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SUMMARY

Upper and lower bounds of the collapse load factor are here obtained as the optimum values of two
discrete constrained optimization problems. The membership constraints for VonMises and Mohr–Coulomb
plasticity criteria are written as a set of quadratic constraints, which permits one to solve the optimization
problem using specific algorithms for Second-Order Conic Program (SOCP). From the stress field at the
lower bound and the velocities at the upper bound, we construct a novel error estimate based on elemental
and edge contributions to the bound gap. These contributions are employed in an adaptive remeshing
strategy that is able to reproduce fan-type mesh patterns around points with discontinuous surface loading.
The solution of this type of problems is analysed in detail, and from this study some additional meshing
strategies are also described. We particularise the resulting formulation and strategies to two-dimensional
problems in plane strain and we demonstrate the effectiveness of the method with a set of numerical
examples extracted from the literature. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The computation of load estimates for limit analysis has relied traditionally on practitioners’
experience and a catalogue of solutions for simple academic cases. Although these solutions are
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J. J. MUÑOZ ET AL.

well founded in the lower and upper bound theorems of limit analysis [1, 2], it is still desirable
to develop general methods that can be applied to a broader number of practical problems. Early
numerical methods for limit analysis were developed more than 30 years ago [3, 4], but more
recently these problems have gained increasing attention (see, for instance, References [2, 5–8]).
This is partly due to the development of the robust optimization methods on which they strongly
rely and recent progress in the computation of bounds [7–10].

In the present paper, we compute upper and lower bounds of the load factor. This is achieved by
constructing a set of purely static and kinematic interpolation spaces of the velocities and stresses,
which are analogous to those given in [9–12]. The discretizations for the lower bound problem
are also the same as those described in [7, 8]. We write the upper and lower bound optimization
problems as a function of the stresses, which are considered the primal variables. We note that
each one of the optimization problems can be stated as a function of the velocities (dual variables),
and examples of the latter case may be found in the literature [13].

The solution of the constrained optimization problem is found resorting to Second-Order Conic
Programming (SOCP). We have used the general packages for conic programming SeDuMi [14]
and SDPT3 [15], which are embedded in Matlab. Other specific programs for SOCP such as
MOSEK [16] have also been recently used in the context of limit analysis [8]. This is in contrast
to the usual methodology, where the bounds are computed resorting to non-linear programming
(NLP) [5–7, 13, 17–20]. However, the latter requires a twice differentiable boundary of the yield
surface, i.e. no apex as in the Mohr–Coulomb or Drucker–Prager criteria. In these cases, NLP
requires the smoothing of the criteria or the linearization of the yield surfaces in order to solve the
constraints [13, 17]. In contrast, SOCP does not require any modification of the admissibility plastic
domains, as long as they can be written as a second-order cone, which is the case in the usual two-
dimensional plastic models such as Mohr–Coulomb, Von Mises or Tresca. In three-dimensional
analysis, although Drucker–Prager or Von Mises criteria are expressible as second-order cones,
the membership constraints of other common plasticity models such as Tresca, Mohr–Coulomb
or Hoek–Brown are semidefinite cones [21]. This is due to the fact that the latter depend on the
maximum or minimum values of the principal stresses, and not on the first or second invariants.
Consequently, these cases do not belong to SOCP, and cannot exploit the approach used here. We
restrict here our study to plane strain two-dimensional cases, in conjunction with Von Mises and
Mohr–Coulomb plasticity, although the formulation given here can also be written for plane stress
problems [9, 10] or generalized to three-dimensional problems.

Owing to the presence of large areas that remain practically rigid, there is a strong need for the
employment of an adaptive remeshing strategy. Since no a priori error estimates for limit analysis
exist, the usual approach is to use a posteriori techniques, such as non-zero strain rates and the
proximity of the stresses to the yield surface [20], or alternatively the recovery of a Hessian matrix
in order to provide an anisotropic error estimates [5, 18, 22]. We employ here an error estimate,
which is constructed from the combined solution of the lower and upper bound problem, and thus
benefits from the dual structure of limit analysis. Our a posteriori error estimate is an extension
of the one employed in [9–12], due to an additional term corresponding to the contributions of
the internal edges.

The resulting error estimate is able to avoid the locking of the lower bound in the presence of
discontinuous loading (as it is often the case in strip footings or foundation slabs). Alternatively,
we also suggest a strategy that remeshes around nodes according to the values of the velocities
at the internal edges. A similar criterion has been suggested in [18]. However, we describe here
a strategy that constructs fan-type meshes with subdivisions only in the necessary directions. The
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need for fan-type patterns has been already pointed out in [1, 7, 8, 18]. In Section 5 we analyse
the source of the locking phenomena when no fans are used in the discretized problem, which
interestingly shows that the limit load factor of the continuum problem is in fact governed by a
local problem at the point of the load discontinuity.

We compare our formulation with a set of problems extracted from the literature
[7, 8, 17, 18, 22–24]. We show that our remeshing strategies can improve the bounds given by
previous formulations using a similar number of elements.

2. DUALITY AND BOUNDS IN LIMIT ANALYSIS

Let us consider a rigid-plastic body �⊂R2, where the stress field r is constrained to belong to
the domain

B={r| f (r)�0}

with f (r) the so-called yield function. In two-dimensional plane strain Von Mises and Mohr–
Coulomb plasticity, it is, respectively, given by

f (r)VM =
√

(�xx −�yy)2+4�2xy − 2√
3
�Y

f (r)MC =
√

(�xx −�yy)2+4�2xy +(�xx +�yy) sin�−2ccos�

where �Y is the yield stress at simple tension, and c and � are the soil cohesion and internal
friction angle, respectively. In general, we require the following assumptions on the set B:

• ∃�>0, such that if
∑

i, j |�i j |<�⇒r∈B (the zero stress state belongs to B).
• The set B is convex and closed.

In this work we restrict our attention to bodies subjected to variable loads. These are given by
the body load �f at the interior of � and the surface load �g at �g . In addition, homogeneous
Dirichlet boundary conditions are also applied at �u , with �g∩�u =∅ and �g∪�u =��. The
objective of the limit analysis is to determine the value of the load factor � at which the domain
� collapses. This value will be denoted by �∗.

We note that due to the rigid-plastic assumption, and thus in contrast to elastic materials, no
constitutive relation exists between the strain rate tensor‡ ε(u)= 1

2(∇u+(∇u)T) and the stress
tensor r. Both variables are related through the associative plasticity rule ε=�� f (r)/�r, where �
is the plastic multiplier. We henceforth denote the spaces for the stress and velocity field by ��r
and U�u, respectively. The smooth requirements for � and U that guarantee the existence of
solutions can be found, for instance, in [2].

‡We denote the velocity and strain rates by u and ε(u), respectively.
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2.1. Lower bound theorem

The lower bound theorem of limit analysis can be stated as follows [1]:
If for a given load factor �̃ the stress field (i) satisfies the stress boundary conditions, (ii) is
in static equilibrium and (iii) does not violate the yield condition, then the load factor is a
lower bound of the collapse load, i.e. �̃��∗.
The boundary equilibrium condition in (i) is given by rn=�g at �g , with n being the unit

external normal. This condition and the enforcement of (ii) imply that the work rate of the external
loads is equal to the internal energy rate, which can expressed as follows:

a(r,u)=��(u) ∀u∈U

The bilinear and linear forms a(, ) and �() have the usual expressions

a(r,u) =
∫

�
r :ε(u)dV (1a)

�(u) =
∫

�
f·udV +

∫
�g

u ·gd� (1b)

It follows that, according to the lower bound theorem, the collapse load factor �∗ can be found
by solving the following optimization problem:

�∗ = sup
�,r∈B

a(r,u)=��(u), ∀u∈U
� (2)

From the expressions of a(, ) and �() in (1), and after integrating by parts a(, ), we have
that a(r,u)−��(u)=−∫ (∇ ·r+�f)·udV , if the boundary equilibrium condition holds. Therefore,
from the linearity of this expression in u, we can express

inf
u
a(r,u)−��(u)=

{
0 if a(r,u)=��(u) ∀u∈U

−∞ otherwise
(3)

Consequently, we can express �∗ in (2) as

�∗ = sup
�,r∈B

inf
u

(a(r,u)+�(1−�(u)))= sup
r∈B

inf
�(u)=1

a(r,u) (4)

where the last identity follows from the fact that � is a free variable.

2.2. Upper bound theorem

Let us introduce the internal rate of dissipation D(u) as

D(u)= sup
r∈B

∫
�
r :ε(u)dV = sup

r∈B
a(r,u) (5)

From the associative plasticity rule, D(u) may be expressed via the parameters in the yield
function f (r), and an equivalent strain rate, εeq(u)=√

2ε(u) :ε(u)/3. Expressions for D(u) in
Von Mises and two-dimensional Mohr–Coulomb plasticity can be found in Appendix A.
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With definition (5) at hand, the upper bound theorem of limit analysis can be stated as follows [1]:
Those loads determined by equating the external rate of work and the internal rate of
dissipation in an assumed velocity field, which satisfies (i) the Dirichlet boundary conditions
and (ii) strain and velocity compatibility conditions (2ε(u)= 1

2 (∇u+(∇u)T) and u=0 at �u),
are not less than the collapse load.

Therefore, according to the upper load theorem, the collapse load factor may be computed as

�∗ = inf
D(u)=��(u)

�= inf
u

D(u)

�(u)
= inf

�(u)=1
D(u)= inf

�(u)=1
sup
r∈B

a(r,u) (6)

2.3. Duality and load factor bounds �LB and �UB

Both identities (4) and (6) unveil the structure of limit analysis: the optimum values (�∗,r∗,u∗)
are the solution of the saddle point problem in (4) and (6), which satisfy a(r∗,u∗)=�∗ in the
domain B×C×R� (r,u,�), with C={u|�(u)=1}. This fact permits one to compute bounds of
the collapse load factor �∗. Assuming that the set B�r is convex, and since the objective function
a(r,u) and the constraint �(u)=1 are linear (and therefore also convex), strong duality holds
[25], which means that the optimum values �∗ in (4) and (6) are the same if they exist (see [2]
for existence conditions). Bounds of the collapse load factor may then be computed using the
following relations:

�LB=a(r,u∗)��∗ =a(r∗,u∗)�a(r∗,u)=�UB (7)

These inequalities are satisfied for the spaces � and U describing the continuum fields r and u,
respectively. We next introduce a set of discrete spaces �h and Uh that preserve the validity of
the two inequalities in (7). These spaces are the same as those given in [9, 10], but are here recast
in order to introduce the necessary tools that will be employed in subsequent sections.

3. LOWER BOUND PROBLEM

Discrete spaces �LB�rLB and ULB�uLB that ensure the first inequality in (7) will be termed
purely static spaces. These must therefore satisfy the following relation:

max
rLB∈BLB

min
�(uLB)=1

a(rLB,uLB)� sup
r∈B

inf
�(u)=1

a(r,u) (8)

The set of admissible discrete stresses, BLB, is determined below. Following a similar reasoning
to (3), condition (8) is equivalent to

max
�,rLB∈BLB

(
�+min

uLB
a(rLB,uLB)−��(uLB)

)
� sup

�,r∈B

(
�+ inf

u
a(r,u)−��(u)

)
This relation is satisfied if the following three conditions hold:

a(rLB,uLB)=��(uLB) ∀uLB∈ULB ⇒ a(rLB,u)=��(u), ∀u∈U (9a)

BLB ⊆ B (9b)

rLB∈BLB at discrete points⇒ rLB∈BLB everywhere (9c)
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A pair of spaces that satisfy these conditions can be constructed as follows. We first discretize the
domain with nele three-noded triangles and using a triangulation Th(�). The stress and velocity
fields are then interpolated in the following manner (see [9, 10]):

• �LB: Piecewise linear stress field interpolated from the nodal values rn,e, n=1,2,3;e=
1, . . .,nele, with a set of complete Lagrangian functions I n , i.e.

∑
n I

n =1. Each element has

a distinct set of nodes, and thus discontinuities at each elemental boundary �e−e′
(between

elements e and e′) are permitted.
• ULB: Constant velocities at each element e. Additionally, a linear velocity field is introduced

at each interior edge �e−e′
and external edge �e.

These spaces are depicted in Figure 1. In addition, we impose the stress admissibility condition
to the nodal stress values, i.e. rn,e∈B, ∀n=1,2,3,e=1, . . .,nele, or in other words, BLB=
{rLB|rn,e∈B ∀n,e}. Since the interpolating functions are complete, and B is convex, we have
that conditions (9b) and (9c) hold, and rLB∈B, ∀rLB∈�LB at all points of the discretized �.
The lower bound �LB is computed recalling the lower bound theorem, in particular, Equation (2)
in terms of the discrete spaces given above:

�LB= max
�,rLB∈BLB

a(rLB,uLB)=��(uLB), ∀uLB∈ULB

� (10)

When using the discrete spaces rLB and uLB in the expression of a(, ), and noting that uLB is
piecewise constant, the problem in (10) may be expressed as

�LB=max �

s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∇ ·rLB+�f=0

rLBn=�g at �g

(rLBe −rLBe′ )ne−e′ =0

rLB∈BLB

(11)

Since Equations (11) are in fact the equilibrium equations of the continuum, condition (9a) also
holds, and therefore, the spaces �LB and ULB are purely static.

It is shown in Appendix B that, after making use of the interpolation spaces and assembling
the equilibrium and boundary conditions, the optimization problem in (11), for Von Mises or

Figure 1. Scheme of the lower bound discrete spaces �LB and ULB used for the
stresses and velocities, respectively.
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Mohr–Coulomb plasticity with �=0, can be expressed in the following form:

max �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

f 0 AM

g 0 Ng
M

0 0 Ne−e′
M

0 I 0

⎤
⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

�

xLB1

xLB24

⎫⎪⎪⎬
⎪⎪⎭=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

0

0

b

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

xLB4 , � free

xLB13 ∈L3×·· ·×L3︸ ︷︷ ︸
3×nele

For Mohr–Coulomb plasticity with � �=0, the following expression is obtained instead:

max �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣
f AM

g Ng
M

0 Ne−e′
M

⎤
⎥⎥⎦
{

�

xLB13

}
=

⎧⎪⎨
⎪⎩

−dAM

−dNM

0

⎫⎪⎬
⎪⎭

� free

xLB13 ∈L3×·· ·×L3︸ ︷︷ ︸
3×nele

Explicit expressions of matrices AM , Ng
M and Ne−e′

M and vectors dAM and dNM are also given
in Appendix B. The variables xLB, which are a linear transformation of the stresses rLB, have been
introduced in order to express the yield surface as a product of second-order cones (also named

Lorentz or quadratic cones) L3={x∈R3|x1�
√
x22 +x23 }.

The resulting optimization problem is highly sparse and has the standard form of an SOCP.
Specific techniques for such problems have been developed recently, and in particular, we have
used SeDuMi [14] and SDPT3 [15] with satisfactory results, as the numerical examples in Section 7
show.

4. UPPER BOUND PROBLEM

Discrete spaces �UB�rUB and UUB�uUB that preserve the second inequality in (7) will be termed
purely kinematic spaces. These spaces must then satisfy

sup
r∈B

a(r,u)� max
rUB∈BUB

a(rUB,uUB) ∀uUB∈�UB (12)

We will next describe a set of purely kinematic spaces and demonstrate their kinematic nature,
which depends on the definition of the set of admissible stresses BUB.
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We resort to the same triangulation Th(�) employed in the lower problem. However, the
discrete stress and velocity fields are now given by [9, 10] (see Figure 2):

• �UB: A piecewise constant stress field rUB at each element e is considered, which is in general
discontinuous at the element edges. In addition, we introduce a traction field tUB defined at
each internal edge �e−e′

.
• UUB: Piecewise linear velocities at each element e, which are also discontinuous at the element

edges.

Owing to the presence of the traction field, an additional set of admissible tractions BUB
t must

be defined in such a way that the kinematic nature of the spaces is not violated. This set will be
determined below.

By using the results of the upper bound theorem in (6), with the discrete spaces that preserve
relation (12), we can compute the upper bound of the load factor �UB as the solution of the
following optimization problem:

�UB = min
�(uUB)=1

max
rUB∈BUB

tUBBUB
t

a((rUB, tUB),uUB) (13a)

=max �

s.t.

⎧⎪⎪⎨
⎪⎪⎩
a((rUB, tUB),uUB)=��(uUB)

rUB∈BUB

tUB∈BUB
t

(13b)

where the last identity follows resorting to a reasoning analogous to the one used when deriving
equations (2)–(4). Owing to the presence of the edge tractions tUB, the internal rate of dissipation
has an additional term that accounts for the dissipation at the internal edges, i.e.

a((rUB, tUB),uUB)=
nele∑
e=1

∫
�e
rUB :ε(uUB)dV +

NI∑
�e−e′=1

∫
�e−e′

tUB ·�uUB�d� (14)

where �uUB�=uUB,e−uUB,e′
and NI is the number of internal edges. The purely kinematic nature

of the spaces �UB and UUB defined above has been proved in [9, 10] for Von Mises plasticity and
for a particular set of admissible tractionsBUB

t . We will also construct a set of admissible tractions
for Mohr–Coulomb plasticity and show that the spaces �UB and UUB preserve their kinematic
nature.

Figure 2. Scheme of the upper bound discrete spaces �UB and UUB used
for the stresses and velocities, respectively.
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Let us first note that since the stress field rUB is constant and the tractions are linear, the
computation of the maximum

D(uUB)= max
rUB∈B
tUB∈BUB

t

a((rUB, tUB),uUB)

is reached for a linear velocity field, and thus, our choice for uUB∈UUB will capture exactly such
maximum if BUB≡B, or at least exceeded if

BUB⊇B

We will ensure this relation (i) by imposing the membership rUB∈B at the interior of the
triangles and, (ii) given a stress tensor at the edges rUB� , by defining a set BUB

t for the traction

field tUB=rUB� ne−e′
in such a way that we have

rUB� ∈B⇒ tUB=rUB� n∈BUB
t ∀n (15)

In parallel with the elemental stress admissibility condition, the set BUB
t may be expressed as

BUB
t = {tUB| ft (tUB)�0} (16a)

where ft (tUB) is the yield functions for tractions, which for Von Mises and Mohr–Coulomb
plasticity we define them as

ft,VM (tUB) = |tUBT |−�Y /
√
3 (16b)

ft,MC (tUB) = |tUBT |−c+ tN tan� (16c)

with tT and tN being the tangent and normal components of tUB with respect to the orientation of
the edge �e−e′

. It can be verified that indeed, for both cases, condition (15) is satisfied, and hence,
for both the internal stresses and the (hypothetical) stresses at the edges, we have rUB∈B and
rUB� ∈BUB⊇B. It then follows that the spaces �UB and UUB are purely kinematic.

In Appendix C we turn the upper bound optimization problem in (13b) into a standard SOCP,
which is explicitly given in Equations (C5a) and (C5b). We just mention that, like in the lower
bound problem, we transform the stresses (rUB, tUB) into a set of variables (xUB,zUB) which allow
us to recast the membership constraints rUB∈B and tUB∈BUB

t in the form xUB∈L3×·· ·×L3︸ ︷︷ ︸
nele

and zUB∈L2×·· ·×L2︸ ︷︷ ︸
NI

, respectively.

5. ANALYSIS OF THE LOWER BOUND PROBLEM WITH DISCONTINUOUS
SURFACE LOADING

Before introducing the adaptive remeshing strategies, we will here analyse a locking effect that
occurs when a discontinuous surface loading is applied. The conclusions derived here will help us
to design an effective remeshing strategy in Section 6.
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The need for fan-type mesh distribution around points with discontinuous Neumann conditions
was already pointed out by Chen [1] when analysing the strip footing problem with the lower
bound theorem and adding discontinuities in the stress field. These discontinuities allow variations
in the direction of the principal stress when using elements with constant stresses. This fact was
recognized in [1] when subdividing the rigid-plastic domain into subdomains that are in static
equilibrium, and also in the context of the discretizations of the stress and velocity fields used
[7, 8]. The usual approach for such situations is to use a large number of fan-type elements around
the point with the load discontinuity.

In order to study the necessity for this mesh pattern, we first analyse the simple problem depicted
in Figure 3(a), which we will solve using the lower bound formulation given in Section 3. The
vertical surface load gT={0,−1} is applied along a free surface, with a discontinuity at point P .
The domain around P is discretized first with two elements, a and b, which are connected at point
P at the nodes also denoted by a and b (see Figure 3(b)). The maximum load factor obtained for
this local system considered here is denoted by �loc. According to the discretized lower bound
problem, the stress is piecewise linear, and thus discontinuity is allowed at the top Neumann
boundaries (with normal vectors n1 and n3) and at the vertical internal edge (with normal vector
n2). However, in order to guarantee a rigorous lower bound, equilibrium is enforced at these
boundaries, or equivalently, due to the linearity of the stress field, at nodes a and b. Consequently,
the following nodal equilibrium equations are obtained:

ran1 = �locg

(ra−rb)n2 = 0

rbn3 = 0

(17)

It can be verified that the previous equations allow one to express the stresses at a and b as

ra =
[
� 0
0 −�loc

]
and rb=

[
� 0
0 0

]
(18)

where � is a free variable. In addition, the admissibility of the stresses ra and rb, for the Von
Mises yield surface with yield stress �Y , gives rise, after taking into account Equations (18), to
the following conditions:

(�+�loc)2� 4
3�

2
Y

�2� 4
3�

2
Y

Figure 3. (a) Continuum problem and (b) simplified model with two elements used
for the analysis of the lower bound problem.
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The maximum value of � that satisfies these conditions is given by �loc=4�Y /
√
3, which is

obtained for �=−2�Y /
√
3. Three main conclusions can be derived from this result:

1. A maximum value for �loc has been found. The lower bound problem searches the maximum
value of �=�LB that satisfies all the discretized equilibrium equations in the whole domain.
Therefore, in a mesh that contains the local simplified system given above, the values found
provide a limitation in the maximum value, i.e. �LB��loc.

2. Any remeshing strategy of the two elements that subdivides each element into four similar
elements (see the pattern in Figure 7(a) in the next section) leads to an identical problem as
the one considered here and thus leaves the value of �loc unchanged.

3. If we add one additional element around point P , let us say element c, we are adding three
more variables rc and two more equilibrium equations at the internal edge, plus one more
yield condition for rc. Therefore, if the new conditions are independent of the previous ones,
the limitation found for the local problem always exists, independently of the number of
elements.

In order to verify numerically the last remark, and to test the dependency of �loc on the geometry
of the model, we have modelled the simplified model for different opening angles � of the two
free surfaces and for different numbers of elements nele (see Figure 4). We have used equilibrium
equations at point P equivalent to those written in (17) for each element–element boundary and
external edge. This is tantamount to the conditions that the lower bound problem would impose
at node P .

In an attempt to capture the slip line exactly for the case �=180◦, we have performed an
additional analysis by adding elements only within a central angle �. The evolution of the �loc is
plotted in Figure 5. Two further conclusions can be extracted:

4. In agreement with point 3 above, a maximum value �loc is always found.
5. It has been verified in Figure 5 and Table I, that for values of �>90◦ the load factor �loc

converges to the exact solution (2+	)c=5.1415926, and for ��80, the error decreases much
slower or is constant after a certain number of elements.

We found the last point relevant in two aspects. First, there is no need to remesh radially in all
directions, and thus it appears reasonable to design a strategy that concentrates elements in those
directions that constrain the maximization problem. Second, the load factor of the flexible strip

(a)

 10
 9

 3

 30  60  90  120 150 180 210 240 270  2
 4

 5
 6

 7
 8

nele

0

2

4

6

8

(b)

Figure 4. Values of �loc as a function of � and nele.
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Figure 5. Values of �loc for �=180◦ and different number of elements within different centred angles �.

Table I. Error in percent of �loc for �=90 and 80◦.

nele 20 50 100 200 300 400 500 1000

�loc(�=90) 6.527 0.718 0.154 0.035 0.015 0.008 0.005 0.001
�loc(�=80) 6.435 3.907 3.624 3.559 3.547 3.544 3.542 3.539

footing has been found by only studying the solution of a local constrained problem. This means
that if the velocity and stress field at the limit load are not desired, an estimate of the load factor
may be computed by just analysing the reduced model, which is computational much cheaper than
modelling the whole domain. Furthermore, from the tightness of �loc, we can conclude that this
estimate converges to the theoretical load factor and that the latter, in the non-discretized studied
problem, is determined by a local phenomenon, independently of the slip lines (or velocity and
stress fields).

We have performed the same analysis for a Mohr–Coulomb material, where the locking effect
of the lower bound has also been encountered. In this case, the same conclusions have been found.
However, instead of the value Ns = (2+	)c, the solution converged towards the Prandt solution,
which is given by [1, 26]

�=c(e	 tan� tan2(45+�/2)−1)cot�

In particular, for the values c=1 and �=30◦, this expression yields �=30.13962, which is the
limit value of the local problem (see Figure 6).

It can then be concluded that the radial subdivision of the affected elements (see the pattern in
Figure 7(b)) appears as a reasonable strategy. Further analyses using more general optimal angular
distributions of elements are necessary, and research along this line is currently being carried out.
Also, the conditions for the existence of a local problem in a general limit analysis and whether
the observed behaviour for the strip footing can be extended in three-dimensional for a footing
slab must still be investigated.
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Figure 6. Evolution of �loc as a function of the number of elements for a
Mohr–Coulomb material with c=1 and �=30◦.

Figure 7. Patterns used in remeshing strategies MS1–MS4. Selected element, edge and node are indicated
with light grey, thick line and large bold dot, respectively.

6. MESH ADAPTIVITY

In order to capture the localization of the strains and stresses that characterize the solution of limit
analysis, the design of an efficient mesh adaptivity strategy is highly desirable. In Section 6.1
we introduce two error estimates, one associated with the elements and another associated with
the internal edges. The latter permits one to construct fan-type meshes, which are necessary to
overcome the locking phenomenon when discontinuous surface loading exists. In addition, from
the conclusions in the previous section, two meshing strategies are described in Section 6.2, which
additionally take into account either the edge velocities of the lower bound problem or the velocity
jumps of the upper bound problem. Alternatively, when no fan-type patterns are required, we also
introduce a meshing strategy that provides a non-embedded mesh.
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6.1. Elemental error estimate

It is shown in Appendix D that the global bound gap �UB−�LB may be expressed as the sum of
elemental contributions �e

� plus the sum of contributions ��
� arising from the discontinuity of the

velocity field across the internal edges, i.e.

�UB−�LB=
nele∑
e=1

�e
�+

NI∑
�=1

��
�

The elemental and edge contributions are, respectively, given by

�e
� = De(uUB)−

(∫
�e

(−∇·rLB)·uUBdV +
∫

��e
(ne ·rLB)·uUBd�

)
︸ ︷︷ ︸

le(uUB)

(19a)

��
� = D�(uUB)+

∫
�e−e′
rLBn ·�uUB�d� (19b)

where the expression of the elemental plastic dissipation rates De(uUB) and D�(uUB) depends on
the plasticity criteria. For Von Mises they are given by

De(uUB) =
∫

�e
�Y εeq dV

D�(uUB) =
∫

�e−e′
�Y√
3
|�uUB�|d�

whereas for Mohr–Coulomb they are expressed as

De(uUB) =
∫

�e
c

√
3

1+2 tan2�
εeq dV

D�(uUB) =
∫

�e−e′
ccos�|�uUB�|d�

We note that the elemental gap �e
� is the same employed in [9, 10], where it is demonstrated

that �e
��0. Furthermore, since by definition

D�(uUB)= max
tUB∈BUB

t

∫
�e−e′

tUB ·�uUB�d�

and we have imposed the membership conditions BUB⊇B and rLB∈B, we have that D�(u)�∫
�e−e′ rLBn ·�uUB�d�, and therefore ��

��0. The two contributions �e
� and ��

� are positive and thus
valid candidates for error estimates.

Consequently, the elements and edges that must be remeshed may be chosen according to
their contribution to the bound gap. After computing the maximum element or edge bound gap

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2008)
DOI: 10.1002/nme



UPPER AND LOWER BOUNDS IN LIMIT ANALYSIS

�max=maxe,� �e,�
� , we will remesh those entities for which

�e
�> 
��max (20a)

��
�> 
��max (20b)

where 
� is a chosen threshold for the bound gap, with 0�
��1. The subdivision of each element
is performed according to the following two remeshing strategies:

MS1: If the error contribution of an element interior satisfies (20a), or any of its edges satisfy
(20b), the element will be quadrisected according to the pattern in Figure 7(a). Other elements
may be additionally remeshed in order to build a conforming mesh.

MS2: In addition to remeshing strategy MS1, the elements that have edges satisfying condition
(20b) are subdivided according to the pattern in Figure 7(b).

It will be shown in the numerical examples that when the remeshing strategy MS1 is not able to
overcome the locking of the lower bound, strategy MS2 introduces the necessary radial elements
to prevent it. We note that the latter may worsen the aspect ratio of some elements in internal areas
where no discontinuous loading is applied. For this reason, two additional remeshing strategies
have been designed, which will be described in the next paragraphs.

6.2. Radial remeshing strategies

It has been verified numerically that in problems with discontinuous Neumann conditions, such
as the strip footing problem analysed in Section 7.1 or the model analysed in Section 5, the only
active constraints are those at the edges of the elements connected to the point where the load
is discontinuous. Since the edge velocities are conjugated to the edge equilibrium equations, the
following remeshing strategies are proposed:

MS3: We define, for each node a, the following resultant of the edge velocities:

�ua� =∑
e�a

ua,e�1
−ua,e�2

where ua,e�1
and ua,e�2

are the edge velocities of the lower bound problem, for those edges belonging
to element e, which is connected to node a. By definition, �ua� =0 at the internal nodes and
therefore is a suitable candidate to detect those equilibrium equations at the edges that constrain
exceedingly or even block the lower bound solution. After applying remeshing strategy MS1,
strategy MS3 applies the remeshing pattern shown in Figure 7(c) (fan-type subdivision in all
directions around a selected node) to those nodes that satisfy ‖�ua�‖�
umaxa ‖�ua�‖, where 
u is
a threshold parameter, with 0�
u�1.

MS4: It has been numerically tested that the slip lines in a limit analysis problem are better
represented by the discontinuities of the piecewise linear velocity field of the upper bound problem.
For this reason, we define the following jump of the tangent edge velocities for each node a of
each element e:

ūa,e� =ua,e��1
+ua,e��2

where ua,e��i = (I−n�i ⊗n�i )�u
a,e� is the jump of the upper bound tangent velocity across the

edge �i , i =1,2 of element e at node a. Strategy MS4 remeshes radially those nodes where
‖ūa,e� ‖�
umaxa,e ‖ūa,e� ‖, with 
u a threshold parameter. These nodes are radially remeshed
according to the pattern in Figure 7(d), i.e. only in the direction where element e is located.
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6.3. Non-embedded remeshing strategy

In many practical problems, the tightness of the load factor bounds is strongly dependent on the
mesh orientation, which, when using embedded remeshing strategies, is in turn given by the initial
mesh. In order to avoid this dependence, we have also implemented a non-embedded adaptive
strategy, which we note has the advantage of allowing mesh de-refinement.

The new elemental mesh size ĥe is obtained by applying a standard Richardson extrapolation
to the linear elements employed here. Accordingly, assuming that the solution is mostly regular,
the desired nodal mesh size may be computed from the elemental error estimates in (19a) as
follows [27]:

ĥe=he

√√√√ �̂e
�

�e
�

(21)

where �̂e
� =
�maxe�

e
� is the desired maximum elemental gap at the next iteration. Owing to the

presence of very small elemental gaps in areas that behave as rigid blocks, the resulting mesh size
ĥe may become too large or yield ill-posed mesh size fields (the variations of the mesh size are too
sharp). For these reasons, in Equation (21), instead of the elemental gap �e

�, we have employed
the larger value:

�̃
e
� =
√

(�̄
e
�)

2+(�e
�)

2 (22)

where �̄
e
� =∑n∈e�n

�/3 is an averaged elemental gaps computed from the set of nodal gaps �n
�. The

latter are the maximum elemental gap of the Ne
n elements connected to node n, i.e. �n

� =maxe�n �e
�.

Standard remeshing algorithms make use of a pointwise field with the desired new mesh size.
In the present case, we have used the EZ4U package [28], which requires the nodal values of the
new mesh size. This nodal mesh size is extracted from the elemental mesh sizes ĥe in (21) by
weighting the elemental values with the elemental areas Ae:

h̄n =
∑

e�n ĥe
√
Ae∑

e�n
√
Ae

(23)

With this notation at hand, the non-embedding remeshing strategy may be stated as follows:

MS5: Define new elemental mesh sizes by using ĥe=he
√

�̂
e
�/�̄

e
�, with �̄

e
� in (22), and from

these values, compute the nodal mesh sizes in Equation (23).

7. NUMERICAL EXAMPLES

7.1. Flexible strip footing

This problem has been widely studied elsewhere [7, 8, 11, 12, 17, 18, 23, 29], but it is analysed here
to show that the mesh strategies MS2–MS4 converge to the theoretical load factor satisfactorily due
to the introduction of a fan-type mesh around the point with the surface load discontinuity. The load
of a flexible strip footing is applied on an assumed weightless soil (see Figure 8(a)). For a purely
cohesive material (�=0◦) in plane strain, the analytical solution is given by �/c= (2+	)c [1].
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Figure 8. Strip footing. Geometry (a) and evolution of bounds using strategies MS1–MS4 (b).

Figure 9. Strip footing problem. Edge velocities (line elements) and body velocities (equal to zero) with
a (a) coarse mesh and (b) a finer mesh.

In order to illustrate the effect of the remeshing strategy, we have plotted in Figure 9 the linear
velocities of the edges and the constant velocities of the body element. We recall that these are
conjugate to the body equilibrium equations, ∇ ·r+�f=0, and the edge equilibrium equations,
(re−re′

)·ne−e′ =0. It emerges from the graphs that the only active constraints are the latter edge
equilibrium relations (the body velocities are practically zero).

As it can be observed from the evolutions of the bounds in Figure 8(b), meshing strategies
MS2–MS4 prevent the locking of the lower bound. Figure 10 shows the resulting meshes after
employing nine, seven and six iterations, respectively. From the comparison of the four strategies in
Figures 8(b) and 10 it can be concluded that strategy MS2 has a worse convergence than MS3 and
MS4. This is due to the fact that the contributions of the edges to the bound gap are not solely due
to the presence of the discontinuous load, as the distributed remeshed areas in Figure 10(a) show.
We also point out that although the meshes of strategies MS3 and MS4 are more concentrated
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Figure 10. Strip footing problem: detail of the mesh in the upper left corner showing the
point with surface load discontinuity. Mesh using strategies MS2 (after nine iterations with

� =0.1) (a), MS3 (after seven iterations with 
u =0.2 and 
u =0.8) (b), and MS4 (after

six iterations with 
u =0.1 and 
u =0.8) (c).

at the point with the load discontinuity, they still contain some extended areas that are finely
meshed. This drawback may be caused by the impossibility to reproduce rigidly rotated areas with
the piecewise constant velocity field of the lower bound problem. It is interesting to remark that
the limit load factor for this problem can be estimated by just analysing the point with the load
discontinuity, which in fact requires a minimal number of elements (see the analysis in Section 5).
Indeed, the local analysis with 12 elements leads to a load factor estimate (5.1165) that is better
than the analysis of the whole domain with more than 3000 elements (5.1148).

7.2. Vertical cut

Figure 11 depicts the geometry and boundary conditions of this problem, which has been also
analysed in [7, 17, 23] discretized with uniform meshes, and in [18, 22] using adaptive remeshing.
The stability of the vertical cut in a purely cohesive soil (�=0) is given by the parameter
Ns =H�/c, where � is the soil density and c is the cohesion. The tighter computed lower bound
for Ns has been reported in [7]. In [18], an anisotropic error estimate is used, which requires an
optimal-mesh adaptive scheme that solves an optimization problem for the computation of the
new element sizes. Our error estimate requires just to evaluate expression (19a) and apparently
can slightly improve the lower bound given in [18] for a similar number of elements. Table II
compares the bounds obtained with the analysis in the literature and the present work with the
initial mesh in Figure 11(b). A further run with 15 214 elements yields the values NLB=3.7748
and NUB=3.7849. As a reference, the latter analysis took 237 and 438 s for the lower and upper
bound problems, respectively, when using a PC with 3GHz and 1GB of RAM and solving the
SOCP with SDPT3-4.0.

In order to test the mesh dependence of the results, we have also run the test with MS1 and
using the initial mesh in Figure 11(c) (the internal edges of the two elements at the top left corner
do not follow the 45◦ slip line). In this case, the lower bound was reduced to Ns =3.76815 when
using 12 518 elements. This fact suggests that the evolution of the upper and lower bounds depend
on the initial mesh when using an embedded remeshing strategy. We have also used strategy MS5,
which improved the latter result, although it could not improve the lower bounds of MS1 applied
to the mesh in Figure 11(b). Table III contains the lower bounds obtained for the three tests, and
Figures 12(a) and (b) show the final meshes when using strategies MS1 and MS5. Figures 12(c) and
(d) show a contour plot of the internal dissipation energy rate. Interestingly, it can be observed that
despite the two meshes reproduce more than one slip line, the dissipative energy is concentrated
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Figure 11. Vertical cut problem. (a) Geometry and two initial meshes considered (b) and (c).

Table II. Vertical cut problem. Comparison of bounds obtained by Lyamin and
Sloan [7, 18] and in the present work, using strategy MS1.

Lower bound Upper bound

Reference # elements Ns # elements Ns

Lyamin et al. [7, 17] 2880 3.763 1110 3.801
6400 3.772 2928 3.794

Lyamin et al. [18] 500 3.71 — —
2000 3.76 — —

Present work 595 3.7352 595 3.8712
(MS1 with the initial 1864 3.7643 1864 3.8223
mesh in Figure 11(b)) 6926 3.7728 6926 3.7962

Table III. Vertical cut problem. Comparison of lower bounds obtained using strategy MS1 with initial
mesh in Figure 11b, strategy MS1 with initial mesh in Figure 11(c), and strategy MS5.

MS1, mesh Figure 11(b) MS1, mesh Figure 11(c) MS5

# elem. LB UB # elem. LB UB # elem. LB UB

595 3.7352 3.8712 546 3.6877 3.8906 578 3.6253 3.9533
14 887 3.7743 3.7877 10 742 3.7704 3.7969 12 180 3.7731 3.8127

along one single area located within the apparent slip lines. This discrepancy between the values
of the error estimate and the areas with higher dissipated energy may be due to two reasons: either
the remeshing strategy shall be improved in order to concentrate finely meshed areas in a single
slip line or the actual collapse mechanism contains a slip band with a non-negligible thickness.
Although our results are prone to the latter situation, the computation of tighter bound gaps is still
necessary to verify this conclusion.

7.3. Squared plate with asymmetric holes

This problem has been originally modelled in [30] in the context of viscoplasticity and in compres-
sion, and by Zouain et al. [24] using a mixed element for shakedown analysis. Makrodimopoulos
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Figure 12. Vertical cut problem: final mesh using strategy MS1, 14 887 elements (a) and strategy
MS5, 9346 elements (b). The contour plots of the internal dissipation rate for meshes (a) and

(b) are shown in (c) and (d), respectively.

Figure 13. (a) Geometry and (b) initial mesh employed in the problem of two asymmetric holes.

and Martin [8] have used the same lower bound interpolation described here, together with the
SOCP package MOSEK [16]. However, they have not applied any adaptive remeshing strategy.
Thus, we manage to obtain tighter bounds for a similar number of elements (see Table IV) using the
initial mesh in Figure 13. Moreover, the resulting meshes when using strategy MS1 (see Figure 14)
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Table IV. Comparison of lower bounds obtained in [8] and in the present work using strategy MS1.

�=0◦ �=30◦

p/c p/c

Reference # elements LB UB # elements LB UB

Makrodimopoulos 2996 1.7840 — 2996 1.0464 —
and Martin [8] 12 738 1.8089 — 12 738 1.0562 —

Present work 1744 1.8018 1.8601 1178 1.0565 1.0820
13 699 1.8119 1.8351 12 710 1.0581 1.0652

Figure 14. Final mesh with 10 778 elements employed in the problem of two asymmetric
holes with (a) �=0◦ and (b) �=30◦.

in a purely cohesive material (Tresca criteria, c=1, �=0◦) and a cohesive-frictional (�=30◦)
material reveal the different failure mechanisms obtained in each case.

8. CONCLUSIONS

The upper and lower bound problems of limit analysis have been written as second-order optimiza-
tion problems. By using adequate interpolation spaces for the stress and velocity fields [9–12],
the solution of each optimization problem furnishes strict bounds of the load factor, and a set of
discretized stress and velocity fields.

We have extended the formulation in [9, 10], written for Von Mises criterion, by adapting
the structure of the problem to two-dimensional Mohr–Coulomb plasticity. In both cases, the
membership constraints may be written as quadratic constraints, which gives rise to an optimization
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problem that is suited for Second-Order Conic Programming (SOCP), and can be solved resorting
to recently developed packages [14, 15].

The stress and velocity fields of the upper and lower bound problem are used to construct an
a posteriori error estimate, which includes contributions from the elements and from the interior
edges. From these error estimates, we have presented remeshing strategy MS1, which can furnish,
for the examples shown here and using similar number of elements, better bounds than those given
in existing references.

Special regard has been paid to the analysis of problems with discontinuous surface loading.
Although the need of fan-type mesh patterns is well recognized in the literature, we have highlighted
the sources of the locking phenomenon in the absence of these mesh patterns, and studied a local
problem that includes the point where the surface load is discontinuous. From this analysis and
the numerical results, and resorting to the edge contributions or the discontinuities of the velocity
field, we have designed remeshing strategies MS2–MS4 that add elements in a fan-type pattern
and that are able to radially mesh only in the necessary directions. In this manner, the locking of
the lower bound has been prevented. Furthermore, it has been observed that the value of the load
factor of the whole domain can be estimated by analysing this local problem, which has far less
elements than the global problem. Although the local problem studied here is characterized by a
discontinuous external load, the general determination and classification of such local problems in
limit analysis is still an open question.

APPENDIX A: SPECIFIC EXPRESSIONS FOR VON MISES AND
MOHR–COULOMB PLASTICITY

In Von Mises plasticity, the yield function is given by

f (r)=√
devr :devr−

√
2
3�Y (A1)

where �Y is the yield stress and devr is the deviatoric part of r. From the associative rule
ε=�� f (r)/r=�devr/

√
devr :devr, and the definition of the internal work dissipation (5), it

follows that D(u) and εeq(u) can be expressed as

D(u)VM=
∫

�
�Y εeq dV

where εeq(u)=√
(2/3)ε(u) :ε(u) is the equivalent strain. In two-dimensional plane strain analysis,

the yield function in (A1) is expressed as

f (r)=
√

(�xx −�yy)2+4�2xy − 2√
3
�Y

By applying the following transformation of the stress variables rT={�xx �yy �xy}:

x24=

⎧⎪⎨
⎪⎩
x2

x3

x4

⎫⎪⎬
⎪⎭=M−1

VMr, M−1
VM=

⎡
⎢⎣
0 0 2

1 −1 0

1 0 0

⎤
⎥⎦ (A2)
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the membership constraint r∈B={r∣∣ f (r)�0} is equivalent to the following set of constraints:

x13∈L3, x1= 2√
3
�Y , x4 free (A3)

where L3={x∈R3|x1�
√
x22 +x23} is the three-dimensional Lorentz cone.

Regarding Mohr–Coulomb plasticity, its yield function for two-dimensional analysis reads

f (r)=
√

(�xx −�yy)2+4�2xy +(�xx +�yy) sin�−2ccos�

where c and � are the soil cohesion and internal friction angle. The rate of plastic dissipation is
accordingly given by

D(u)MC=
∫
�
c

√
3

1+2 tan2�
εeq dV

By transforming the stress variables as

x13=

⎧⎪⎨
⎪⎩
x1

x2

x3

⎫⎪⎬
⎪⎭=M−1

MCr+ d (A4a)

where

M−1
MC=

⎡
⎢⎣

− sin� − sin� 0

0 0 2

1 −1 0

⎤
⎥⎦ , d=

⎧⎪⎨
⎪⎩
2ccos�

0

0

⎫⎪⎬
⎪⎭ (A4b)

we can replace the condition r∈B by x13∈L3. If �=0, the same transformation used for Von
Mises plasticity can be used here, but replacing the equality constraint in (A3) x1= 2√

3
�Y by

x1=2c.
Note that since matrices M−1

VM and M−1
MC in (A2) and (A4b) are invertible, we can express r as

a function of the x variables:

r=MVMx24, r=MMCx13−MMCd (A5a)
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where

MVM=
⎡
⎢⎣

0 0 1

0 −1 1

0.5 0 0

⎤
⎥⎦ , MMC= 1

2

⎡
⎢⎢⎣

(sin�)−1 0 1

(sin�)−1 0 −1

0 1 0

⎤
⎥⎥⎦ (A5b)

APPENDIX B: DISCRETE LOWER BOUND PROBLEM

We next write the algebraic form of the discrete lower bound problem in (11). Full details of
the implementation can be found in [9, 10, 12], and we will give here the mean steps towards the
construction of the final optimization problem.

For each element e, we denote the elemental stress vector by reT={re,1T re,2T re,3T}, with
re,nT={�e,nxx �e,nyy �e,nxy }, n=1,2,3, the nodal stresses. On the other hand, we note that since the
stresses are linear, imposing the second and third equality constraints at the whole edge is equivalent
to imposing them at each node of the edge. Consequently, the first two equality constraints in (11)
may be then expressed as

Aere+�fe = 0, e=1, . . .,nele (B1a)

Nnrn,e+�gn,e = 0, e,n∈�g (B1b)

where �g is the set of external boundaries with Neumann conditions, and condition (B1a) is
imposed at the nodes connected to those edges, with normal vector nT�g ={nx ny}. Matrices Ae

and Ne are given by

Ae = [D1 D2 D3], Dn =
[
I n,x 0 I n,y

0 I n,y I n,x

]
(B2a)

Nn =
[
nx 0 ny

0 ny nx

]
(B2b)

where I n,x and I n,y are the derivatives of the interpolating functions of node n with respect to x
and y, respectively. Note that, in order to ensure exact equilibrium, we have to assume that the
body loads f and the surface loads g are, at most, constant at each element and linear at each
edge, respectively. Their elemental and nodal values are given in the vectors fe and gn,e in (B1).
The third equality constraint in (11) is the equilibrium equation at the internal edges. Any pair of
elements e and e′, with a common edge �e−e′

and with a normal vector ne−e′
, leads to two nodal

equations that are expressed as

Nnrn,e−Nnrn,e
′ =0, e,e′,n∈�e−e′

(B3)
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where Nn has the same form as in (B2b). The assembling of the elemental (B1) and (B3), together
with the membership constraint in (11), leads to the following global optimization problem:

max �

s.t.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣
f A

g Ng

0 Ne−e′

⎤
⎥⎥⎦
{

�

rLB

}
=0

re,n ∈B, n=1,2,3;e=1, . . .,nele

(B4)

Matrix A and vectors f and g are the assembling of the elemental and nodal contributions of
Ae, fe and ge, respectively, whereas matrices Ng and Ne

e′ are the assembled nodal matrices Nn in
(B1b) and (B3), respectively. The vector rLB corresponds to the whole set of nodal stresses and
has 3×3×nele scalar components. In order to write the membership constraint as a second-order
conic constraint, a linear transformation of the nodal stresses is required. It is shown in Appendix A
that in Von Mises plasticity or in Mohr–Coulomb with �=0, it is convenient to introduce the
variable xn,e14 ={xn,e1 xn,e2 xn,e3 xn,e4 } and use the elemental transformation:

rn,e=MVMx
n,e
24 (B5)

together with the condition x1=2�Y /
√
3 or x1=2c. In Mohr–Coulomb plasticity with � �=0, we

use the variable xn,e13 ={xn,e1 xn,e2 xn,e3 } and the transformation

rn,e=MMCx
n,e
13 −MMCd (B6)

Explicit expressions for matrices MVM and MMC and vector d are given in Equations (A4b) and
(A5) of Appendix A. Inserting the transformation (B5) into the constraints in (B4) yields the
following optimization problem:

max �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎣

f 0 AM

g 0 Ng
M

0 0 Ne−e′
M

0 I 0

⎤
⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

�

xLB1

xLB24

⎫⎪⎪⎬
⎪⎪⎭=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

0

0

b

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

xLB4 , � free

xLB13 ∈L3×·· ·×L3︸ ︷︷ ︸
3×nele

(B7)

valid in Von Mises or Mohr–Coulomb plasticity with �=0. For each plastic model, the vector b
is given by bTVM=2�Y /

√
3{1 . . .1}3×nele and bTMC=2c{1 . . .1}3×nele , respectively. Matrices AM ,

Ng
M and Ne−e′

M are the assembling of the elemental products AeM and nodal products NnM. The

global vectors xLB1 and xLB24 have the following components xLB1
T={x1,11

T
. . .x3,nele1

T}3×nele and

xLB24
T={x1,124 . . .x3,nele24 }3×3×nele .
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J. J. MUÑOZ ET AL.

A slightly shorter expression than (B7) is obtained when inserting transformation (B6) into
(B4), which gives rise to the lower bound optimization problem in Mohr–Coulomb plasticity with
� �=0:

max �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣
f AM

g Ng
M

0 Ne−e′
M

⎤
⎥⎥⎦
{

�

xLB13

}
=

⎧⎪⎨
⎪⎩

−dAM

−dNM

0

⎫⎪⎬
⎪⎭

� free

xLB13 ∈L3×·· ·×L3︸ ︷︷ ︸
3×nele

(B8)

where dAM and dNM are the assembling of the elemental products AeMMCd and NnMMCd. The

three-dimensional Lorentz cone L3 is defined as L3={x∈R3|x1�
√
x22 +x23}.

APPENDIX C: DISCRETE UPPER BOUND PROBLEM

Inserting the membership constraints for the edge traction tUB, the optimization problem in (13b)
turns into

max �

s.t.

⎧⎪⎪⎨
⎪⎪⎩
a(rUB,uUB)=��(uUB), ∀uUB∈UUB

tUB∈BUB
t

rUB∈BUB

(C1)

where rUB={r1T . . .rnele
T}3×nele and uUB={u1T . . .unele

T}2×3×nele are the global vectors of
stresses and velocities, respectively. Their elemental components are given by re={�exx �eyy �exy}
and ueT={u1,eT u2,e

T
u3,e

T}. In addition, we denote the nodal traction at the edge �e−e′
by

te−eT={t1,e−e′T
t2,e−e′T}. In order to recast (C1) in a standard optimization form, we first note

that, recalling the nodal matrices Dn in (B2a), the elemental contribution of the terms in a(, ) and
�() may be expressed as

∑
e=1,nele

a(re,ue) = ∑
e=1,nele

ue ·
∫

�e

⎡
⎢⎢⎣
D1

D2

D3

⎤
⎥⎥⎦ dVre+ ∑

e,e′∈�e−e′

∫
�e−e′

te−e′
(ue−ue

′
)d�

= ∑
e=1,nele

ue ·Ãre+ ∑
e,e′∈�e−e′

ue−e′ ·Bete−e′

= uUB ·(ArUB+Bt) (C2)
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∑
e=1,nele

∫
�e

ue ·fdV = ∑
e=1,nele

∑
n=1,2,3

un,e ·
∫

�e
I nfdV = ∑

e=1,nele
ue ·fe =uUB ·f

∑
e∈�g

∫
�e
g

ue ·gd� = ∑
e∈�g

∑
n∈�e

g

un,e ·
∫

�e
g

I ngd�= ∑
e∈�g

ue ·ge=uUB ·g

where ÃeT =∫�e [D1T D2T D3T]dV . The nodal velocities at the edges ve−e′
� and the elemental

matrix Be are given by

ue−e′
� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1,e

u2,e

u1,e
′

u2,e
′

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, Be−e′ =

⎡
⎢⎢⎢⎢⎢⎣

Ĩ11 Ĩ12

Ĩ21 Ĩ22

−Ĩ11 −Ĩ12

−Ĩ21 −Ĩ22

⎤
⎥⎥⎥⎥⎥⎦ , Ĩi j = I i� I

j
� I2

with I2 being the 2×2 unit matrix and I n� ,n=1,2 the nodal interpolating functions at the edges.
The elemental vectors fe and ge in (C2) are two elemental vectors associated with the body and
surface loads. Matrices Ã and B and vectors f and g are the assembled elemental contributions of
Ãe, Be−e′

, fe and ge, respectively.
With this notation at hand, the condition a(rUB,uUB)=��(uUB), ∀uUB∈UUB is equivalent to

the following system of equations:

ÃrUB+BtUB−�(f+g)=0

Consequently, we can rewrite the upper bound optimization problem in (C1) as

max �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−(f+g) B Ã]

⎧⎪⎪⎨
⎪⎪⎩

�

tUB

rUB

⎫⎪⎪⎬
⎪⎪⎭=0

tUB∈BUB
t

rUB∈BUB

(C3)

The membership constraints may be recasted as conic constraints by using the following trans-
formations. Regarding the tractions, for each interior edge �e−e′

, the Von Mises condition in (16b)
is applied to the two nodal tractions t1,e−e′

and t2,e−e′
. After introducing the variable zn ={zn1 zn2}T,

with z2= tnT , the Von Mises condition in (16b) is equivalent to

zn ∈L2, n=1,2

zn1 =�Y /
√
3, n=1,2

tnN free, n=1,2

(C4a)
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The relation between the local components of the tractions {tnT tnN } and the x.y components of

tn,e−e′
for each node n at the edge e−e′ is given by the relation {tnT tnN }=R−1tn,e−e′

, where R is

the two-dimensional matrix that rotates the local edge axis �e−e′
into the global x .

The Mohr–Coulomb condition in (16c) may be expressed in a manner similar to (C4a)

zn ∈L2, n=1,2 (C4b)

where the following transformation of variables has been used:

zn =
[− tan� 0

0 1

]⎧⎨
⎩t

n,e−e′
N

tn,e−e′
T

⎫⎬
⎭+
{
c

0

}
, n=1,2

For each internal edge �e−e′
, the inverse of this transformation may be expressed as

te−e′ =
[
R 0
0 R

]
⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

−1/ tan� 0 0 0

0 1 0 0

0 0 −1/ tan� 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦
{
z1

z2

}
+ c

tan�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

0

1

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎠

=Re−e′
(Te−e′

ze−e′ +be−e′
tMC)

In order to recast the stress membership constraint in (C3) as a conic constraint, we resort to
the same technique employed in the lower bound method. In the present case, though, the stresses
field is not nodal, but elemental, and thus we will use the transformations in (B3) but applied to
the elemental stresses re. After gathering relations in (C3) and (C4a), the resulting optimization
problem in Von Mises plasticity and purely frictional Mohr–Coulomb material (�=0) reads

sup �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

−(f+g) (BR)N (BR)T 0 0 ÃM

0 0 0 0 I 0

0 0 0 I 0 0

⎤
⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
tUBN

zUB2

zUB1

xUB1

xUB24

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−bt

b

1

2
b

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�, tUBN ,xUB4 free

zUB∈L2×·· ·×L2︸ ︷︷ ︸
2×NI

xUB13 ∈L3×·· ·×L3︸ ︷︷ ︸
3×nele

(C5a)

where NI is the number of interior edges, and the vector b is given by bTVM=2�Y /
√
3{1 . . . 1}nele

and bTMC=2c{1 . . . 1}nele in Von Mises and Mohr–Coulomb plasticity, respectively. Matrices
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(BR)N and (BR)T are the assembled terms of the product Be−e′
Re−e′

associated with variables tN
and tT , respectively. Vector tN contains all the nodal normal components tnN . In a Mohr–Coulomb
material with � �=0, we obtain from Equations (C3) and (C4b),

sup �

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−(f+g) BTR ÃM ]

⎧⎪⎪⎨
⎪⎪⎩

�

zUB

xUB13

⎫⎪⎪⎬
⎪⎪⎭=−dAM −bt

� free

z∈L2×·· ·×L2︸ ︷︷ ︸
2×NI

xUB13 ∈L3×·· ·×L3︸ ︷︷ ︸
3×nele

(C5b)

Matrix ÃM and vector dAM are the assembling of the elemental contributions ÃeM and Md,
withM and d in (A5b) and (A4b). The matrix product BTR is the assembled form of the elemental
products Be−e′

Te−e′
Re−e′

, and vector bt is the assembling of the terms Be−e′
Te−e′

Re−e′
be−e′
tMC.

APPENDIX D: DEDUCTION OF ELEMENTAL AND EDGE GAP CONTRIBUTIONS

Let us first note that, due to the equilibrium conditions at the Neumann and interior edges in (11),
the following relation can be derived:

nele∑
e=1

∫
��e
rLBn ·uUB d� = �LB

∑
�N

∫
��e

g ·uUB d�+
NI∑

�e−e′=1

∫
�e−e′
rLBn ·�uUB�d�

= �LB
∫

��
g ·uUBd�+

NI∑
�e−e′=1

∫
�e−e′
rLBn ·�uUB�d�

By using this relation, and from the condition �(uUB)=1, we can express the lower bound �LB

as follows:

�LB = �LB�(uUB)=�LB
∫

�
f·uUB dV +�LB

∫
�g

g ·uUBd�

=
nele∑
e=1

(∫
�e

(−∇·rLB)·uUBdV +
∫

��e
rLBn ·uUBd�

)

−
NI∑

�e−e′=1

∫
�e−e′
rLBn ·�uUB�d� (D1)
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On the other hand, the upper bound �UB is the solution of the min–max problem in (13a). From
the expression of a(, ) in (14), we see that the inner maximum is equal to +∞ if ε �=�� f /�r and
�uUB� �=�� ft/�t, or equal to D(uUB) otherwise. For Von Mises and Mohr–Coulomb plasticity, the
rate of plastic dissipation at the optimum, and therefore also �UB, may be expressed as

�UB = D(uUB)VM=
nele∑
e=1

∫
�e

�Y εeq dV +
NI∑

�e−e′=1

∫
�e−e′

�Y√
3
|�uUB�|d�

�UB = D(uUB)MC=
nele∑
e=1

∫
�e

c

√
3

1+2 tan2�
εeq dV +

NI∑
�e−e′=1

∫
�e−e′

c cos�|�uUB�|d�

From these expressions, and (D1), the global gap �UB−�LB may be expressed as the sum of
elemental and edge contributions

�UB−�LB=
nele∑
e=1

�e
�+

NI∑
�e−e′=1

��
�

where after setting sUB=−�uUB�/|�uUB�|, each elemental and edge contribution reads, in Von
Mises plasticity,

�e
� =
∫

�e
(�Y εeq+∇·rLB ·uUB)dV −

∫
��e
rLBn ·uUBd�

��
� =
∫

�e−e′

(
�Y√
3

−rLBn ·sUB
)

|�uUB�| d�

and in Mohr–Coulomb,

�e
� =
∫

�e

(
c

√
3

1+2 tan2�
εeq+∇·rLB ·uUB

)
dV −

∫
��e
rLBn ·uUBd�

��
� =
∫

�e−e′
(ccos�−rLBn ·sUB)|�uUB�|d�
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26. Prandtl L. Über die härte plastischer körper. Nachrichten von der Gesellshaft der Wissenshaften zu Gottingen

Mathematisch-physikalische Klasse 1920; 9:302–325.
27. Dı́ez P, Huerta A. A unified approach to remeshing strategies for finite element h-adaptivity. Computer Methods

in Applied Mechanics and Engineering 1999; 176:215–229.
28. Roca X, Sarrate J. Management, design and development of a mesh generation environment using open source

software. Proceedings of the 17th International Meshing Roundtable, 2007.
29. Liu Y, Zhang X, Cen Z. Numerical determination of limit loads for three-dimensional structures using boundary

element method. European Journal of Mechanics A/Solids 2004; 23:129–138.
30. Dı́ez P, Arroyo M, Huerta A. Adaptivity based on error estimation for viscoplastic softening materials. Mechanics

of Cohesive-Frictional Materials 2000; 5:87–112.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2008)
DOI: 10.1002/nme


