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ABSTRACT 
Traditional commercial aircraft design attempts to achieve improved performance and reduced 

operating costs by minimizing maximum takeoff weight.  From the point of view of an aircraft 
manufacturer, however, this method does not guarantee the financial viability of an aircraft program.  A 
better design approach would take into account not only aircraft performance but also factors such as 
aircraft demand, market uncertainty, and development and manufacturing cost.  This paper outlines a 
design method resulting in an optimization framework to consider both performance and finance in aircraft 
program design.  The optimization procedure couples a simplified aircraft performance model with a 
program valuation technique based on real options theory to address uncertain market demand.   This new 
methodology is then applied to an aircraft design example.  Results include comparison of performance- 
and financial-optimal designs, as well as sensitivity analyses to quantify the effects of technical uncertainty 
on business risk. 

INTRODUCTION 
The historical choice of minimizing gross take-off weight (GTOW) as the objective in aircraft 

design is intended to improve performance and subsequently lower operating costs, primarily through 
reduced fuel consumption.  However, such an approach does not guarantee the profitability of a given 
aircraft design from the perspective of the airframe manufacturer.  In an increasingly competitive market 
for commercial aircraft, manufacturers may wish to design for improved financial viability of an aircraft 
program, as well as technical merit, before undertaking such a costly investment. 
 To assess the long-term financial impact of an aircraft program, a value-based approach is 
recommended.  Such an approach might still account for performance while also incorporating the 
following elements to assess predicted cash flows into and out of the program: manufacturing and 
development costs; product demand; operating cost to the customer; and market factors, such as 
competition, uncertainty, and expected growth.  A valuation methodology has been proposed that draws on 
financial options theory and uses dynamic programming to estimate the costs, price, and demand associated 
with a previously optimized aircraft design.1  By accounting for market uncertainty and addressing the idea 
of managerial flexibility, this methodology allows the user to calculate an optimal value for an aircraft 
program.  Further, quantifying market uncertainty directly allows for a more explicit accounting of 
perceived program risk, as opposed to traditional valuation techniques that rely on an assumed discount rate 
on future cash flows generated by a program.  The valuation technique is detailed in the next section, 
“Program Valuation.” 
 In this paper, coupled performance/financial design is effected by incorporating the valuation 
methodology into the design optimization process, as shown in Figure 1 (fig. 2).  Using simple financial 
models, a framework has been created that couples a higher-order performance model with financial 
estimation tools and an algorithm for computing expected program value.  A single program concept 
incorporating technical design as well as financial parameters can then be optimized in terms of specific 
performance or business goals, e.g., minimizing GTOW or maximizing program value.  These individual 
modules are described, along with the overall optimization framework, in the third and fourth sections: 
“Simulation Model” and “Optimization Framework.” 

The model was then used to solve for financially optimal designs of a single aircraft, a Boeing 
777-class airliner.  The number of passengers and aircraft range were chosen to make up the design vector.  
Aircraft manufacturers and airlines alike often view the basis of value in commercial aircraft in terms of 
range and carrying capacity when making a decision on what kind of aircraft to manufacture or purchase.  
Single-objective optimization was carried out using program value, as measured in terms of expected net 
present value (NPV), as the objective to be maximized.  Comparisons may then be made to the actual 
design of the 777 to identify the potential tradespace between performance- and value-based optimization, 
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as well as to the results of using traditional valuation techniques.  Sensitivity analyses may also be 
performed to consider the effects of uncertainty in various technical parameters on the NPV outcome – in a 
sense, quantifying financial risk.  Preliminary findings are summarized in the “Optimization Results” 
section. 

PROGRAM VALUATION 
By choosing maximum program value as a design objective, many of the above factors – 

performance, cost, demand – can be considered by modeling their effects on overall cost and revenue.  A 
properly chosen value calculation based on these cash flows can effectively capture the entire program 
design in a single number.  The value metric chosen to model the financial viability of an aircraft program 
is NPV, which is a figure commonly used to assess aircraft profitability.  NPV may be used to estimate the 
future value of an investment or other fiscal activity in terms of current money.  This metric is especially 
useful in that it accounts for the time value of money and provides a clear estimate of an investment’s 
future value. 

The calculation of NPV is traditionally accomplished by estimating a risk-adjusted discount factor 
to account for the opportunity cost of capital and the perceived risk inherent in a venture.  The value itself 
is found through the summation of future cash flows discounted by the risk-adjusted rate.  However, this 
approach is limited in some respects in its ability to provide such a definitive valuation.  Finding or 
calculating a discount rate that includes the effects of risk may be a difficult, and ultimately somewhat 
arbitrary, process – resulting in a less accurate assessment of risk.  Further, the value of flexibility or 
decision-making at a future time cannot be accounted for in such a straightforward calculation of NPV. 

The real options valuation approach  attempts to address these flaws.  Using a dynamic 
programming formulation, the optimal expected NPV can be found for an aircraft program, given uncertain 
market conditions.  The problem takes as states the program mode, including design, tooling, and 
production stages, and quantity demanded according to a stochastic model.  The manufacturer may choose 
to pause or cancel the program when in certain modes, effectively investing no more money if future 
market conditions appear unfavorable.  Then a series of optimal cash flows and program decisions can be 
found which will lead to a maximum expected value for NPV.  A key advantage to this approach is that 
explicitly including a model for demand uncertainty and applying real options theory allows discounting 
according to the risk-free rate instead of an assumed discount rate, and thus a more explicit accounting for 
the perceived risk of a venture. 

SIMULATION MODEL 
The dynamic programming problem above requires annual cost and revenue estimates for the 

aircraft program.  These values are derived from models that take both the design vector and resulting 
aircraft design parameters as inputs.  The simulation model first uses the design vector to generate first-
order size and performance estimates for an aircraft concept.  Then, relevant design values are used by the 
financial modules to calculate cost, price, and baseline demand for the resulting aircraft program.  Finally, 
expected NPV is determined from the cost, revenue, and stochastic demand model outputs according to the 
dynamic programming algorithm.  These modules are described in further detail below. 

 
Physical Model 
The physical aircraft model was based on an aircraft sizing routine developed by Liebeck.2  This 

routine was intended to generate aircraft size and performance characteristics that meet design 
specifications set by the user.   The equations found in the routine were derived from several different 
sources, including aerodynamic first principles, empirical aircraft data, and approximations and rules of 
thumb from experience in the aviation industry.  The physical model was composed of three main sub-
modules: aerodynamics, weights, and performance.  Inputs were the overall design vector – number of 
passengers and aircraft range – in addition to a number of used-specified parameters.  Wing shape, cruise 
conditions, engine configuration, and takeoff and landing performance were fixed to values approximating 
a 777-class aircraft before optimization runs were begun. 

The aerodynamics module assumed an initial cruise lift coefficient and calculated preliminary 
values for the thickness-to-chord ratio and aircraft wing loading at takeoff, cruise, and landing conditions.  
A value for the fuel fraction of the aircraft was also determined from the engine properties and desired 
range.  With this information, the aerodynamics module calculated the actual value of the lift coefficient at 
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initial cruise using first principles.  The weights module used these results to calculate the thrust loading for 
a given engine, and wing loading.  Fuselage dimensions were calculated based on the payload requirements 
and desired seating configuration.  The module then developed a series of weight fractions for several main 
aircraft components, expressed as fractions of the GTOW of the aircraft.  The as-yet-unknown GTOW was 
then solved for iteratively, and the component weights could be calculated.  The performance module 
rounded out the design of the aircraft by determining several standard aircraft characteristics and 
dimensions.  From the outputs of the sizing and weights models, it was possible to calculate drag 
coefficients for the wing, fuselage, and other aircraft components and arrive at a drag coefficient and lift-to-
drag ratio for the whole aircraft. 

  
Financial Model 
The financial model (cost, revenue, and value modules) is based on empirical models developed in 

Markish.  Simplified models were used in order to reduce computation time for the purposes of 
demonstrating the optimization framework.  Cost and revenue parts were based largely on fitting trends to 
historical aircraft data.  Resulting equations were provided to calculate actual cost, price, and baseline 
demand estimates using the design vector and other aircraft parameters. 

Revenue.  First, the design was classified in terms of its size (wide- or narrowbody, from a range 
threshold) and number of passengers.  Each class corresponded to a demand “bucket” to determine a 
baseline quantity, assuming a 50% market share for either of the two major airframe manufacturers.  
Demand was then assumed to evolve stochastically, as described below.  Price was calculated as a function 
of range, number of passengers, and an operating cost adjustment as follows. 
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Range and number of seats were normalized by reference values so that the entire value could be scaled by 
a reference price.  The ∆LC parameter was a lifecycle cost adjustment based on fuel burn as a percentage of 
Cash Airplane-Related Operating Cost (CAROC).  Its value accounted for differences in the efficiencies of 
competing aircraft designs, and reflected the idea that the more (less) efficient an airliner is to operate, the 
higher (lower) the price an airline is willing pay to own it. 

Cost.  Costs were estimated from the weight breakdown of the aircraft generated from the sizing 
model.  The overall weight was divided according to part categories (e.g., wing, fuselage, etc.), which were 
assigned costs per pound from empirical data based on both the part and process (e.g., labor, materials, etc.) 
type.  The total costs could then be calculated by multiplying each weight by its relevant costs per pound 
and summing over all parts and processes.  Estimates were provided for both non-recurring (e.g., 
engineering, tooling, etc.) and recurring (e.g., manufacturing, quality assurance, etc.) costs.  Non-recurring 
costs were modeled as being incurred over the development timeframe as an approximate β-distribution 
based on empirical data.  Recurring costs took into account a learning curve effect, such that the costs of 
manufacturing additional aircraft were reduced over time.  A theoretical first unit (TFU) cost for the first 
production aircraft was calculated through the above process, and additional unit costs were discounted 
according to the following learning curve equation. 
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Y0 represented the TFU cost, Yn was the cost of unit n, and b was the learning curve factor or slope.  The 
distribution of recurring costs was then found by summing the costs of all aircraft produced each time 
period. 

Stochastic Demand.  From the previously determined baseline demand, a set of demand states 
was established using a geometric Brownian motion model.  Uncertainty was modeled as a Weiner process 
with demand growth µ and volatility σ, as measured from empirical commercial aircraft data.  As such, for 
a given baseline demand x0, the demand in the next time period would be x0u with a probability p, or x0d 
with a probability 1-p according to the following equations, 
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with µ as the risk-free rate of investment in this case.  Using this model, a binomial lattice of demand states 
was constructed, as illustrated in Figure 1, as well as a matrix of corresponding transition probabilities.  
These demand states and probabilities were then used by the value module to calculate the optimal 
expected NPV using a dynamic programming algorithm. 

Value.  As described previously, value was measured in terms of expected NPV.  This quantity 
was calculated using a dynamic programming algorithm taking current program mode and quantity 
demanded as states.  The problem also accounted for uncertainty in terms of demand volatility.  The 
objective function, expected NPV, was calculated by summing optimal periodic cash flows determined 
according to the Bellman equation.3  The cash flow in a given period was the sum of sales profits, less the 
design and production costs incurred and cost of switching modes.  Cash flows were further adjusted for 
inflation and discounted by the risk-free rate.  Outputs were the expected NPV and a set of program 
“decision rules” that dictate the optimal conditions for design and production scheduling. The decision 
rules give, as a function of time and current market condition, the minimum demand to enter a particular 
program mode.  This series of optimal decisions accounted for managerial flexibility to handle uncertain 
demand, as derived from the real options approach discussed previously. 

 
Model Validation 
The sizing, cost, and price models were calibrated with inputs corresponding to a Boeing 777-

200ER, which had been used as a reference aircraft in setting up the financial models.  The sizing model 
was found to produce a breakdown of weights representative of the 777, and also remained applicable for 
other large widebody aircraft (747, A340, etc.) but was less accurate for smaller such aircraft (767, A330).  
The cost model followed a similar pattern, as it was calibrated for a 777-type aircraft as well, and 
approximated costs based on the estimated weight breakdown.  Sensitivity analysis of long-run marginal 
cost with respect to GTOW showed a linear relationship as expected.  Finally, the price model provided 
good estimates for various widebody aircraft compared to available data.  Further, the breakdown of price 
into ownership and CAROC components closely followed a typical 40% ownership and 60% CAROC split, 
and sensitivity analysis with respect to GTOW reflected a change in that breakdown accordingly.  The 
simplified framework was deemed sufficient to proceed with further optimization runs and sensitivity 
analyses using inputs for a 777-class aircraft. 

Outputs from the simplified value model were benchmarked against NPV estimates generated by 
Markish using a more complete implementation of the code.  Sizing, price, and cost estimates were 
produced for three representative aircraft programs, with results for the expected NPV in each case 
summarized in Table 1 below.  Discrepancies that arose were satisfactorily explained before proceeding to 
development of the overall optimization framework using this simulation model. 

 
Table 1.  Comparison of expected NPV from DFV code vs. simplified model using DFV price, cost 

estimates and WingMOD weight inputs. 
 Original E[NPV] ($B) Simplified E[NPV] ($B) 
Aircraft 1 5.95 5.52 
Aircraft 2 2.26 2.28 
Aircraft 3 14.62 14.47 

OPTIMIZATION FRAMEWORK 
A design optimization framework coupled the performance and financial models with an 

optimization routine as illustrated in Figure 2.  An initial design vector (number of passengers, range) was 
provided to the physical model to estimate aircraft sizing and performance characteristics.  Its relevant 
outputs were then used by the cost and revenue models to approximate cost, price, and baseline demand 
figures for the design.  The value model used the dynamic programming algorithm, which accounted for 
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market growth and uncertainty, to determine a set of optimal design decisions and the objective, expected 
NPV.  To complete the loop, the objective was input to the optimization routine; the optimization algorithm 
determined a new design vector to attain the goal of maximized NPV; and the new variable values were 
passed to the simulation model once again to begin a new iteration.  The optimizer represented in Figure 2 
used a public domain adaptive simulated annealing (ASA) algorithm.4  A heuristic optimization technique 
was preferred so that the entire design space would be searched for the optimal value despite discontinuities 
due to changes in baseline demand as a function of number of passengers, as illustrated by the plot of 
expected NPV versus number of passengers in Figure 3. 

OPTIMIZATION RESULTS 
Following model refinement and validation, a series of sensitivity analyses were performed 

investigating the effect of changes in GTOW on non-optimal solutions for NPV.  These used inputs for 
range and number of passengers corresponding to a 777.  The effect of changing GTOW on expected NPV 
is illustrated in Figure 4.  The expected NPV approaches a limit of zero as GTOW increases, thus the effect 
of increasing weight is diminished over time, which may seem contrary to expectations.  This is due to the 
real options approach implemented through the dynamic programming algorithm, which prevents the 
possibility of a negative expected NPV. Recall that the dynamic programming problem is solved to find an 
optimal decision-making strategy and the corresponding optimal expected NPV. One could always achieve 
an expected NPV of zero by following a strategy of “do nothing regardless of market conditions”. 
Therefore, the optimal result cannot yield a negative expected NPV.  Figure 5 contrasts the trend for 
expected NPV from Figure 4 with a deterministic NPV calculation that does not allow managerial 
flexibility, i.e. it is assumed that once the aircraft program begins, all phases (design, tooling, and 
production) are carried out, regardless of market conditions. This latter calculation is representative of the 
way in which aircraft programs are typically evaluated, and leads to linearly decreasing NPV with 
increased GTOW over the range of weight consideredThis plot demonstrates that using an assumed 
discount rate (?) and ignoring the value of managerial flexibility may severely undervalue a program. 

The same sensitivity analysis was then considered with reduced annual demand volatility σ.  The 
original value of 45.6% corresponded to the average volatility for a given type of widebody aircraft; the 
new value of 19.6% represented the average aggregate volatility of all widebody deliveries.  NPV 
sensitivity to GTOW is compared for these two cases in Figure 6.  Note that the expected NPV for the 
lower volatility is actually lower, as well.  This indicates that a lower volatility may correspond to lower 
overall risk, but also a smaller optimal return on investment.  Again, a traditional NPV calculation would 
likely account for higher volatility with an adjustment increasing the discount rate, so the possibility of a 
higher payoff resulting from the “riskier” venture would not be captured by such an approach. 

Another consideration was the effect of increasing GTOW on the decision rules, which represent 
the threshold demand levels needed to move through the various modes of an aircraft program.  The initial 
threshold (at program time = 0) is plotted in Figure 7 for the decisions to begin design, tooling, and 
production, as a function of increase in takeoff weight.  Exponential curves were then fitted to the plots, 
since the demand is an exponential function of the volatility (Equation 4) in the geometric Brownian 
motion model used by the algorithm.  However, the sensitivity to GTOW is very nearly linear, so finer 
resolution may be desired. It can be seen from the figure that an increase in GTOW of 5000 lbs causes the 
threshold demand to begin design to increase from X to Y, while the threshold to begin production 
increases from W to Z. The threshold for production is much lower than that for design, since the initial 
non-recurring investment has already been made. Such curves show how technical uncertainty interacts 
with market uncertainty and could be used to relate managerial decisions, and the underlying financial 
considerations, to technical uncertainty. 

CONCLUSIONS 
In this paper, a framework for coupled performance/financial aircraft design optimization 
is presented. The framework combines a real options valuation technique that explicitly 
addresses market uncertainty with a simulated annealing optimization algorithm. A 
simple example is considered to demonstrate the proof of concept. Some sensitivity 
studies have been performed to show the effect of changing aircraft weight on program 
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value. In the final paper, optimization results will be presented. In particular, financial-
optimal and performance-optimal aircraft designs will be compared. 
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Figure 1.  Binomial lattice of demand states and corresponding transition probabilities representing 

geometric Brownian motion model. (Markish) 
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Figure 2.  Optimization framework coupling performance and financial models for aircraft design. 
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Figure 3.  Expected NPV vs. number of passengers at an example range, demonstrating discontinuities in 

the design space due to shifting baseline demand as a function of number of passengers. 
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Figure 4.  Effect of increasing GTOW on NPV using a real options approach allowing for managerial 

flexibility. 
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Figure 5.  Effect of increasing GTOW on NPV with (stochastic, see Fig. 4) and without (deterministic) 
program flexibility. 
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Figure 6.  Comparison of NPV vs. increasing GTOW for baseline (avg. aircraft) and reduced (avg. 

widebody aggregate) volatilities. 
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Figure 7.  Initial threshold demand (t = 0) for design, tooling, and build phases of aircraft program vs. 

increasing GTOW. 
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