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SUMMARY

In this paper a variational formulation for mesh adaptation procedures, involving local mesh changes
for triangular meshes, is presented. Such local adaptive changes are very well suited for explicit
methods as they do not involve significant computational expense. They also greatly simplify the
projection of field variables from the old to the new meshes. Crucially, the variational nature of the
formulation used to derive the equilibrium equations at steps where adaptation takes place ensures
that conservation of linear and angular momentum is obtained [1]. Several examples in 2-D showing
the application of the proposed adaptive algorithms are used to demonstrate the validity of the
methodology proposed.
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1. Introduction

Rapid dynamics encompasses a significant section of continuum mechanics problems. Several
industrial phenomena involve rapid dynamics of solids, for example forging, machining, crash-
tests, collision modeling and many others. Computational simulations of such problems are
used in various engineering analysis and design. These problems involve large deformations
and rotations along with complex material behavior. Hence these problems are inherently
non-linear. Due to high velocities (of the order of speed of sound in the material), large meshes
and many small time-steps are used for spatial and temporal accuracy. Hence explicit time-
integrators become advantageous in such applications. Several codes have been developed and
used for such problems [2, 3, 4, 5], based on explicit methods. The main challenges in these
numerical problems lie in the proper modeling of large deformations and rotations, contact, and
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complex non-linear material behavior. Mesh distortions, encountered due to large deformations
lead to lack of accuracy of the solution. Mesh adaptive time integration can be used to reduce
mesh distortions and increase the accuracy of the solution. Such use of mesh adaptation has
been limited, since these updates add errors to the solution. Existing mesh-adaptive methods do
not ensure conservation of momentum which lead to errors over many time-integration steps.
Hence, it is desired that such mesh adaptation methods conserve global momentum which
would allow use of adaptation in reducing mesh distortions and also increase the accuracy of
the solution.

An important aspect of a time-integration method in dynamics applications is its ability to
conserve mass, momentum (linear and angular) and energy, which leads to more physically
consistent solutions. Methods which do not have good conservation properties, develop large
errors over many time integration steps. Typically, dynamics in solids are modeled from a
Lagrangian formulation of the equations of motion. Hence mass conservation is automatically
satisfied in such methods. Exact conservation of global energy is hard to obtain using explicit
integrators. But global momentum (linear and angular) conservation is possible. The explicit
time-integrator, the Central Difference Scheme (also called the Leap-Frog Method), is found
to conserve global momentum exactly. Existing codes [4, 5] have employed this method with
great success.

Recent research [1, 6] has shown that time-integration methods developed from a variational
principle as that of Hamilton’s principle of stationary action, necessarily conserve linear and
angular momentum. Such methods are commonly called as Variational Integrators or
Variational methods. In this paper, topological changes for mesh adaptation are developed
from Hamilton’s principle and space-time discretization, leading to Variational Mesh
Adaptation which conserves the total momentum (linear and angular) of the discrete system.

1.1. Literature review

1.1.1. Variational Framework Variational integrators have been developed by several
researchers [1, 7, 8, 9, 10, 11, 12, 13], on the basis of Hamilton’s principle of stationary action,
rather than discretizing the differential equations of motion in time. Hamilton’s principle
dictates that the path followed by a body represents a stationary point of the action integral
of the Lagrangian over a given time interval [14, 15]. Variational integrators take advantage of
this principle by constructing a discrete approximation of this integral which then becomes a
function of a finite number of positions of the body at each time step. The stationary condition
of the resulting discrete functional with respect to each body configuration leads to time
stepping algorithms that retain many of the conservation properties of the continuum problem.
In particular, the schemes developed in this way satisfy exact conservation of linear and angular
momentum [1]. In addition, these algorithms are found to have excellent energy conservation
properties even though the exact reasons for this are not fully understood [1, 16, 17, 18]. This
class of variational algorithms includes both implicit and explicit schemes, and in particular,
it includes some well-known members of the Newmark family [19]. A recent development in
the area of variational integrators, is the development of asynchronous variational integrators
[10]. The discrete energy gets computed as the variation of the Lagrangian with respect to
the time-step. By altering the time step locally, it has been shown in [10], that variational
integrators could have both momentum and energy conserving properties but at the cost of
being asynchronous. This paper discusses only synchronous time-step methods.
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1.1.2. Mesh Adaptation Mesh adaptation has been an active area of research in solid and
fluid mechanics computations. There are three types of mesh adaptation viz. : (1) r-adaptation,
where the number of nodes and number of elements remain same while the node locations or
connectivities are changed [20], (2) h-adaptation, where the elements are refined and de-refined
locally or globally [21], and (3) p-adaptation, where the order of the interpolation polynomial
within the element is changed to resolve the solution locally [22]. The effectiveness of mesh
adaptation depends on the mesh-adaptive-mechanism, and the adaptation criteria.

Mesh-adaptive mechanisms might include local mesh changes or global remeshing. Global
mesh changes, typically involve, complete remeshing and transfer of variables from the old
mesh to the new mesh [23, 24]. Local mesh changes could be achieved using explicit updates
[25, 26]. Mesh changes involve node movement, changes in mesh connectivity, and coarsening
and refinement of meshes. A detailed overview of such changes in meshes can be found in
[27, 28]. Various such mesh update methods exist, which are used by several researchers
[4, 29, 30] with success. 2D remeshing based on the advancing front methods have been used
in [30] for modeling ballistic penetration problems. Severe mesh distortions encountered in 2D
machining problems have been handled in [31], based on complete remeshing techniques. 2D
mesh adaptation for shear bands in plane strain can be found in [32, 33] Local coarsening and
refinement based on mesh size has been discussed in [29] in application to shear bands. 3D
Mesh operations are discussed in [29, 27]. Mesh adaptations for metal forming can be found
in [34, 35, 36]. 2D Impact problems have been modeled using global remeshing and gradient
based indictors in [37]. Mesh adaptation has also been used in shape optimization of structures
[38, 39].

The adaptation criteria is chosen by the analyst. Typically meshes are adapted based on
either some error-estimate or mesh skewness or some output of interest. Various researchers
[40, 41, 42, 43, 44, 23, 45] have described different error estimation techniques in their works. A
commonly used error estimate by Zienkiewicz and Zhu, [46, 47], (Z2 error estimate), uses the
stresses within the element and describes a recovery process to obtain a reference stress. The
difference of the reference and the elemental stresses, provides for an error estimate. This type
of error indicator can be classified under gradient based errors indicators. Curvature based
error-estimates have been used by [33], in problems of large plastic strain damage. Another
approach has been found in [24, 32, 30] where gradients in direct physical quantities like the
velocity field or strain field or other choice of quantities are used as empirical adaptation
criteria. Recently, [48, 49, 50] have developed a new approach for error-estimation based on
the constitutive relation error. They describe the finite element solution as a displacement-
stress pair (Ûh, σ̂h) such that the displacements satisfy kinematic constraints like boundary
conditions and initial conditions while the stresses satisfy the equilibrium conditions. The
displacements and stresses do not satisfy the constitutive relations (stress-strain relations)
which provides an error measure which they refer to as the constitutive relation error. This
error measure has been found to be effective in large strain transient problems. Similarly error-
estimators based on the time update (using semi-discrete equations of motion) are formulated
in [51]. Error estimates based on variational constitutive updates can be found in [23].
Variational mesh adaptation, where the error-estimate is obtained from a variational principle
is found in [23, 52, 53, 54]. Recently, some researchers [39], have used the idea of configurational
forces [55] for r-adaptation, for applications in shape optimization. Configurational forces are
obtained as a variation of the internal energy with respect to material position vectors. This
leads to the criteria to move mesh points to obtain an optimal mesh, which also leads to shape
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optimization. An overview of various error-estimation techniques and adaptation criteria can
be found in [45, 56].

Significant research has been done in the fluid mechanics community in the area of mesh
adaptation, where the main emphasis has been in proper resolution of the flow field, especially
in the simulation of boundary layers, shock waves and high speed compressible flows. Several
researchers like [57, 58, 59, 60, 61, 62, 63] have developed very effective mesh adaptive solvers
for compressible flows. Most of these adaptations are based on error-estimates which are based
on gradients of flow properties. Use of error estimators based on bounds on functional outputs
[64, 65] have also proven to be very effective in the calculation of important aerodynamic
properties like lift or drag of an airfoil in presence of shocks and viscous effects.

1.2. Overview

Section 2 of this paper reviews the variational framework from time step integrators. The
details of the space-time discretization used later in our adaptive formulation are then
presented. The derivation of the simple leap frog method using space-time discretization is
shown as an example. In section 3, the space-time discretization and the variational formulation
are extended to incorporate local mesh adaptations. Local remeshing is achieved by four
local operations, viz.: (1) Diagonal Swapping, (2) Edge Splitting, (3) Node Movement and
(4) Edge Collapsing. Details of the above mechanisms are presented individually. Then,
implementation details of error-estimation, and adaptation criteria are mentioned followed
by examples demonstrating the performance of the adaptation methods. In section 6, A brief
summary of the overall developments of the research is presented, followed by suggestions of
possible future work.

2. Variational Formulation

2.1. The Continuous Problem

The motion under loading of a generic three dimensional body is considered. A reference
configuration, Q ⊂ R3 is adopted, corresponding to the configuration of the body at time
t = 0. The material coordinates X ∈ Q, are used to label the particles of the body. At any
arbitrary time t, the position of particle X is given by the coordinate x , and in general, the
motion of the body is described by a deformation mapping,

x = φ(X , t), (1)

as illustrated in figure 1. In its reference configuration, the body has volume V0 and density
ρ0, whereas at a given time t, the body has volume V (t) and density ρ(t).

2.2. The Action Integral for non-dissipative systems

For non-dissipative systems, both the internal and external forces in the system can be derived
from a potential, and the motion between times t0 = 0 and t, can be determine from Hamilton’s
principle. To this end, a Lagrangian, L, is introduced, such that, L(x , ẋ ) = K(ẋ ) − Π(x ) ,
where, K, denotes the kinetic energy, Π is the potential energy and ẋ = dx/dt is the
material velocity. The potential energy can be generally decomposed into an internal elastic
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Figure 1. Continuous systems

component, Πint, and a component accounting for the external conservative forces, Πext. Thus,
Π(x ) = Πint(x ) + Πext(x ).

The action integral, S, is defined as the integral of the of the Lagrangian over the time
interval considered,

S =
∫ t

0

L(x , ẋ ) dt , (2)

and Hamilton’s principle states that the deformation mapping satisfying the equations of
motion can be obtained by making the action integral stationary with respect to all possible
deformation mappings which are compatible with the boundary conditions [15], where the
Lagrangian L can be expressed in terms of the deformation and velocities in the following
manner.

2.2.1. The Kinetic Energy, (K) The kinetic energy of the body is a function of the material
velocity and can be written as:

K(ẋ ) =
∫

V0

1
2
ρ0ẋ

2dV0 . (3)

2.2.2. The Internal Potential Energy (Πint) The internal potential energy depends on the
constitutive relations of the materials in the system. In this research hyperelastic Neo-Hookean
materials are considered, which undergo large deformations and displacements.
Let F be the deformation gradient tensor which can be written as,

Fij =
∂xi

∂Xj
∀ i, j = 1, .., 3

The relevant kinematic quantities associated with the deformation gradient are the right
Cauchy-Green tensor, C , the Jacobian, J , and the isochoric component of C , Ĉ , which are
given by,

C = FT F ; J = det(F ); Ĉ = J− 2
3 C .

For isotropic Neo-Hookean materials, the internal potential energy can be expressed in terms
of the Lame constant μ, and the bulk modulus κ as

Πint(x ) =
∫

V0

π(F )dV0

=
∫

V0

[
μ

2

(
tr(Ĉ ) − 3

)
+

1
2
κ(J − 1)2

]
dV0 . (4)
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The above expression is well suited for compressible or nearly incompressible materials,
[66, 67].

2.2.3. The External Potential Energy (Πext) The external potential energy includes the work
done by the external body and surface forces.

Πext(x ) = −
∫

V0

f b · x dV0 −
∫

∂V0

f s · x dS0 (5)

Here, f b are the body forces (per unit volume), f s are the surface forces (per unit surface),
and ∂V0 denotes the section of the boundary, in the reference configuration, where the surface
forces are applied.

2.3. Discretization in time

Consider now a sequence of timesteps tn+1 = tn + Δt, n = 0, 1, ..., N , where for simplicity
a constant step size has been taken. The position of the body at each step is defined by a
mapping xn = φ(X, tn). A variational algorithm is defined by a discrete sum integral,

S(x0, x1, ..., xN ) ≈
N−1∑
n=0

Ln,n+1(xn, xn+1) (6)

where the discrete Lagrangian Integral L approximates the integral of the continuum
Lagrangian L over a timestep, that is,

Ln,n+1(xn, xn+1) ≈
∫ tn+1

tn

L(x, ẋ) dt

≈
∫ tn+1

tn

K(ẋ) dt −
∫ tn+1

tn

Π(x) dt (7)

Here, for simplicity, the case in which the Lagrangian is a function of x and ẋ only, is
considered. Other cases, like the ones where the Lagrangian is dependant on pressure in
addition to the position and velocity are discussed in [6, 68]. The discrete Lagrangian Integral
can be further split into the Kinetic Energy Integral and the Potential Energy Integrals as:

Ln,n+1(xn, xn+1) = Kn,n+1(xn, xn+1) −
∫ tn+1

tn

Π(x) dt (8)

where Kn,n+1 is an approximation to the Kinetic Energy Integral
∫ tn+1

tn
K(ẋ) dt. There are

many ways in which the approximation (8) can be chosen, and, each one will lead to a different
time integration algorithm. It has been shown in [6] that the approximation for the Potential
Energy Integral : ∫ tn+1

tn

Π(x) dt ≈ Δt Π(xn) (9)

where Δt = tn+1 − tn, leads to explicit time marching algorithms with appropriate choice of
the discrete Kinetic Energy Integral. Hence with explicit methods in consideration, the discrete
Lagrangian within two steps can be rewritten as:

Ln,n+1(xn, xn+1) = Kn,n+1(xn, xn+1) + Δt Π(xn) (10)
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The stationary conditions of the discrete sum integral S with respect to a variation δvn of
the body position at time step n are now given by,

DnS[δvn] = D2Ln−1,n(xn−1, xn)[δvn] + D1Ln,n+1(xn, xn+1)[δvn] = 0 ∀δvn , (11)

where Di denotes directional derivative with respect to i-th variable. The above equation
represents the statement of equilibrium at step n and will enable the positions at step n + 1
to be evaluated in terms of positions at n − 1 and n. Rewriting the stationary conditions in
terms of the Kinetic and Potential Energy Integrals we obtain:

D2Kn−1,n(xn−1, xn)[δvn] + D1Kn,n+1(xn, xn+1)[δvn] − Δt D1Π(xn)[δvn] = 0 ∀δvn ,

(12)

2.4. Discretization in time and space

So far in this paper, discretizations in time have been discussed. In this section a simple spatial
discretization is introduced using 3 noded triangular elements. Based on triangular elements,
the position vector xn

e in an element e, can be written as:

xn
e = Ne

axn
a (13)

where Ne
a are linear shape functions within an element e and xn

a are the nodal position vectors.
The action integral as discretized in time in equation 6 now can be rewritten as:

S = S(xn
a ; a = 1, . . . , Nd; n = 1, . . . , N)

≈
N∑

n=0

Ln,n+1(xn
a , xn+1

a ; a = 1, . . . , Nd) (14)

where Nd are the number of nodes and N are the number of time steps. The Lagrangian within
the time steps n and n + 1 can be written as:

Ln,n+1(xn
a , xn+1

a ) = Kn,n+1(xn
a , xn+1

a ) − Δt
(
Πext

n (xn
a) + Πint

n (xn
a)
)

(15)

The stationarity condition then becomes:

∂S

∂xn
a

=
∂Ln,n+1

∂xn
a

+
∂Ln−1,n

∂xn
a

= 0 (16)

which leads to the relations between the derivatives of the Kinetic and Potential Energy
integrals as:

∂Kn,n+1

∂xn
a

− Δt
∂Πext

n

∂xn
a

− Δt
∂Πint

n

∂xn
a

+
∂Kn−1,n

∂xn
a

= 0 (17)

Now, each of the derivatives will be calculated separately.

2.5. The Potential Energy Integral

First, the internal Potential Energy and its derivative with respect to xn
a are calculated.

The Potential Energy is a function of xa at time level n only due to the approximation
in Eqn. 9. Hence, for convenience, the time index n is dropped for the rest of this section on
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Potential Energy Integral. Therefore, xa implies xn
a unless mentioned otherwise. In addition,

the following index notation is used. Indices e and f are used to denote elements, indices a and
b are used to denote nodes, and, indices i, j, k and l are used to denote vector directions in the
current (spatial) configuration and I, J, K, L are used to denote the directions of vectors in the
reference (material) configuration. Repeated indices imply summation. First, the deformation
gradient within the element e, is considered:

F e =
∂x

∂X
= xe

a ⊗ ∂Ne
a

∂X
(18)

where X is the position vector of the reference (material) configuration. Note that since the
shape functions are linear in the element the gradients are constant within an element hence
the deformation gradient is a constant within the element. Based on the Neo-Hookean model,
the internal potential energy (Πint), can be written as:

Πint(x) =
∑

e

∫
V 0

e

π(F e) dV 0
e (19)

π(F e) =
μ

2

{
tr(Ĉe) − 3

}
+

κ

2
(Je − 1)2 (20)

where

Je = det(F e) ; Ce = F eT F e ; be = F eF eT ; Ĉe = J
− 2

3
e Ce ;

Therefore, the derivative of potential energy wrt. x can be written as :

∂π(F )
∂xa

i

=
∂π(F )

∂F
:

∂F

∂xa
i

(21)

= P :
∂F

∂xi
(22)

where P is the first Piola Kirchhoff stress tensor. The first Piola Kirchhoff stresses are related
to the Cauchy stress tensor (also called the true stresses) by:

σ = J−1 P F T (23)

Further simplifying using indicial notation, leads to:

∂π

∂xa
i

= PiL
∂Ne

a

∂xj
F e

jL (24)

Now, introducing a global index of a node as, b, such that it is the a’th node of element e,
(from connectivity) and revisiting equation, 19 & 24, one can express the derivative of the
Potential Energy as:

∂Πint(x)
∂xb

i

=
∑

(e,a)∈b

∫
V 0

e

∂πe(F e)
∂xa

i

dV 0
e (25)

=
∑

(e,a)∈b

∫
V 0

e

PiL
∂Ne

a

∂xj
F e

jL dV 0
e (26)
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Now, changing the reference volume V 0 to V a current volume one can obtain:

∂Πint(x)
∂xb

i

=
∑

(e,a)∈b

∫
Ve

PiL
∂Ne

a

∂xj
F e

jL J−1
e dVe (27)

Substituting equation 23 into equation 27, one can obtain:

∂Πint(x)
∂xb

i

=
∑

(e,a)∈b

∫
Ve

∂Ne
a

∂xj
σe

ijdVe

= T b
i =

∑
(e,a)∈b

T e
ai (28)

where T b
i are the internal tractions at node b along direction i, and the T e

ai are the elemental
internal tractions at ath node of the element along direction i. Similar to the internal Potential
Energy, it can be shown [68] that the external Potential Energy (5) would have similar
derivatives:

∂Πext(x)
∂xb

i

= −
∑

(e,a)∈b

∫
V 0

e

ρ0N
e
a f b

i dV 0
e −

∑
(e,a)∈b

∫
∂Ve

Ne
a fs

i dSe

= −F b
i = −

∑
(e,a)∈b

F e
ai (29)

where fs
i are external surface force per unit area, and f b

i are the body forces per unit mass.
Thus the final expression for the derivative of the Potential Energy with respect to the position
vector of a global node at time level n (xn

b ) is:

∂Π(xn)
∂xn

b

=
∂Πint(xn)

∂xn
b

+
∂Πext(xn)

∂xn
b

= T n
b − F n

b (30)

2.6. The Kinetic Energy Integral & Space-Time Discretization

In this section a space-time discretization is adopted to formulate the Kinetic Energy Integral
described in Eqn. 8. We begin with a single triangular element.

Figure 2, shows the typical space-time volume of a single triangle. The triangle abcn and
triangle abcn+1 enclose a prismatic space-time volume. This volume is further sub-divided into
three tetrahedra. The task is to compute the kinetic energy integral K within each of the space-
time-tetrahedra, and then sum each of the contributions to compute the net integral within
the space-time-prism. To do so, a generic space-time-tetrahedron (Fig. 2, (right)) is studied
and the integral is computed by first evaluating the constant velocity over the space-time
tetrahedron as:

x = x (X , t) vn,n+1 =
dx
dt

(31)

Where x is the position vector, X is the reference position vector and d
dt is the total

derivative. Note here, that for the Kinetic Energy Integral, total derivatives of position vectors,
are considered. In the general case, any quantity (scalar or vector) would have a similar
treatment. First, a set of volume coordinates are introduced, analogous to the area coordinates
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t n+1

t n

a

b
c

b

a

c

t

X

Y
1

2
3

4

Figure 2. The space-time-prism (left) and a generic space-time-tetrahedron (right).

in case of triangles. The volume coordinates, given by (ξ1, ξ2, ξ3, ξ4) attain values of 1 at their
corresponding nodes and zero at other nodes, ie., ξi is one at node i and zero at all nodes
j �= i. Any function linear in X, Y, t, say F (X, Y, t), can be interpolated within the tetrahedron,
based on its nodal values Fa and shape functions Na = ξa as F (X, Y, t) = Faξa. The coordinate
transform between (X, Y, t) and (ξ1, ξ2, ξ3, ξ4) can be written as:⎡

⎢⎢⎣
1
X
Y
t

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 1 1 1
X1 X2 X3 X4

Y1 Y2 Y3 Y4

t1 t2 t3 t4

⎤
⎥⎥⎦
⎡
⎢⎢⎣

ξ1

ξ2

ξ3

ξ4

⎤
⎥⎥⎦ (32)

Inverting this relation gives:⎡
⎢⎢⎣

ξ1

ξ2

ξ3

ξ4

⎤
⎥⎥⎦ =

1
6V0

⎡
⎢⎢⎣

6V1 a1 b1 c1

6V2 a2 b2 c2

6V3 a3 b3 c3

6V4 a4 b4 c4

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
X
Y
t

⎤
⎥⎥⎦ (33)

where ai’s are the cofactor of the Xi elements in the transformation matrix. Similarly bi’s are
the cofactors of the Yi elements, ci’s are the cofactors of the ti elements, and Vi’s are one
sixth the cofactor of each unit element in the transformation matrix. V0 is the volume of the
tetrahedron given by:

V0 =
1
6

1 1 1 1
X1 X2 X3 X4

Y1 Y2 Y3 Y4

t1 t2 t3 t4

(34)

Using chain rule, the derivatives of the function now can be written as :

dF

dX i
=

∂F

∂ξj

dξj

dX i
(35)
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where X = [1 X Y t]T . Thus, the time gradient of the function F can be written as:
dF

dt
=

1
6V0

∂F

∂ξj
cj (36)

Now, since F is linearly interpolated,
(

∂F
∂ξi

= Fi

)
which leads to a simple relation for the time

derivatives:

dF

dt
=

1 1 1 1
X1 X2 X3 X4

Y1 Y2 Y3 Y4

F1 F2 F3 F4

1 1 1 1
X1 X2 X3 X4

Y1 Y2 Y3 Y4

t1 t2 t3 t4

(37)

Similarly, assuming a linear interpolation of x (= F (X, Y, t)) in space and time, the velocity
within the tetrahedron is obtained as a ratio of two determinants:

vn,n+1 =
dx

dt
=

1 1 1 1
X1 X2 X3 X4

Y1 Y2 Y3 Y4

x1 x2 x3 x4

1 1 1 1
X1 X2 X3 X4

Y1 Y2 Y3 Y4

t1 t2 t3 t4

(38)

Note here, that in the special case where two nodes of a given space-time-tetrahedron have
the same reference coordinate (implying the same point) then, the velocity in the tetrahedron
simply becomes (in this case assuming X1 = X4 and Y1 = Y4):

vn,n+1 =
x4 − x1

t4 − t1
(39)

This simplification leads to a criteria for the choice of subdivision of any generic space-time
volume. One should choose to sub-divide a given space-time volume into as many tetrahedra
with common nodes as possible. This would lead to a simple velocity interpolation within
the tetrahedron. Now the Kinetic Energy Integral K is computed within the space-time-
tetrahedron:

Ktet
n,n+1 =

∫
V0

1
2
ρ0 (vn,n+1 · vn,n+1) dV0 (40)

In the case of a tetrahedron with common nodes this volume, simply becomes:

V0 =
A123

3
(t4 − t1) (41)

where A123 is the area of the triangle with nodes 1,2 and 3.

A123 =
1
2

1 1 1
X1 X2 X3

Y1 Y2 Y3
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In the generic case the Kinetic Energy Integral Kn,n+1 would take the form:

Ktet
n,n+1 = V0

1
2
ρ0 (vn,n+1 · vn,n+1) (42)

But in the case of a tetrahedron with common nodes, the Kinetic Energy Integral Kn,n+1

would take the simple form (m123 = ρ0A123):

Ktet
n,n+1 = (t4 − t1)

m123

3
1
2

(vn,n+1 · vn,n+1) (43)

Now, revisiting the space-time-prism of the triangle (Fig. 2) it is observed, that it is subdivided
into three tetrahedra, each one of them have a common node. Hence, using the above simplified
relations, a very simple form of the Kinetic Energy Integral is obtained:

Kprism
n,n+1 =

mabc

3
Δt

2

[
(va

n+1/2 · va
n+1/2) + (v b

n+1/2 · v b
n+1/2) + (vc

n+1/2 · vc
n+1/2)

]
(44)

Where mabc is the mass of the triangle abc and:

Δt = tn+1 − tn

vai

n+1/2 =
xai

n+1 − xai
n

Δt
∀ai = a, b, c

In case of a finite element mesh, the space-time volume of the entire mesh can be subdivided
into space-time-prisms corresponding to each element. Hence, the net Kinetic Energy Integral
obtained for the whole mesh would be:

Kn,n+1(xn, xn+1) =
∑

a

Δt

2
Ma va

n+1/2 · va
n+1/2 (45)

Where Ma is the lumped mass of each node(a) in the mesh. Thus, the net Lagrangian of the
entire mesh becomes:

Ln,n+1(xn, xn+1) =
∑

a

Δt

2
Ma va

n+1/2 · va
n+1/2 − ΔtΠ(xn) (46)

This leads to the discrete Lagrangian Integral of the Central Difference method, as discussed
in [68, 6].

So far in this section some generic space-time discretization principles have been presented
and used to develop the standard Central Difference method. It was shown that the Central
Difference method, with lumped mass, can be interpreted as an outcome of linear interpolations
in space-time within a variational framework. The objective was to present the generic
treatment of space-time discretization, which would be extended in the later sections for cases
where the mesh topology changes over time. Now the Kinetic Energy Integral is revisited to
evaluate the directional derivatives:

Kn,n+1(xn, xn+1) =
∑

a

Δt

2
Mava

n+1/2 · va
n+1/2 (47)

where the velocity va
n+1/2 of node a, can be written as:

va
n+1/2 =

1
Δt

(
xa

n+1 − xa
n

)
∂Kn,n+1

∂xn
b

= −M bvb
n+1/2 (48)
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VARIATIONAL MESH ADAPTATION 13

Similarly :

∂Kn−1,n

∂xn
b

= M bvb
n−1/2 (49)

Using equation 17, we obtain the final discrete equation of motion as:

∂Kn,n+1

∂xn
b

− Δt
∂Πext

n

∂xn
b

− Δt
∂Πint

n

∂xn
b

+
∂Kn−1,n

∂xn
b

= M b
(
−vb

n+1/2 + vb
n−1/2

)
− Δt

(
T b

n − F b
n

)
= 0

which can be written in the vector form:

M b
(
vb

n+1/2 − vb
n−1/2

)
= Δt

(
F b

n − T b
n

)
(50)

Thus, we obtain the time marching algorithm with the Central Difference Scheme, using the
spatial discretization of the standard linear element. The standard linear element described
above is commonly found in literature [69]. The purpose of deriving the commonly known
central difference method, was to demonstrate that it belongs to the class of variational
integrators, [1]. In the process of deriving the method, we have also elucidated the use of
space-time discretization, which shall be used to develop time-integration updates for time-
steps involving mesh changes.

3. Mesh Adaptation

In this section, the previously mentioned variational formulation, is extended to mesh
adaptation. Mesh adaptations which involve local mesh changes for 2D triangular meshes,
are considered. The following operations are formulated separately:

1. Diagonal Swapping.
2. Node Movement.
3. Edge Splitting.
4. Edge Collapsing.

Each of these operations is developed with the assumption that only one of these operations
takes place between time level n and n + 1 on a local patch.

3.1. Diagonal Swapping

A discussion of diagonal swapping is presented, by studying a local patch of two triangular
elements abc and acd at time level tn, as shown in Fig. 3. The patch is time marched to
time level tn+1 where the common diagonal ac is swapped with the new diagonal bd, thus
leading to two different element configurations, abd and bcd at time level tn+1. The space-
time volume thus formed, can be subdivided into five tetrahedra: (anbncnbn+1), (ancndndn+1),
(an+1bn+1dn+1an), (bn+1cn+1dn+1cn) and (ancnbn+1dn+1) as shown in the figure 3. Note that,
the first four tetrahedra, have common nodes, hence the velocity interpolation is simple. The
velocity in the fifth(central) tetrahedra is computed by the full expression, (as explained in
section 2). Hence, the net Kinetic Energy Integral within the space-time volume can be written
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tn+1

tn

a

a

d

d

b

b

c

c

Figure 3. The space-time volume for the diagonal swapping.

as:

Kabcd
n,n+1 =

Δt

2
mabc

3
v b

n+1/2 · v b
n+1/2 +

Δt

2
macd

3
vd

n+1/2 · vd
n+1/2 +

Δt

2
mabd

3
va

n+1/2 · va
n+1/2

+
Δt

2
mbcd

3
vc

n+1/2 · vc
n+1/2 +

Δt

2
mabcd

3
vabcd

n+1/2 · vabcd
n+1/2 (51)

vabcd
n+1/2 =

(
macdx

b
n+1 + mabcx

d
n+1 − mbcdx

a
n + mabdx

c
n

)
Δtmabcd

(52)

Using stationarity wrt. xn, the contribution to the inertial part of the equilibrium equations
at tn arising from the prism abcd is:

−D1K
abcd
n,n+1[δxn] =

mabc

3
v b

n+1/2 · δx b
n +

macd

3
vd

n+1/2 · δx d
n

+
(mabd

3
va

n+1/2 +
mbcd

3
vabcd

n+1/2

)
· δxa

n

+
(mbcd

3
vc

n+1/2 +
mabd

3
vabcd

n+1/2

)
· δx c

n (53)

Adding this contribution to those arising from non-swapped elements in the mesh leads to an
update algorithm at step tn which for nodes b and d is simply:

Mn
b

(
v

n+1/2
b − v

n−1/2
b

)
= Δt

(
F b

n −T b
n

)
(54)

Mn
d

(
v

n+1/2
d − v

n−1/2
d

)
= Δt

(
F d

n −T d
n

)
(55)
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VARIATIONAL MESH ADAPTATION 15

Note that as soon as the position of nodes b and d have been updated, using equations 54 and
55, it is possible to calculate vabcd

n+1/2 using 52 which in turns allows the update of a and c to
take place as:

Mn+1
a vn+1/2

a − Mn
a vn−1/2

a +
mbcd

3
v

n+1/2
abcd = Δt (Fa

n −T a
n ) (56)

Mn+1
c vn++/2

c − Mn
c vn−1/2

c +
mabd

3
v

n+1/2
abcd = Δt (F c

n −T c
n) (57)

Similarly, using stationarity wrt. xn+1, the contribution to the equilibrium relations at tn+1 is
obtained as:

−D2K
abcd
n,n+1[δxn+1] =

mabd

3
va

n+1/2 · δxa
n+1 +

mbcd

3
vc

n+1/2 · δx c
n+1

+
(mabc

3
v b

n+1/2 +
macd

3
vabcd

n+1/2

)
· δx b

n+1

+
(macd

3
vd

n+1/2 +
mabc

3
vabcd

n+1/2

)
· δx d

n+1 (58)

which lead to an update algorithm at tn+1 as:

Mn+1
a

(
vn+3/2

a − vn+1/2
a

)
= Δt

(
Fa

n+1 −T a
n+1

)
(59)

Mn+1
c

(
vn+3/2

c − vn+1/2
c

)
= Δt

(
F c

n+1 −T c
n+1

)
(60)

Mn+1
b v

n+3/2
b − Mn

b v
n+1/2
b − macd

3
v

n+1/2
abcd = Δt

(
F b

n+1 −T b
n+1

)
(61)

Mn+1
d v

n+3/2
d − Mn

d v
n+1/2
d − mabc

3
v

n+1/2
abcd = Δt

(
F d

n+1 −T d
n+1

)
(62)

The momentum within time step tn and tn+1 is (D2Ln,n+1):

Pn,n+1 =
∑

j

Pj
n,n+1 (63)

Pj
n,n+1 =

⎧⎪⎨
⎪⎩

Mn+1
j v

n+1/2
j for j = a or c,

Mn
j v

n+1/2
j + (macd

3 )vabcd
n+1/2 for j = b,

Mn
j v

n+1/2
j + (mabc

3 )vabcd
n+1/2 for j = d.

(64)

Hn,n+1 =
∑

j

x j
n+1 ×Pj

n,n+1 (65)

3.2. Edge Splitting

Now another patch of elements as shown in Fig. 4, is considered to develop the algorithm for
edge-splitting. As shown in the figure, a patch of two triangles, abd and bcd, at time level
tn, is time marched to time level tn+1. The common edge bd is split at midpoint e to form
four child elements, abe, aed, bce and ecd, at time level tn+1. The space-time volume is now
subdivided to five tetrahedra: (anbndnan+1), (bncndncn+1), (ancndndn+1), (ancnbnbn+1), and
(bndnan+1cn+1). Note that the first four tetrahedra have common nodes, hence the velocity
interpolation is simple. The fifth tetrahedra, is further subdivided into four tetrahedra (as
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tn

tn+1

e c

c

a

a

d

b

bd

Figure 4. The space-time volume for edge splitting.

shown in red dotted lines in Fig. 4), each having a common node as e. The point e and the
mid point of b and d have the same reference coordinates, (Xe = Xb+Xd

2 ). Thus the Kinetic
Energy Integral can be written as:

Kabcd
n,n+1 =

Δt

2
mabd

3
va

n+1/2 · va
n+1/2 +

Δt

2
mbcd

3
vc

n+1/2 · vc
n+1/2

+
Δt

2
mabe + mbce

3
vc

n+1/2 · vc
n+1/2 +

Δt

2
mdae + mdec

3
vc

n+1/2 · vc
n+1/2

+
Δt

2
mev

e
n+1/2 · ve

n+1/2 (66)

me =
(mabd + mbcd)

3
(67)

ve
n+1/2 =

1
Δt

[
x e

n+1 −
(
x b

n + x d
n

)
2

]
(68)
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VARIATIONAL MESH ADAPTATION 17

Using stationarity wrt. xn one can obtain:

−D1K
abcd
n,n+1[δxn] =

mabd

3
va

n+1/2 · δxa
n +

mbcd

3
vc

n+1/2 · δx c
n

+
mabe + mbce

3
v b

n+1/2 · δx b
n +

mdae + mdec

3
vd

n+1/2 · δx d
n

+
me

2
ve

n+1/2 · δx b
n +

me

2
ve

n+1/2 · δx d
n (69)

Thus, the update algorithm at step tn :

Mn
a

(
vn+1/2

a − vn−1/2
a

)
= Δt (Fa

n −T a
n ) (70)

Mn
c

(
vn+1/2

c − vn−1/2
c

)
= Δt (F c

n −T c
n) (71)

Mn+1
b v

n+1/2
b − Mn

b v
n−1/2
b − me

2
vn+1/2

e = Δt (Fa
n −T a

n ) (72)

Mn+1
d v

n+1/2
d − Mn

d v
n−1/2
d − me

2
vn+1/2

e = Δt
(
F d

n −T d
n

)
(73)

Choosing the velocity at the new node to be:

vn+1/2
e =

1
2

(
v

n+1/2
b + v

n+1/2
d

)
(74)

Thus a 2 × 2 system of equation is obtained, to be solved, to obtain the other velocities.[
Mn+1

b + 1
4me

1
4me

1
4me Mn+1

d + 1
4me

] [
v

n+1/2
b

v
n+1/2
d

]
=

[
Mn

b v
n+1/2
b

Mn
d v

n+1/2
d

]
+ Δt

[
F b

n −T b
n

F d
n −T d

n

]

(75)

The update at equations at n+1 are unchanged. The momentum within time step tn and tn+1

is (D2Ln,n+1):

Pn,n+1 =
∑

j

Pj
n,n+1 (76)

Pj
n,n+1 = Mn+1

j v j
n+1/2 ∀ j

Hn,n+1 =
∑

j

x j
n+1 ×Pj

n,n+1 (77)

3.3. Node Movement

In order to initiate a study of node movement, the mapping of the present (spatial)
configuration to the reference (material) configuration, is revisited. An arbitrary intermediate
configuration(ξ, η) is introduced, as shown in Fig. [5], as is typically done in the case of
Arbitrary Lagrangian and Eulerian formulation. The relations between the true and the
observed velocity fields can then be written in the following manner:

v =
∂

∂t
φ(X , t); ν = ∂

∂tϕ(ξ, t); V =
∂

∂t
ψ(ξ, t); (78)

v = ν − FV (79)
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X
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x

y

η

ξ

ψ

φ

ϕ

ϕ = oφ ψ

Figure 5. Understanding node movement with an intermediate mapping.

The Kinetic Energy can then be written as:

Kn,n+1 (xn,xn+1) =
Δt

2

∑
I

M
n+1/2
I v I

n,n+1 · v I
n,n+1 (80)

where:

M
n+1/2
I =

1
2
(
Mn

I + Mn+1
I

)
(81)

v I
n,n+1 = νI

n+1/2 − F I
nV I

n+1/2 (82)

νI
n+1/2 =

1
Δt

(
x I

n+1 − x I
n

)
(83)

V I
n+1/2 =

1
Δt

(
X I

n+1 −X I
n

)
(84)

F I
n =

(∫
V0

Nn
I Fndm∫

V0
Nn

I dm

)
(85)

The deformation gradient F n as used in equation 82 is evaluated at time level n in order to
make the update explicit. The corresponding equilibrium equations are (for any generic node
I, and its neighboring nodes J):

M
n+1/2
I v I

n,n+1 − M
n−1/2
I v I

n−1,n = −ΔtQI
n,n+1 + Δt

(
F I

n −T I
n

)
(86)
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t n+1

t n

I
J

Figure 6. Space-time volume for node movement.

where:

v I
n,n+1 =

1
Δt

[(
x I

n+1 − x I
n

)
− F I

n

(
X I

n+1 −X I
n

)]
(87)

QI
n,n+1 =

∑
J

m
n+1/2
J

mn
J

(
vJ

n,n+1 ⊗V J
n,n+1

) ∫
V0

Nn
J ∇0N

n
I dm (88)

This expression remains explicit if the neighboring J nodes remain fixed i.e. (V J
n,n+1 = 0)

in which case:

QI
n,n+1 =

(
v I

n,n+1 ⊗V I
n,n+1

) ∫
V0

Nn
I ∇0N

n
I dm = 0

Provided that either I is an internal node or V I remains tangential to the reference boundary
Γ0. Thus for the node to be moved (I) the update step becomes:

M
n+1/2
I v I

n,n+1 − M
n−1/2
I v I

n−1,n = Δt
(
F I

n −T I
n

)
(89)

And for the neighboring nodes (J) the update step becomes:

M
n+1/2
J vJ

n,n+1 − M
n−1/2
J vJ

n−1,n = −ΔtQJ
n,n+1 + Δt

(
FJ

n −TJ
n

)
(90)

QJ
n,n+1 =

(
v I

n,n+1 ⊗V I
n,n+1

) ∫
V0

Nn
I ∇0N

n
J dm (91)

The momentum within time step tn and tn+1 is (D2Ln,n+1):

Pn,n+1 =
∑

j

Pj
n,n+1 (92)

Pj
n,n+1 = M

n+1/2
j v j

n+1/2 ∀ j

Hn,n+1 =
∑

j

x j
n+1 ×Pj

n,n+1 (93)
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3.4. Edge Collapsing

p
2

q
1

q
2

q
3

q
4

p
1

p
3

p
4

r

s

a b
c

Figure 7. Collapsing the edge ab to the point c.

Edge collapsing operation is approached by visualizing a generic patch of elements, as shown
in Fig. [7]. In the triangular element arb, the edge ab is wished to be collapsed, leading
to removal of the triangles arb and abs. The points a and b, belonging to time level n, is
substituted by the new point c at time level n + 1 as shown.

The space-time volume as shown in Fig. [8] is the volume over which the Lagrangian is to be
computed. To do so, the space-time volume is sub-divided into tetrahedra. There are mainly
three types of tetrahedra as shown in Fig. [9]. The first type (I) encloses the volume arbsc.
Then based on the surrounding nodes there are two types of tetrahedra, as shown in Fig. [9].
The tetrahedra having a or b as one of the vertices, are labeled type (II) and the ones having
c as one of their vertices are labeled type (III). The location of the new node c is chosen to be
a linear interpolation of the locations of nodes a,b and r.

X c
n+1 = ξX a

n + ηX b
n + (1 − ξ − η)X r

n (94)

x c
n = ξxa

n + ηx b
n + (1 − ξ − η)x r

n (95)

The Kinetic Energy Integral and the velocity interpolation within the tetrahedra of type (I)
can be written as follows:

KI
n,n+1 =

Δt

2
mn

ab

3
vc

n+1/2 · vc
n+1/2 (96)

mn
ab = mn

arb + mn
abs

vc
n+1/2 =

x c
n+1 − (ξxa

n + ηx b
n + (1 − ξ − η)x r

n)
Δt

(97)
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Figure 8. The space-time volume for Edge collapsing operation.

Similarly the Kinetic Energy Integral and the velocity interpolation within the tetrahedra of
type (II) can be written as:

KII
n,n+1 =

Δt

2
mn

gi
vgi

n+1/2 · v
gi

n+1/2 (98)

vgi

n+1/2 =
x gi

n+1 − x gi
n

Δt
(99)

where the index gi is the overall index of all the neighboring nodes, ordered as (gi = r, qi, s, pi).

The velocity in the tetrahedra of type (III) is not straight forward, since there is no common
node in each tetrahedron. Hence the full expression of the velocity (described previously) is
used.

v
gigi+1ac
n+1/2 =

Agi+1acx
gi

n+1 + Agiacx
gi+1
n+1 + Agicgi+1x

c
n+1 − Agiagi+1x

a
n

6Vgigi+1ac
(100)

K
gi(III)
n,n+1 = mn

gigi+1acv
gigi+1ac
n+1/2 · vgigi+1ac

n+1/2 (101)

This makes the algorithm very complex. In order to simplify the algorithm, an approximation
is made. The Kinetic Energy Integral from each of the tetrahedra, of type (III), are added
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Figure 9. The subdivision of the space-time volume into different types of tetrahedra.

together, and the sum is expressed by the following approximation :∑
gi

K
gi(III)
n,n+1 =

Δt

2
mn+1

c v∗
n+1/2 · v∗

n+1/2 (102)

v∗
n+1/2 =

1
Δtmn+1

c

[
m∗

cx
c
n+1 +

∑
i

Δmgix
gi

n+1 − m∗
ax

a
n − m∗

bx
b
n

]
(103)

m∗
c = mn+1

c − mn
ab

3
(104)

Δmgi = mn+1
gi

− mn
gi

(105)

m∗
a = mn

a − mn
ab

3
+ Marcs (106)

m∗
b = mn

b − mn
ab

3
+ Mbscr (107)
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Where Marcs and Mbscr are the masses enclosed within arcs and bscr respectively. Note that
Δmgi , m∗

a and m∗
b can be expressed as linear functions of ξ and η. The velocity v∗

n+1/2 is a
weighted average of the velocities of all the tetrahedra of type III as calculated in equation 100.
In addition, since the neighboring nodes are not moved, nor are any neighboring edge allowed to
be collapsed, the mass mn+1

c is known apriori. Thus the net Kinetic Energy integral becomes:

Kn,n+1 = KI
n,n+1 + KII

n,n+1 + KIII
n,n+1

=
Δt

2
mn

ab

3
vc

n+1/2 · vc
n+1/2 +

Δt

2
mn+1

c v∗
n+1/2 · v∗

n+1/2

+
∑

i

Δt

2
mn

gi
vgi

n+1/2 · v
gi

n+1/2 (108)

Using stationarity wrt. xn, the equilibrium equations obtained at time level n are as follows:

(∀ gi �= r) mn
gi

vgi

n+1/2 − mn
gi

vgi

n−1/2 = Δt (F gi
n − T gi

n ) (109)

(1 − ξ − η)
mn

ab

3
vc

n+1/2 + mn
r vr

n+1/2 − mn
r vr

n−1/2 = Δt (F r
n −T r

n) (110)

ξ
mn

ab

3
vc

n+1/2 + m∗
a v∗

n+1/2 − mn
a va

n−1/2 = Δt (Fa
n −T a

n ) (111)

η
mn

ab

3
vc

n+1/2 + m∗
b v∗

n+1/2 − mn
b v b

n−1/2 = Δt
(
F b

n −T b
n

)
(112)

Here, a new variable Rj
n is introduced, where

(∀ j = gi, a, b) Rj
n = mn

j v j
n−1/2 + Δt

(
F j

n −T j
n

)
(113)

Note that Rj
n is known apriori. Hence the set of equations, can be rewritten as:

(∀ gi �= r) mn
gi

vgi

n+1/2 = Rgi
n (114)

(1 − ξ − η)
mn

ab

3
vc

n+1/2 + mn
r vr

n+1/2 = Rr
n (115)

ξ
mn

ab

3
vc

n+1/2 + m∗
a v∗

n+1/2 = Ra
n (116)

η
mn

ab

3
vc

n+1/2 + m∗
b v∗

n+1/2 = Rb
n (117)

Note here that Eqn. 114 is fully explicit, hence, x gi

n+1 for all gi except r are known. Now
revisiting Eqn. 103 one can rewrite the expression for v∗

n+1/2 using Eqn. 115 as:

v∗
n+1/2 = Sm(ξ, η)vc

n+1/2 + W (ξ, η) (118)

W (ξ, η) =
1

Δtmn+1
c

[∑
i

Δmgiz
gi

n+1 − m∗
ax

a
n − m∗

bx
b
n + m∗

cx
c
n + Δmrx

r
n

]

= W0 + ξ Wξ + η Wη (119)
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where,

z gi

n+1 = x gi

n+1 (∀ gi �= r)

=
Δt Rr

n

mr
n

( gi = r)

Sm(ξ, η) =
mn

ab

3mc
n+1m

r
n

[
3m∗

cm
r
n

mn
ab

− (Δmr(1 − ξ − η))
]

= S0 + S1
ξ ξ + S1

ηη + S2
ξ ξ2 + S2

ηη2 + S2
ξηξη (120)

Note that the vector coefficients (W0,Wξ,Wη) and the scalar coefficients (S0, S
1
ξ , S1

η , S2
ξ , S2

η , S2
ξη)

are known apriori. Using Eqn. 118 in Eqns. 116 & 117 the two equations are rewritten as:

Ka(ξ, η) vc
n+1/2 + m∗

a(ξ, η) W (ξ, η) = Ra
n (121)

Kb(ξ, η) vc
n+1/2 + m∗

b(ξ, η) W (ξ, η) = Rb
n (122)

where,

Ka(ξ, η) = ξ
mn

ab

3
+ m∗

a(ξ, η) Sm(ξ, η) (123)

Kb(ξ, η) = η
mn

ab

3
+ m∗

b(ξ, η) Sm(ξ, η) (124)

Now, eliminating vc
n+1/2 from both the above equations, the following equations are obtained:

vc
n+1/2 =

Ra
n − m∗

a(ξ, η) W (ξ, η)
Ka(ξ, η)

(125)

f (ξ, η) ≡ Kb

Ka
(Ra

n − m∗
a W ) +

(
m∗

b W −Rb
n

)
= 0 (126)

Thus, a simple vector equation (126) is obtained, which is used to determine the scalars ξ and
η by which, the position of the new node c is determined. This is a coupled quadratic equation
which is solved by iteration. A simple Newton iteration leads to quadratic convergence. This
leads to the position of the new node (X c

n+1) to be a solution of the local equilibrium. Edge
ab is collapsed only if the node c lies within the area included by all the surrounding nodes gi.

Once the position of the node c is obtained, the velocity updates are obtained through simple
explicit equations mentioned above (125,118 and 115). The position updates are obtained by
the Eqns. 97 & 99. The momentum conserved in this time-step is of the form:

Pn,n+1 =
∑

j

Pj
n,n+1 (127)

Pj
n,n+1 =

{
mj

nv
j
n+1/2 + Δmjv

∗
n+1/2, for j = gi

1
3mn

abv
j
n+1/2 + (mj

n+1 −
mn

ab

3 )v∗
n+1/2, for j = c

(128)

Hn,n+1 =
∑

j

x j
n+1 ×Pj

n,n+1 (129)

Similar to the previous time-step, using stationarity wrt. xn+1, the equilibrium equations for
the next time step tn+1 are obtained. The final update equations are:

mgi

n+1v
gi

n+1/2 − mgi
n vgi

n+1/2 − Δmgiv
∗
n+1/2 = Δt (F gi

n+1 −T gi

n+1) (130)

mc
n+1v

c
n+1/2 −

1
3
mn

abv
c
n+1/2 − (mc

n+1 −
mn

ab

3
)v∗

n+1/2 = Δt (F c
n+1 −T c

n+1) (131)
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4. Error Estimate and Adaptation Criteria

Using the mesh adaptation procedures, explained so far, an effective mesh-adaptive solver can
be implemented which is momentum conserving. In order to develop a mesh adaptive solver,
a suitable mesh adaptation criteria, based on error estimates was used. There are various
error estimates used in the literature based on solution gradients, functional outputs or from
residual-error of various relations. A gradient-type error estimate described by Zienkiewicz and
Zhu,[46, 47] (commonly known as Z2 error-estimate) was used. The stresses in each element,
and its neighboring elements, were used to obtain a “recovered stress” at the element. The
difference of these two stresses leads to the error estimate at the element. The details of this
error estimate can be found in [68]. Elements with high values of this error, were chosen for
adaptation.

Once the element was chosen, the edge-length-ratio of each edge (ηi) was obtained by the
relation

(
ηi = 2li∑

j lj

)
, li being the length of the ith edge. The edge-length-ratios varied from 0

to 1. Values close to zero or one, indicated distorted elements. Edges, with such extreme values
of edge-length-ratios, were collapsed, split or swapped. Edges with edge-length-ratios close to
0, say (ηi < 0.3), were collapsed. Edges with edge-length-ratios closer to 1, say (ηi > 0.7), were
swapped or split.

In case of node movement, a local patch of nodes were considered, and the average (centroid)
location of the nodes and the deviation of the node from the average location was calculated.
For higher deviation values, the node was moved towards the centroid.

Mesh adaptation was performed as a sequence of all the mesh operations (diagonal swapping,
edge splitting, edge collapsing or node-movement) described above. All mesh operations
involved two timesteps (tn → tn+1) and (tn+1 → tn+2). Only one type of mesh operation
was attempted within each pair of timesteps, over the whole mesh. Mesh operations were
attempted after constant intervals (number of time-steps). Diagonal swapping, node movement,
edge-splitting and edge-collapsing were attempted in this sequence at every subsequent (or
alternate) timestep pair. Depending on the need, the lowest (finest) hierarchical level of the
grid was prescribed, in order to prevent over-refinement. The zero’th (coarsest) hierarchical
level elements were not removed, in order to prevent over-coarsening.

The adaptation criteria used for the present mesh operations were chosen for their simplicity
of implementation and were found to be quite effective for the cases discussed in this paper.
Further development of the mesh adaptation criteria, is required for generic implementations.
In the next section, performance of the final mesh-adaptive solver is demonstrated using
examples from rapid dynamics of hyperelastic bodies.

5. Examples

5.1. Spinning Plate

A unit thickness square plate, spinning without any constraint, was considered as a test case
to illustrate the conservation properties of the proposed mesh adaptation procedures. The
plate was made out of nearly incompressible rubber material with material properties, viz.,
Young’s Modulus E = 1.7× 107 Pa, Poisson’s ratio ν = 0.45 and density ρ = 1.1× 103 kg/m3.
The plate rotated at 1000 RPM. The plate was meshed with 200 equal linear triangular
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elements as shown in Figure 10 (left) which also shows the pressure distribution at a given
instant (right). The simulation was conducted using a mesh-adaptive solver, using all the above
mentioned, adaptation procedures viz., diagonal swapping, node movement, edge-splitting
and edge collapsing. A simple mesh adaptation criteria based on the mesh edge skewness
and elemental stress was used. Figure 10, demonstrates how the mesh was refined where
the mesh skewness and stresses were relatively larger. The center of mass was initially at
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Figure 10. A Spinning plate simulation with adaptation.

X = 0.5,Y = 0.5, and as a consequence of conservation of linear momentum Pn,n+1,
the center of mass would be expected to remain at the same location. Although due to
node movement, some minor fluctuation in the center of mass location could be expected.
The angular momentum Hn,n+1 would also be expected to remain constant during the time
integration.

As expected, the momentum remains conserved exactly, throughout the simulation as shown
in Figure 11. The momentum calculated in each step was based on the Pn,n+1 and Hn,n+1

expressions described in each of the adaptation procedures previously. There was no noticeable
change in the center of mass, as shown in Figure 12, which was also expected. Figure 13 shows
the energy history during the simulation. Although there are slight fluctuations in the energy
behavior, initially, but with time, the energy remains more or less bounded, with no significant
rise or dissipation as shown in Figure 13.

Figure 14, shows the adaptation history, with the number of operations conducted and the
total number of nodes and elements during the course of adaptation.

5.2. An oscillating ring

A unit thickness circular ring, made up of nearly incompressible hyperelastic material (rubber)
(E = 1.7 × 107 Pa, ν = 0.48 and ρ = 103 kg/m3) is initially stretched to 1.5 its diameter and
thereafter let to oscillate freely. This was chosen as another test case to study the momentum
conservation property of mesh adaptation. The initial configuration of the ring is shown in
figure 15 (left). The ring was stretched as shown in figure 15 (right), at time t = 0 and
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Figure 11. Linear and angular momentum history
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Figure 12. Location of center of mass.

thereafter let to oscillate freely. The simulation was performed up to time t = 0.2s, involving
24410 time steps, with mesh adaptations at every 1000 steps.

Figure 16 - 20 show the material (reference) configurations and spatial (deformed)
configurations at intermediate time steps. Figure 21 demonstrates the conservation of linear
and angular momentum over time.

5.3. A Tensile test case

Next, a tensile test case is presented. This test case was chosen to observe the momentum
behavior in presence of external forces. In order to demonstrate the exact conservation of
linear and angular momentum, a modified measure of momentum is calculated.
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Figure 14. Mesh Adaptation history.

5.3.1. Modified Momentum The measure of the modified momentum can be computed from
the basic idea of measuring the momentum, in absence of external forces. Subtracting the
effects of external forces from the actual momentum, the following measure is devised.

P ′
n,n+1 = Pn,n+1 −

n∑
0

[(∫
V0

ρ0gndV0

)
+
∑
a∈Γ

Ra
n+1

]
Δtn (132)

H ′
n,n+1 = Hn,n+1 −

n∑
0

[(∫
V0

ρ0xn × gndV0

)
+
∑
a∈Γ

xn ×Ra
n+1

]
Δtn (133)
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Figure 15. Ring at time t = 0 s, with material(left) and spatial(right) configurations.

Figure 16. Ring at time t = 0.05 s, with material(left) and spatial(right) configurations.

Figure 17. Ring at time t = 0.10 s, with material(left) and spatial(right) configurations.
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Figure 18. Ring at time t = 0.15 s, with material(left) and spatial(right) configurations.

Figure 19. Ring at time t = 0.17 s, with material(left) and spatial(right) configurations.

Figure 20. Ring at time t = 0.20 s, with material(left) and spatial(right) configurations.
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Figure 21. The momentum history for the oscillating ring.

Where gn is the external acceleration, (say gravity etc.), and is computed, like the external
forces are computed, (actually external force vector could also be used), while the external
nodal forces, Ra

n+1 can be obtained while applying the boundary conditions. The modified
momentum thus obtained is expected to remain conserved, in spite of presence of external
forces.

In the Figure 22 a square steel plate, with material properties (E = 2.1 × 1010 Pa, ν = 0.3
and ρ = 7 × 103 kg/m3) is pulled rapidly by vpull = 40m/s at its top surface, and reaches
thrice its length within 0.05seconds.
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Figure 22. A Tensile test specimen (left) pulled to thrice its length (right).

Mesh adaptation was employed in the simulation, and the net momentum was conserved as is
shown in Figure 23.

5.4. A Punch test

Similar to the tensile test case another test case as that of a punching problem was considered.
A flat square plate of unit length was constrained from the bottom and sides and punched into
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Figure 23. The Modified Momentum history for the Tensile test

the top half with a prescribed punch velocity (vpunch = 2 m/s) as shown in Figure 24. Here
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Figure 24. A schematic figure of the punch test case, showing boundary conditions.

a nearly incompressible rubber plate was chosen with material properties, (E = 1.7 × 107 Pa,
ν = 0.450 and ρ = 1.1 × 103 kg/m3). The deformed configuration at t = 0.25s is shown in
Figure 25.

The Modified momentum remains conserved as shown in the figure 25.

5.5. Plate Impact

In this example a plate impacting a rigid wall is shown. The Taylor Bar impact (TBI) is a
standard benchmark in rapid dynamics problems involving large deformations. The standard
TBI problem involves plastic deformations of a rod, impacting a rigid wall. In this case a plate
impacting a rigid wall is considered. Since only hyperelastic materials have been considered in
this paper, a modified TBI problem is presented where the constitutive relations are based on
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Figure 25. Mesh adaptation for a punch problem and the momentum history.

hyperelastic behavior.
In this case, a plate of length L = 32.4mm and width w = 6.4mm impacts the rigid

wall with a velocity of 227m/s. Using symmetry, only half of the plate is considered with
appropriate boundary conditions, as shown in figure 26 The material properties of the plate

V L

w/2

w

L

Figure 26. Schematic diagram of the plate impact problem.

were (E = 5.85 × 108 Pa, ν = 0.495, ρ = 8930 kg/m3). The plate was discretized using 200
elements and the solution was computed for 194μs. Figures 27 to 30 show the solution of the
deformed plate at various time instants. The mesh gets refined in the regions of high error
(Z2 error) and high mesh skewness. Figure 30 shows adaptation near the contact where the
mesh undergoes the most skewness. The plate touches the wall at 14 μs. In figure 27 the plate
is shown to collide with the rigid wall within the first 30 μs where the body distorts at the
contact of the wall. With further motion until 60 μs, the mesh distorts inside, where the mesh
is adapted. All the kinetic energy of the plate is almost converted to internal potential energy
by 90 μs, almost sticking to the wall, as shown in figure 28. At 120 μs the plate begins to
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Figure 27. The plate at t = 30 μs (left) and t = 60 μs (right).
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Figure 28. The plate at t = 90 μs (left) and t = 120 μs (right).

spring back in the opposite direction (reaction). The plate springs back until 150 μs, where it
undergoes large necking type of deformation, where meshes are adapted as shown in figure 29.
At roughly 180 μs, the plate leaves the rigid wall (bounce-off motion).

The modified momentum in this case remained constant, as shown in figure 31.

6. Concluding Remarks

In this paper variationally consistent time updates for local topological changes have been
developed. The methods have been formulated using the space-time discretization described
in section 2. These updates have been implemented in tandem to develop a simple mesh
adaptation algorithm. A simple mesh adaptive criteria based on the Z2 error-estimate has been
used. The mesh adaptation algorithm thus obtained, is shown to conserve linear and angular
momentum. In cases of external forces, a modified momentum is used to demonstrate the
conservation of momentum. Simple cases of rapid dynamics have been chosen to demonstrate
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Figure 29. The plate at t = 150 μs (left) and t = 180 μs (right).
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Figure 30. Deformed configuration of the plate at t = 194 μs (left) and the corresponding mesh in the
reference configuration (right).

the application of such methods. The existing adaptive procedures are explicit, and cause no
significant extra expense over the standard explicit (central difference) scheme. Clearly, further
work is required to augment the use of the algorithm to more complicated problems, where
severe mesh distortions are encountered. Better mesh adaptation criteria would be required,
to make the adaptation more effective.
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