2 Transformed Equations

To obtain the Navier-Stokes equations in the reference domain, we start with the in-

tegral form of the equations (refer equation 2.1) and utilize the mapping to transform

18



X1

X2

NdA

V

x1

x2

nda

v
G , g, vX

Figure 2-1: Mapping between the physical and the reference domains.

these integrals to the reference domain. Consider first the second term,

∫
∂v

F · n da =

∫
∂V

F · (gG−TN ) dA =

∫
∂V

(gG−1F ) ·N dA, (2.4)

similarly, using the Reynolds transport theorem the first integral can be transformed

as, ∫
v(t)

∂U

∂t
dv =

d

dt

∫
v(t)

U dv −
∫
∂v

(UvX) · n da

=
d

dt

∫
V

g−1U dV −
∫
∂V

(UvX) · (gG−TN ) dA

=

∫
V

∂(g−1U)

∂t

∣∣∣∣
X

dV −
∫
∂V

(gUG−1vX) ·N dA.

(2.5)

Combining the expressions from equations 2.4 and 2.5, we obtain,

∫
V

∂(g−1U)

∂t

∣∣∣∣
X

dV +

∫
∂V

(gG−1F − gUG−1vX) ·N dA. (2.6)

Using the divergence theorem we obtain a local conservation law in the reference

domain as,

∂UX

∂t

∣∣∣∣
X

+ ∇X · FX(UX ,∇XUX) = 0, (2.7)

19



where the time derivative is at a constant X and the spatial derivatives are taken

with respect to the X variables. The transformed vector of conserved quantities and

corresponding fluxes in the reference space are,

UX = gU , FX = gG−1F −UXG−1vX , (2.8)

or, more explicitly,

FX = F inv
X + F vis

X , F inv
X = gG−1F inv −UXG−1vX , F vis

X = gG−1F vis ,

(2.9)

and by simple chain rule,

∇U = ∇X(g−1UX)G−T = (g−1∇XUX −UX∇X(g−1))G−T . (2.10)

2.2 Geometric Conservation Law

The solution of the transformed equations in the reference domain results in non-

preservation of uniform flow because of inexact integration of the jacobian. To achieve

the preservation of uniform flow, a geometric conservation law (GCL)[10], is intro-

duced and solved with the flow equations. To derive the GCL, we first obtain the

so-called Piola relationships for arbitrary vectors W and w, using equation 2.3 and

the divergence theorem,

∇X ·W = g∇ · (g−1GW ) , ∇w = g−1∇X · (gG−1w). (2.11)

When the solution U is constant, say Ū , we have

∇X · FX = g∇ · (F − ŪvX) = −gŪ∇ · vX = −[∇X · (gG−1vX)]Ū .

Therefore, for a constant solution Ū , equation (2.7) becomes

20



∂UX

∂t

∣∣∣∣
X

+ ∇X · FX = Ūx

(
∂g

∂t

∣∣∣∣
X

−∇X · (gG−1vX)

)
.

We see that the right hand side is only zero if the equation for the time evolution of

the transformation Jacobian g

∂g

∂t

∣∣∣∣
X

−∇X · (gG−1vX) = 0 ,

is integrated exactly by our numerical scheme. Since in general, this will not be the

case, the constant solution Ūx in the physical space will not be preserved exactly.

Following [1], the system of conservation laws (2.7) is replaced by

∂(ḡg−1UX)

∂t

∣∣∣∣
X

+ ∇X · FX = 0, (2.12)

where ḡ is obtained by solving the following equation using the same numerical time

integration scheme as for the remaining equations

∂ḡ

∂t

∣∣∣∣
X

−∇X · (gG−1vX) = 0 . (2.13)

2.3 DG Formulation

In order to develop a discontinuous Galerkin method, we rewrite the above equations

as a system of first order equations,

∂UX

∂t

∣∣∣∣
X

+ ∇X · FX(UX ,QX) = 0, (2.14)

QX −∇XUX = 0. (2.15)

Next, we introduce the ‘broken’ DG spaces Vh and Σh associated with the triangula-

tion T h = {K} of V . In particular, Vh and Σh denote the spaces of functions whose

restriction to each element K are polynomials of order p ≥ 1.

Following [11], we consider DG formulations of the form: find Uh
X ∈ Vh and

21



Qh
X ∈ Σh such that for all K ∈ T h, we have

∫
K

∂Uh
X

∂t

∣∣∣∣
X

V dV −
∫
K

FX(Uh
X ,Q

h
X) ·∇XV dV −

∫
∂K

V (F̂X ·N ) dA = 0 ∀V ∈ Vh,

(2.16)∫
K

Qh
XP dV +

∫
K

Uh
X∇X · V dV −

∫
∂K

Ûh
X(P ·N ) dA = 0 ∀P ∈ Σh.

(2.17)

Here, the numerical fluxes F̂X ·N and ÛX are approximations to FX ·N and to UX ,

respectively, on the boundary of the element K. The DG formulation is complete

once we specify the numerical fluxes F̂X ·N and ÛX in terms of (Uh
X) and (Qh

X) and

the boundary conditions. The flux term F̂X ·N is decomposed into its inviscid and

viscous parts,

F̂X ·N = F̂ inv
N (Uh

X) + F̂ vis
N (Uh

X ,Q
h
X). (2.18)

The numerical fluxes F̂ vis
N and ÛX are chosen according to the compact discontinu-

ous Galerkin (CDG) method [12]. This is a variant of the local discontinuous Galerkin

(LDG) method[11], but has the advantage of being compact on general unstructured

meshes.

The inviscid numerical flux F̂ inv
N (Uh

X) is chosen according to the method proposed

by Roe [13]. Note that this flux can be very easily derived from the standard Eulerian

Roe fluxes by noting that the flux F inv
X ·N can be written as

F inv
X ·N = (F inv −UvX) · gG−TN ,

where gG−TN (from (2.3)) is always continuous across the interface (assuming that

G is continuous), and the eigenvalues and eigenvectors of the Jacobian matrix for

F −UvX are trivially obtained from the Jacobian matrix for the standard Eulerian

flux F .
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For the GCL, the inter-element fluxes can be evaluated with little overhead, as

the fluxes depend only on the mapping (assumed to be continuous) and no additional

information is required from the neighbouring elements.

2.4 Time Integration

The DG discretization yields a system of ordinary differential equations of the form,

∂U

∂t
= R(t,U(t)), (2.19)

where R is the residual computed at each time step. The time integration of the ODE

is performed using either an explicit four stage Runge-Kutta method or an implicit

BDF2 method as described below.

Four Stage Runge-Kutta Method

The explicit four stage Runge-Kutta method is given by,

U t+1 = U t +
∆t

6
(k1 + 2k2 + 2k3 + k4) , (2.20)

where

k1 = R (tn,Un) ,

k2 = R

(
tn +

∆t

2
,Un +

k1

2

)
,

k3 = R

(
tn +

∆t

2
,Un +

k2

2

)
,

k4 = R (tn + ∆t,Un + k3) .
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BDF2 Method

The BDF2 method is an implicit linear two-step method and can be written as,

U t+1 = −1

3
U t−1 +

4

3
U t +

2∆t

3
R. (2.21)

First-order implicit Euler can be used for the first time step. The main advantage of

BDF2 over other implicit schemes is that it requires only one nonlinear solve at each

time step.
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Chapter 3

Mapping Techniques

3.1 Introduction

In this chapter, we introduce various mapping approaches to compute the mesh ve-

locities and deformation gradients required for the ALE computations. The methods

presented in literature are primarily algebraic, (spring analogy[14] or interpolation

based), or PDE based approaches.

In the present work, we explore three approaches, two are algebraic in nature and

are based on interpolation methods, and one is a PDE based approach where the

mesh movement is achieved by solving linear elastodynamics equations.

3.2 Blending Function Approach

The blending function approach[1], uses odd degree polynomial blending functions

to obtain explicit expressions for the mappings. These polynomials, rn(x), satisfy

r(0) = 0, r(1) = 1 and have (n− 1)/2 vanishing derivatives at x = 0 and x = 1.

An example taken from reference [1], shows a square domain with a rectangular hole

deformed such that the hole is displaced and rotated but the outer boundary is fixed.

The mapping is defined by introducing a circle C centered at XC with a radius

RC that contains the moving boundary. The distance from a point X to C is then

d(X) = ‖X −XC‖−RC , where ‖ · ‖ is the Euclidean length function. The blending
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Original Domain Rigid MappingBlended Mapping

Figure 3-1: Deformation by blending of the original domain and a rigidly displaced
domain.

function in terms of the distance d(X) is given by,

b(d) =


0, if d < 0

1, if d > D

r(d/D), otherwise.

(3.1)

where D is chosen such that all points at a distance d(X) ≤ D are completely inside

the domain. The mapping x = G(X, t) is a blended combination of the undeformed

domain and a rigidly displaced domain Y (X):

x = b(d(x))X + (1− b(d(x)))Y (X). (3.2)

This expression ensures that all points inside C will be mapped according to the rigid

motion, all the points at a distance D or larger from the circle will be unchanged,

and all the points in-between will be mapped smoothly.

Mapping velocity and deformation gradient is obtained by differentiating Eqn. 3.2.

Results using this approach were presented in ref. [1].

26



3.3 Radial Basis Function Approach

In this approach, the mapping is obtained by using a multivariate interpolation

scheme based on radial basis functions (RBFs). RBFs are commonly used in fluid-

structure interaction computations to transfer information between the structural and

the aerodynamic mesh. Ref. [3] presents an approach to use RBFs as a mesh defor-

mation technique and compares various RBFs and their influence on mesh quality

and computation time.

The RBFs based method requires no grid connectivity information, which makes it

very attractive for unstructured mesh movement applications. Ref. [4] shows that

the quality of the deformed mesh is comparable to that obtained using any of the

existing mesh movement techniques (spring analogy or PDE based approaches). In

terms of computation required, the radial basis function approach requires an LU

decomposition of the interpolation matrix of size NBoundary Nodes × NBoundary Nodes.

Once this is done, no further computations, other than matrix multiplications, are

required during the simulation. In terms of memory requirements, the method is

expensive as a dependence matrix, of size NBoundary Nodes ×NNodes, is to be stored.

Table 3.1: Radial basis functions.

Name Definition

Gaussian φ(‖x‖) = e−α‖x‖

Thin Plate Spline φ(‖x‖) = ‖x‖2ln‖x‖
Hardy’s Multiquadric φ(‖x‖) =

√
(c2 + ‖x‖2)

Hardy’s Inverse Multiquadric φ(‖x‖) = 1√
(c2+‖x‖2)

Wendland’s C0 φ(‖x‖) = (1− ‖x‖)2

Wendland’s C2 φ(‖x‖) = (1− ‖x‖)4(4‖x‖+ 1)
Wendland’s C4 φ(‖x‖) = (1− ‖x‖)6(35‖x‖2 + 18‖x‖+ 3)
Wendland’s C6 φ(‖x‖) = (1− ‖x‖)8(32‖x‖3 + 25‖x‖2 + 8‖x‖+ 1)

Euclid’s Hat φ(‖x‖) = π(( 1
12
‖x‖3)− r2‖x‖+ (4

3
r3))
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3.3.1 Formulation

Given the displacements at the boundary nodes, the interpolation function, s, de-

scribing the displacement at an arbitrary point in the domain, can be written as,

s(X) =

Nb∑
i=1

αiφ(‖X −Xbi‖) + p(X), (3.3)

where Xbi are the boundary nodes at which the values are known, p(X) is a polyno-

mial, φ is the chosen radial basis function (Table 3.1) and ‖ ·‖ is the Euclidean length

function. For the term p(X), linear polynomials are chosen to recover simple trans-

lations and rotations [9]. The coefficients αi and the polynomial p (= β0 +β1ξ+β2η)

are determined by requiring the exact recovery of the boundary displacements,

dbj = s(Xbj) =

Nb∑
i=1

αiφ(‖Xbj
−Xbi‖) + β0 + β1ξbj + β2ηbj . (3.4)

This system of equations is augmented by an additional requirement,

Nb∑
i=1

αiq(X) = 0, (3.5)

for all polynomials q with a degree less than or equal to that of polynomial p. This

side condition guarantees that translations and rotations are recovered exactly and

also the total force and moment are conserved in the case of CFD-CSD coupling

problems. From equations 3.4 and 3.5, we get db

0

 =

 M P

P 0


︸ ︷︷ ︸

M̂

 α

β

 (3.6)

where M is the interpolation matrix,

Mij = φ(‖Xbj
−Xbi‖), 1 ≤ i, j ≤ Nb
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and P is a Nb × 3 matrix with row j given by [1, ξbj , ηbj ]. We compute and store

the LU factorization of M̂ , and use it to solve for α and β using forward and back

substitutions.

Next, to obtain the nodal displacements, we rewrite Eqn. 3.3 as a matrix equation,

∆x = M̄Tαx + P̄ βx,

∆y = M̄Tαy + P̄ βy,
(3.7)

where M̄ is the dependence matrix,

M̄ij = φ(‖Xj −Xbi‖), 1 ≤ i ≤ Nb, 1 ≤ j ≤ N,

and P̄ is a N × 3 matrix with row j given by [1, ξj, ηj]. The dependence matrix M̄

and P̄ are also computed once and stored for subsequent computations.

Computation of Mesh Velocity and Deformation Gradient

The mesh velocities are obtained by differentiating Eqns. 3.6 and 3.11 to obtain, ḋb

0

 =

 M P

P 0

 α̇

β̇

 , (3.8)

and

ẋ = M̄T α̇x + P̄ β̇x,

ẏ = M̄T α̇y + P̄ β̇y,
(3.9)

respectively. It should be noted that M̄, P̄ , M and P do not change with respect

to time, as they are always computed on the reference mesh. Hence, calculation of

velocities require just additional matrix-vector products.

For the calculation of the deformation gradient, recall that the displacement at any

point inside an element of the DG discretization can be written as a linear combination
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of nodal displacements,

∆x =

Np∑
i=1

∆xiφ̄i, ∆y =

Np∑
i=1

∆yiφ̄i (3.10)

where ∆xi and ∆yi are the nodal displacements and φ̄i are the nodal basis functions

used in the DG discretization. The new mesh positions x and y are given by,

x = ξ + ∆x, y = η + ∆y. (3.11)

The deformation gradients are obtained by differentiating Eqns. 3.10 and 3.11,

xξ = 1 +

Np∑
i=1

∆xiφ̄ξi, xη =

Np∑
i=1

∆xiφ̄ηi,

yξ =

Np∑
i=1

∆yiφ̄ξi, yη = 1 +

Np∑
i=1

∆yiφ̄ηi.

(3.12)

An example of mesh deformation using RBF based approach, is shown in Figure 3-2,

where a rectangular domain with a square and circular hole is deformed, such that

the square and circular hole translate and rotate while the outer boundary is fixed.

The simulation is performed using a gaussian RBF.

(a) Original Mesh. (b) Deformed mesh, with the circle and square
undergoing translation and rotation.

Figure 3-2: Mesh deformation using radial basis function based approach.
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3.4 Linear Elasticity as a Mapping Technique

In the linear elasticity approach, the mesh is modelled as a continuum of elastic

solid, characterized by the modulus of elasticity and Poisson’s ratio, and the nodal

movements are governed by the equations of linear elastodynamics.

In the present work, we use a viscoelastic material model, to attenuate the elastic

waves generated due to the boundary motion.

3.4.1 Formulation

The equations of motion for linear elastodynamics can be written as,

σij,j + Fi = ρ∂ttui. (3.13)

For an isotropic, elastic solid, the stress-strain law (in the absence of thermal or

nonmechanical effects) is given by,

σij = λεkkδij + 2µεij, (3.14)

where λ and µ are Lame’s constants and the strain-displacement relations yield,

εij =
1

2
(ui,j + uj,i). (3.15)

In the present approach, because of the high-order accurate spatial discretization, it

is possible that the elastic waves generated could bounce back and forth between the

boundaries and corrupt the solution. Hence, we propose to use a viscoelastic material

instead of an elastic material, to dampen these waves. Using the Kelvin-Voigt model

for viscoelastic materials, the stress-strain law becomes,

σij = (λεkk + λ̂ε̇kk)δij + 2(µεij + η̂ε̇ij), (3.16)
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where λ, λ̂, µ and η̂ are Lame’s constants. Writing equations 3.13 and 3.16 in a

simplified form, we get

∂

∂t

 ρu̇

ρv̇

− ∂

∂x

 σx

τxy

− ∂

∂y

 τxy

σy

 =

 f(x, y)

g(x, y)

 , (3.17)

and
σx

σy

τxy

 =
E

1− ν2


1 ν 0

ν 1 0

0 0 (1−ν)
2




εx

εy

γxy

+
η

1− ν2


1 ν 0

ν 1 0

0 0 (1−ν)
2




ε̇x

ε̇y

γ̇xy

 ,

(3.18)

respectively, where ν is the Poisson’s ratio, E is the modulus of elasticity, ρ is the

density of the material, η is the damping coefficient, f(x, y) and g(x, y) are the forcing

functions.

Computation of Mesh Velocity and Deformation Gradient

The mesh velocity is obtained directly from the solution of Eq. 3.17. To compute the

deformation gradient we augment our system of equations with two ODEs,

∂

∂t



ρu̇

ρv̇

u

v


− ∂

∂x



σx

τxy

0

0


− ∂

∂y



τxy

σy

0

0


=



f(x, y)

g(x, y)

u̇

v̇


. (3.19)

This system of equations when solved with the discontinuous Galerkin method, (pre-

sented in next section), generates the deformation gradient as a part of the solution

process. Alternatively, the deformation gradient can also be computed as described

in section 3.3.1.
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3.4.2 Numerical Solution

The linear elasticity equations are discretized using the compact discontinuous Galerkin

(CDG) technique presented in Ref. [12]. The equations are written as a system of

first order equations by introducing an additional variable q,

∂u

∂t
−∇·F (q) = f in Ω,

q = ∇u in Ω,

u = gD on ∂ΩD,

(3.20)

where n is the outward unit normal to the boundary of Ω and the vector u and fluxes

F are defined according to equation 3.19.

Next, we introduce the ‘broken’ DG spaces Vh and Σh associated with the triangula-

tion T h = {K} of V . In particular, Vh and Σh denote the spaces of functions whose

restriction to each element K are polynomials of order p ≥ 1.

Following [11], we consider DG formulations of the form: find uh ∈ Vh and qh ∈ Σh

such that for all K ∈ T h, we have,

∫
K

∂uh

∂t

∣∣∣∣
X

V dV −
∫
K

F (qh) ·∇V dV −
∫
∂K

V (F̂ ·N ) dA =

∫
K

fV dV ∀V ∈ Vh,

(3.21)∫
K

qhP dV +

∫
K

uh∇ · V dV −
∫
∂K

ûh(P ·N ) dA = 0 ∀P ∈ Σh.

(3.22)

Here, the numerical fluxes F̂ ·N and û are approximations to F ·N and to u, respec-

tively, on the boundary of the element K. The DG formulation is complete once we

specify the numerical fluxes F̂ ·N and û in terms of (uh) and (qh) and the boundary

conditions.

The numerical fluxes are viscous in nature and are chosen according to the compact

discontinuous Galerkin (CDG) method [12]. This is a variant of the local discontinu-

ous Galerkin (LDG) method [11], but has the advantage of being compact on general

unstructured meshes.
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Time integration is performed using implicit BDF2 scheme.

3.4.3 Results

We choose a tandem-foil system, (see figure 3-3), to evaluate the linear elasticity

approach. In this particular case, the y-displacement of the forward foil is given by,

yc(t) = A sin(2πωt), (3.23)

where A = 1 and ω = 0.25, and the rear foil is stationary. The unstructured triangular

mesh, shown in figure 3-3, consists of 3436 elements and polynomials of degree p = 2

are used within each element. We choose the following parameters for our problem,

E = 1700000 N/m2, ρ = 1000 kg/m3, η = 40, and ν = 0.3.

For this case, we observe degenerate elements for small displacements of the forward

foil. Such behaviour was also reported in [7] and various fixes based on selective

stiffening of the elements were proposed. Here we adopt the mesh stiffening based on

the area of the element, i.e., smaller elements are made stiffer than the larger ones.

To accomplish this, we choose the modulus of elasticity for an element as,

E =
1700000

∆
, (3.24)

where ∆ is the area of the element. This approach fixes the mesh degeneracy and

yields a robust mesh movement strategy.
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(a) Original mesh. (b) Trailing edge of the oscillating foil in the orig-
inal mesh.

(c) Deformed mesh using constant modulus of
elasticity.

(d) Trailing edge with degenerate elements using
constant modulus of elasticity.

(e) Deformed mesh using variable modulus of
elasticity.

(f) Trailing edge of the oscillating foil in the de-
formed mesh using variable modulus of elasticity.

Figure 3-3: Mesh deformation using linear elasticity approach
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Chapter 4

Examples

In this chapter, we solve a number of model problems to demonstrate the high-order

accuracy of our scheme. Results are obtained using radial basis function and linear

elasticity based mapping. Optimal convergence is shown in both the cases. A coupled

ALE-linear elasticity approach is also presented in which the flow equations and the

mesh motion equations are solved simultaneously.

4.1 ALE with Radial Basis Function based Map-

ping

In this section, results are presented for the solution of modified Navier-Stokes equa-

tions (Eqn. 2.12) and the geometric conservation law (Eqn. 2.13), with the radial

basis function (RBF) based mapping. Gaussian RBF is used for all the studies.

4.1.1 Free Stream Preservation

For the present problem, we use a rectangular domain of size 20 × 15. We specify

displacements at selected nodes in the interior domain. These displacements are
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given by,

∆x(ξ, η, t) =
√

2sin2(πt/t0) sin(πr/2) cos(θ)

∆y(ξ, η, t) =
√

2sin2(πt/t0) sin(πr/2) sin(θ)

 if 3 ≤ r ≤ 5, (4.1)

where r =
√

(ξ − 10)2 + η2, θ = tan−1( η
ξ−10

) and t0 =
√

102 + 52. The outer boundary

nodes are fixed and the displacements for the remaining nodes are calculated using

the RBF based approach. Note that at times t = 0 and t = t0, the mapping is the

identity mapping which makes solution initialization and comparison straightforward.

Uniform freestream is used as the initial condition and we integrate in time until

t = 1.0 using explicit Runge-Kutta method. It is observed that the L2 norm of the

errors are of the order of discretization errors. Hence, our scheme obeys the geometric

conservation law and preserves freestream flow.

4.1.2 Euler Vortex

We demonstrate the high-order accuracy of our scheme by solving an inviscid model

problem consisting of a compressible vortex on a rectangular domain [15, 16]. We use

the same grid and time dependent mapping as in the previous example. The vortex

is initially centered at (x0, y0) and is moving with the free-stream at an angle θ with

respect to the x-axis. The analytic solution at (x, y, t) is given by,

u = u∞

(
cos θ − ε((y − y0)− v̄t)

2πrc
exp

(
f(x, y, t)

2

))
,

v = u∞

(
sin θ +

ε((x− x0)− ūt)
2πrc

exp

(
f(x, y, t)

2

))
,

ρ = ρ∞

(
1− ε2(γ − 1)M2

∞
8π2

exp (f(x, y, t))

) 1
γ−1

,

p = p∞

(
1− ε2(γ − 1)M2

∞
8π2

exp (f(x, y, t))

) γ
γ−1

,

(4.2)

where f(x, y, t) = (1− ((x−x0)− ūt)2− ((y−y0)− v̄t)2)/r2
c , M∞ is the Mach number,

γ = cp/cv, and u∞, p∞, ρ∞ are free-stream velocity, pressure, and density. The

Cartesian components of the free-stream velocity are ū = u∞ cos θ and v̄ = u∞ sin θ.
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The parameter ε measures the strength of the vortex and rc is its size. The vortex is

initially centered at (x0, y0) = (5, 5) with respect to the lower-left corner. The Mach

number is M∞ = 0.5, the angle θ = arctan 1/2, and the vortex has the parameters

ε = 0.3 and rc = 1.5. We use periodic boundary conditions and integrate until

time t0 =
√

102 + 52, when the vortex has moved a relative distance of (10, 5).

(a) Deformed mesh and solution, t = 0. (b) Deformed mesh and solution, t = (1/2)t0.

Figure 4-1: Mesh deformation and solution obtained by solving modified Navier-
Stokes equations using RBF based mapping. The deformed mesh is shown for visu-
alization, all the computations are performed on the reference mesh.

The solution and the deformed meshes at time t = 0 and t = (1/2)t0 are shown in

figure 4-1.

We solve, using explicit Runge-Kutta method, for different mesh sizes and poly-

nomial orders using both the mapped and unmapped approaches. We obtain optimal

convergence O(hp+1), based on L2 norm of the error, for both the schemes. The un-

mapped approach is more accurate, because the mapping leads to variations in the

resolution of the vortex.

4.1.3 Oscillating Cylinder

In this example, we qualitatively compare the results for viscous flow around an

oscillating cylinder using RBF based method and rigid mapping based approach. For

the case of rigid mapping, the entire computational domain undergoes only translation

39



10
0

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

p=1

p=2

p=3

p=4
1

5

1
2

Element size h

L 2−
er

ro
r

 

 

Mapped
Unmapped

Figure 4-2: The convergence plots for mapped and unmapped schemes for the Euler
vortex problem using radial basis function based approach.

and/or rotation, resulting in a mapping with g = 1. Hence, we do not need the GCL

in this case.

In the present problem, the y-displacement of the cylinder is given by,

yc(t) = A sin(2πωt), (4.3)

where A = 4/3 and ω = 0.1. The Reynolds number with respect to the diameter is

400 and the Mach number is 0.2. Also, the unstructured mesh used has 1316 elements

and we use polynomials of degree p = 4 within each element for our simulations. The

meshes and solution using the two methods are shown in figure 4-3. The results

obtained are remarkably similar after a considerably large time integration interval.
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(a) Deformed mesh (rigid mapping). (b) Deformed mesh (RBF based mapping).

(c) Entropy, t = 17.5 (rigid mapping). (d) Entropy, t = 17.5 (RBF based mapping).
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(e) Lift and drag coefficients (rigid mapping).
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(f) Lift and drag coefficients (RBF based map-
ping).

Figure 4-3: Comparison of results obtained using rigid mapping and radial basis
function(RBF) based mapping. The deformed mesh is shown for visualization only.
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4.2 ALE with Linear Elasticity based Mapping

In this section, results are presented for the solution of modified Navier-Stokes equa-

tions (Eqn. 2.12) and the geometric conservation law (Eqn. 2.13), with the linear

elasticity based mapping. The grid velocities and displacements are obtained by

solving the linear elasticity equations (refer Eqn. 3.19) using discontinuous Galerkin

approach and subsequently making the solution continuous at the element edges. This

ensures that we obtain a continuous mapping as assumed in the ALE formulation.

The deformation gradients are computed from the displacements using the method

outlined in section 3.3.1.

4.2.1 Euler Vortex

For the present problem, we use a rectangular domain of size 20 × 15. Mesh motion

is achieved by prescribing a forcing function in the interior of the domain,

f(ξ, η) = 100000 sgn(ξ − 10) sin2(2πt/t0) exp(−r2/16),

g(ξ, η) = 100000 sgn(η) sin2(4πt/t0) exp(−r2/16),
(4.4)

where r =
√

(ξ − 10)2 + η2) and sgn is the signum function. A constant modulus of

elasticity E = 0.17GPa is used for all the simulations. The problem is initialized as

described in section 4.1.2, We solve using periodic boundary conditions and integrate

until time t0 =
√

102 + 52. An implicit BDF2 method is used to solve for different

mesh sizes and polynomial orders. We obtain optimal convergence O(hp+1), based on

L2 norm of the error (Fig. 4-5).

4.2.2 Oscillating Cylinder

In this example, we compare the results for an oscillating cylinder obtained using

linear elasticity approach with the rigid mapping approach. The results obtained

show very good agreement and are shown in figure 4-6.
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(a) Deformed mesh and solution, t = 0. (b) Deformed mesh and solution, t = (1/8)t0.

Figure 4-4: Mesh deformation and solution of the modified Navier-Stokes equations
using linear elasticity based mapping approach. The deformed mesh is shown for
visualization.

4.3 Coupled ALE-Linear Elasticity Formulation

4.3.1 Governing Equation

The coupled ALE-Linear elasticity approach combines the transformed Navier-Stokes

equations along with the geometric conservation law, with the linear elasticity equa-

tions. By doing this we obtain a system of 9 equations, given by,

∂

∂t



ḡg−1UX

ḡ

vX

u


+ ∇X ·



FX

−gG−1vX

−σij/ρ

0


=



0

0

f(ξ, η)

vX


, (4.5)

where UX is the vector of conserved variables in the reference domain, g is the jaco-

bian, ḡ is the correction to the jacobian, G is the deformation gradient, vX are the

mesh velocities, σij are the stresses, ρ is the material density, f(ξ, η) are the forcing

functions and u are the mesh displacements.

To obtain the DG formulation, we rewrite this system as a system of first order

equations and discretize in the same way as shown in sections 2.3 and 3.4.2. The

inviscid numerical fluxes are obtained using the Lax Friedrichs scheme and the viscous
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Figure 4-5: The convergence plots for mapped and unmapped schemes for the Euler
vortex problem using linear elasticity approach.

fluxes are chosen using the CDG scheme.

4.3.2 Euler Vortex

Here also, the problem is initialized as described in section 4.1.2, mesh motion is

achieved using the forcing function given by Eqn. 4.4. We solve using periodic bound-

ary conditions and integrate until time t0 =
√

102 + 52. An implicit BDF2 method is

used to solve for different mesh sizes and polynomial orders. We obtain sub-optimal

convergence O(hp), based on L2 norm of the error (Fig. 4-8). This is because jumps

are introduced in the mesh velocities and deformation gradient when solved using the

discontinuous Galerkin approach.
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(a) Deformed mesh (rigid mapping). (b) Deformed mesh (linear elasticity based
mapping).

(c) Entropy, t = 17.5 (rigid mapping). (d) Entropy, t = 17.5 (linear elasticity based
mapping).
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(e) Lift and drag coefficients (rigid mapping).
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(f) Lift and drag coefficients (Linear elasticity
based mapping).

Figure 4-6: Comparison of results obtained using rigid mapping (p = 4), and linear
elasticity based mapping (p = 3).
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(a) Deformed mesh and solution, t = 0 (b) Deformed mesh and solution, t = (1/8)t0

Figure 4-7: Mesh deformation and solution obtained by solving coupled ALE-linear
elasticity equations. The deformed mesh is shown for visualization, all the computa-
tions are performed on the reference mesh.
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Figure 4-8: The convergence plots for mapped and unmapped schemes for the Euler
vortex problem for the coupled ALE-linear elasticity formulation.
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Chapter 5

Low Reynolds Number Flow

around an Oscillating Cylinder

Flow around an oscillating circular cylinder is of interest to fluid dynamicists and

offshore engineers. A large number of experimental and theoretical studies have been

conducted, primarily to obtain the drag and inertia coefficients for different flow

regimes. Tatsuno and Bearman [17] classified the flow regimes based on the following

three parameters,

Keulegan-Carpenter Number KC =
UmT

D
=

(ωA)(2π/ω)

D
=

2πA

D
,

Stokes’ Parameter β =
ρD2

µT
,

Reynolds Number Re = KC × β =
ρUmD

µ
,

(5.1)

where µ is the coefficient of viscosity, ρ is the fluid velocity, T is the time period of

oscillation, A is the amplitude of oscillation and ω is the oscillation frequency. In this

chapter, we investigate various low Reynolds number flow regimes over an oscillating

cylinder and compare the results obtained with those presented in the literature.
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5.1 Theory

For a cylinder oscillating in a stationary fluid with a transverse motion, the inline

force per unit length is a combination of the drag and inertia forces and is given by

the Morison’s equation [18],

F1(t) = −1

2
ρDCDẋ|ẋ| − 1

4
ρπD2CI ẍ, (5.2)

where D is the diameter of the cylinder, ρ is the density of the fluid, CD and CI are the

drag and added mass coefficients respectively. These coefficients are determined either

experimentally or by numerical solution of the Navier-Stokes equations. Estimates

are then made using method of least squares or Fourier analysis over a cycle [19].

Analytical expressions for CD and CI for large values of β were obtained by Stokes [20].

Wang [21] extended this analysis and derived the following expression,

CD =
3π3

2KC

[
(πβ)−1/2 + (πβ)−1 − 1

4
(πβ)−3/2

]
,

CI = 2 + 4(πβ)−1/2 + (πβ)−3/2,

(5.3)

for KC � 1, Re ×KC � 1, and β � 1. The first two terms in these formulaes are

same as those obtained by Stokes [20].

5.2 Numerical Simulation

For the present simulations we use an unstructured triangular mesh with 6400 ele-

ments and polynomial of degree p=3 within each element. We use the radial basis

function based approach to obtain the mapping parameters. Also, implicit BDF2

scheme is used for time integration.

In the present work, we study three cases, corresponding to different flow regimes

(refer table 5.1). Case 1 corresponds to a two dimensional flow in which two vortices

are shed symmetrically every half cycle, case 2 is also two dimensional with secondary

streaming and no flow separation and case 3 is three dimensional corresponding to
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Table 5.1: Flow regimes under investigation.

KC Re

Case 1 11.0 81.4
Case 2 3.14 165.79
Case 3 6.0 210.0

irregular switching of flow convection direction (refs. [17], [22]).

The transverse displacements of the cylinder are given by,

x(t) = −A sin(ωt),

ẋ(t) = −Aω cos(ωt) = −Um cos(ωt),
(5.4)

where A is the amplitude of oscillation and ω is the oscillation frequency.

5.3 Results

We compute the added mass and the drag coefficients using Fourier averaging [19],

CI = −2UmT

π3D

∫ 2π

0

F1 sin(θ)

ρU2
mD

dθ,

CD =
3

4

∫ 2π

0

F1 cos(θ)

ρU2
mD

dθ,

(5.5)

where θ = 2πt
T
.

The inline force computed shows very good agreement with results obtained using

Morison’s formula (see figure 5-1).

Values for drag and added mass coefficients for case 3 are given in refs. [22], and

[23] and agree with those obtained in the present study (refer table 5.2).
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(a) Velocity field at t=250.2, Re=81.4, KC=11.0. (b) Velocity field at t=59.64, Re=165.79,
KC=3.14.
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(c) In-line force over a cycle, Re=81.4, KC=11.0.
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(d) In-line force over a cycle, Re=165.79, KC=3.14.
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(e) Time history of in-line force, Re=81.4,
KC=11.0.
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(f) Time history of in-line force, Re=165.79,
KC=3.14.

Figure 5-1: Velocity field, in-line force and in-line force history for Case 1 (Re=81.4,
KC=11.0) and Case 2 (Re=165.79, KC=3.14).
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(a) Velocity field at t=465, Re=210, KC=6.0. (b) Entropy, t=465, Re=210, KC=6.0.
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(c) Time history of in-line force, Re=210, KC=6.0.
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(d) Time history of lift force, Re=210, KC=6.0.
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(e) In-line force over a cycle, Re=210, KC=6.0.

Figure 5-2: Velocity field, in-line force and in-line force history for Case 3 (Re=210,
KC=6.0).
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Table 5.2: Comparison of drag and added mass coefficients for KC=6 and Re=210.

CD CI

Present work 1.71 1.12
Viscous cell boundary element method [22] 1.75 1.14

Finite volume method [23] 1.73 1.17
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Chapter 6

Conclusions

A coupled arbitrary Lagrangean Eulerian (ALE) approach to solve fluid-structure

interaction using discontinuous Galerkin method is presented. Two mapping ap-

proaches based on radial basis function and linear elasticity are developed and cou-

pled with the ALE formulation. The accuracy of the approach is demonstrated by

showing freestream preservation, convection of a inviscid vortex and also comparison

of results with those obtained using rigid mapping. A coupled ALE-linear elasticity

approach is also presented.

Modified Navier-Stokes with radial basis functions based mapping was then used

to investigate the low Reynolds number flow over an oscillating cylinder. Results were

obtained and compared with those presented in the literature.
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Appendix A

Compressible Navier-Stokes

Equations

The two-dimensional compressible Navier-Stokes equations in cartesian coordinates

without body forces and no external heat addition can be written as [24],

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0, (A.1)

where U ,F and G are given by,

U =


ρ

ρu

ρv

E

 , (A.2)

F =


ρu

ρu2 + p− τxx
ρuv − τxy

(E + p)u− uτxx − vτxy + qx

 , (A.3)
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G =


ρv

ρuv − τxy
ρv2 + p− τyy

(E + p)v − uτxy − vτyy + qy

 . (A.4)

Also, for an ideal gas the equation of state becomes,

E =
ρ

γ − 1
+

1

2
ρ(u2 + v2). (A.5)

The components of the shear-stress tensor and the heat-flux are given by,

τxx =
2

3
µ

(
2
∂u

∂x
− ∂v

∂y

)
,

τyy =
2

3
µ

(
2
∂v

∂y
− ∂u

∂x

)
,

τxy = τyx = µ

(
∂u

∂y
+
∂v

∂x

)
,

qx = −k∂T
∂x

,

qy = −k∂T
∂y

,

(A.6)

where µ is the coefficient of viscosity and k is the coefficient of thermal conductivity.
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