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Abstract

We present an a-posteriori method for computing rigorous upper and lower bounds of the J-integral

in two dimensional linear elasticity. The J-integral, which is typically expressed as a contour integral,

is recast as a surface integral which yields a quadratic continuous functional of the displacement.

By expanding the quadratic output about an approximate finite element solution, the output is

expressed as a known computable quantity plus linear and quadratic functionals of the solution

error. The quadratic component is bounded by the energy norm of the error scaled by a continuity

constant, which is determined explicitly. The linear component is expressed as an inner product

of the errors in the displacement and in a computed adjoint solution, and bounded using standard

a-posteriori error estimation techniques. The method is illustrated with two fracture problems in

plane strain elasticity. An important feature of the method presented is that the computed bounds

are rigorous with respect to the weak solution of the elasticity equation.

Introduction

The accurate prediction of stress intensity factors in crack tips is essential for assessing
the strength and life of structures using linear fracture mechanics theories. A crack
is assumed to be stable when the magnitude of the stress concentration at its tip
is below a critical material dependent value. Stress intensity factors derived from
linearly elastic solutions are widely used in the study of brittle fracture, fatigue,
stress corrosion cracking, and to some extend for creep crack growth. Since the
analytical methods for solving the equations of elasticity are limited to very simple
cases, the finite element method is commonly used as the alternative to treat the more
complicated cases. The methods for extracting stress intensity factors from computed
displacement solutions fall into two categories: displacement matching methods, and
the energy based methods. In the first case, the form of the local solution is assumed,
and the value of the displacement near crack tip is used to determine the magnitude
of the coefficients in the asymptotic expansion. In the second case, the strength of
the singular stress field is related to the energy released rate, i.e. the sensitivity of
the total potential energy to the crack position. An expression for calculating the
energy release rate in two dimensional cracks was given in (Rice, 1968) and is known
as the J-integral. The J-integral is a path independent contour integral involving
the projection of the material force derived from Eshelby’s (Eshelby, 1970) energy
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momentum tensor along the direction of the possible crack extension. An alternative
form of the J-integral in which the contour integral is transformed into a domain
integral involving a suitably defined weighting function is given in (Li et al., 1985).
This alternative expression for the energy release rate appears to be very versatile
and has an easier and more convenient generalization to three dimensions than the
original form (Rice, 1968).

Regardless of the method chosen to evaluate the stress intensity factor, a good approx-
imation to the solution of the linear elasticity equations is required. Unfortunately,
the problems of interest involve singularities and this makes the task of computing
accurate solutions much harder. For instance, it is well known (Szabo, 1986) that
the convergence rate of energy norm of a standard finite element solution for a linear
elasticity problem involving a 180o reentrant corner is no higher than O(H

1

2 ), where
H is the mesh size. This problem was soon realized and as a consequence a number
of mesh adaptive algorithms have been proposed which, in general, improve the sit-
uation considerably. In some cases (Lo and Lee, 1992; Murthy and Mukhopadhyay,
2001), the adaptivity is driven by errors in the energy norm of the solution, whereas
in some others (Heintz et al., 2002; Heintz and Samuelsson, 2002; Ruter and Stein,
2002), a more sophisticated goal-oriented approach based on a linearized form of the
output is used.

In this paper we present a method for computing strict upper and lower bounds for
the value of the J-integral in two dimensional linear fracture mechanics. The method
presented involves no unknown constants or uncertain parameters and therefore the
computed bounds we are strict with respect to the exact solution of the underlying
partial differential equation. The J-integral is written as a bounded quadratic func-
tional of the displacement and expanded into computable quantities plus additional
linear and quadratic terms in the error. The linear terms are bounded using our
previous work for linear functional outputs (Paraschivoiu et al., 1997; Patera and
Peraire, 2002; Peraire and Patera, 1998) and the quadratic term is bounded with the
energy norm of the error scaled by a suitably chosen continuity constant, which can
be determined a priori. Moreover, the bound gap can be decomposed into a sum of
positive elemental contributions thus naturally leading to an adaptive mesh adap-
tive approach (Peraire and Patera, 1998). We think that the algorithm presented
is an attractive alternative to the existing methods as it guarantees the certainty of
the computed bounds. This is particularly important in critical problems relating to
structural failure. The method is illustrated for an open mode and a mixed mode
crack examples.

Problem Formulation

We consider a linear elastic body occupying a polygonal region Ω ⊂ IR2 where the
boundary ∂Ω is composed of a Dirichlet portion ΓD, and a Neumann portion ΓN ,
i.e. ∂Ω = ΓD ∪ ΓN . For simplicity of presentation the Dirichlet boundary conditions
are assumed to be homogeneous. The displacement field u = (u1, u2) ∈ X ≡ {v =
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(v1, v2) ∈ (H1(Ω))2 | v = 0 on ΓD} satisfies the weak form of the elasticity equations

a(u,v) = (f ,v) + 〈g,v〉 , ∀v ∈ X, (1)

in which

(f ,v) =
∫

Ω

f · v dΩ , 〈g,v〉 =
∫

ΓN

g · v dΓ ,

where f ∈ (H−1(Ω))2 is the body force and g ∈ (H−1/2(ΓN))2 is the traction applied
on the Neumann boundary. The bi-linear form a(w,v) : X × X → IR is given by,

a(w,v) =
∫

Ω

σ(w) : ε(v) dΩ .

Here, ε(v) denotes the second order deformation tensor which is defined as the sym-
metric part of the gradient tensor ∇v. That is, ε(v) = (∇v + (∇v)T )/2. The stress
σ(v) is related to the deformation tensor through a linear constitutive relation of the
form σ(v) = C : ε(v), where C is the constant fourth-order elasticity tensor.

It is well known that the solution, u, to the problem (1) minimizes the total potential
energy functional Π(v) : X → IR,

Π(v) =
1

2
a(v,v) − (f ,v) − 〈g,v〉 ,

and that Π(u) = −1

2
|||u|||2, where ||| · ||| = a(·, ·)1/2 denotes energy norm associated

with the coercive bilinear form a(·, ·).

In fracture mechanics we are often interested in determining the strength of the crack
tip stress fields. A common way to do that is to relate the so called stress intensity
factors to the energy released per unit length of crack advancement (see figure 1).
If the total potential energy Π(u) decreases by an amount δΠ(u) when the crack
advances by a distance δℓ in its plane, we are interested in determining the energy
release rate, J(u), such that,

δΠ(u) = −J(u)δℓ .

For a two-dimensional linear elastic body the energy release rate, J(u), can be calcu-
lated as a path independent line integral known as the J-integral (Rice, 1968). If we
consider the geometry shown in figure 1, the J-integral has the following expression,

J(u) =
∫

Γ

(

W en1 − T · ∂u

∂x1

)

dΓ ,

where Γ is any path beginning at the bottom crack face and ending at the top crack
face, W e = (σ : ε)/2 is the strain energy density, T is the traction given as T = σn,
and n = (n1, n2) is the outward unit normal to Γ. An alternative expression for J(u)
was proposed in (Li et al., 1985), where the contour integral is transformed to the
following area integral expression,

J(u) =
∫

Ωχ

(

(∇χ)T · σ ∂u

∂x1

− W e ∂χ

∂x1

)

dΩ. (2)
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Figure 1: Crack geometry showing coordinate axes and the J-integral contour and
domain of integration.

Here, the weighting function χ is any function in H1(Ωχ) that is equal to one at the
crack tip and vanishes on Γ.

For a given χ, J(u) is a bounded quadratic functional of u. For our bounding
procedure it is convenient to make the quadratic dependence of J(u) more explicit.
To this end, we define the bilinear form q̄(w,v) : X × X → IR as,

q̄(w,v) =
∫

Ωχ

(∇χ)T · σ(w)
∂v

∂x1

dΩ −
∫

Ωχ

1

2
σ(w) : ε(v)

∂χ

∂x1

dΩ,

and its symmetric part q(w,v) : X × X → IR, q(w,v) = 1

2
(q̄(w,v) + q̄(v,w)) . It is

clear from these definitions that, J(u) = q(u,u) , and that there exists η < ∞ such
that,

q(v,v) ≤ η|||v|||2 , ∀v ∈ X. (3)

Bounding Procedure

Our objective is to compute upper and lower bounds, for J(u), where u satisfies
problem (1). Let us consider a finite element approximation uH ∈ XH satisfying

a(uH ,v) = (f ,v) + 〈g,v〉 , ∀v ∈ XH . (4)

Here, XH ⊂ X is a finite dimensional subspace of X. For simplicity, we shall assume
that XH is the space of piecewise linear continuous functions defined over a triangu-
lation, TH , of Ω which satisfies the Dirichlet boundary conditions. An approximation
to J(u), JH , can be obtained as JH = q(uH ,uH), where, for convenience, χ in (2) is
chosen to be piecewise linear over the elements TH ∈ TH . Exploiting the bi-linearity
of q(w,v), we can write

J(u) − JH = q(u,u) − q(uH ,uH) = q(u − uH ,u − uH) + 2q(u,uH) − 2q(uH ,uH)

= q(e,e) + 2q(e,uH) ,

where e = u − uH is the error in the approximation uH . It is clear that if we are
able to compute bounds Q and L± for the quadratic and linear error terms,

|q(e,e)| ≤ Q and L− ≤ q(e,uH) ≤ L+,
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then, the bounds for J(u), J±, follow as,

J− ≡ JH − Q + 2L− ≤ J(u) ≤ JH + Q + 2L+ ≡ J+ .

Linear term

In order to derive upper an lower bounds for the linear term q(e,uH), we introduce
the following adjoint problem: find ψ ∈ X such that

a(v,ψ) = q(v,uH) , ∀v ∈ X , (5)

and the corresponding finite element approximation, ψH ∈ XH ⊂ X, such that

a(v,ψH) = q(v,uH) , ∀v ∈ XH . (6)

From (1) and (4), it follows that a(e,v) = 0 for all v ∈ XH . In particular, a(e,ψH) =
0. This, combined with the above equations (5) and (6) gives the following represen-
tation for the linear error term,

q(e,uH) = a(e, ǫ) ,

where ǫ = ψ −ψH is the error in the adjoint solution. Now, using the parallelogram
identity, we have that for all α ∈ IR,

a(e, ǫ) =
1

4
|||α e +

1

α
ǫ|||2 − 1

4
|||α e − 1

α
ǫ|||2 ,

and therefore, bounds for q(e,uH) can be recovered as

1

4
|||α e+

1

α
ǫ|||2LB−

1

4
|||α e− 1

α
ǫ|||2UB ≤ q(e,uH) ≤ 1

4
|||α e+

1

α
ǫ|||2UB−

1

4
|||α e− 1

α
ǫ|||2LB .

Strict upper bounds for |||α e ± 1

α
ǫ|||2 are found using the technique presented in

(Pares et al., 2003) based on the use of the complementary energy principle, while
the lower bounds are found using the dual definition of the energy norm which lead
to the reconstruction of continuous approximations of the error (Dı́ez et al., 2003).

Quadratic term

In (Xuan et al., 2004) it is shown that for two dimensional linear elasticity, a suitable
value for the continuity constant in expression (3) is given by

ηχ = max
TH∈TH

(3κ + 4µ)|∇χ|2

4

√

(3κ + µ)
(

3µ
(

∂χ
∂x1

)2

+ (3κ + 4µ)
(

∂χ
∂x2

)2
)

, (7)

where µ = E/(2(1 + ν)) is the elastic shear modulus, κ is the elastic bulk modulus
which is given by κ = E/(1 + 2ν)/(3(1− ν2)) for plane stress, and κ = E/(3(1− 2ν))
for plain strain. In these expressions, E is Young’s elastic modulus and ν is the
Poisson’s ratio. Therefore, we write

q(e,e) ≤ ηχ|||e|||2 .

The computation of a bound for q(e,e) is straightforward once a bound for the error
in the energy norm |||e||| has been obtained.
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Example

We consider a plate with two edge cracks subjected to a uniformly distributed tensile
stress as shown in figure 2. The plate is assumed to be in plane strain. The value of
the tensile force acting on the two ends of the plate is p = 1 and the dimension of the
crack is a = 5. The non-dimensionalized Young’s modulus is 1.0 and the Poisson’s
ratio is 0.3. The analytical value of the mode-I normalized stress intensity factor KI for
the problem has been determined in (Lo and Lee, 1992) to be KI/(p

√
πa) = 1.16279.

Therefore, the exact value of the J-integral is obtained as Jexact = (1 − ν2)K2
I /E =

19.3270.

20

30

5

60

p

p

Crack tip

5

5

5

Crack tip

  

Figure 2: Geometry of a double edge-cracked plate subjected to a uniform tensile
stress (left) and Support of weighting function χ for the evaluation of the J-integral
(right).

Due to the symmetry of the problem, we only use one quarter of the plate for the
finite element analysis. We use a 5 by 5 square area surrounding the crack tip as the
support, Ωχ, of the weighting function χ (see figure 2).

An adaptive procedure has been used to reach a relative bound gap J+−J−

2Jexact
of 5%

and 2%. Table 1 shows the results for the output JH , the computed upper and lower
bounds, J±, for J , and the relative bound gap for some of the steps of the adaptive
procedure. Also the first three meshes of the adaptive procedure and the final mesh
for the 5% relative bound gap are shown in figure 3. It is worth noting that due to the
slow convergence of the finite element solution for the problem at hand it is crucial
to use adaptive strategies to yield accurate bounds for the output of interest J(u).
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Table 1: Bound results

nel 416 525 759 1368 2962 10622 43733
JH 17.4156 18.5208 19.1307 19.3498 19.4601 19.5196 19.5369
J− -27.7619 -2.7875 10.1176 15.1668 17.3981 18.6596 19.1712
J+ 86.0779 49.2769 31.5315 24.9273 22.0868 20.5178 19.9343

J+−J−

2Jexact
2.9451 1.3469 0.5540 0.2525 0.1213 0.0481 0.0197

(a) (b) (c) (d)

Figure 3: Finite element meshes: (a) coarse mesh nel = 416, (b) nel = 525, (c)
nel = 759 and (f) final mesh for a relative bound gap of 5%, nel = 10622.
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