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Surrogate-based-optimization methods provide a means to achieve high-fidelity design optimization at reduced
computational cost by using a high-fidelity model in combination with lower-fidelity models that are less expensive to
evaluate. This paper presents a provably convergent trust-region model-management methodology for variable-
parameterization design models: that is, models for which the design parameters are defined over different spaces.
Corrected space mapping is introduced as a method to map between the variable-parameterization design spaces. It
is then used with a sequential-quadratic-programming-like trust-region method for two aerospace-related design
optimization problems. Results for a wing design problem and a flapping-flight problem show that the method
outperforms direct optimization in the high-fidelity space. On the wing design problem, the new method achieves
76% savings in high-fidelity function calls. On a bat-flight design problem, it achieves approximately 45% time
savings, although it converges to a different local minimum than did the benchmark.

Introduction

S COMPUTATIONAL capabilities continue to grow,

designers of engineering systems have available an increasing
range of numerical analysis models. These models range from low-
fidelity simple-physics models to high-fidelity detailed computa-
tional simulation models. The drive toward including higher-fidelity
analyses in the design process (for example, through the use of
computational fluid dynamic analyses) leads to an increase in
computational expense. As a result, design optimization, which
requires large numbers of analyses of objectives and constraints,
becomes prohibitively expensive for many systems of interest. This
paper presents a methodology for improving the computational
efficiency of a high-fidelity design. This method exploits variable
fidelity and variable parameterization (that is, inexpensive models of
lower physical resolution combined with coarser design
descriptions) in a design optimization framework.

Surrogate-based optimization (SBO) methods have previously
been proposed to achieve high-fidelity design optimization at
reduced computational cost. In SBO, a surrogate, or less expensive
and lower-fidelity model, is used for the majority of the optimization,
with recourse to the high-fidelity analysis less frequently. The
surrogate can be developed in a number of ways: for example, by
using a simplified-physics model with a different set of governing
equations. However, an improvement in a design predicted by a low-
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fidelity model does not guarantee an improvement in the high-fidelity
problem.

Past work has focused on providing surrogates that are
computationally efficient to evaluate. These models can be roughly
divided into three categories: data-fit surrogates such as response
surfaces [1,2]; kriging [3]; radial basis functions [4] or extended
radial basis functions [3,6]; reduced-order models, derived using
techniques such as proper orthogonal decomposition [7] and modal
analysis [8]; and hierarchical models, also called multifidelity,
variable-fidelity, or variable-complexity models. In the latter case, a
physics-based model of lower-fidelity and reduced computational
cost is used as the surrogate in place of the high-fidelity model. The
multifidelity case can be further divided based on the means by which
the fidelity is reduced in the lower-fidelity model. The low-fidelity
model can be the same as the high-fidelity, but converged to a higher
residual tolerance [9]; it can be the same model on a coarser grid [10];
or it can use a simpler engineering model that neglects some physics
modeled by the high-fidelity method [11]. Jones [12] compared a
number of surrogates for use in global optimization.

Much work has been performed on developing SBO methods that
are provably convergent to an optimum of the high-fidelity problem.
Queipo et al. [13] reviewed a broad spectrum of SBO work. One
promising group of methods is based on trust-region model
management (TRMM), which imposes limits on the amount of
optimization performed using the low-fidelity model, based on a
quantitative assessment of that model’s predictive capability.
TRMM evolved from classical trust-region algorithms [14], which
use quadratic surrogates, and has more recently been used for
surrogates of any type [15]. These TRMM methods are provably
convergent to an optimum of the high-fidelity model [16,17],
provided the low-fidelity model is corrected to be at least first-order
consistent with the high-fidelity model. Correcting to second-order
or quasi-second-order consistency provides improved performance
[18]. Yuan [19] presented a survey of unconstrained trust-region
methods.

A number of researchers have developed SBO methods for
constrained problems. Booker et al. [20] developed a direct-search
SBO framework that converges to a minimum of an expensive
objective function subject only to bounds on the design variables and
that does not require derivative evaluations. Audet et al. [21]
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extended that framework to handle general nonlinear constraints
using a filter method for step acceptance [22]. Rodriguez et al. [23]
developed a gradient-based TRMM augmented-Lagrangian strategy
using response surfaces and showed that using separate response
surfaces for the objective and constraints provided faster
convergence than using a single response surface for the augmented
Lagrangian. Alexandrov et al. [10] developed the MAESTRO class
of methods, which use gradient-based optimization and trust-region
model management, and compared them to a sequential quadratic
programming (SQP)-like TRMM method. Under fairly mild
conditions on the models, these methods are also convergent to a
local minimum of the constrained high-fidelity problem [16,24].
Sadjadi and Ponnambalam [25] reviewed a broad spectrum of trust-
region methods for constrained optimization, and Conn et al. [16]
gave an extensive bibliography relating to both classical trust-region
methods and more recent TRMM methods, for both the
unconstrained and the constrained cases.

The SBO methods developed to date achieve computational gain
by performing most of the analysis on the low-fidelity model;
however, they require that the high- and low-fidelity models operate
with the same set of design variables. For practical design
applications, however, multifidelity models are often defined over
different design spaces.

New methodology is therefore required for expanding surrogate-
based design optimization to the case in which the low- and high-
fidelity models use different design variables. Further, combining a
low-fidelity model with a coarser parameterization of the design
offers the opportunity for additional reduction in computational
complexity and cost beyond current SBO methods. To achieve this,
new design methodology is required that incorporates variable-
parameterization models into SBO methods.

We consider a general design problem posed using the following
nonlinear optimization formulation:

ng{inf(x) subject to ¢(x) <0 (1)

where f: R” — R represents the scalar objective to be minimized,
and x € R” is the vector of n design variables that describe the
design. The vector function ¢: R” — R™ contains m constraints,
which provide a mathematical description of requirements that the
design must satisfy. Both f and ¢ are assumed to be continuous and
differentiable over the design space of interest. For realistic design
problems of engineering relevance, the complexity of the
optimization problem (1) is twofold: first, the simulations required
to evaluate f(x) and ¢(x) may be computationally expensive, and
second, the dimensionality of x may be large.

It is assumed in this discussion that a lower-fidelity model is
available. This model is both less accurate and less computationally
expensive. The lower-fidelity model for f(x) is denoted as f (x) and
that for ¢(x) is ¢(X). The dimension of X, denoted as 7, may be
different from the dimension of x, denoted as 7.

Some terminology is required as part of this discussion. A
variable-fidelity design problem is a physical problem for which at
least two mathematical or computational models exist: f(x) with

¢(x) and f(X) with &(X). The parameterization of a model i the set of
design variables x or X used as inputs to the model. A variable-
parameterization problem is a variable-fidelity problem in which
each of the models has a different parameterization, meaning that for
the same physical design, X # X. A mapping is a method for linking
the design variables in a variable-parameterization problem. Given a
set of design variables in one parameterization, it provides a set of
design variables in another parameterization. The dimension of a
model is the number of design variables. A variable-dimensional
problem is a variable-parameterization problem in which each of the
models has a different dimension: that is, where n # 7.

This paper first presents the TRMM framework, including the
SQP-like constrained optimization method. It then outlines design
variable mapping and specifically introduces corrected space
mapping. It then presents the results of two example problems: a

wing planform design and the design of a batlike flapping wing.
Finally, it draws some conclusions.

Trust-Region Model Management

Surrogates can be incorporated into optimization by using a formal
model-management strategy. One such strategy is a TRMM
framework [26]. TRMM imposes limits on the amount of
optimization performed using the low-fidelity model, based on a
quantitative assessment of that model’s predictive capability.
TRMM developed from the classical trust-region optimization
method based on quadratic Taylor series models [27].

TRMM methods are provably convergent to an optimum of the
high-fidelity model, as long as the two models satisfy a number of
conditions, including that the low-fidelity model is corrected to be at
least first-order consistent with the high-fidelity model. The complete
list of conditions and a proof are available in [16]. The general
approach in TRMM is to solve a sequence of optimization
subproblems using only the low-fidelity model, with an additional
constraint that requires the solution of the subproblem to lie within a
specified trust region. The radius of the trust region is adaptively
managed on each subproblem iteration using a merit function to
quantitatively assess the predictive capability of the low-fidelity
model.

The SQP-like method is modified from [10]. It is similar to
sequential quadratic programming (SQP) in that on each subproblem
it minimizes a surrogate of the Lagrangian subject to linear
approximations to the high-fidelity constraints.

The Lagrangian is defined as

L(x,}) = f(x) + ATe(x) @

where A is the vector of Lagrange multipliers.

The SQP-like TRMM algorithm is as follows:

1) Choose an initial point x° and an initial trust-region radius
A® > 0. Choose an initial approximation A’ to the Lagrange
multipliers. Set k = 0. Choose constants n > 0,0 <c¢; <1, ¢, > 1,
O0<r <ry<l,and A* > A°,

2) Create a surrogate L for the Lagrangian L. The surrogate must
be at least first-order consistent with the Lagrangian at the center of
the trust region: that is,

L*(xk, k) = LF(x*, 1) @3)

V, LF(xk, M%) = V_LF(xk, AF) @)

In this work, the surrogate for the Lagrangian is created by using
separate surrogates for the objective and each constraint: that is,

L(x,)) = f(x) + AT&(x) 5)

The surrogates f for f and ¢; for each c; are created using mapping

and correction on the low-fidelity model f and ¢;. Mapping and
correction are described in the next section.
3) Solve the kth trust-region subproblem

minLt(x* 4 s, A¥)

subject to ¢¥(x¥ 4 s) + Vyef(xF 4 )7 (x — x¥) < 0||s||, < A¥
(6)

and set the trial step s to the minimizing step. The method for solving
the problem must result in a step satisfying the fraction of Cauchy
decrease condition [16] on the subproblem.

4) Compute f(x* + s¥) and c(x* + s¥). The acceptance criteria
uses dominance, a concept borrowed from multiobjective
optimization [28]. A point x' dominates a point x> if both of the
following conditions are satisfied:

fE) = £, et D = llet )] @)
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where ¢ ™ (x) is a vector with elements defined by
¢ (x) = max(0, ¢;(x)) ®)

A filter is a set of points, none of which dominate any other. In a filter
method, the initial filter is empty. The trial point x* + s is accepted
and added to the filter if it is not dominated by any point in the filter. If
any element of the filter dominates the trial point, the trial point is
rejected and not added to the filter. Significant detail on filter methods
is available in chapter 5 of [16]. If the trial step is accepted,
x**1 = xk 4 ¥ If the trial step is rejected, x¥*! = x*.
5) Define the trust-region ratio

LM AN — L(xF 45505

K = - 9
L(x*, AF) — LF(x* + sk, Ak ®
Set
cills*l if pf <1y,
A= min(e, AR, A% if pf > 1y, (10)
skl otherwise

If both the numerator and the denominator in Eq. (9) are zero or very
small, and the step is accepted using the filter rules, the trust-region
size is increased. If only the denominator is very small, the trust-
region size is decreased.

6) Calculate new values for the Lagrange multipliers. The
Lagrange multipliers are updated by solving the nonnegative least-
squares constraint problem:

min|V,f(x§) + D A Vaei(x6)|3

ieS

subject to A >0 (11)

where S is the set of active constraints, using the nonnegative least-
squares algorithm in Sec. 23.3 of [29]. The solution to this problem is
A%+1 Increment k by 1 and go to step 2.

Mapping
SBO methods have until now been applicable only to models in
which both the high-fidelity model f(x) [c(x)] and the low-fidelity
model f(X) [¢(X)] are defined over the same space x = %. To use a
low-fidelity model with a different number of design variables from
the high-fidelity function to be optimized, it is necessary to find a
relationship between the two sets of design vectors: thatis, X = P(X).

Then f (P(x)) is corrected to a surrogate for f(x), and €¢(P(x)) is
corrected to a surrogate for ¢(x). The optimization algorithm then
calculates trial steps in the high-fidelity space. Another option is to
calculate steps in the low-fidelity space and to correct f (X) to a
surrogate for f(Q(X)) and ¢(X) to a surrogate for c(Q(X)). The latter
option requires constraints on the Jacobian of the mapping to ensure
that the projection of the gradient is finite for a finite gradient [30] and
will not be addressed here.

In some cases, this design space mapping can be obvious and
problem-specific. For instance, if the high- and low-fidelity models
are the same set of physical equations but on a fine grid and a coarse
grid and the design vectors in each case are geometric parameters
defined on those grids, the low-fidelity design vector can be a subset
of the high-fidelity design vector or the high-fidelity design vector
can be an interpolation of the low-fidelity design vector. However, in
other problems, there is no obvious mathematical relationship
between the design vectors. In this case, an empirical mapping is
needed. One example of such a problem is the flapping-flight
problem described in this paper. Another is the multifidelity
supersonic business jet problem used by Choi et al. [31]. Because
then-existing SBO methods cannot be applied to problems in which
the low- and high-fidelity models use different design variables, Choi
et al. used the two models sequentially, optimizing first using the
low-fidelity model, with kriging corrections applied, and using the
result of that optimization as a starting point for optimization using
the high-fidelity model. This also required an additional step of

manually mapping the low-fidelity optimum to the high-fidelity
space to provide a starting point for high-fidelity optimization.

Space Mapping

Space mapping, first introduced by Bandler et al. [32], links the
high- and low-fidelity models through their input parameters. The
goal of space mapping is to vary the input parameters to the low-
fidelity model to match the output of the high-fidelity model. In
microwave circuit design, for which space mapping was first
developed, it is often appropriate to make corrections to the input of a
model, rather than to its output.

The first space-mapping-based optimization algorithm used a
linear mapping between the high- and low-fidelity design spaces. It
used a least-squares solution of the linear equations resulting from
associating corresponding data points in the two spaces. Space-
mapping optimization consists of optimizing in the low-fidelity
space and inverting the mapping to find a trial point in the high-
fidelity space. New data points near the trial point are then used to
construct the mapping for the next iteration. This process is repeated
until no further progress is made. Although this method can result in
substantial improvement (as demonstrated by several design
problems, most in circuit design [33], but some in other disciplines
[34]), it is not provably convergent to even a local minimum of the
high-fidelity space. In fact, although improvement in the high-
fidelity model is often possible when the low-fidelity model is similar
to the high-fidelity model, it is not guaranteed.

Space mapping was further improved with the introduction of
aggressive space mapping [35]. Aggressive space mapping descends
more quickly toward the optimum than space mapping, but requires
the assumptions that the mapping between the spaces is bijective and
that it is always possible to find a set of low-fidelity design vectors
that, when fed into the low-fidelity model, provide an output almost
identical to the high-fidelity model evaluated at any given high-
fidelity design vector. It also requires that the design variables are the
same dimension in both spaces. Because the method does not ensure
first-order accuracy, the proofs of convergence of trust-region
methods do not extend to those methods using space mapping.
However, Madsen and Sgndergaard [36] developed a provably
convergent algorithm by using a hybrid method in which the
surrogate is a convex combination of the space-mapped low-fidelity
function and a Taylor series approximation to the high-fidelity
function.

The space-mapping examples available in the literature consider
only the case in which the design vectors have the same length.
Therefore, this work expands it to include the variable-parameter-
ization case, including when the design vectors are not the same
length.

In space mapping, a particular form is assumed for the relationship
P between the high- and low-fidelity design vectors. This form is
described by some set of space-mapping parameters, contained here
in a vector p, that are found by solving an optimization problem:

p €argmin} (A(x) — fP.p))  (12)
i=1

This optimization problem seeks to minimize the difference between
some high-fidelity function 8(x) and the corresponding low-fidelity
function 8(X) = B(P(x, p)) over a set of g sample points x’, where
x! denotes the ith sample point. Both the choice of sample points and
the particular form of the mapping P are left to the implementation.

Corrections

As mentioned in the preceding SQP-like algorithm, provable
convergence of the TRMM requires at least first-order consistency
between the high-fidelity model and the surrogate model. This can be
accomplished using corrections. Corrections can be additive or
multiplicative; this work uses additive corrections. Although only
first-order corrections are required, quasi-second-order corrections
have been shown to accelerate convergence of a TRMM [18] and are
therefore used in this work.
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For some low-fidelity function ,é(f(), the corresponding high-
fidelity function 8(x), and a mapping X = P(x), the kth additive-
corrected surrogate is defined as

BE(x) = B(P(x)) + AK(x) (13)

To obtain quasi-second-order consistency between Bk(xk) and
B(x¥), we define the correction function A¥(x) using a quadratic
Taylor series expansion of the difference A(x) between the two

functions B and 8 about the point x:

AF = A(xF) + VLAEHT (x — xb) 4+ 3(x — x9)T VA (x — xb)

(14)
The elements in this expansion are calculated using
A () = B(x) = B(P(x") (15)
dA(x* 8 8
8( ) _ ﬂ xK) — ﬁ ")) p=1,....n
Xp
16)

i 0% 0%
> Hjy L=, =1,....n, =1,...,
+ — I ox dx, P " 1 "

an

where x, denotes the pth element of the vector x, H¥ is the Broyden—
Fletcher—Goldfarb—Shanno (BFGS) approximation to the Hessian
matrix of the high-fidelity function B at x*, H" is the BFGS

approximation to the Hessian matrix of the low-fidelity function S at
P(x), and HY denotes the pgth element of the matrix HF.

For each subproblem k, Eq. (15) computes the difference between
the value of the high-fidelity function and the low-fidelity function at
the center of the trust region. Using the chain rule, Eq. (16) computes
the difference between the gradient of the high-fidelity function and
the gradient of the low-fidelity function at the center of the trust
region, in which the gradients are computed with respect to the high-
fidelity design vector x. The second term in Eq. (16) therefore
requires the Jacobian of the mapping, d%;/dx,. Similarly, Eq. (17)
computes the difference between the BFGS approximation of the
Hessian matrices of the high-fidelity and low-fidelity functions at the
center of the trust region. Once again, derivatives are required with
respect to x and are computed using the chain rule.

Corrected Space Mapping

Because space mapping does not provide provable convergence
within a TRMM framework, but any surrogate that is first-order
accurate does, one approach is to correct the space-mapping
framework to atleast first order. This can be done with the corrections
described previously. However, if the input parameters are first
selected to match the output function at some number of control
points and a correction is subsequently applied, it is likely that the
correction will unnecessarily distort the match performed in the
space-mapping step. This can be resolved by performing the space
mapping and correction steps simultaneously, which is achieved by
embedding the correction within the space mapping.

This concept is illustrated in Fig. 1, which shows the available data
points (o) and the center of the trust region (x). The dotted curve is a
cubic function found with a least-squares fit to the available data. It
provides no consistency at the trust-region center. The dashed curve
shows the result of adding a linear additive correction to that fit to
enforce first-order accuracy at the center of the trust region. The local
correction distorts the global data fitting. The solid curve is also a

Data points
Trust region center
' Least squares fit
Fit with additive correction
Constrained fit

%0

Fig. 1 Demonstration of simultaneous vs sequential data fitting and
enforcement of first-order accuracy.

cubic function, generated by first enforcing first-order accuracy at the
center and then performing a least-squares fit with the remaining
degrees of freedom. This last curve is more globally accurate than the
sequential fitting and correction steps.

Using this concept, corrected space mapping performs the space
mapping and correction steps simultaneously. That is, it incorporates
a correction, and with the remaining degrees of freedom it performs
the best match possible to the control points by varying the input
mapping.

The corrected space-mapping optimization problem is

p eargmlelﬁ(x’) B (P(x',p)), (18)

Equation (18) is the same as Eq (12) with ,3 the uncorrected low-
fidelity function, replaced by ,8 the corrected surrogate to the high-
fidelity function on the kth subproblem. The optimization
problem (18) seeks to minimize the difference between the high-
fidelity and surrogate objective functions over a set of k sample
points x’, where x’ denotes the ith sample (or control) point. Both the
choice of sample points and the particular form of the mapping P are
left to the implementation. The correction, because it depends on the
Jacobian and Hessian matrices of the mapping, must be updated for
each new value of p.

In the implementation employed in this work, the sample points
used in Eq. (12) are the previous g accepted steps in the TRMM
algorithm (x¥=9+1 .., x*) at which high-fidelity function values are
already available. A linear relationship is chosen for the mapping P:

R =P(x)=Mx+b (19)

where M is a matrix with 7 X n elements, and b is a vector of length 72
for a total of 7 x (n + 1) space-mapping parameters. It should be
noted that other forms of the mapping could also be used. The space-
mapping parameters must be determined at each iteration of the
TRMM method by solving the optimization problem (18). This
additional optimization problem in 22 X (n 4+ 1) dimensional space
adds computational cost that increases with the number of design
variables. However, in many applications, such as computational
fluid dynamic problems, this additional algorithm overhead is
significantly less than the cost of a function evaluation. Thus, the
algorithm provides net computational savings. This is illustrated in
the example problems.

Example Problems

This paper presents two constrained example problems: a wing
planform design problem and the design of a batlike flapping-wing
vehicle. Previous work has addressed unconstrained problems,
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including two variations of the Rosenbrock problem and an airfoil
design problem [37], and has compared a number of constrained
trust-region optimization strategies on the Barnes problem and the
wing design problem presented subsequently [38].

'Wing Design Problem

The first example design problem is the constrained planform
design of a wing. The wingspan is constant at 10 m and the angle of
attack is set to a constant value of 0.5 deg. The quarter-chord is
unswept. The objective function is the coefficient of induced drag,
and the lift of the wing is constrained from below. This problem is
linked to a more complex aircraft design problem in which the lift
must be equal to the weight and the drag of the aircraft is minimized.
The high-fidelity design variables specify the chord at each of 10
evenly distributed points along the wing. The optimization problem
is given by

minf(x) = Cp;(x)

subject to ¢(x) = (0.2 — A(x)C.(x)) <0 (20)
0.01 < x; <10, j=1,...,10

where C)), is the coefficient of induced drag, C; is the coefficient of
lift, A is the wing area, X is a vector containing the chord design
variables, and x; is the chord at the jth spanwise station.

The high-fidelity code uses a vortex-lattice method using a zero-
thickness, constant-collocation, doublet-lattice model [39]. By
imposing Neumann boundary conditions and a zero-spanwise-
vorticity trailing-edge Kutta condition, the wing and wake surface
doublet strengths can be uniquely determined. The discretization is
performed using quadrilateral panels with uniform chordwise
spacing and cosine spanwise refinement. A standard Trefftz-plane
analysis [39] is used to compute both the lift and induced drag. A
single analysis of the high-fidelity code takes approximately 90 s on a
2.4 GHz Intel Pentium 4 desktop workstation.

The low-fidelity code uses lifting-line theory. A standard lifting-
line method following Ashley and Landahl [40] has been
implemented to compute both the lift and the induced drag. Because
it assumes that the wing-bound vorticity can be approximated by a
single spanwise line vortex, the lifting-line method is less accurate
than the high-fidelity vortex-lattice method. The low-fidelity design
variables are also chords, but in this case, at only three points that are
again equally spaced from the root to the tip. This problem is
therefore an example of variable parameterization: the low-fidelity
design space is of lower dimension than the high-fidelity design
space. A single analysis of the low-fidelity code takes approximately
30 ms on a 2.4 GHz desktop workstation.

For both the high-fidelity and low-fidelity models, gradients were
calculated using centered finite differences. The evaluations required
for these finite differences are included in the count of the number of
function calls. The benchmark method is SQP. The multifidelity
method is the SQP-like trust-region method in conjunction with
corrected space mapping. The eight previous iterates were used as the
control points. Before the accumulation of eight iterates, all previous
iterates were used as the control points. The linear space mapping of
Eq. (19) was used. The initial design was a rectangular wing and was
feasible with the lift constraint inactive.

Given infinite degrees of freedom, the planform that yields
minimum induced drag is elliptic. The optimization problem is
expected to find a distribution that most closely approximates an
elliptical planform. Figure 2 shows the initial and final planforms.
Figure 3 shows the objective function value and constraint violation
of each method versus the number of high-fidelity function calls.
Both the benchmark method and the multifidelity method converged
to the same near-elliptic design. The high-fidelity SQP method took
1344 high-fidelity function calls, including those required to
calculate gradients, to achieve the optimum design, with an objective
within 1073 of the best design found, with a constraint violation less
than 107°. The multifidelity method found the optimum, using the
same criteria, in 319 high-fidelity function calls. As the cost of the

Initial Design Final Design
6 ‘ ‘ 6 : :
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Fig. 2 Contour plot of kriging-generated response surface of trapped
region size as a function of elliptical cutout geometry.
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Fig. 3 Objective function value and constraint violation of each of a

single-fidelity SQP method and an SQP-like multifidelity method using

corrected space mapping.

low-fidelity model was negligible, the total computational time was
reduced from approximately 34 h to approximately 8 h, a savings of
76%.

Flapping-Flight Problem

The final constrained design problem aims to explore biologically
inspired flapping flight. Heaving wings and airfoils are commonly
used in nature as a form of force production and have gained the
attention of many researchers, both to further understand biological
flight and to develop bioinspired aircraft [41-44].

Bats have been studied in a wind tunnel to understand the
mechanics of bat flight [45]. Figure 4 shows a bat outfitted with
markers to track bat motion in flight in a wind tunnel. Researchers
postulate that bats’ physiological structure and flight motion are
optimized for minimum power input at a specified forward velocity.
To test that hypothesis, a model problem was formulated to
investigate the minimization of power to generate thrust, using
leading-edge compliance. The goal of this problem is to examine
passive strategies for minimizing the heaving motion power input for
a given thrust output. Bat flight is modeled using a heaving airfoil
with a passive load-alleviation leading-edge torsional spring.
Although birds and bats in nature use more complex forms of both
active and passive control, this optimization problem is a first step in
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Fig. 4 Marker locations on a Cynopterus brachyotis, or short-nosed fruit bat, outfitted for testing in the Harvard Concord Field Station Wind Tunnel

(figure courtesy of Kenneth Breuer and Sharon Swartz, Brown University).

the determination of the optimal passive strategy. A similar problem
of minimizing the power requirements for a swimming robot using
passive springs has been investigated using analytic approaches [46].

Problem Description

The high-fidelity model of the design problem has eight design
parameters. The first is a spring constant. This represents the
structural compliance of the bat wing, modeled as a single leading-
edge torsional spring providing passive load alleviation. The second
design parameter is the flapping frequency. The next three are
amplitudes and lags of each of three harmonics of flapping motion.
Table 1 shows the eight design variables, their units, their lower and
upper bounds, their start values, and their final values in each of the
single-fidelity and multifidelity runs. The optimization problem is

minf (x) = P;,(x)

LB < x; < UB,

subject to ¢(x) = (0.2 — Cy(x)) <0
j=1,....8 1)

where the input power Py, the thrust coefficient Cr, and the elements
of the design parameter vector

x = (K, 0,40, A1, Ay, o, d1. $2)T

are as described in Table 1. The design variables were scaled to
improve the numerical conditioning of the problem.

High-Fidelity Model

The high-fidelity solver is a two-dimensional, unsteady, linear
strength, source-doublet formulation [39,47]. An advantage of using
panel-method approximations in an unsteady setting is that it
requires neither remeshing nor moving-body formulations (such as
arbitrary Lagrange—Euler formulations of the Navier—Stokes
equations). The unsteady forces and moments were computed by
integrating the airfoil surface pressure, computed using the unsteady
form of the Bernoulli equation [39]. To correct the results for viscous

effects, a simple quasi-steady drag-polar approximation was used.
Additionally, a simple stall penalty scheme consisting of a quartic
drag penalty on airfoil incidences over a specified value was also
incorporated to ensure that the angle of incidence of the airfoil
remained in the nonseparated regime. Although the viscous model is
not as rigorous as one that depends on the unsteady motion of the
geometry (as would be the case for an integral-boundary-layer
method [48-50]), the incorporation of a simple viscous correction
yields more realistic computations than an inviscid formulation. The
passive structural load alleviation and airfoil rotation were
accomplished by modeling the airfoil as a mass and a leading-edge
torsional spring. The following moment-balance equation was
enforced strongly for each time step at the leading edge of the airfoil:

16 4 KO 4 mxegh — Mooy = 0 (22)

where [ is the moment of inertia about the leading edge of the airfoil,
0 is the angle of the wing, K is the spring constant of the torsional
spring at the leading edge, m is the mass of the wing, x, is the x
position of the center of gravity of the wing in the wake direction, / is
the vertical position of the wing (and thus i is its vertical
acceleration), and M, is the moment due to aerodynamic forces.

A low-Reynolds-number HT-13 airfoil was used as the input
geometry. The vertical heaving motion was described by a third-
order series of harmonic functions as follows:

2
Z(t) = Z A, cosQu(m + Dot + ¢,,) (23)

m=o

where Z(¢) is the z position, defined along a vertical axis, of the airfoil
in time; ¢ is time; and A;, ¢; (i =0, ...,2), and w are as defined in
Table 1. The horizontal velocity is constant at

U(t)=Uy =5m/s 4)

The high-fidelity code requires approximately 85 s on a 2.4 GHz
desktop workstation for a single evaluation.

Table 1 Design variables and results for the flapping-wing problem

Symbol Name Unit Lower bound Upper bound Initial Final, single fidelity Final, multifidelity
Design variables

K Spring constant (N -m)/rad 0.0001 0.25 0.005 0.0136 0.00949

w Flapping frequency rad/s 10 120 20 11.4643 13.41

Ay Amplitude of harmonic 0 m 0 0.3 0.2 0.3 0.3

A, Amplitude of harmonic 1 m 0 0.15 0 7.93 x 1073 2.20 x 1073

A, Amplitude of harmonic 2 m 0 0.15 0 4.82 x 1073 0.0145

P Lag of harmonic 0 rad -7 b4 0 —3.058 —2.148

b, Lag of harmonic 1 rad - b4 0 0 —0.208

b, Lag of harmonic 2 rad - F4 0 —1.943 0.0626

Constraint

Cr Coefficient of thrust e 0.2 e 0.1076 0.2 0.2
Objective function

Py, Power input w —_— 0.5461 0.8966 0.9049
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Low-Fidelity Model

The low-fidelity model has three design variables: a spring
constant, a flapping frequency, and a flapping amplitude. Only one
flapping harmonic is included. The low-fidelity analysis uses a
simplified representation of the wing as a point airfoil. The
calculations are quasi-steady. That is, the airfoil changes in position
and angle of attack over time, but the aerodynamic equations are
steady. The airfoil is assumed to be massless. The moment balance
around the leading edge is therefore

Ko + Mc/4(a) - %Lacro(a) =0 (25)

where M, is the aecrodynamic moment about the quarter-chord, ¢ is
the chord, and L, is the aerodynamic lift. Using a thin-airfoil-
theory approximation, the lift is

Lo = 27t (26)
and the moment of the symmetric airfoil about the quarter-chord is
M, 4() =0 27

The angle of attack o can be approximated as the difference
between the relative airflow direction (which can be determined from
the forward and heaving velocities) and the angular deflection 6 of
the airfoil. As a result, the spring deflection in Eq. (25) is the only
remaining unknown and is easily determined if the terms in the
equation are approximated using harmonic representations. Once the
spring deformations are known, the time-varying lift and thrust
forces are computed using the magnitude of the force prediction and
the angle of attack of the airfoil. In addition to the ideal aerodynamic
forces, a simple quasi-steady drag-polar viscous correction was
implemented postsolution. This was added to the model to ensure
that adversely high angles of attack or velocities did not provide
unrealistically high thrust values. Figure 5 shows the flapping motion
of the wing and the resultant forces. The low-fidelity code requires
approximately 20 ms on a 2.4 GHz desktop workstation to evaluate a
single design.

Results

Two methods were run: a single-fidelity SQP method as a
benchmark and the SQP-like multifidelity method with corrected
space mapping. As in the previous problem, the gradients of the
objectives and of the constraints were computed using centered finite
differences. The function evaluations required for these finite
difference calculations are included in the total function count. The
methods converged to two different local minima. The Karush—
Kuhn-Tucker condition was satisfied at both minima. This result
highlights the point that the multifidelity method is guaranteed to
converge to an optimum of the high-fidelity problem, but not
necessarily the global optimum or the same (possibly local) optimum
found by the single-fidelity method. The presence of multiple local
optima was verified by starting the single-fidelity method at the point
found by the multifidelity method. For both methods, the amplitude
of the first harmonic (that is, the flapping motion at the base
frequency) was set to its upper bound. No other design parameters
were set to their bounds.

The flapping frequencies were similar: 11.46 rad/s for the single-
fidelity method and 13.41 rad/s for the multifidelity method. These
correspond to Strouhal numbers of 0.218 and 0.256, respectively.
These are both within the 0.2 to 0.4 range found in birds, bats, and
fish in nature [41,51]. The multifidelity method found a design with
an input power coefficient of 0.9049, and the single-fidelity method
found a design with an input power coefficient of 0.8966. The
difference between the two values is within 1% and below the
predicted accuracy of the high-fidelity analysis.

The objective function and constraint violations are shown in
Fig. 6, with the number of high-fidelity function calls on the x axis.
Using the criterion that the constraint violation is less than 10~° and
the objective function is within 1076 of its ultimate converged value,
the single-fidelity method required 3125 high-fidelity function calls

-y
2r —F ®n

y—Position [m]

L

L L

0 1 2 3 4 5 6
x—Position [m]

Fig. 5 Results of the low-fidelity analysis of a flapping wing showing the
airfoil position, angle of attack, and resultant forces in the x and y
directions.
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Fig. 6 Objective function value and constraint violation for the
flapping-wing problem with the single-fidelity method and with the SQP-
like multifidelity method with corrected space mapping.

and the multifidelity method required 1617. Because they did not
converge to the same minimum, it is difficult to make a direct
comparison between the numbers. The multifidelity method found a
solution with a slightly higher objective function value with 48.2%
fewer high-fidelity function evaluations. The multifidelity method
required 77 h to run and the single-fidelity method required 140 h.
This is a savings of approximately 45% in time. The difference in
ratios between the function evaluation metric and the time metric are
explained by the low-fidelity function calls used by the multifidelity
method and the additional multifidelity algorithm overhead.

Conclusions

Reducing the computational cost of optimization for expensive
simulation-based design problems is an important research challenge
in engineering optimization. This paper aimed to extend SBO
methods to variable-parameterization multifidelity problems: that is,
problems for which multiple models exist and use different sets of
design variables. It presented a new mapping method, corrected
space mapping, and applied it using an SQP-like TRMM. The
method is applicable to optimization problems with computationally
expensive high-fidelity simulations and cheaper low-fidelity
simulations, including those with large numbers of design variables.
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Its utility is highest when the computational cost of the high-fidelity
model is much higher than that of the low-fidelity model.

On a constrained wing design problem, the method achieved 76%
savings in high-fidelity function evaluations, reducing the time
required for optimization from 34 to 8 h. On a bat-flight design
problem, it achieved approximately 45% time savings, although it
converged to a different local minimum than did the benchmark. This
mapping method shows promise for a wide range of problems with
variable-parameterization hierarchical models.
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