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Traditional commercial aircraft design attempts to improve performance and reduce operating costs by mini-
mizing takeoff weight. A better design approach also takes into account factors such as aircraft demand, market
uncertainty, and development and manufacturing costs. This paper presents a design methodology that inte-
grates an aircraft performance model with a program valuation technique based on real options theory to address
uncertain market demand and managerial flexibility. The coupled performance/financial framework enables an
integrated approach to technical design and programmatic decisions. In addition, the methodology provides a
framework for specification of design requirements and for quantification of the financial implications associated
with technical and business uncertainty. The methodology is demonstrated for an aircraft design example of the
blended-wing-body concept. Comparing performance-optimized and value-optimized designs, we show that use
of value as a design metric leads to a trade-off between aerodynamic efficiency and reduced manufacturing costs.
Key findings demonstrate that traditional financial metrics cause the decision maker to focus overly on reducing
costs in the short term. The stochastic methodology shows that a willingness to spend up-front money in the design
process to ensure long-term profitability is a better strategy.

Nomenclature
CL = lift coefficient
D = drag
�LC = adjustment in lifecycle cost
E[NPV] = expected net present value
Ft = objective function at time t
L = lift
M = Mach number
μ = rate of return
N = number of time periods
NPV = net present value
Nseats = number of seats
P = payload weight
Price = aircraft price
Pt = profit function at time t
Range = aircraft range
rd = risk-adjusted discount rate
σ = demand volatility
st = state vector at time t
t = time
ut = control vector at time t

Introduction

T HE historical objective of minimizing gross take-off weight
(GTOW) in aircraft design is intended to improve performance
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and subsequently lower operating costs, primarily through reduced
fuel consumption. However, such an approach does not guarantee
the profitability of a given aircraft design from the perspective of
the airframe manufacturer. In an increasingly competitive market for
commercial aircraft, manufacturers may wish to design for improved
financial viability of an aircraft program in addition to technical
merit before undertaking such a costly investment. The existing
practice of designing aircraft from a technical perspective without
simultaneously considering the impact on overall program value is
suboptimal in a business sense.

To assess the long-term financial viability of an aircraft program, a
value-based design approach is necessary. Such an approach should
still account for performance while also incorporating tools to es-
timate the profitability of the program. Financial models, such as
life-cycle cost analysis1 and direct operating cost,2 have been in-
corporated into multidisciplinary design optimization (MDO) of
aircraft in the past by several researchers. Value metrics, such as
net present value (NPV), internal rate of return (IRR), and return on
investment (ROI), have also been considered as design objectives.3

The problem has also been approached as a multiobjective optimiza-
tion balancing cost and performance.4

Traditionally, as in these cases, MDO has resulted in determinis-
tic solutions for GTOW, value, or other objectives of interest. More
recently, effort has been devoted to probabilistic multidisciplinary
approaches to also address the issue of uncertainty. A key focus of
this work is the idea of design risk, that is how technical or finan-
cial uncertainty affect performance and value. Uncertainty has been
addressed in the form of design affordability and the balancing of
technical performance, cost, and risk,5 and via probabilistic design
to improve ROI6 and cost per passenger mile.7 Efforts have also been
made to look at reducing risk throughout product development8 and
to minimize risk using an approach based on estimation theory.9 For
automotive applications, decision-based design has been used as a
way to integrate technical and financial considerations using NPV
as an objective function10 and using the technique of discrete choice
analysis to construct a product-demand model.11

Value metrics such as NPV are based on static valuations of the
design. These metrics do not attempt to capture explicitly technical
or financial uncertainties that may arise and, as such, do not properly
account for the associated business risk of the program. Further, the
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Fig. 1 Block diagram depiction of value-based MDO framework.

related issue of flexibility—that is, the ability of the manufacturer to
make decisions in response to unexpected or changing conditions—
is not considered. In the field of finance, considerable research has
been performed to develop more sophisticated valuation techniques
to address the shortcomings of traditional valuation techniques. Sub-
stantial literature exists describing real options theory, which pro-
vides a way to quantify the value of a product or strategy in the
presence of uncertainty.12−14

Drawing on improvements in valuation techniques, a stochas-
tic dynamic programming (DP) framework has been developed for
decision making in the context of commercial aircraft program
design.15,16 The framework links aircraft performance, cost, and
revenue models to provide an optimal program strategy and a quan-
titative valuation in terms of expected NPV of an aircraft program
in an uncertain market. It has been shown that a stochastic valua-
tion provides a comprehensive method to assess commercial aircraft
programs.16 In that work, however, the valuation was applied a pos-
teriori to aircraft designs resulting from a traditional performance-
based optimization. Here, a new methodology is established using
the stochastic valuation directly to make aircraft conceptual-design
decisions via an optimization framework that combines technical
design and value into a single problem. Applications of this value-
based approach to design of the Boeing blended-wing-body (BWB)
aircraft are presented herein. The business risk faced by the program
due to potential sources of uncertainty can then be assessed for the
resulting designs.

The framework illustrated in Fig. 1 demonstrates the approach
to couple a performance model and associated optimization routine
with empirically based financial models, a stochastic model of an
uncertain market, and an algorithm for computing expected program
value. A single program concept, incorporating technical design as
well as financial parameters, can then be optimized in terms of
specific performance or business goals, for example, minimizing
GTOW or maximizing program value.

The next section describes the optimization framework, the per-
formance and financial models, and the stochastic valuation method-
ology. A demonstration of the integrated methodology is then pre-
sented for a notional BWB program. In the following section, the
specification of programmatic and design requirements is addressed.
Examples for setting design range and speed of the BWB are pre-
sented. Application of the value-based methodology to assess busi-
ness risk from technical and financial uncertainty is considered next.
Finally, the paper concludes by summarizing key findings.

Optimization Framework
The design-optimization framework couples performance and fi-

nancial models with an optimization routine as illustrated in Fig. 1.
For design of the BWB aircraft, the WingMOD performance MDO
framework is used.17 An initial design vector is provided to Wing-
MOD to estimate aircraft sizing and performance characteristics.
Its relevant outputs are then used by the cost and revenue models
to approximate cost, price, and baseline demand figures for the de-
sign. The valuation module uses a stochastic DP algorithm, which
accounts for market growth and uncertainty, to determine a set of op-
timal design decisions and the objective: expected NPV (E[NPV]).
Optimization is carried out using a sequential quadratic program-
ming algorithm to maximize E[NPV].

Because of the extent of the BWB design problem, the
performance-based optimization is carried out sequentially as a
number of intermediate steps as described by Wakayama.17 These

steps progress the design to its overall solution in the following or-
der (grouped into general categories entailing multiple steps): set the
aircraft size and layout, set the performance (including range and
speed), trim the aircraft and establish control limits, and balance the
aircraft while minimizing GTOW. The value-based design optimiza-
tion adds an additional step: maximize E[NPV]. Each suboptimiza-
tion features its own objective, design vector with O(100) variables,
and O(1000) constraints specific to the short-term goal. It is neces-
sary to break up the optimization in this fashion for the optimizer
to converge on a solution that meets all design criteria. Because of
numerical limitations of the gradient-based optimization, an all-at-
once optimization approach would make convergence to a feasible
solution difficult (unless a very good initial design were provided).
As discussed in detail by Peoples,18 the position in the sequence of
the value-based optimization has some effects on the outcome. The
best results were obtained by incorporating the maximum-E[NPV]
optimization step in the latter part of the sequence.

In the following sections, each of the components of the opti-
mization framework are described in more detail.

Program Valuation
A number of metrics are available for assessing the value of the

program, such as NPV, IRR, and ROI. There are advantages and
disadvantages to each, as well as particular investment scenarios for
which some metrics are better suited than others.

Deterministic Net Present Value
NPV is one of the most commonly used metrics in engineering

program valuation. Deterministic NPV is computed by summing
discounted future cash flows as follows19:

NPV =
N∑

t = 0

Pt

(1 + rd)t
(1)

where t represents a future time period ranging from the current
time (t = 0) to the final time period N and Pt is the profit function
consisting of the difference between the revenues and costs of the
undertaking in a given time period t . The risk-adjusted discount
rate rd accounts for both the opportunity cost of capital and the per-
ceived risk inherent in a venture. Typically assumed values of rd
for an aircraft program may range from 12% to 20%.15,20 In gen-
eral, a positive NPV indicates a sound investment, and a negative
NPV means that a program should not be pursued. This approach is
limited in some respects in its ability to provide a definitive valua-
tion, however. NPV and other deterministic metrics are based on a
static valuation of the design, because the expected cash flow must
be assigned for each time period. The issue of flexibility—that is,
the ability of the manufacturer to make decisions in response to
changing conditions—is not considered. Further, uncertainty in fu-
ture cash flows is handled only through choice of rd . Finding or
calculating a discount rate that includes the effects of risk is a dif-
ficult, and ultimately arbitrary, process. Using a high discount rate
to reflect greater uncertainty does not properly account for risk and
often leads to a pessimistic valuation, because cash flows in later
years will contribute a small amount to the sum in Eq. (1).

Stochastic Valuation Methodology
A stochastic valuation approach based on real options theory ad-

dresses several of the shortcomings of a deterministic NPV calcu-
lation. Rather than relying on a risk-adjusted discount rate, demand
uncertainty is addressed explicitly via a stochastic model based
on empirically determined market volatility. The valuation is risk
neutral—that is, it does not depend upon the risk preferences of
the decision maker. To capture flexibility, the program is viewed as
a series of investment decisions characterized by discrete program
“modes,” including design, tooling, and manufacturing stages. The
manufacturer may choose to pause or cancel the program when in
certain modes, investing no more money if future market condi-
tions appear unfavorable as determined by the demand model. A
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successful aircraft program will by necessity be a dynamic ven-
ture, so accounting for the ability to make decisions as the program
progresses is essential to assessing its profitability.

E[NPV] is calculated for this problem by solving Bellman’s equa-
tion,

Ft (st ) = max
ut

{Pt (st , ut ) + [1/(1 + r f )]Et [Ft + 1(st + 1)]} (2)

where Ft (st ) is the value (objective function) at time t and state
vector st , Pt is the profit in time period t as a function of the state
vector st and the control vector ut , and r f is the risk-free discount
rate (accounting now only for the time-value of money and not for
risk). Et is the expectation operator, providing in this case the ex-
pected value of F at time t + 1, given the state st and control ut
at time t . For the aircraft program modeled here, a time horizon of
T = 30 years is considered. The state vector contains two elements:
the quantity of aircraft demanded, which evolves stochastically, and
the operating mode from the previous period. As discussed in de-
tail by Markish,15 the operating mode describes the current status
of the aircraft program (whether in design, tooling, low-capacity
manufacturing, etc.). The control vector contains the decision to be
made, in this case the program operating mode for the next period.
The formulation of this stochastic valuation is described more fully
in Refs. 15 and 16.

Equation (2) is then solved using a DP algorithm that starts at the
final time period, t = N , and works backward to the current time,
t = 0. The valuation module outputs program E[NPV], given by F0,
and the corresponding set of optimal control decisions, ut (st ). These
control decisions represent the optimal decision strategy; that is, the
decision rules specify the optimal value to which the control vari-
able should be set, as a function of time and of all the state variables.
In this case, given how long the program has been ongoing, the op-
erating mode from past period, and the current market conditions
(quantity demanded), the decision rule specifies what the operating
mode should be for the next period. It is important to note that the
expected NPV returned by the valuation module will never be less
than zero, because zero E[NPV] can be obtained by choosing to
always wait in the face of unfavorable design conditions. The DP
solution will therefore not yield a strategy that, on average, produces
a negative E[NPV]. This improved valuation technique provides a
more appropriate measure of value than traditional financial met-
rics, because uncertainty is captured explicitly via the expectation
operator and dynamic program flexibility is modeled through the
control decisions.

Multidisciplinary Models
The DP problem described above requires annual cost and rev-

enue estimates for the aircraft program. These values are derived
from models that take the aircraft design parameters as inputs. The
simulation model first uses the design vector to generate size and
performance estimates for an aircraft concept. Then, relevant design
values are used by the financial modules to calculate cost, price, and
baseline demand for the resulting aircraft program as described next.

Performance Model
The WingMOD multidisciplinary performance model is used to

calculate the sizing, weights, and flight characteristics of the air-
craft concept. This model incorporates a vortex lattice model for
aerodynamic analysis and utilizes simple beam analysis for struc-
tural sizing to evaluate performance over five mission configurations
and 26 flight conditions.17,21 Key outputs include lift and drag data,
structural and operating weights, and stability characteristics of the
aircraft.

Financial Model
The financial model is based on empirical models developed by

Markish15 and Markish and Willcox. Revenue, demand, and cost
trends were fit to historical aircraft data, and the resulting equations
provide price, baseline demand, and cost estimates using the outputs
of the performance model.

Table 1 Best-fit parameters for empirical price in Eq. (3)16

Parameter Narrow-body Wide-body

k1 0.735 0.508
k2 0.427 0.697
α 1.910 2.760
Nseats ref 419 419
Range ref 8810 nmi 8810 nmi
Price ref $148.7 M $148.7 M

Price is calculated as a function of range, number of passengers,
and an operating cost adjustment as according to the following em-
pirically derived model:

Price =
[

k1 ×
(

Nseats

Nseats ref

)α

+ k2 ×
(

Range

Range ref

)]
× Price ref − �LC (3)

Range and number of seats Nseats are normalized by reference values
(Range ref, Nseats ref) so that the entire value can be scaled by a
reference price, Price ref. These reference parameters, as well as
k1, k2, and α, were determined through regression analysis based
on public domain aircraft sales data.22,23 The resulting values are
summarized in Table 1. The �LC parameter is a life-cycle cost
adjustment based on fuel burn as a percentage of cash airplane-
related operating cost (CAROC). Its value accounts for differences
in the efficiencies of competing aircraft designs and reflects the idea
that the more (less) efficient an airliner is to operate, the higher
(lower) the price an airline is willing pay to own it.

Demand modeling approaches such as discrete choice analysis
are used in the automotive industry. These methods focus on the
response of the consumer to changes in product attributes. For the
case of large commercial aircraft considered here, demand mod-
els are typically constructed using market forecasts. To determine
demand, the design is classified as wide-body or narrow-body. A
baseline demand quantity is then determined using market forecasts
by passenger count, assuming a 50% market share for either of
the two major airframe manufacturers. In reality, the performance
of the aircraft would affect its demand, and this market-share as-
sumption introduces further uncertainty in addition to that inher-
ent in the market forecasts. Uncertainty in demand is accounted
for using a probabilistic approach: actual aircraft demand is as-
sumed to evolve stochastically from the baseline. A set of demand
states is established using a geometric Brownian motion (GBM)
model. This approach is commonly used in real options applica-
tions to model stochastically evolving processes. Although the ac-
tual commercial aircraft market dynamics would not strictly follow
GBM and other approaches, such as using a mean-reverting process,
are possible, this model has been shown to provide a satisfactory
approximation.

According to the GBM model, demand uncertainty is accounted
for using a Weiner process with rate of return μ = r f and volatility σ ,
as measured from empirical commercial aircraft data.15 For a given
baseline demand x0, the demand in the next time period would be
x0u with probability p, or x0d with probability 1 − p according to
the following equations24,25:

p = (er f �t − d)/(u − d) (4)

u = eσ
√

�t (5)

d = 1/u (6)

A key advantage of capturing the market uncertainty explicitly in
Eq. (5) is the ability to discount at a known risk-free rate in Eq. (4).
The probabilities in Eq. (4) are used to compute the expectation in
Eq. (2). Values for the parameters r f , σ , and �t were determined
from historical data15 and are summarized in Table 2.

Costs are estimated from the weight breakdown of the aircraft
generated from the sizing model. A simple weight-based cost model
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Table 2 Parameters for stochastic demand model15

Parameter Narrow-body Wide-body

σ 42.7% 45.6%
Program length 30 yr 30 yr
�t 1 yr 1 yr
r f 5.5% 5.5%
Inflation 1.2% 1.2%

is used because it can be expected to capture recurring and nonre-
curring cost behavior at a level appropriate for the resolution of the
aircraft representation in the optimization framework. This model-
ing approach has a number of limitations, including the underly-
ing assumption that manufacturing cost scales with aircraft weight,
which is clearly not necessarily the case. The model is described in
more detail in Refs. 15 and 18.

The overall weight of the aircraft is divided according to part
categories (e.g., wing, fuselage, etc.), which are assigned costs
per pound from empirical data based on both the part and pro-
cess (e.g., labor, materials, etc.) type. The total costs are then
calculated by multiplying each weight by its relevant costs per
pound and summing over all parts and processes. Estimates are
provided for both nonrecurring and recurring costs. Nonrecurring
costs are modeled as being incurred over the development timeframe
as an approximate β-distribution based on empirical data. Recur-
ring costs take into account a learning curve effect, such that the
costs of manufacturing additional aircraft would be reduced over
time.

Value-Based Design Optimization
The value-based design optimization is demonstrated for a no-

tional BWB program. The baseline design is a BWB concept with
a range of 7800 nmi and passenger capacity of 475, optimized for
minimum gross take-off weight (GTOW). Initial demand for this
design is 13.5 aircraft per year. Value-based optimization is car-
ried out by replacing the GTOW objective function with E[NPV]
as the final step in the optimization sequence, after the design is
sufficiently defined to ensure convergence of the optimization algo-
rithm and satisfaction of the design constraints. The resulting design
is referred to as “E[NPV] optimal.” The optimization uses several
hundred design variables that describe the aircraft layout, includ-
ing the payload geometry, control surface deflections, and spanwise
distributions of wing twist, chord length, and incidence angle. The
design variables, constraints, and optimization problem setup are
described in detail in Ref. 17.

Different Objective Functions Result in Different Designs
Table 3 summarizes key differences between the baseline and

E[NPV]-optimal designs, where changes are given relative to the
baseline design. It is interesting to note that a noticeable increase
in E[NPV] can be gained for little change in the GTOW. Further,
the GTOW is seen to actually decrease by a very small margin
(0.01%), suggesting that the baseline design may not have been fully
converged on a minimum-GTOW solution. Closer inspection of the
E[NPV]-optimal design explains these findings and demonstrates
that the design has actually moved to a nearby, but different, place in
the design space. The detailed breakdown of the layout and weight in
Table 3 shows that the E[NPV]-optimal design trades aerodynamic
performance and fuel efficiency for a lower structural empty weight
and consequently lower GTOW and reduced manufacturing costs. A
relatively large percentage change is observed for the chord length
at the wing tip, although the actual length change is small. This
reduction is driven by the high manufacturing and nonrecurring
cost per pound associated with the winglet.

As propagated through the financial models, this resulted in a
lower price because of the life-cycle cost correction for increased
fuel consumption in Eq. (3), but also lower cost, hence a greater ex-
pected value. Despite the appearance of little change in the GTOW,
the relative proportion of structural and fuel weights shifted, ulti-
mately decreasing the overall GTOW slightly and improving the

Table 3 Percentage changes in E[NPV]-optimal
design relative to baseline design

Parameter Change, %

GTOW −0.01
OEW −0.45

Structural wt. −1.1
Fuel wt. +0.51

Gross area +2.2
Aspect ratio −2.2
Leading edge sweep −0.85
Chord

Root +0.30
Tip −23

Cruise L/D −0.95
Cruise CL +1.2
E[NPV] +2.3

Unit price −0.14
Unit cost −0.59

Table 4 Comparison of designs using E[NPV] vs traditional
NPV as optimization objectives, expressed as percent increase

or decrease relative to E[NPV]-optimal design

Change, %

Parameter rd = 12% rd = 20%

GTOW +0.04 +0.26
OEW −0.36 −0.63

Structural wt. −0.85 −1.5
Fuel wt. +0.53 +1.4

Cruise L/D −0.46 −1.2
Cruise CL −1.2 −1.0
NPV −154 −195
E[NPV] −0.58 −3.7

Unit price −0.42 −3.9
Unit cost −0.46 −0.78

Computation time −90 −90

Note: Designs resulting from optimization based on NPV found using Eq. (1)
at the listed discount rate were subsequently evaluated using Eq. (2) to find
E[NPV].

expected value. This captures the idea that changing the objective
function will change the design, in this case because the sensitiv-
ity of E[NPV] is greater than that of the GTOW in this part of the
design26 space.

The changes shown in Table 3 are small, particularly when con-
sidered in the context of the relatively low fidelity of the underlying
models. Thus, the specific numerical results are perhaps less relevant
than the general observed trends in trade-off between aerodynamic
performance, fuel efficiency, and manufacturing costs. Moreover,
the calculated increase in program value of 2.3% is small, but, in
an industry where profit margins are extremely tight, even a small
difference could have a significant effect on the decision of whether
to proceed with a program.

Stochastic E[NPV] vs Deterministic NPV
An important question to address is whether similar improve-

ments in program value could be achieved by using a traditional
deterministic value metric as the objective function. The BWB
value-based optimization was repeated using the deterministic NPV,
defined in Eq. (1), as the objective function. For the NPV metric, it
is necessary to select a risk-adjusted discount rate. Two cases were
considered: rd = 12% and rd = 20%. A comparison between the re-
sulting NPV-optimal designs and the E[NPV]-optimal design found
previously is summarized in Table 4.

The comparison of these three designs shows two important is-
sues with the deterministic value calculation. First, deterministic
NPV is not an appropriate metric for assessing the profitability of
an aircraft program, which has a long time span and a significant
amount of uncertainty associated with market conditions. The NPV
values corresponding to the designs in Table 4 are pessimistic—
both because the value of flexibility was not considered and also
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Fig. 2 Series of cash flows for program designs optimized using deter-
ministic NPV at discount rates of 12% and 20%. Heavier discounting
causes later profits to affect NPV less, causing the initial costs incurred
to drive the value optimization. Values are normalized by the cash flow
in year 1.

because use of a high discount rate to capture risk causes profits in
later program years to carry very little weight. Moreover, the NPV
result is highly dependent on the assumed value of rd .

A second, separate issue—specific to the use of a value-based
function for optimization—is that deterministic NPV is not an ap-
propriate metric to use as an objective function. In the context of
optimization, NPV is a not a good indicator of favorable directions
in which to move within the aircraft design space. Although the
deterministic NPV estimates found previously were poor represen-
tations of the program value, the computational cost of optimizing
the design using NPV rather than E[NPV] was reduced by 90%.
This reduction in time represents a significant change from requir-
ing on the order of days for an optimization run with E[NPV] to
requiring only 2–3 h with NPV as the objective function. One could
therefore conceive of using the efficient, deterministic calculation
as an objective function in the optimization process and then sub-
sequently evaluating the resulting NPV-optimal designs using the
more expensive stochastic method. However, the results in Table 4
show clearly that this is not a viable approach, because the resulting
NPV-optimal designs have substantially reduced value.

These differences are directly related to the choice of objective
and its effect on the optimization progress. At both discount rates,
the resulting designs gave up aerodynamic efficiency and lower fuel
consumption to decrease structural weight. Although the marginal
cost of each unit for the resulting designs was lower than that of the
E[NPV]-optimal design, the prices were similarly lower because
of the life-cycle cost adjustment in Eq. (3). At the higher discount
rate (20%), the initial costs incurred have a greater effect on the
overall value of the program, because later profits have a negligible
effect due to discounting. This phenomenon is illustrated in Fig. 2,
which shows the relative annual discounted cash flows for each
NPV-optimal design. As a result, the optimization seeks to reduce
the impact of development costs by reducing the structural weight.
For a higher discount rate, this effect is magnified, resulting in a
less favorable valuation. This significant difference suggests that
E[NPV] is the better choice of design objective given the inherent
difficulty in choosing an appropriate discount rate. In addition, this
result demonstrates the danger of making design decisions using a
conventional NPV metric, which tends to focus overly on the short
term.

Setting Design Requirements
A key attribute of the value-based design methodology is the inte-

grated consideration of technical and programmatic decisions. This
enables the methodology to be used in determining how to best set
program requirements and performance specifications. These could

Fig. 3 Comparison of E[NPV] trends for performance- and value-
based optimizations as a function of range, normalized by the E[NPV]-
optimal design value.

include managerial decisions, such as how to best proceed with a
program given particular market conditions, or technical decisions
to set design performance requirements. Examples are presented of
the design trade-offs inherent in setting the range and speed require-
ments for the BWB using the value-based approach.

Range vs E[NPV]
Adjusting the performance range of a new aircraft may be a nec-

essary step in the design or marketing processes. Such a case is
exemplified by the 7E7 program where Boeing offered a modified
shorter-range version along with the initially planned long-range
design to meet the needs of the launch customer.27 Such a decision
clearly has an effect on both the technical and financial characteris-
tics of the design.

The BWB concept, which had a baseline range of 7800 nmi, was
reoptimized for range settings varying from 6000 nmi to 9500 nmi.
The resulting trend for E[NPV] is shown in Fig. 3. As the range
increases, the GTOW increases because of the need for more fuel
and corresponding structural growth. The figure shows that E[NPV]
grows almost linearly between 6000 and 8500 nmi. For higher
ranges, the slope begins to decrease. Finally, the trend reverses, and
the 9500-nmi design is actually less profitable than the 9000-nmi
design. This behavior is a function of the financial models, notably
Eq. (3) for price, which varies linearly with range. At a sufficiently
large range, however, the life-cycle cost adjustment for the necessary
increase in fuel consumption outweighs the benefit of longer range.
It was assumed for this analysis that the baseline demand, which is
modeled as a function of passenger capacity, remains constant.

Comparison to designs optimized for performance over the same
set of ranges, as seen in Fig. 3, illustrates the benefits of using value as
the design objective in addition to simply evaluating the design based
on a combination of performance and financial analysis. At longer
ranges, there is less disparity between performance- and financial-
optimal designs, but at lower ranges the discrepancies become in-
creasingly wider. Specifically, the E[NPV]-optimal (7800-nmi) de-
sign represents a 2.3% improvement in E[NPV] over the baseline;
at the lower 6000-nmi range, the design optimized for value has an
E[NPV] 19% greater than the corresponding performance-optimal
design.

Speed vs E[NPV]
An analogous study can be performed with respect to the cruise

speed to determine how to best set a cruise Mach number to maxi-
mize the value of the program. Again, the importance of such anal-
ysis is made clear by the 7E7 example and the need to weigh the
value of speed vs other performance concerns in choosing to de-
velop the 7E7 rather than the Sonic Cruiser. Figure 4 shows the
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Fig. 4 Comparison of E[NPV] trends for performance- and value-
based optimizations as a function of cruise Mach number, normalized
by the E[NPV]-optimal design value.

resulting trend for a sweep of Mach settings from 0.8 to 0.9 for
the conditions related to the cruise portion of the mission profile,
as described in Wakayama.17 The baseline speed, 0.85 M , is very
close to the actual best-case speed of 0.84 M , with only a 0.16%
difference in E[NPV]. Optimizing the BWB design for both higher
and lower cruise Mach settings is less beneficial. At the lower end of
the speeds evaluated, setting the cruise requirement to 0.8 M results
in an E[NPV] 12% worse than the E[NPV]-optimal solution. For
higher speeds, the trend is even more detrimental, with the 0.9-M
design having a program value 24% worse than the optimum.

The model did not account for changes in specific fuel consump-
tion (SFC) due to the varying design speeds. This would affect the
trend in Fig. 4, because the SFC would be lower at lower Mach
settings and higher in the opposite case, translating to lower GTOW
around 0.8 M and even higher GTOW around 0.9 M . An additional
limitation of this study is that the life-cycle cost adjustment �LC in
Eq. (3) accounts for the operating cost effects of increased fuel con-
sumption but not the utilization benefits of faster speeds. Shorter
travel times resulting from higher cruise speeds would allow the
airline operator to use the aircraft more often, the appeal of which
could be accounted for by a price increase analogous to the fuel-burn
effect. It is unclear to what extent such an adjustment would offset
the effects of varying the SFC, so the trends shown in Fig. 4 could
remain similar. Such an adjustment to account for utilization in the
price would be a useful extension of the financial models. These
limitations of the models restrict the validity of specific quantitative
conclusions that can be drawn from the results in Fig. 4; however,
as discussed in the following paragraphs, a more detailed analysis
of these results provides useful insight to the value of speed and the
corresponding design trades.

As with the range study, the designs optimized for maximum
E[NPV] are more profitable than performance-only designs for min-
imum GTOW across all speeds considered. This result is depicted
in Fig. 4 At lower speeds, the gap between the two widens, and
E[NPV] for the minimum-GTOW 0.8-M design is 12% worse than
the corresponding maximum-E[NPV] solution. For higher speeds,
the disparity is smaller, with a 5.3% decrease in E[NPV] from the
0.9-M value-optimal design to the performance-optimal equivalent.
As was the case at shorter ranges in the previous section, the abil-
ity of the new objective to influence the design seems to be more
important at lower speeds.

A breakdown of the performance-only and financial optima at
0.8 M illustrates why the difference in E[NPV] is more noticeable.
The value-optimal design shows a relatively small decrease in struc-
tural weight; most of the difference in E[NPV] is made up by the
higher price of the maximum-E[NPV] solution due to improved fuel
efficiency. This result is interesting in that the optimization drove

Fig. 5 Trends for design performance and value metrics as a function
of cruise Mach number, normalized by their respective baseline (0.85 M)
values.

the design to decrease the fuel consumption as opposed to decreas-
ing the structural weight, as seen in previous comparisons between
optimizations minimizing GTOW vs maximizing E[NPV].

Figure 4 indicates that Mach 0.84 is the optimal cruise speed for
using E[NPV] as the figure of merit. Several other traditional metrics
that relate the performance of the design to its marketability could
be evaluated instead to estimate the optimum cruise speed. Figure 5
presents the results for E[NPV] and three other such metrics for the
range of Mach numbers considered previously, normalized by their
value at the baseline cruise Mach (0.85). The additional figures of
merit are as follows:

M × L/D – Mach number multiplied by lift-to-drag ratio;
(M × P)/D – Mach number multiplied by payload weight, di-

vided by drag; and
(M × P × R)/GTOW – Mach number multiplied by payload and

range, divided by GTOW.
The first metric is derived from the Breguet range equation for

constant SFC and weights, whereas the latter two focus on the tradi-
tional design merits of increased payload and range, traded against
decreased GTOW. Emphasizing only speed and L/D, 0.87 Mach is
the new optimum, reflecting better aerodynamic performance at a
slightly higher cruise speed. Taking into account payload capacity
instead of overall lift reduces that value slightly, to 0.86 M , recog-
nizing that extra speed does not increase capacity as it does drag.
Finally, introducing range and the traditional design metric, GTOW,
in addition to capacity shifts the trend dramatically, placing far more
value on speed, with an optimum of Mach 0.9 or possibly higher if
the trend were extrapolated. In this case, the value of added speed
is not fully offset by consequent increases in GTOW, allowing the
metric to grow with higher Mach numbers for fixed payload weight
and range.

None of these design metrics explicitly estimate the profitability
of a program, however, and E[NPV] remains the most complete
figure of merit for evaluating the contributions of the individual
parameters featured previously. Despite potential limitations of the
financial models in their ability to represent the value of cruise
Mach number, this case study further illustrates the usefulness of a
coupled performance and financial approach to design. It provides a
new framework for setting program requirements and, specifically,
for understanding the effect of cruise speed on profitability.

Quantitative Assessment of Business Risk
In the MDO design examples illustrated previously, some design

uncertainty was accounted for, specifically the demand volatility. In
practice, many additional forms of uncertainty will arise, including
technical uncertainty related to the design performance and other
forms of financial or market uncertainty. It is desirable to understand
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Table 5 Sensitivities of E[NPV]-optimal design to
uncertainties in technical and financial parameters

Parameter Related E[NPV] change, %
varied parameter (per 1% parameter increase)

Nonrecurring cost OEW −0.71
SFC Price −10
Fuel price —— −6.6
Demand

Volatility —— −2.8
Initial —— +1.4

Recurring cost (LRMC) —— −3.8

the effect of potential variability, as well as the related risk faced
by the program, by quantifying the effect on program value. The
stochastic methodology presented here allows this assessment to be
carried out in a systematic manner.

Relative Program Risk Assessment
Table 5 presents an overview of sensitivity analyses of the base-

line design with respect to both financial and technical uncertainties.
Changes in SFC, demand, fuel price, and recurring costs were as-
sessed directly, whereas changes in OEW were related to an increase
in nonrecurring cost as described in the next subsection. From the
table, it can be seen that the design is most sensitive to fuel effi-
ciency, and by extension, price. The next largest effect on E[NPV]
is due to uncertainty in fuel price, followed by recurring costs and
then the demand parameters. These results show that changes to the
long-term program cash flows are the leading source of business
risk.

The fuel-price sensitivity in Table 5 can be seen to be substantially
greater than that of the other financial parameters but less important
than the sensitivity to changes in SFC. Intuitively, this result makes
sense, because an increase in SFC would affect both the aircraft
operating efficiency and the overall weight of the design. With an
increase in fuel price of approximately 25%, the baseline design
becomes unprofitable. If the aircraft were redesigned under less
favorable fuel-price assumptions, we would expect to see signifi-
cantly different results in the optimal balance between aerodynamic
efficiency and structural weight. The fuel-price-sensitivity result
demonstrates the importance of market assumptions in conceptual
aircraft design and again emphasizes the value of an integrated tech-
nical/financial design process.

The relatively low sensitivity of E[NPV] to nonrecurring cost
compared to long-run marginal cost (LRMC) and price suggests
that by correcting problems with the design in the development
stage, more of the baseline value can be retained than would be
the case for a design that does not meet its intended performance.
Although the idea that spending more money earlier to save money
on a better design later is the suggested strategy to mitigate business
risk for the design example considered, it is important to note that a
deterministic valuation would rule out such a strategy. As seen in the
previous value-based-optimization results, a deterministic valuation
drives the reduction of up-front costs, because later cash flows have
less effect on overall profitability because of heavy discounting.

Technical Uncertainty
Technical uncertainty could exist in many forms, many of which

result in aircraft weight growth—hence the basis for the traditional
design goal of minimum GTOW. There are essentially three scenar-
ios that may evolve as the program moves ahead with the design.

1) The aircraft is sold at the higher weight to be used at less than
its maximum (intended) range or with added fuel volume if possible
to achieve its intended range. The aircraft may meet the operators’
needs but will be more expensive to operate. This scenario results
in higher manufacturing costs, a lower price, or both.

2) The aircraft is redesigned or weight is eliminated to meet the
original specifications, resulting in higher nonrecurring develop-
ment costs.

3) The aircraft is unable to meet its performance guarantees, ei-
ther because of outside sources or failed redesign. Additional non-

Fig. 6 Relative E[NPV] for max-value and min-GTOW designs vs per-
cent change in nonrecurring cost, normalized by max-value E[NPV].

recurring costs may be incurred from attempts to fix the problem,
and recurring costs will be higher despite a lower price because of
missed performance goals.

In scenario 2, technical uncertainty leading to an increase in op-
erating empty weight (OEW) can be translated to an increase in
program nonrecurring cost. Increases in nonrecurring cost up to
approximately 20% of the baseline design were examined to find
the related effect on E[NPV]; no decreases in development costs
were considered, because a lower-than-expected OEW would not
necessarily translate into cost savings. The change in nonrecurring
cost was added in the final time period of the development stages to
represent reengineering after a significant amount had already been
invested in design and capital costs.

Figure 6 shows the results of this sensitivity analysis for
maximum-E[NPV] and minimum-GTOW designs, normalized by
the baseline value optimum. The value-optimized design resulted
in higher E[NPV] for all changes in nonrecurring cost than the
performance-only design. Higher incurred costs result in lower pro-
gram E[NPV], and cost reductions increase value, which is unre-
markable except that the sensitivity of E[NPV] to nonrecurring cost
overruns is rather low. A 5% increase in development costs results
in less than a 5% decrease in program value. Specifically, around
the baseline design, the change in E[NPV] is 0.71% of the base-
line value for every percent change in nonrecurring cost, as seen
on the plot. As the design becomes more unfavorable, the real op-
tions approach dictates that proceeding with the program becomes
less likely and its value decreases, but its expected value will never
become negative.

Financial Uncertainty
In addition to the technical uncertainty inherent in an design pro-

gram, the market for aircraft and general economic conditions can
introduce separate financial uncertainties. These could relate to the
nonrecurring or recurring costs, price, or demand.

Demand Volatility
The stochastic demand model accounts for demand uncertainty

in terms of the volatility of the aircraft market. This volatility is
based upon empirical data, however, and subject to uncertainty itself.
Variance in the volatility represents a market risk that could affect
program value. A sensitivity analysis performed on the design by
varying the demand volatility σ can help assess the level of risk
faced as a result of shifting demand over the program lifetime as
propagated through the stochastic demand model. The volatility was
varied ±15% from its baseline value of 45.6%, which represents
the average volatility for a wide-body aircraft. Values for σ within
a range of ±10% from the aggregate volatility for all wide-body
aircraft15 were also examined.
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Fig. 7 Relative E[NPV] for max-value and min-GTOW designs vs de-
mand volatility, normalized by max-value E[NPV].

For each σ , E[NPV] results were found for both the maximum-
E[NPV] and minimum-GTOW designs. Figure 7 compares the
trends for the two designs at varying volatilities, with E[NPV] nor-
malized by the optimum value at the baseline, σ = 45.6%. In all
cases, the E[NPV]-optimal solution shows improved value over the
performance-only solution. Because of its improved profitability,
the maximum-value solution will provide value in both the case of
fairly constant demand (low volatility) and at demand extremes in
the case of higher volatility.

The relationship between E[NPV] and demand volatility for both
design solutions follows an expected pattern. At lower volatilities,
near the aggregate wide-body value, the overall program value de-
creases as the possibility for demand growth beyond the initial quan-
tity is lessened. Conversely, at higher volatilities beyond the baseline
average wide-body value, E[NPV] also decreases as the probability
of low future demand quantities increases. Volatilities between the
aggregate and average data points result in an even better valua-
tion than the original maximum-E[NPV] design, however, striking
a balance between significant demand growth and the potential of
markedly reduced demand. In a sense, these values for σ capture
the idea of a high-risk, high-reward design where increased demand
uncertainty is such that a confluence of beneficial events could re-
sult in a highly successful program, and the probability of a market
decline is not high enough to drastically lower the expected value.
No similar analysis can be performed for solutions optimized for
deterministic NPV, because increased volatility would simply be
accounted for in Eq. (1) by increasing the discount rate. The result-
ing trend would be unable to capture any of the value of increased
risk, because constantly decreasing NPV with increasing rd would
replace the curve seen in Fig. 7.

Sensitivity analysis of the E[NPV]-optimal results correlates the
percentage increase or decrease in E[NPV] due to a percentage
point of volatility gained or lost. The most significant effects are
seen at lower volatilities, where a 1% change as σ increases leads
to a 9.2% increase in E[NPV] relative to the baseline value. At
the other extreme, continually increasing volatility past the baseline
of 45.6% results in an approximately 2.7% decrease in program
value. Sensitivities are at their lowest in the region around the peak
estimates for E[NPV], where a percent increase in σ from 30%
causes less than a percent increase in program value, or 0.48%.

Recurring Costs
Variability in the long-run costs of aircraft production could be

due to variations in material, labor, or other costs. Sensitivity anal-
ysis of E[NPV] given a change in the LRMC was performed by
applying a multiplier to the baseline cost. Values ranged from −5%
to +15% of the baseline LRMC to examine the case of slight cost
reductions and the more likely scenario of significant cost over-

Fig. 8 Relative E[NPV] for max-value and min-GTOW designs vs per-
cent change in LRMC, normalized by max-value E[NPV].

runs. The resulting trends for manufacturing cost variability for the
E[NPV]- and GTOW-optimal designs are presented in Fig. 8, nor-
malized by the baseline (zero change in LRMC) maximum-E[NPV]
solution.

Although the design resulting from the optimization of E[NPV]
retains more of its value given less favorable program conditions due
to cost uncertainty than the performance-only optimum, it should
still be noted that both designs lose approximately 20% of their
value with only a 5% increase in LRMC. These sensitivities are
much more significant than those relating the effect of nonrecur-
ring cost uncertainty to E[NPV], indicating that eliminating design
uncertainty earlier is more beneficial than producing a suboptimal
design—despite the larger impact of incurring the cost of design
changes earlier—due to heavier discounting of later cash flows.

The results in this section demonstrate a quantitative assessment
of business risk using sensitivity analyses of key technical and fi-
nancial parameters. Ideally, the decision-making framework should
incorporate these uncertainties directly into the optimization. One
approach would be to include stochastic models for these parameters
in the DP formulation, using a process similar to that described here
for aircraft demand. This approach is unfortunately limited by the
“curse of dimensionality,” because each stochastic parameter would
require an additional state variable in Eq. (2). Other approaches be-
ing explored for design optimization under uncertainty, which re-
mains a challenging and open research area, include game theory
and decision-based design.

Conclusions
A stochastic value-based methodology for conceptual aircraft

design has been presented. This methodology builds on previous
research in aircraft valuation by combining technical design and
value in an aircraft conceptual-design optimization framework. The
framework helps to bridge the gap between technical design and
financial analysis, specifically by helping engineers and managers
to better understand the financial implications of design decisions,
including consideration of program risks. Although state-of-the-art
valuation methodologies may be used at aircraft companies by fi-
nancial analysts to value future aircraft programs, such methods are
not directly integrated with the technical design process.

The results of a case study performed using the BWB concept
show that improvements in the expected NPV of a program can be
gained by incorporating financial models into a design-optimization
framework. Changes in the value-optimal design compared to the
baseline minimum-GTOW configuration demonstrate that changing
the objective in the optimization results in a different design and that
the optimizer chooses to trade aerodynamic performance and thus
aircraft price for reduced structural weight and thus aircraft cost.
For this case, the observed design changes are small, particularly
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given the relatively low fidelity of the underlying models; however,
the general trends exhibited by the results provide useful insight to
the trade-offs between performance and cost.

Deterministic NPV was shown to be an unsuitable objective func-
tion for value-based optimization. An inaccurate assessment of the
value of a design is provided, and, more important, the optimizer is
driven to undesirable places in the design space. In particular, the
effect of the arbitrary choice of risk-adjusted discount rate has a
large effect on the resulting design by causing design decisions to
focus overly on reducing short-term development costs.

Examples of the application of value-based MDO incorporate
value into the design process for setting range and speed require-
ments. Subsequent sensitivity analyses of a value-optimal design
allow quantification of the relative business risks associated with
uncertainty in individual technical and financial parameters. Al-
though specific quantitative conclusions are highly dependent on
the case at hand, the underlying models, and the assumptions, the
following trends are highlighted:

First, a value-based approach to MDO allows more fully in-
formed program decisions regarding design specifications, as ev-
idenced by the findings that longer ranges and higher speeds offer
diminishing returns in value—results not immediately obvious from
performance-only analysis.

Second, sensitivity analyses indicate that the effects of fuel cost,
recurring cost, and aircraft price on the long-term profitability of the
design pose the greatest risk. Market uncertainty is also a source of
considerable risk; however, the stochastic valuation is better able to
account for the possibility to take advantage of so-called high-risk,
high-reward situations.

Third, E[NPV] shows that incurring costs early in a program to
ensure a successful design represents a safer strategy than going to
market with a design that has missed performance goals. By con-
trast, deterministic NPV continually deemphasizes the importance
of long-term profitability.

Finally, stochastic E[NPV] is again demonstrated to be an im-
proved valuation metric over deterministic NPV. It models both the
ability to take advantage of favorable program variability as well as
to mitigate the effect on program value given an unfavorable design
or market.

The history of aircraft MDO originated in aero-structural opti-
mization and has proceeded to encompass many other important as-
pects of aircraft systems design. However, Sobieszczanski-Sobieski
and Haftka28 note, “there are still very few instances in which the
aerospace vehicle systems are optimized for their total performance,
including cost as one of the important metrics of such performance.”
Introducing stochastic value to measure cost attempts to fill this
niche and complement the similar work done by others to the same
end, and can be viewed as a new and necessary step toward truly
optimized aircraft.
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