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Abstract

Various trends in the spacecraft industry are driving the development of low-thrust propulsion systems.
These may be needed for fine attitude control, or to reduce the mass of the propulsion system through the
use of small lightweight components. The nozzle converts the stored energy in a pressurized gas into kinetic
energy through an expansion. The nozzle efficiency is characterized by the amount of kinetic energy leaving
the nozzle, and is governed by the exit velocity. Because of the increase in viscous losses as scale is reduced,
it was feared that high Mach number supersonic flows could not be generated in microdevices. However, a
scaling analysis indicates that the reduction in throat area can be offset by an increase in operating pressure
to maintain a constant Reynolds number. Therefore, thrust can be decreased by reducing the nozzle scale,
and viscous losses mitigated by running at higher chamber pressures.

In order to operate a supersonic nozzle efficiently, the geometry must be contoured to guard against
flow separation and reduce the boundary layer thickness at the throat. Deep Reactive Ion Etching enables
extruded flow channels of arbitrary in-plane geometry to be created at scales an order of magnitude smaller
than conventional machining. These channels are encapsulated by anodically bonding glass to the upper
and lower surfaces. Testing indicates that 11.3 milliNewtons of thrust is generated for a nozzle with a 37
micron throat width, 308 microns deep, and a 16.9:1 expansion ratio. The exit velocity was 650 m/s, which
corresponds to an exit Mach number of 4.2, and an Isp of 66 seconds. This is 100 m/s higher than previously
achieved in a micromachined device and demonstrates that supersonic flows can be generated at this scale.

The performance of the system is increased by electrothermal augmentation. By resistively heating fins
present in the chamber, a thruster temperature of 700◦C has been achieved. This will increase the theoretical
Isp to 145 seconds. However, the reduction in Reynolds number with increased chamber temperature causes
viscous dissipation to increase and thruster efficiencies to decline. The efficiencies vary with Reynolds number
in the same fashion as their unheated counterparts, which confirms that Reynolds number is the governing
similarity parameter. The thruster was operated at a temperature of 420◦C, and demonstrated an Isp of 83
seconds. This represents an Isp efficiency of 79% for an 8.25:1 area ratio nozzle. These results suggest that
MEMS-based micropropulsion systems offer higher performance at lower mass, when operated at Reynolds
numbers above 2500 for both heated and unheated thrusters.

This report is the Ph.D. Thesis of Robert Bayt, Submitted to the Department of Aeronautics and Astro-
nautics, M.I.T. in June, 1999, Supervised by Prof. Kenneth Breuer. For more information, contact, Prof.
K. Breuer: breuer@mit.edu
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Chapter 1

Introduction

1.1 The Role of Microspacecraft

In this time of decreasing federal budgets, the focus of NASA, and the aerospace industry at large, is to
reduce satellite life-cycle costs while still delivering a spacecraft with the capability of performing useful
science or a commercial service. With their New Millennium program, the Jet Propulsion Laboratory (JPL)
is developing technology for the next generation of spacecraft that will encompass all of NASA’s directives:
Faster, Better, Cheaper.

A wide range of resources from program management techniques to advanced technologies are being
focused on achieving each of these directives. One of the means to this end is the development of mi-
crospacecraft [1]. Such a satellite may contain only one instrument, but this reduction in complexity will
lower costs, by facilitating systems integration. In addition, the small sizes allows the selection of a smaller,
less expensive launch vehicle, or the integration of multiple satellites per vehicle.

JPL has examined a number of mission scenarios that are conducive to miniaturization, which are de-
scribed by Mueller [2]. These missions are a rendezvous with the near Earth asteroid, Vesta, a Europa
orbiter, an Earth observing cluster, and a deep-space interferometer. In addition to these missions, Lon-
don [3] performed a similar analysis for a future generation global positioning system, a Mars observer, and
a low Earth orbit communication system. This indicates that there are a wealth of opportunities in which
microspacecraft can perform useful science, while reducing cost and development time.

The aerospace community envisions Microelectromechanical systems (MEMS) as a means for attaining
a high degree of functionality at a much smaller scale. MEMS technologies are sensors and actuators which
are fabricated with the use of the micromachining techniques developed by the microelectronics industry.
As defined by Mueller [2], first generation microspacecraft will have a mass of 20 kg, a baseline dimension of
30 cm, and consume 20 Watts of power. It will begin to integrate MEMS components over the next 5 years
to demonstrate the proof-of-concept. The second generation microspacecraft (1-5 kg), will then begin to
integrate large numbers of MEMS subsystems. This ultimately leads to a third generation (< 1 kg), that is
a completely micromachined device with all systems integrated during fabrication. The first two generations
will illuminate the feasibility issues of the third generation.

1.2 The Role of Micropropulsion

One implication of microspacecraft is that they will need small systems. Due to the limited capabilities of
the early launch vehicles, the first satellites were inherently small, and due to the lack of truly miniature
systems, possessed limited functionality. Explorer I (1958) was only 15 kg, and Vanguard I (1958) was only
1.5 kg. These were the first true microsatellites. As technology progressed, satellites developed pointing
requirements and the need to maintain precise orbits. On-board propulsion systems were added to make-up
for aerodynamic drag and solar pressure disturbances, as well as counteract gravity-well distortions due to
the oblateness of the Earth. Since the satellites were still small due to the launch vehicle capacity, the first
micropropulsion systems were developed. Their function was two-fold: provide slewing capability to adapt
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to different pointing requirements, and maintain the attitude within a deadband (angular position limit)
to meet pointing tolerances. Sutherland and Maes [4] reviewed the state-of-the-art for different propulsion
architectures in 1966. They established system criteria which can be used to judge applicability of a given
architecture. These are: Total Impulse, Thrust Level and Control, Life and Reliability, State of Develop-
ment, Duty Cycle, Environment, Response or Impulse bit, Exhaust Products, and Cost. This lead to an
establishment of the domains of applicability of for propulsion architectures, which was later revised and
updated by London [3] to include new or improved technologies.

Sutherland and Maes further stress the need to generate not only low thrust, but to minimize the impulse
bit (Ibit). The Ibit is the minimum impulse obtained once the thruster is given the command to fire. It is
the integrated thrust over the fastest valve cycle time. Sutherland et al. show that the propellant used per
thruster firing for maintaining attitude about a deadband can be computed for the undisturbed rotation of
a constant mass vehicle about one axis as

Ẇp =
l(∆Ibit)2

4JIspΘt
, (1.1)

where J is the moment of inertia, Θt is the angular position limit, and l is the moment arm. Thus, an
improvement by decreasing Ibit is more important than an improvement in increased Isp for the purpose of
attitude control.

Using the JPL design reference missions as baseline requirements, this work will focus on the miniatur-
ization of the on-board propulsion and the fabrication of these devices through MEMS technologies. The
first generation microspacecraft design requirements are a minimum thrust of 4.65 mN for slewing, and an
Ibit of 0.013 mNs for maintaining attitude [2].

1.2.1 Propulsion Architectures

With the utility of micropropulsion established, the ideal architecture for meeting the requirements should be
assessed.While Sutherland and Maes reviewed the current state-of-the-art for 1966, that has been updated by
Mueller and London to include new architectures, such as Field Emission Thrusters (FEEP), and improve-
ments in technology, which include MEMS-fabricated devices. Initial studies by London and Khayms [5]
identified the scaling issues with micropropulsion technologies. London laid out the domains of applicability
for different propulsion architectures, which is reproduced in figure 1.1. A particular architecture is dominant
for a given mission scenario because it results in the lowest mass and power system for the control authority
desired. The metrics are ∆V , which indicates the amount of usage a thruster will get, and thrust, which is
a factor in how quickly the actuation will occur.

Mueller and London’s works establish the capabilities of current technologies, as well as speculating at
which technologies are suited for micropropulsion, and the scenarios in which they should be used. London’s
investigation of scaling issues to the various propulsion architectures does not reveal any significant drawbacks
that would preclude the implementation of a particular propulsion concept. However, as the domains of
applicability chart implies, the optimal system is a strong function of mission requirements. The goal is to
draw from these studies which systems are best suited for microfabrication.

Scaling of bipropellant engines has limited their use to thrust classes greater than 1 N due to loss in
combustion efficiency from poor mixing. Monopropellants are promising for increasing the Isp, but there are
materials compatibility as well as catalyst integration issues that need to be investigated for implementation
in a microfabricated system.

There are current research programs investigating Pulsed Plasma thrusters at NASA Lewis, which might
provide the lowest Ibit and reasonable thrust for slewing, but according to Mueller, “Current PPT designs
are...too large for microspacecraft attitude control.” There is much research into the FEEP, but their
specific impulse is too high, and efficiency too low for current applications. Scaling to a lower Isp has yet
to be demonstrated due to the high extraction voltages required. The power conditioning electronics is a
significant portion of the system mass, and as Mueller describes in his design reference mission analysis,
“Even neglecting tank masses for the FEEP system, the cold-gas system will still be lighter than the FEEP
system by about 0.4 kg (although volume requirements will be higher due to the large tank volume.)” Finally,

16



6000 100 200 500300 400
Mission   V [m/s]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
 0

T
hr

us
t [

N
]

10
 1

Chemical
(µ-biprop & hybrid)

Hall Thrusters
Ion Engines

FEEP, Colloid
PPT

C
ol

d 
G

as

∆

Figure 1.1: Domains of applicability of various propulsion architectures. This shows which architectures minimize
mass and power consumption for a given set of mission requirements. Reproduced from London [3]

colloid thrusters are being investigated at MIT as on-board propulsion, and offer many of the advantages of
a FEEP, at a lower mass.

1.3 Motivation for a Microfabricated Pressurized Propulsion Sys-
tem

Of all of the possible architectures, it was deemed prudent to begin with the miniaturization of the cold-gas
system to demonstrate fabrication and operation. From a review of other research programs, it was apparent
that a truly micron-sized thruster, which pushes the limit of the fabrication technology, had yet to be
developed. The cold-gas system offers a low Ibit in addition to the minimum thrust for slewing requirements.
The major drawback has been valve leakage due to contamination, which according to Sutherland is traceable
to propellant tank fabrication. But when microfabricated, the system cleanliness may also improve. The
cold-gas system will serve as a forerunner to the microresistojet, which could increase the performance with
very little additional power due to the low mass flow rates. The micronozzle is an essential component of
many propulsion architectures, and its success will lead the way for more advanced chemical systems. Thus,
with many of the other technologies currently under investigation, the micronozzle, which is the heart of
the cold-gas system, was chosen as the focus of this research. And, its simplicity leads to short development
times, and possible implementation into near-term projects.

There are advantages to developing a microfabricated nozzle. Traditional pressurized propulsion systems
suffer from high viscous losses due to the low chamber pressure required to obtain low thrust within the
limitations of a conventionally-machined system. A majority of current research focuses on rarefied flow due
to the low density nature of a low-thrust pressure fed system.

Microfabricated nozzles allow the pressurized propulsion system to run at higher chamber pressures while
maintaining low thrust through a reduction in scale. Also, microfabrication offers the capability of on-chip
integration of microsystem components such as tanks, lines, valves, and nozzles.

Recent advances in bulk micromachining permit the anisotropic etching of silicon features with high
aspect ratios. Deep reactive ion etching (DRIE) offers the nozzle designer the flexibility of a contoured
expansion and the advantage of an extruded shape (high aspect ratio nozzles minimize 3-D effects). In
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addition, the scale of achievable nozzles are an order of magnitude smaller than previously demonstrated.
The factors that drive the performance of micronozzles is poorly understood. As with all MEMS devices,

the operation and performance is coupled with the means by which they are fabricated. With the intro-
duction of a new fabrication technique, such as DRIE, its advantages and drawbacks are to be addressed.
This research is driven by the need to evaluate the applicable nozzle scale and operating conditions to max-
imize nozzle efficiency, and deliver a propulsion system component which can be integrated with a standard
propellant delivery system for use on a spacecraft of any scale.

1.4 Previous Micronozzle Investigations

Sutherland and Maes recognized the utility of achieving a small Ibit, as well as low thrust, with a cold-
gas system. However, for “mechanical and reliability factors”, they suggested that nozzles having throat
diameters less than 250 microns were undesirable. Thus, to obtain these small thrusts, were forced to run
them at chamber pressures of 0.1 psia. This results in throat Reynolds numbers of approximately 30 and Isp
efficiencies of 40%. To this point, there have been several investigations of mass flow and thrust efficiency
for nozzles at small scales. Notably, Massier et al. [6] investigated it over the range of Reynolds numbers 650
to 350,000, and then a year later Kuluva and Hosack [7] expanded these measurements to Reynolds numbers
as low as 20. Both papers investigated the variation in the coefficient of discharge with Reynolds number.
Kuluva measured CD as low as 40% due to the increased blockage from boundary layer displacement at a
Reynolds number of 20.

However, the science of nozzle flow was advanced when Rothe [8] made E-beam measurements of the
viscous flow within the nozzle. These nozzles had 2.5 and 5 mm throat diameters and were run at chamber
pressures of 0.15 psia. This represents a range of Reynolds numbers 55-550 as computed in equation 2.4 of
this work. The E-beam measurements allowed Rothe to determine temperature and density profiles along
the centerline of the nozzle axis as well as along radii at different cross-sections. The profiles revealed that
as the Reynolds number decreased, the effective expansion of the nozzle also decreased. This was realized
as an increase in the exit temperature and pressure of the gas, and a decrease in exit Mach number. At
Reynolds numbers below 150, the exit temperature was in fact increasing along the channel due to viscous
shear forces causing the thermalization of flow energy. At the lowest case (Re=55), the flow has made a
shockless transition to subsonic flow by the exit of the nozzle. These results were confirmed numerically
by Rae [9], who applied the slender channel approximation to the Navier-Stokes equations, and discovered
similar profiles at the nozzle cross-sections. However, each of the nozzles are driven to low Reynolds number
operating conditions, as well as highly rarefied flows, due to their inability to fabricate contoured geometries
at micron scales.

To reduce the thrust of a nozzle the exit area is to be reduced, but the throat-to-exit area ratio must be
maintained to maximize Isp. Grisnik et al. [10] used this to an advantage for a series of four nozzles they
tested with throats ranging from 654-711 microns in diameter. These nozzles produced thrusts from 4.59
mN to 45 mN over a range of Reynolds number 1000-9000. The nozzles maintained 85% Isp efficiency at
Reynolds numbers above 3000, but dropped quickly to 70% when the Reynolds number was reduced to 500.
The same conclusions can be drawn from Rothe’s experiment. The effective area ratio is reduced due to the
viscous stresses and boundary layer blockage present at the low Reynolds numbers. The results presented
by Rothe and Grisnik are for axisymmetric nozzles, which will differ from the current research involving 2-D
nozzles. The trends, however, should be similar.

In addition to previous experimental tests, there have been numerical investigations into the flow within a
low-Reynolds number nozzle. Grisnik et al. used a two-dimensional kinetic model to predict efficiencies. This
code gave very ambiguous results. It predicted an increase in Isp efficiency with decrease in Reynolds number.
However, the code was developed in 1984, and had no validation at the operating Reynolds number. They
did however provide displacement thicknesses as a function of Reynolds number, that seemed to correspond
with that predicted in this work. This allowed an effective area ratio and Isp efficiency to be predicted, which
matches well with that found in Chapter 3.

Kim [11] performed a finite volume calculation with similar boundary conditions to that presented in
Chapter 3. This major difference was that it was an axisymmetric calculation as compared to the 2-D
calculation presented here. He discovered that a 30 degree expansion angle outperformed the 20 degree
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angle due to the shorter development length for the same area ratio for his Reynolds number of interest.
Zelesnik [12] performed a DSMC calculation of the nozzles used in the Grisnik experiment. A Navier-

Stokes simulation was used to predict the state variables just past the throat, and this served as an inlet
condition to the DSMC. Though the Reynolds number was 117, the low chamber pressure allowed the
Knudsen number to reach 0.2 at the exit (10 times that found in the present work). Similarly, Ivanov et
al. [13] performed DSMC calculations which produced results similar to the N-S simulation presented in this
work. While their results overpredict the efficiency by at least 8% compared to the measurements presented
here, they noted a performance loss due to the unmodeled plume.

Based on Grisnik’s results, smaller scales and higher chamber pressures will provide higher Reynolds
number operation for the same low thrust level. This is consistent with the scaling arguments provided
in Chapter 2. Though conventional machining such as electro-discharge machining has produced nozzles
with throat widths of order 100 microns, the ability to maintain a well defined geometry has yet to be
demonstrated. Therefore, microfabrication techniques, which were inspired by the success of inkjet printhead
nozzles, were implemented by Janson [14] to demonstrate batch-fabricated microthrusters.

These nozzles, the fabrication of which is detailed in Chapter 4, were anisotropically etched along silicon
planes to yield a square nozzle with 32.5◦ divergence angle. The efficiency of these nozzles is low, due to
the limited geometries available through this etch technique. Such devices suffer from separation, high flow
divergence losses, and thick boundary layers at the throat. Thrust tests indicated that 56 seconds of Isp were
achieved for thrusts of 13 mN. While exhibiting a mediocre performance, it demonstrated a very important
proof-of-concept, which needs to be optimized with improved etching techniques.

The utility of these nozzles is demonstrated in their implementation into digital micropropulsion systems
as well as JPL’s vaporizing liquid microthruster. The digital micropropulsion [15] is based on a thin-walled
membrane separating the propellant from the anisotropically etched nozzle. The propellant is ignited and the
membrane is burst to yield an impulse of thrust. By batch-fabricating an array of 1000 nozzles, a valveless
thruster system can be created for low duty-cycle missions. No leaks other than diffusion will be possible.
Currently, only limited arrays of 10 thrusters have been achieved, and the small actuation time causes a
large fraction of the propellant to leave the thruster unburned.

Janson [16] has recently introduced a well insulated version of a thin-film heater for fabricating a mi-
croresistojet. The polysilicon resistor, deposited on a silicon substrate, is undercut through an anisotropic
silicon etch, such as described in Chapter 4. This defines the chamber as well as the nozzles, and leaves the
heater suspended in the middle of the cavity such that the gas can flow across the upper and lower surface.
This doubles the surface area of a conventional thin-filmed resistor, as well as reduces the thermal gradients
across the chamber. However, it will also minimize the conduction to the wall. If the wall remains cool, then
it will serve as a heat sink for the flow during thruster operation.

The vaporizing liquid microthruster [17] will utilize ammonia passed through a heater to generate a
higher performance, higher density propulsion system. The heater is a thin film metal deposited on a silicon
substrate that is resistively heated. The heater is bonded into a plenum through which ammonia flows, and
is vaporized. As currently designed, it implements the same nozzle that Janson has demonstrated, which
can be significantly improved with the nozzle etch techniques proposed in this research. In addition, the
heater effectiveness will suffer at high flow rates due to the limited surface area.

These concepts seek to improve the performance of the thruster through an increase in chamber en-
ergy. For the digital micropropulsion, a higher energy propellant is used, and for the vaporizing liquid
microthruster, the propellant is resistively heated. The research presented here demonstrates a similar im-
provement with a resistively heated gas, but the heat transfer is greatly enhanced through the increased
surface area of a microfabricated fin array.

1.5 Objectives

The primary objective of this research is to assess the feasibility of fabricating and operating a MEMS-based
thruster. Initial studies are performed to analyze the trade-offs with a reduction in scale, and assess the
limitations of microfabrication. These limits are used as a guide to determining the performance of the
thruster at various operating conditions. Ultimately, nozzles are designed to operate at the highest possible
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efficiency for the thrust levels of interest. To meet this goal, intermediate objectives in the operation of the
propulsion system and the microfabrication of nozzles are established.

The intermediate propulsion objective is to perform numerical simulations of the flow through 2-D con-
toured nozzles to benchmark the efficiency at each operating condition. The efficiency is decreased due to
the viscous losses inherent to the small scale of this system. This work analyzes flows in the continuum
regime due to the high pressure nature of the system. This facilitates modeling by eliminating the need for a
direct simulation method. The simulations characterize the viscous losses at each chamber pressure setting.
This will be used to determine boundary layer properties for each operating condition.

The performance is to be evaluated through mass flow and thrust tests to determine the scaling effects
on Isp, as well as the impact of the limitations of the fabrication. These tests will be used to gauge the exit
Mach number and verify supersonic flow has been achieved. Deviations between the model predictions and
test results are to be analyzed and quantified. Models are developed to investigate the influence of surface
roughness and endwall boundary layers on performance.

Finally, nozzle performance is to be increased by resistively heating the gas in the settling chamber. An
integrated microheater, fabricated in parallel with the nozzle and settling chamber, will increase performance
and achieve a high efficiency heating of the flow. A one-dimensional heat transfer model is developed to
optimize heater geometry.

The microfabrication objectives are established in support of the primary propulsion objectives. The
nozzle and plenum are etched into silicon by DRIE. The process parameters, which govern the DRIE, must
be optimized to produce the geometry of interest. The etch conditions are established to achieve the highest
anisotropy with lowest surface roughness for a high aspect ratio nozzle. Finally, a method for creating fins
in the thruster chamber for increased heat transfer, as well as heat dissipation is to be developed.

This work addresses the process undertaken in the achievement of these objectives. Chapter 2 outlines
the performance advantages of micropropulsion systems, and establishes the baseline geometry. Chapter 3
presents the numerical analysis of the flow in nozzles of this scale, including trade-offs in design. Chapter
4 details the process development that resulted in the fabrication of the micronozzles. The nozzle thrust
and mass flow tests, as well as the performance analysis, is presented in Chapter 5. Chapter 6 details the
modeling, fabrication, and testing of an electothermally augmented thruster.

The achievement of these objectives will answer the following fundamental questions about MEMS-based
Micropropulsion systems:

• How small can the micropropulsion systems be fabricated?
• What are the fabrication limitations?
• How are they to be packaged and operated? What is the flow condition at each operating point?
• What are the governing similarity parameters? How do they effect efficiency?
• Can the thruster performance be increased substantially through resistive heating?

1.6 Contributions

The analysis and results described herein make the following contributions to the field of propulsion tech-
nology:

• Supersonic flow is achieved in flow channels at a scale an order of magnitude smaller than previously
documented.

• A higher Isp is achieved for this thrust class cold gas propulsion system than previously attained for a
batch-fabricated, or conventionally-machined device.

• 2-D computational modeling combined with experimental testing has confirmed that the Reynolds
number is the governing similarity parameter for nozzle flows in MEMS devices.
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• Numerical analysis is used to determine the development of endwall boundary layers in an accelerating
flow, and their impact on nozzle performance.

• The effects of surface geometry and roughness on nozzle performance is characterized.

The following contributions are made to the field of MEMS technology:

• An effective method for etching features with variable geometry using DRIE is developed and trade-offs
highlighted. Surface Roughness and features characteristic of this process are documented.

• A means for high-pressure gas injection into an integrated nozzle plenum system is developed.

• A high efficiency method for heating the plenum and containing the energy in the flow is developed
and fabricated in parallel with the nozzle to increase thruster Isp.

• A heater is developed that operates at the silicon intrinsic point to mitigate thermal runaway present
in low-Reynolds number gas flows.

1.7 Summary

The utility of the cold-gas system has been recognized since the early sixties due to its reliability and
ability to achieve a small Ibit. However, to achieve low thrust, low Reynolds numbers ensued. Advances in
microfabrication have allowed smaller features to be created which mitigate the low Reynolds number viscous
losses through the use of higher pressure. Due to advancements in MEMS technology, the cold-gas system
is once again looked at as the near-term solution for on-board micropropulsion. With the first generation
MEMS thruster already demonstrated, the stage is set for advanced etching techniques and improved nozzle
contours to boost the performance of the next generation MEMS-based propulsion systems.
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Chapter 2

Scaling Analysis and the Baseline
Microthruster

As mentioned in the introduction, there are several reasons to move toward smaller components in spacecraft
systems. They can be broadly grouped into two categories: scale and performance. These represent the
direct implications of making an object smaller, it has less mass, and the indirect implications, enhanced
properties that become accentuated as scale is reduced. This chapter will explore each of the classes and
show the benefits and drawbacks to each.

2.1 Direct Effects of a Reduction in Scale

As the scale of a component is reduced, if it is fabricated from a material of similar density, its mass is reduced.
This is stating the obvious, but it accomplishes one of the goals of spacecraft design, mass reduction. This
is required to meet launch vehicle constraints, as well as, reduce on-board propulsion system or upper stage
mass requirements.

However, smaller mass implies quicker dynamic and thermal response times. An object under loading
will accelerate more quickly if it has a smaller mass. This implies fast acting microvalves are possible due
to the low mass of the poppet. Heaters can come to temperature more quickly since the thermal mass is
less. This reduces the transient of a given architecture, which in the context of a propulsion system will
reduce the minimum impulse bit. For a cold-gas thruster this is a function of the valve response time and the
thrust of the nozzle. For a resistojet, the heater may be turned on first and allowed to come to temperature,
which reduces efficiency, or brought up to temperature while firing, which decreases the Isp. Finer attitude
adjustments are achieved by lowering the Ibit of the propulsion system.

2.2 Indirect Effects - Performance Variability with Scale

There are several system performance drivers that lead to the selection of smaller scale components. In most
cases, these are driven by the “cube-square” law. In other words, properties that are a function of the area
of interaction decrease slower than those that are a function of volume. This is formulated as

f(area)
f(volume)

∝ L
2

L3
∝ 1
L
. (2.1)

Thus, as the length scale (L) is reduced the property ratio increases.
An example is the power to mass ratio of a spacecraft. The power is collected as a function of the area

exposed to the solar flux, and yet the mass is a function of the volume of the spacecraft. By applying the
principle of equation 2.1, the power to mass ratio increases as the scale decreases, as is shown by

P

m
∝ ηarrayPoL

2

ρs/cL3
∝ 1
L
, (2.2)
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where ηarray is the solar array efficiency, ρs/c is the spacecraft average density, Po is the solar flux, and L is
the scale of the array collection area or spacecraft baseline dimension. An increase in power to mass ratio
implies an increase in functionality of the spacecraft. Since the power drawn from system components will,
in general, be in proportion to their mass, the increase in power to mass permits either an increase in the
power requirements of an instrument or the number of instruments.

Specific to the propulsion system, the thrust-to-mass ratio is of interest. This determines the effectiveness
of the system as an actuator. When considering the engine, which includes the nozzle and chamber, the
thrust-to-mass ratio can be formulated as

Ft
meng

∝ PcL
2

PcL3
∝ 1
L
, (2.3)

where Pc is the chamber pressure, and L is a characteristic dimension, such as the throat width. This is the
same trend as discovered in equation (2.2), as are all systems which obey the “cube-square” law. However,
as London [3] described, the engine mass is about 1% of the total on-board propulsion system mass at these
small scales. The dominant mass comes from the propellant and the tanks, due to high pressure storage.
London showed that the thrust-to-mass ratio of the tank is independent of scale, and is proportional to the
inverse of the tank pressure. Thus, a reduction in scale does not significantly increase the thrust-to-mass
ratio of the entire propulsion system as long as the tank pressure and propellant mass remain constant.

The focus now shifts to increasing the performance of the system. If the Isp increases, the amount of
propellant required for a given mission decreases, and a direct reduction of system mass occurs. If the
nozzle-plenum system scale is reduced, lower thrust (which is required for these applications) is achieved.
By shrinking the scale, higher chamber pressures can be used to achieve the same low thrust. The frictional
losses are governed by the Reynolds number which is defined as

Re =
ρtvtDt

µt
=
ṁ

µho
, (2.4)

where ρ is the chamber density (proportional to chamber pressure), v is the velocity, D is the throat width,
and µ is the viscosity, all defined at the throat condition. This, in turn, can be defined in terms of the mass
flow rate, and the nozzle height, ho (for an extruded nozzle).

The thrust is proportional to the mass flow rate multiplied by the exit velocity. The exit velocity is
ideally set by the expansion ratio of the nozzle. But, as viscous effects become important, it also decreases
with Reynolds number. A component of the thrust is the exit pressure, which is neglected since it is also
only a function of the nozzle expansion ratio. The thrust, for an extruded nozzle, can then be approximated
in terms of the Reynolds number as

Ft ∝ ṁvexit ∝ Re ho µt vexit . (2.5)

Thus, for a constant thrust, the Reynolds number increases as scale decreases. This will result in lower
frictional losses, and a higher delivered Isp. Though the tank mass will not directly reduce with scale, the
amount of propellant required is less due to the higher Isp, and the engine mass is also less. Thus, the thrust
to propulsion system mass can be increased significantly with a reduction in scale.

2.3 Performance Trade-offs with Design

The ability to fabricate small features leads to the enhancements described in the previous section. Just as
there are direct benefits to pursuing a reduction in scale, there are direct drawbacks to small features. As
the scale is reduced, the residence time of a particle in a flow channel is reduced. This leads to incomplete
equilibration of the flow energy. If the residence time is less than the relaxation time, the thermal energy
of the stored gas will not fully convert into kinetic energy, and performance will suffer. These are known as
frozen losses. Frozen losses may also represent the energy that is used to break molecular bonds, which is not
converted into fluid kinetic energy because the molecules do not have time to recombine while in the nozzle.
Thus, the flow is a fixed (or frozen) composition at a lower energy state throughout the nozzle. These losses
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are a function of Reynolds number since collision frequency is a function of gas density, and residence time
or scale.

Another direct drawback of the microscale is the limitation of fabrication technology. This leads to
surface roughness that is a larger fraction of the local nozzle width than for macrodevices. This trait must
be examined to assess its impact on thruster performance.

Though significant performance advantages can be demonstrated, microscale components present inter-
esting design challenges. In many areas the “cube-square” law can improve performance locally, and at the
same time work against the overall design. As described previously, heat transfer to the fluid improves at
small scales. However, the hot fluid will just as easily transfer the heat energy back to the environment
further downstream if the wall is cold. Since it is difficult to insulate at these small scales, efficiency can
suffer when trying to deliver heat energy.

As will be demonstrated throughout this work, many solutions can be arrived at by developing macroscale
solutions, and integrating them with the microdevices. In this example, the entire heater chip can run at
the heater temperature to prevent fluid energy losses, and then encased in ceramic to reduce the conduction
and radiation losses. This way, the microscale geometry can deliver high heater effectiveness, but the larger
conduction paths through low conductivity materials can reduce the losses. These issues are all addressed
as device packaging, and are solved through system trade studies to optimize the designs.

2.4 Thruster Baseline

The previous analysis directs the low-thrust propulsion system designer to achieve the smallest scales possible,
while maintaining high-Reynolds number flows. This section establishes the desired thruster scale, nozzle
expansion ratio, and divergence angle, within the constraints of fabrication. Based on the expected geometry,
a baseline performance is estimated to show that the requirements can be met.

2.4.1 Thruster Requirements

Using the JPL design reference missions as a requirements driver, the thruster will operate in the thrust
range of 1-15 mN. It should be capable of providing at least 56 seconds of Isp, because this has already been
demonstrated by previous microsystems [14]. These requirements are to be achieved while reducing the mass
and physical dimensions of the system.

2.4.2 Thruster Scale Limitations

The product will be driven by what can be reasonably achieved through microfabrication. The thrusters are
limited to 2-D features due to the anisotropic etching techniques employed. 10 micron feature width appears
to be the lower limit for high aspect ratio (local nozzle width to depth) etches, which is currently limited to
30:1. In addition, the surface roughness is at least 0.3 microns, and may become as large as 1 micron for
deep etches. The minimum feature size should be chosen such that the roughness is no more than 1% of the
nozzle width.

High aspect ratios are required so that endwall boundary layer effects are minimized, and the effective
expansion ratio of the nozzle is maximized, which maximizes Isp. The aspect ratio limitations of the etcher
limits the nozzle expansion ratio. As the geometric expansion ratio grows, the exit plane aspect ratio reduces
due to the limitations on nozzle etch depth. This, in turn, increases the endwall boundary layer effects and
reduces the overall effective expansion ratio.

Boundary layer growth is a function of the nozzle length, or divergence angle for a given expansion.
As divergence angle increases, boundary layer thicknesses decrease, which decreases blockage and increases
performance. However, large divergence angles increase the momentum component perpendicular to the
thrust axis, which is lost as useful thrust.
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2.4.3 Baseline Geometry Specifications and Operating Conditions

The requirements and limitations drive the development of a nozzle that has a 20 micron throat width, 25:1
expansion ratio, 300 micron etch depth, and a nozzle divergence angle of 20◦. If this thruster is operated at
a chamber pressure of 100 psi, it will ideally produce 7.0 mN of thrust at 75 seconds of Isp, based on a Quasi
1-D evaluation of the nozzle. The thrust reduces to 1.0 mN for a chamber pressure of 1 atmosphere. The
expansion ratio is chosen to maintain a greater than 0.5:1 aspect ratio of the nozzle exit plane.

This ideal performance will suffer from significant viscous losses because the baseline operating point is
at a Reynolds number of 2040 at 100 psi chamber pressure, and 300 at 14.7 psi chamber pressure. These
operating points will serve as inputs to the numerical analysis undertaken in Chapter 3. These simulations
are based on the continuum assumption. The continuum assumption is best characterized by the Knudsen
number or the ratio of the particle mean free path to that of the scale of interest. Mean free path(λ) and
Knudsen number are computed as

λ =
1√

2πD2
cNd

(2.6)

Kn =
λ

Dt
, (2.7)

where Dc is the gas molecular diameter, Nd is the number density, and Dt is the throat width [18]. For
the baseline nozzle geometry, the highest throat Knudsen number is 0.003 operating at 1 atm chamber
pressure. However, the continuum assumption may break down as the pressure drops in the expansion. For
the largest expansion of interest (25:1), the Knudsen number will only increase to 0.036. At this point the
nozzle appears to be operating well within the limit of the continuum regime, though wall slip velocity may
become significant.
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Chapter 3

Numerical Analysis of Micronozzle
Performance

3.1 Analysis Objective

Metrics are established for the comparison of the MEMS-based system to conventionally-machined propul-
sion systems of any architecture. These metrics will characterize the performance of the micronozzle as a
propulsion device, and are indicative of the efficiency by which the stored energy of a pressurized gas is con-
verted to kinetic energy exiting the nozzle. The metrics are quantified in terms of momentum performance
parameters, such as Isp and thrust, and efficiencies, which indicate the viscous losses. A numerical analysis
is used to compute the ideal performance as well as establish performance benchmarks for real operation
with viscous losses. The simulations are run for the fabricated nozzle geometries discussed in Chapter 4 at
the operating conditions tested, which are discussed in Chapter 5.

This chapter answers fundamental questions concerning the flow behavior in the nozzle geometries at
this scale. The computational analysis is used to determine if the flow is subsonic or supersonic, laminar
or turbulent at the nozzle exit. A knowledge of the flow field can be used to infer the condition of the
boundary layer, and the relative performance of these geometries to those that are of a larger scale and
differing geometry. The set of solutions is used to create a performance map which indicates the optimum
operating point of the nozzles.

3.2 Assumptions of the Numerical Analysis

The scaling analysis presented in Chapter 2, determined the flow was operating in the continuum regime.
With this understanding, the nozzle flow can be simulated with the Navier-Stokes equations, which are
based on the continuum assumption. As described in Chapter 1, low-Reynolds number nozzles have been
analyzed by both the full viscous Navier-Stokes Equations, and the inviscid Euler equations with boundary
layer corrections. The inviscid equations, which are less computationally intensive, could be used to simulate
the fluid flow through the nozzle and the geometry could then be modified to account for the boundary layer
influence, as long as an inviscid core exists. However, the full Navier-Stokes equations represent a much more
complete picture of the flow, involve no iteration of the geometry, and are now easily solvable with today’s
computational power.

Since the nozzles developed here are of an extruded contoured geometry, the simulation geometry should
reflect this. A three-dimensional numerical simulation would provide a complete picture of the fluid dynamics
occurring with the nozzle, and an accurate performance prediction. However, this will come at a high
computational price. A two-dimensional simulation will provide an accurate performance prediction for
cases in which the endwall boundary layers are thin with respect to the nozzle aspect ratio. Due to the
anticipated aspect-ratio of the fabricated nozzles, this condition will not be satisfied at the exit for most of
the range of Reynolds numbers tested, and a correction for endwall boundary layers will be incorporated.
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This correction is presented in section 5.5.1.
This simulation does not account for nonequilibrium effects present in the nozzle. It assumes that all

relaxation times are greater than the residence in the nozzle.

3.3 Finite Volume Formulation

The numerical analysis is a two-dimensional Navier-Stokes simulation through a converging-diverging (de
Laval) nozzle at various Reynolds numbers. This analysis is based on a computer program, which implements
the finite volume formulation of the Navier-Stokes equations with Van Leer’s flux-splitting [19]. This com-
puter code was originally developed for flow in closed geometries (microbearings) at the microscale [20], but
has been adapted for the current application by the author. The governing equations for a two-dimensional
flow can be written in conservative form [21] as

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0 , (3.1)

where U represents the state variables for mass, momentum in the x and y directions, and energy. F and G
are the fluxes of these variables across a control surface. The state vector is defined as:

U =



ρ
ρu
ρv
ρE


 . (3.2)

All of the state variables have been non-dimensionalized by the appropriate quantities defined at the
throat condition. This non-dimensionalization is carried throughout the remainder of the chapter and in
the definition of the fluxes and their component quantities. The non-dimensionalization is detailed in Ap-
pendix A. The fluxes in equation (3.1) can be separated as F = Fi − Fv and G = Gi − Gv, in the x and
y directions respectively, where subscripts i and v represent inviscid and viscous fluxes. These fluxes are
defined as:

Fi =




ρu
ρu2 + P
ρuv

(ρE + P )u


 ; Fv =




0
τxx
τxy

uτxx + vτxy − qx


 (3.3)

Gi =




ρv
ρuv

ρv2 + P
(ρE + P )v


 ; Gv =




0
τxy
τyy

uτxy + vτyy − qy


 , (3.4)

where the fluid shear stresses and heat conduction are mathematically defined as

τxx =
2µ
3Re

(2
∂u

∂x
− ∂v
∂y
) (3.5)

τyy =
2µ
3Re

(2
∂v

∂y
− ∂u
∂x
) (3.6)

τxy =
µ

Re
(
∂u

∂y
+
∂v

∂x
) (3.7)

qx = − µ

(γ − 1)Re Pr
∂T

∂x
(3.8)

qy = − µ

(γ − 1)Re Pr
∂T

∂y
, (3.9)
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Figure 3.1: Flux model in computational space

where Re and Pr are defined in Appendix A.

3.3.1 Spatial Discretization

The domain is discretized in a structured grid arrangement. The variables x and y represent physical
displacements in the nozzle coordinate system, while ξ and η represent cell displacement in an orthogonal
grid-centered coordinate system. Figure 3.1 is a sample of the ξ − η computational space. There exists a
transformation matrix that relates the grid geometry to computational space. All state variable derivatives
can be transformed from physical space to grid coordinates by applying the chain rule. An example of this
transformation is presented in equation (3.12).

Inviscid fluxes for each node are calculated using the eight nodes which surround it. State information
for each of the cells is stored at the vertex locations. Figure 3.1 depicts the contribution of the flux from
each cell face to the vertex representing the volume of interest. For example, the contribution to point a
from face 1− 2 is

Fia = −[ 1
2
(Fi1 + Fi2)(y2 − y1)− 1

2
(Gi1 +Gi2)(x2 − x1)] . (3.10)

The convention is that outgoing fluxes are positive, thus the equation is negative for those fluxes shown
in the figure. The fluxes are then summed for each of the faces contributing to the cell. This is accomplished
in a computationally efficient manner by computing it once for each node, and then distributing the flux to
the surrounding nodes, so that the flux from a specific point is not recomputed for each of its adjacent faces.

The viscous fluxes for a given node uses the same surrounding nodes as for the inviscid fluxes. Because
the viscous fluxes contain derivative terms, the node itself is also involved and the cell over which these
fluxes are calculated is also shown in Figure 3.1. By displacing the pseudo-nodes, the derivative terms can
be computed from the four surrounding real nodes. These values are then used to calculate the viscous fluxes
into the cell 1’-2’-3’-4’. An example of a partial computed at a pseudo-node such as 1’ is:
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∂u

∂x
=

1
J
(
∂y

∂η

∂u

∂ξ
− ∂y
∂ξ

∂u

∂η
) (3.11)

where

J =
∂x

∂ξ

∂y

∂η
− ∂x
∂η

∂y

∂ξ

∂y

∂η
=

1
2
((y1 + y2)− (y8 + ya))

∂u

∂ξ
=

1
2
((u2 + ya)− (u8 + u8))

∂y

∂ξ
=

1
2
((y2 + ya)− (y1 + y8))

∂u

∂η
=

1
2
((u1 + u2)− (u8 + ua)) .

The non-derivative terms for a pseudo-node as well as its x and y location are computed as an average
of the values at the four surrounding nodes.

3.3.2 Temporal Discretization

The code implements the four-stage Jameson Runge-Kutta Scheme [22]. Each of the state variables is
updated based on the maximum time-step derived from the CFL condition which is modified from the
inviscid value due to the presence of viscosity. The fluxes are weighted based on the ratio of the cell area
and the maximum time step. The state variable is computed as

u(1) = un − 1
4
∆t
A

∑
Fluxes(n)

u(2) = un − 1
3
∆t
A

∑
Fluxes(1) (3.12)

u(3) = un − 1
2
∆t
A

∑
Fluxes(2)

u(n+1) = un − ∆t
A

∑
Fluxes(3)

where stage n is the current time step, each of the superscripts 1-3 are the stages of the Runge-Kutta scheme,
and n+1 is the state vector at the next time step. The viscous fluxes (real and artificial) are computed only
at stage 1 to improve computational efficiency.

The timestep is computed as

∆t =
S∆tCFL
1 + 2

Re∆

, (3.13)

where S is a safety factor (in this case 1.2) and Re∆ and ∆tCFL are computed as

∆tCFL =
(
u

∆x
+
v

∆y
+ a

√
1
∆x2

+
1
∆y2

)−1

(3.14)

Re∆ = min(
ρ(u+ a)∆x

µ
,
ρ(v + a)∆y

µ
) . (3.15)

where u and v are the velocity components from before, and a is the speed of sound. The timestep is
computed in this manner in order to satisfy the CFL condition for each cell. The minimum timestep for the
entire grid is used to permit stability in the solution.
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The area enclosed by each group of four contiguous nodes is calculated as the magnitude of one-half the
cross product of the diagonal vectors for the quadrilateral they define. For the cell in figure 3.1, this would
be

A12a8 =
1
2
[(x2 − x8)(y1 − ya)− (x1 − xa)(y2 − y8)] . (3.16)

The area associated with the inviscid fluxes to a node is the sum of the four surrounding quadrilaterals.

3.3.3 Artificial Viscosity

Since the numerical calculations are accomplished through an explicit scheme, the odd-even mode is allowed
to grow. In order to obtain a converged solution, this must be damped out through the use of fourth-order
artificial viscosity. It is formulated as an additional term in the viscous flux contribution as

Fi,j = Fviscous +
AV4

1
4Ai,j

∆t
[SηF 4

ηi,j
+ SξF 4

ξi,j
] (3.17)

where
F 4
ηi,j

= ui+2,j − 4ui+1,j + 6ui,j − 4ui−1,j + ui+2,j

F 4
ξi,j

= ui,j+2 − 4ui,j+1 + 6ui,j − 4ui,j−1 + ui,j+2 ,

where AV4 is a user defined constant, Ai,j is the area of the cell, and ∆t is the timestep. It is found that
AV4 can be reduced from 0.02 for the small expansion ratio cases to 0.0005 for the largest expansion ratios
and maintain stability.

3.3.4 Boundary Conditions

Since the geometry has been restricted to two dimensions, the domain is bounded by four distinct regions.
These are defined as the inlet, outlet, and the contoured nozzle surface (sidewalls). Figure 3.2 depicts the
domain of a sample nozzle. The flow performance is based on the pressure ratio across the nozzle. This
drives the fluid into the contoured channel where it is accelerated due to pressure forces from the converging-
diverging surface. The flow becomes choked when the pressure ratio is sufficient to force sonic flow at the
throat. At this point, the flow is hyperbolic in nature, and the downstream region does not influence the
upstream state.

Inlet Boundary Condition

The inlet boundary is followed by a section with parallel walls. This allows the inlet velocity to be specified as
purely axial. For the operation of the real device, only the inlet pressure will be known from a measurement
very near the chamber. Due to the large volume of the chamber, the total pressure is assumed constant
across the chamber with very low residual velocity. Since the flow is subsonic, of the three Riemann invariants
present in a one dimensional flow, two of them are set by the farfield conditions (∞), and one is defined by
the states in the domain (which are unsubscripted). The flow variables in the domain are taken from the
grid line at ξ = 1. The boundary ξ = 0 can then be solved from equations 3.23- 3.26. These are, as found
in Hirsch [23]

w1 = J+ = u∞ +
2a∞
γ − 1 (3.18)

w2 = J− = u− 2a
γ − 1 (3.19)

w3 =
p∞
ργ∞

(3.20)

Once the Riemann invariants are computed they can be used to determine the primitive variables at the
boundary, as:
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a = (J+ − J−)γ − 14 (3.21)

u =
1
2
(J+ + J−) (3.22)

v = 0 (3.23)

ρ = ρ∞(
a

a∞
)

2
γ−1 (3.24)

p = ρ
p

ργ

∣∣∣∣
∞

(3.25)

ρE =
p

γ − 1 +
1
2
(ρu2 + ρv2) . (3.26)

Outlet Boundary Condition

As with the inlet condition, the treatment of the outlet boundary depends upon whether the flow is super-
sonic or subsonic. The subsonic regions should be influenced by the downstream conditions. Under this
assumption, the initial computations set the pressure in the subsonic region with an assumed plume pres-
sure. This was 25% of the core flow pressure. However, Kim [11] and Peraire [24] suggested the parabolic
nature of the boundary layer allows all state variables to be extrapolated from the interior regardless of
Mach Number, as long as the inviscid core flow in the nozzle is supersonic. The equations are parabolic in
the thin layer limit, but truly elliptic in the subsonic region. The existence of an inviscid supersonic core
ensures a favorable pressure gradient in a nozzle expanding to vacuum and allows the thin layer limit to
be applied. Thus, in subsequent versions of the code, the boundary conditions were implemented so that
outflow boundary cells only receive fluxes from upstream and streamwise cells. Thus, the flow exiting the
domain is not influenced by downstream conditions, in the simulation.

Wall Boundary Condition

For the initial numerical simulations, it is assumed that no-slip will occur at the wall; therefore, the u
and v components of velocity are set to zero. This is traditionally accepted as a valid assumption for
Knudsen numbers less than 0.03 [18]. Until the Knudsen number is evaluated for test conditions, the no-slip
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implementation will provide reasonable results. The numerical results will be used to evaluate the Knudsen
number throughout the flow field, and determine if slip flow is required.

With the velocities assumed zero, density and specific energy will complete the state vector. The specific
energy is a function of the wall temperature. It is assumed that the fluid particles come to thermal equilibrium
with the wall, based on the low Knudsen number assumption. However, at this point the wall equilibration
temperature is unknown, but could be determined from an assumption of either an adiabatic or isothermal
wall. Once again, the assumption is based upon the nature of the device to be tested. Since the device is
going to be made of a large volume of silicon (relative to the volume of the nozzle etched in the die) and
the support structure has large mass, it is reasonable to assume that the temperature of the nozzle wall will
reduce slowly. The time to equilibrium temperature will be much less than the thruster operation. For these
reasons, it is assumed the wall will maintain the supply temperature. The isothermal wall assumption is
experimentally verified in section 6.5.3.

Finally, the state vector can be completed with either an assumption about the pressure or density. This
is easiest to complete with a centripetal force balance at the wall. The normal gradient of pressure at the wall
is going to be equal to the head pressure arising from the centripetal force on the fluid. This is formulated
as

∂P

∂n

∣∣∣∣
w

=
ρV 2

R
, (3.27)

where R is the local wall radius of curvature. Since the velocity at the wall is zero, the right hand side is
zero. In regions in which the slip velocity might be significant (near the exit), the wall is flat (R =∞), and
the right hand side would still be zero. Thus, equation (3.27) can be used to solve for the density at the wall
and complete the state vector. In order to evaluate Pn (which is shorthand for dP

dn ) in an orthogonal grid, a
transformation matrix is established as

[
Pξ
Pη

]
=

[
Nξ Tξ
Nη Tη

] [
Pn
Pt

]
, (3.28)

where T and N are the vectors tangential and normal to the wall. Equation (3.28) can be inverted and
solved for Pn as

Pn =
1

NξTη −NηTξ
[PξTη − PηTξ] . (3.29)

Since the wall normal pressure gradient is zero from Equation 3.27, the left hand side of 3.29 is also
zero. A forward difference can be used to determine Pη and a centered difference to compute Pξ. The state
equation in the form of p = ρe(γ − 1) is substituted for the local pressures and the wall density is computed
as

ρj,i =
Tη

Tξ(γ−1)Pξ + 4ρej+1,i − ρej+2,i

3ej,i
, (3.30)

where i is the column index, and j is the row index. ej,i is known from the assumed wall temperature.

Wall Slip Velocity

As mentioned previously, in the instances in which the Knudsen number increases above 0.03 [18], a wall slip
velocity may be imposed in the solution of a flow field. As explained in Rosenhow [25], Maxwell derived a
relationship between the tangential velocity of a gas relative to the wall from kinetic theory. Thus, the wall
velocity which was previously assumed to be zero in the state vector can be replaced by
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u =
2− F
F

Kn
du

dy

∣∣∣∣
w

, (3.31)

where F is the fraction of molecules diffusely reflected from the surface, and du
dy |w is the wall normal velocity

gradient. In this case, F is assumed to be 1; indicating full accommodation; however, this is a function of the
surface roughness and gas-surface composition. Arkilic [26] has shown that for an atomically-smooth silicon-
air interaction at low Mach numbers, this value is closer to 0.8. The wall roughness in the cases examined
here is significantly higher, and would result in a more diffuse reflection and higher accommodation, thus F
was assumed to be 1.

Due to the additional computations required to impose this boundary condition, this version of the code
runs much slower than the no-slip version. Thus, if the performance results of these two calculations are
similar, it is prudent to proceed with the no-slip version. A side-by-side comparison of these computations,
presented in the section 3.6.1, demonstrates the no-slip condition is sufficient for performance predictions.

3.4 Running the Code

In order for a solution to be achieved, several steps must be undertaken. 1) A domain must be discretized and
arranged in the form of a grid. 2) A solution is converged such that the state variables do not change with
each step. 3) The solution must be independent of the grid resolution. Once each of these are accomplished,
the converged solution will represent the flow field for the specified Reynolds and Prandtl numbers.

3.4.1 Nozzle Terminology

Figure 3.2 defines the basic nozzle components. The dimensions referred to throughout the text are length,
width and height. Length is the x component which defines the primary flow direction of the nozzle. The
width is the y direction associated with the streamwise component of the flow. The height is the z direction
or the dimension normal to the contoured nozzle geometry. Since the nozzle is created by etching the silicon
in the z direction, this is also referred to as the depth. The contoured geometry is the wall feature which
makes up the converging-diverging nozzle used to accelerate the flow to supersonic velocities, also referred
to as the sidewalls. The endwalls are the flat walls that cap the contoured channel and contain the flow.

The nozzle geometries analyzed in this chapter are based on those fabricated for testing. Each of these
nozzles are referred to by their area ratio and operating condition. Table 3.1 lists all area ratios, operating
conditions and grid sizes. The operating conditions are set solely by the throat Reynolds numbers, as defined
in Appendix A, since all conditions are run for Nitrogen (or a gas of similar Prandtl number).

3.4.2 Grid Development

The choice of grid point placement within the domain will facilitate reaching a grid resolved solution. If the
points are well placed, the computed gradients and hence fluxes lead to a faster more efficient solution. Since
the code is run on a structured grid, one in which the points are arranged in a logically connected row and
column format, the point locations should be smoothly varying with no discontinuities along a row or column.
The best solutions will arise from rows which trace out streamlines, and columns which run orthogonal to
the rows, and ultimately the grid boundaries. Such a grid is created by an elliptic grid generator, which is
based upon solving Laplace’s equation for x and y with the domain boundary point locations serving as the
boundary conditions. These equations are found in [27] and are repeated here as:

∇2ξ = ξxx + ξyy = P (ξ, η) (3.32)
∇2η = ηxx + ηyy = Q(ξ, η) (3.33)

where ξ is the x-component of grid-centered coordinate system and η is the y-component of the same. P
and Q represent forcing functions that enforce the interior point orthogonality. Steger and Sorenson [28]
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Table 3.1: Nozzle geometry test cases and operating conditions used for analysis

Area Ratio Throat Size (µm) Grid Size Chamber Pressure (psi) Rethroat
5.43:1 19 125x165 96.2 1898

80 1578
65 1282
60 1138
45 887
25.2 497
9 177

7.14:1 34 155x160 96.4 3381
80 2805
65 2279
45 1578
25 876
20 350

15.34:1 18 210x220 96.9 1799
80 1485
60 1114
40 742
20 371
10 185

16.9:1 37.5 255x195 97.2 3721
80 3063
65 2488
50 1914
35 1340
20 765
10 382
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Figure 3.3: Convergence history for a 5.4:1 nozzle with 125x160 points at a Reynolds number of 1284

formulated functions for P and Q which were used in this grid development for clustering points along a
boundary, leading to rows very near the streamlines. The number of points can be estimated visually for
the early runs, but ultimately is driven by what leads to a grid-resolved solution.

3.4.3 Solution Convergence

The solution varies from one time-step to the next due the flux imbalance on each of the state variables.
When the sum of the fluxes into a given cell goes to zero the steady state is reached. Solution convergence
is gauged by the reduction in the momentum residual. The local residual is the change in a state variable
between timesteps. The average residual is the average of this quantity over all of the grid points. Ultimately,
the residual will reach a steady value in which the round-off error continues to vary the solution by a miniscule
amount and prevents further convergence. As mentioned previously, there are two modes of running the
code. The first converges the solution with a specified outlet pressure in the subsonic region. Though this
is not an accurate picture of the flow-field, it is a robust method for achieving a good first approximation of
the solution. Once the residual is below 1× 10−6, the second mode, which uses extrapolation for the entire
exit plane, is run until the residual reaches a small enough value that the solution performance is unaffected
by subsequent iterations. There is no change in the first 6 decimal places of the performance for a residual
of 1× 10−10. Figure 3.3 depicts the convergence history for the 125x160 grid at a Reynolds number of 1284.

3.4.4 Grid Resolution

A converged solution indicates that the solution is not changing significantly with subsequent iterations;
however, it may still be dependent upon the number of points specifying the domain. A solution is grid-
independent if the flow field does not change for a grid that has twice the number of points as the grid of
interest. There is no visible distinction between the test cases run for the 5.4:1 grid, and the performance
parameters vary by less than 0.2% indicating the solutions for this mesh are grid resolved.

3.5 Flow Field Analysis

This section examines the steady-state flow fields evaluated for various Reynolds numbers. The primary
effect will be a reduction in the effective area ratio due to blockage from the boundary layers. The boundary
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Figure 3.4: Mach Number contours for the 16.9:1 nozzle at a Reynolds number of 1914

layers can be seen in the contour plot depicting the Mach number throughout the nozzle as in Figure 3.4.
The rapid decrease in Mach number near the walls is an indication of the viscous interaction occurring there.
By inspection, the boundary layer appears to fill half of the exit plane in the 16.9:1 nozzle. The thrust of the
nozzle has both a momentum and pressure component. The Mach number is an indication of the momentum
component, and the contours can be used to gauge the loss in momentum due to the viscous interaction with
the walls.

The pressure contours are shown in Figure 3.5. While the wall-normal pressure gradient is forced to be
zero, the contours remain relatively constant at each axial location for the core flow. This graph can also be
used to estimate exit pressure to determine if the nozzle is overexpanded, or if a shock should be expected.
The simulation predicts the exit pressure will be 300 mTorr for the lowest Reynolds number cases in the
largest expansion ratios. As will be discussed in Chapter 5, the nozzles exhausted to 100 mTorr in the tests.

Since thrust is directly related to exit momentum, the fluid density is also necessary for computing this
quantity. Figure 3.6 is a contour plot of density, which is nearly orthogonal to pressure contours inside the
boundary layer. This is due to the temperature boundary layer which develops due to the wall being at a
fixed temperature, and the fluid temperature dropping due to the expansion. Through the equation of state,
the density also drops as the temperature drops normal to the wall. Figure 3.7 depicts the temperature
contours in the nozzle.

These plots merely show the character of the flow field for one particular operating condition. However,
similar results can be found in all of the 27 cases run for the 4 different nozzle geometries. The only variation
is the extent to which the boundary layers affect the nozzle performance. To illustrate this, the exit plane
Mach number profile is plotted for four Reynolds numbers in the 5.4:1 nozzle in figure 3.8. The viscous
effects can be easily discerned as a reduction in the maximum Mach number. In addition, the core flow
is reduced to a smaller area due to the momentum being dissipated in the now thicker boundary layers.
Figure 3.9 illustrates the pressure profiles at the same Reynolds numbers as in figure 3.8. The reduction in
the flow velocity causes the static pressure to rise at the exit.

Figure 3.10 shows the axial variation of Mach number as a function of Reynolds number. The most
striking distinction is the slope of these curves near the throat. They are similar for each of the CFD
cases, but the slope is considerably less than that of the Quasi 1-D estimate. Thus, the throat contour has
greatly reduced the fluid acceleration in the throat region. This does not affect overall performance because
the simulations maintain this slope longer than that of the Quasi 1-D solution. Ultimately, the exit Mach
number is influenced by the length of the nozzle wall from the throat to the exit, and the boundary layer
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Figure 3.5: Non-Dimensionalized Pressure (P ) contours for the 16.9 nozzle at a Reynolds number of 1914
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Figure 3.6: Non-Dimensionalized Density (ρ) contours for the 16.9:1 nozzle at a Reynolds number of 1914
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Figure 3.7: Non-Dimensionalized Temperature (T ) contours for the 16.9:1 nozzle at a Reynolds number of 1914
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Figure 3.8: Exit Plane Mach Profiles for the 5.4:1 Nozzle operating at various Reynolds numbers.
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which develops in this region.

3.6 Performance Parameters

Ultimately, the micromachined nozzles are judged by their effectiveness as a propulsion device. Therefore,
of interest, is how their thrust level and Isp varies with chamber pressure. These values determine whether
or not a propulsion system is suitable for a particular space mission.

At this stage, the physics of the nozzle flow is of interest, and how well the nozzle performs relative to the
ideal. In this case, the ideal is the Quasi 1-D prediction of inviscid nozzle performance. This method assumes
that all of the flow is axial; therefore, in order to make a better comparison, the ideal exit momentum is
distributed over the nozzle divergence angle, and only the axial component is used to compute thrust. With
this value, an efficiency can be computed as the ratio of the computed performance to the ideal for this
angle. The viscous effects will cause this value to drop below unity.

The ideal mass flow is computed by applying the continuity equation to the choked conditions at the nozzle
throat. The state variables of density and temperature (for computing the speed of sound) are computed
from isentropic relations relative to the chamber conditions. The ideal thrust is computed from Quasi 1-D
relations to the exit area ratio for both momentum and pressure components corrected for divergence. This
is the inviscid or ideal for this operating condition. Ideal Isp is defined as thrust per unit weight flow rate,
or mathematically as:

Isp =
Ft
ṁgo

=
vexit
go

, (3.34)

which can be reduced to the effective exit velocity divided by gravity (go). Isp is the primary performance
indicator of a chemical propulsion system. As Isp increases less propellant is required to achieve a given
thrust. The efficiencies are ratios of the numerical result to the ideal. Thus,

cd =
ṁnumerical
ṁIdeal

(3.35)

ηthrust =
Thrustnumerical
ThrustIdeal

(3.36)

ηIsp =
Ispnumerical
IspIdeal

. (3.37)

The thrust is computed from the CFD result by numerically integrating the following equation over the
exit plane as

Ft =
∫ De

0

(ρeu2
e + Pe)hody , (3.38)

where De is the exit width, ho is the nozzle height, and Ft is the thrust force. The state variables are taken
from the CFD solution for a particular operating condition. The continuity equation is integrated at the
throat to compute mass flow.

Figure 3.11 depicts the variation of the mass flow efficiency, also known as the coefficient of discharge,
with Reynolds number. In general, all of the nozzles behave in roughly the same manner. This is because
the mass flow is set at the throat, and all of the nozzles have the same entrance lengths and conditions.

Figure 3.12 shows the Reynolds number variation of Isp efficiency. The Isp is effectively the same as
average exit velocity, at high expansion ratios. Since the boundary layer growth governs the effective area
ratio, which determines exit velocity, Isp will be a function of nozzle length. Even though the nozzle is
longer, the Isp has grown faster than the boundary layer at high Reynolds numbers, resulting in higher
efficiencies. However, at low Reynolds numbers, the boundary layer thickness has a greater impact, and the
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Figure 3.11: Numerical predictions of the variation in the coefficient of discharge with Reynolds number for all
geometries tested. Inlet section and throat radius of curvature is identical for cases. Therefor all
values are nearly identical.

lower area ratio nozzles have higher efficiencies. These effects are slight, and account for only a 1% variation
in performance.

Figure 3.13 depicts the variation of thrust efficiency with Reynolds number. At high Reynolds numbers,
the thrust efficiency is highest for high expansion ratio geometries. Thrust efficiency is the product of the
mass flow efficiency and the Isp efficiency. (Since thrust is the product of the mass flow and exit velocity,
neglecting the pressure term.) Since the Cd is constant between the different cases for a given Reynolds
number, the thrust efficiency will only vary as the Isp efficiency. But as is shown in figure 3.12, this variation
is slight among the different area ratios.

An additional parameter, which allows the effectiveness of the nozzle to be assessed, is the thrust coeffi-
cient (Cf ). It is computed as

Cf =
Ft
Po At

, (3.39)

where At is the throat area. This demonstrates the performance added by the nozzle above the chamber
pressure acting over an orifice the size of the throat. The Cf variation with Reynolds number is depicted
in figure 3.14. The ideal Cf is a function of area ratio and back pressure. However, since these simulations
are exhausting to vacuum, they are purely a function of area ratio at high Reynolds numbers. At the lowest
Reynolds numbers there is a cross-over between the 15.3:1 and the 16.9:1. This is due to the boundary layer
in the longer 16.9:1 nozzle, being thicker, and it reduces the effective area ratio of the nozzle. This lowers
the Cf below that of the shorter 15.3:1 nozzle. The concept of effective area ratio is explored further in
section 3.7.1
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Figure 3.12: Numerical predictions of the variation in the Isp efficiency with Reynolds number for all geometries
tested
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Figure 3.13: Numerical predictions of the variation in the thrust efficiency with Reynolds number for all geometries
tested

43



0 500 1000 1500 2000 2500 3000 3500 4000
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Reynolds Number

C
oe

ffi
ci

en
t o

f T
hr

us
t

ε=5.4
ε=7.1
ε=15.3
ε=16.9

Figure 3.14: Numerical predictions of the variation in the thrust coefficient with Reynolds number for all geometries
tested. The highest expansion ratios have the highest Cf , as expected.

3.6.1 Effects of Wall Boundary Conditions on Performance

In order to verify the proper formulation for the wall velocity boundary conditions was chosen, the effect
of the wall-slip on performance is assessed. As mentioned previously, this effect becomes important above
Knudsen numbers of 0.03. However, its effect on performance has yet to be determined. Figures 3.15 and 3.16
depict the exit plane profile for both the slip and no-slip cases for high and low Reynolds numbers. There
is a perceptible difference in the Mach number profiles for the two cases, particularly at the walls, as one
would expect. However, its impact on the performance is very slight. Table 3.6.1 records the performance
variation for each type of boundary condition.

Table 3.2: Performance property variation with slip velocity incorporated for 5:41 nozzle at Re = 1578

Model Cd ηIsp ηthrust
No-Slip 0.9607 0.9884 0.9496
Slip 0.9627 0.9857 0.9510

Difference (%) 0.21 0.27 0.14

The influence of the low-density effects will be a function of Knudsen number. Figures 3.17 and 3.18
show the maximum and minimum values of the Knudsen numbers at different operating conditions. The
variation over the range of operation is from 0.004 to 0.02 for all nozzle test cases. This results in little
variation in slip velocity in the cases of interest. Figure 3.16 shows the effect of slip velocity on a Mach
profile for a higher Knudsen number case, which varies little from the no-slip condition. Thus, the overall
effect on performance is still negligible, and the use of the no-slip condition is justified.

44



0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

y

E
xi

t M
ac

h 
N

um
be

r
NoSlip 
Slip    

Figure 3.15: Exit plane Mach profiles for the 5.4:1 nozzle at a Reynolds number of 1578. The variation between
the solutions is minimal and accounts for less than 0.5% of the thrust.
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Figure 3.16: Exit plane Mach profiles for the 5.4:1 nozzle at a Reynolds number of 887
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Figure 3.17: Knudsen number contours for the 5.4:1 nozzle at a Reynolds number of 1578
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Figure 3.18: Knudsen number contours for the 5.4:1 nozzle at a Reynolds number of 887. The contours verify that
slip velocity is not dominant because Kn < 0.03.
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3.7 Boundary Layer Analysis and Three-Dimensional Effects

The previous section detailed the performance parameters that highlight the effects of viscosity in micronozzle
flows. As was shown, there is a profound influence, particularly for throat Reynolds numbers below 1000.
In this section, the boundary layers are subject to closer examination. By determining the momentum and
displacement thicknesses, the effective area ratio as well as the laminar or turbulent nature of the boundary
layer can be inferred.

The displacement thickness or δ∗ is the amount that streamlines outside of the boundary layer will deflect
due to the loss of mass flow in the boundary layer. It is computed by integrating the continuity equation
normal to the wall. Due to the supersonic nature of the flow the definition of displacement thickness for a
compressible fluid [29] is used:

δ∗ =
∫ ∞

0

(1− ρu

ρedgeuedge
)dy . (3.40)

As stated in equation (3.40), the integration is performed along y, which is normal to the wall. The
limits of the integral are the wall (y = 0) and the point at which core conditions are reached (y = ∞).
However, due to the diverging nozzle walls, the core velocity will have a velocity component normal to the
wall. Therefore, the boundary layer is integrated to just outside of the shear layer or to δ99%, where the
velocity is 99% of the core, and only the component of velocity parallel to the wall is considered.

The momentum thickness (θ) represents the momentum deficit due to the boundary layer. It is computed
in a similar fashion to δ∗, but is formulated as:

θ =
∫ δ99%

0

ρu

ρedgeuedge
(1− u

uedge
)dy . (3.41)

3.7.1 Test Case Boundary Layers: Determining Effective Area Ratio

Figure 3.19 shows δ∗ as it grows along the nozzle wall for a range of Reynolds numbers. The displacement
thickness and the distance along the wall are normalized by the throat width. The boundary layers are
nearly linear along the nozzle length (outside of the contoured region near the throat), and thicken rapidly
with decreasing Reynolds number. At the exit of the nozzle for which δ∗ is depicted in figure 3.19, the
geometric width is 16.9. The geometric width is the actual value measured on the nozzle. From the figure,
the boundary layer thickness is 1.8 at Re = 3721, which is 3.6 when both walls are taken into account. Thus,
the blockage is 21% of the 2-D area. However, for the lowest operating Reynolds number, the blockage has
grown to 38% of the exit width.

The 2-D effective area ratio of the nozzle is the ratio of the effective exit area to the effective throat width.
The effective quantities are the geometric width reduced by the amount of δ∗. This quantity is computed for
the 15.3:1 and 16.9:1 nozzles in figures 3.20 and 3.21, respectively. As the boundary layer thickness grows
downstream, the local cross-section is reduced, and the effective expansion ratio from throat to exit deviates
further from the geometric area ratio. The blockage has changed the effective area ratio of nozzle from 16.9
to 14.1 and 10.2 operating at the highest and lowest Reynolds numbers respectively.

If a Quasi 1-D analysis is applied to the effective area ratio, the resultant thrust efficiencies deviate 0.96%
and 1.6% from the simulation for the highest and lowest Reynolds numbers respectively. Figure 3.22 compares
the performance computed by direct integration of the state variables in the finite volume computation (as
in equation 3.38), and those computed by a Quasi 1-D analysis based on effective area ratio. This figure
illustrates the utility of the effective area ratio. Once δ∗ is known, efficiencies can be predicted to within 2%.

At this point the numerical analysis predicts minimal reduction in thrust and mass flow performance
due to the boundary layer blockage over the full range of Reynolds numbers. As will be seen later, the
experimental results are markedly different due to a breakdown of the 2-D assumptions. It is important to
point out that the change in area ratio only changes the effective exit velocity by a few percent. The major
impact of the blockage is the reduction of throat area, which in turn reduces mass flow, and subsequently
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Figure 3.19: Displacement thickness growth from throat to exit along the nozzle wall for the 16.9:1 nozzle. Distance
along the nozzle wall and displacement thickness are normalized by the throat width. The boundary
layer thickness increases significantly with decreasing Reynolds number. At the lowest Reynolds
number, the boundary layer accounts for 38% of the exit plane.

thrust efficiency. At the highest Reynolds number, the increased blockage is 3% of the throat width. This
increases to 8% by the lowest Reynolds number. In comparison, the exit velocity decreases only 3% for the
lowest Reynolds number, even though the effective area ratio was reduced by 40%. Once the effective area
ratio is below 7, the exit velocity, and hence Isp efficiency will substantially decrease.
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Figure 3.20: Variation of effective area ratio with actual geometric area ratio for the 15.3:1 nozzle. The effective
area ratio is calculated by reducing the local width by the amount of the displacement thickness on
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Figure 3.22: Thrust and Isp efficiencies are computed from numerical simulations. These are compared to inviscid
calculations of similar nozzles operating at the same effective area ratio as depicted in figure 3.21

3.7.2 Evaluation of Nozzle Separation and the Laminar Flow Assumption

Figures 3.23 depicts the momentum thickness profiles for the largest area ratio nozzle. As is generally
found in a compressible flow, this is approximately 10% of the displacement thickness. The ratio of the
displacement thickness to momentum thickness, or shape factor, is a good indicator for boundary layer
separation in incompressible flows, but the acceptable range is poorly defined for compressible flows. It is
sufficient to show that the dP

dx < 0 to guard against separation. Since the effective area ratio is increasing
along the nozzle, there is a favorable pressure gradient, and this eliminates the possibility of separation.

Finally, the laminar or turbulent state of the flow can be inferred by comparing the flow characteristics
to those of a flat-plate analysis. The stability of a flow can only be determined through a compressible
stability analysis. However, flat plate cases, can be used to generalize the behavior based on Mach number
and Reynolds number based on momentum thickness. Figure 3.24 depicts the variation of Reynolds number
with distance along the nozzle throat for the 16.9:1 nozzle. Mack [30] depicts the neutral stability curves for
high Mach number flows. For a Mach number of 3.8, the minimum neutral stability point is at Reθ = 300.
The highest value found in the numerical simulations (for the 16.9:1 nozzle operating at a throat Reynolds
number of 3721) is Reθ = 121. Thus, the laminar assumptions that are used to formulate the viscous stresses
in simulation, appear validated.
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Figure 3.23: Momentum thickness growth from throat to exit along the nozzle wall for the 16.9:1 nozzle. Θ is
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Figure 3.24: ReΘ variation from throat to exit along the nozzle wall for the 16.9:1 nozzle. This is well below the
stability point for a Mach 3.8 flow of ReΘ = 300 as computed by Mack [30], for all cases.
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3.7.3 Wall Roughness Effects

Since the wall roughness is a larger fraction of the local width than in conventional nozzles, its effects on
momentum loss should be considered. The greatest loss would occur if the roughness induced shocks. This
would result in a pressure rise, and a subsequent momentum loss. The first question that needs to be
answered is whether or not the physics of flow at this scale will allow a shock to occur. By looking at the
definition of viscosity, a generalized statement can be made about the ability of the flow to shock. As found
in White [29], viscosity is defined by:

µ ∼ ρcλ (3.42)

where c is the molecular speed, and λ is the mean free path. Non-dimensionalizing by the roughness height,
l, the following relation can be established:

µ

ρul
∼ c

u

λ

l
(3.43)

M ∼ ReKn (3.44)

where u is the local velocity, and ρ is the local density.
Thus, if the product of the Knudsen number and Reynolds number based on the roughness height is less

than one, then the Mach number will be less than one, and a shock will not form.
For the cases of interest, the Reynolds number based on the roughness varies from 0.1 to 10 over the

range of Reynolds numbers and area ratios. However, the Knudsen number based on roughness varies from
0.1 to 5. Thus, it is possible to generate a shock at the scale of the roughness. But a shock will only be
generated if the roughness height perturbs the supersonic region of the flow. If the roughness is buried within
the subsonic boundary layer a shock should not form. Figure 3.25 depicts the distance of the sonic line from
the wall along the wall normal for each local area ratio, from simulations. If the roughness is smaller than
this value, then a shock will not occur. Only the point at the throat for the smallest nozzle, operating at
the highest Reynolds number, violates this condition. In all other cases, they roughness is well inside the
subsonic boundary layer.

Since shock formation should not be a problem over nearly the entire range of operation, the impact of
wall roughness on friction should be considered. Nikuradse [31] has shown that in the hydrodynamically
smooth regime, the friction coefficient is only a function of Reynolds number, and not wall roughness height.
This regime is defined by the following relation:

ksv∗
ν

< 5

where

v∗ =
√
τw
ρw

This is effectively the Reynolds number based on the roughness height (ks), where v∗ is the friction velocity
based on shear stress and fluid density at the wall. The value of this indicator was found for the operating
conditions to be 1.98. Due to the low Reynolds number nature of the flow, the nozzles operate in the
hydrodynamically smooth regime, and the losses due to friction computed in the Navier-Stokes simulation
are sufficient.

3.7.4 Divergence Losses vs. Boundary Layer Blockage: A Trade Study

The divergence angle affects the magnitude of exit momentum aligned in the axial direction, and thus
contributes to thrust. Momentum in the streamwise direction is lost as useful thrust. However, as divergence
angle decreases, the nozzle length increases, and the boundary layer blockage will also increase. This leads
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Figure 3.25: Subsonic boundary layer growth from throat to exit for various expansion ratios and operating con-
ditions.
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Figure 3.26: Thrust efficiency variation with Reynolds number for different nozzle divergence angles. Notice that
the higher angles perform better at low Reynolds numbers.
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to a trade-off between blockage and divergence loss. To investigate this, computational cases were run for
15, 20, and 30 degree divergence nozzles, while keeping the expansion ratio set at 7.1:1.

Figure 3.26 depicts the performance variation with Reynolds number for the different angles. At the
highest Reynolds numbers, the highest divergence angle has a 2% lower thrust efficiency than the lowest
angle. The boundary layers in this region are relatively thin, and divergence loss is dominant. Below
Reynolds numbers of 1000, the boundary layers are so thick that the dominant loss is from the blockage,
which is reflected in the improved performance of the 30 degree nozzle.

This trend is most evident in the examination of the displacement thickness profiles, which are depicted
in Figure 3.27. At the low Reynolds numbers, there is a 33% difference between the highest and lowest
divergence angle displacement thickness. Since this is a 2-D calculation, there will be a reduction in device
performance when the displacement thickness of the endwalls are considered. When the blockage is applied
to the upper and lower surface, the effective area ratio of the 15 degree case will drop faster than the 30 degree
case due to the larger displacement thickness. Thus, the difference between the curves at high Reynolds
numbers will be less (possibly within 1%), and the higher angles will perform much better at low Reynolds
numbers. Ultimately, the 30 degree nozzle will perform the best over the full range, but if operation is
restricted to high Reynolds numbers, the lower angles are best. The limiting factor will be the operating
Reynolds number, which determines the boundary layer development and ultimately the effective area ratio.
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3.8 Summary

This chapter describes the numerical analysis implemented to investigate the performance of micronozzles
over a range of operating conditions. A two-dimensional finite-volume discretization of the Navier-Stokes
equations was used to determine the steady-state flow field for specified boundary conditions. The governing
parameter is the throat Reynolds number, which is a function of the mass flow through the nozzle, and in
turn is set by the plenum conditions. Nozzle thrust and mass flow are determined from the state variables
computed in the simulations.

The results of the simulations can be summarized as follows:

• The micronozzle flows are laminar, and do not separate for all Reynolds numbers (177-3800) and Area
Ratios (5.4, 7.1, 15.3, and 16.9) investigated in the 2-D simulation.

• The performance is not affected by slip boundary conditions for the cases considered.
• 2-D nozzle performance exhibits thrust, Isp, and mass flow efficiencies above 90% for Reynolds number
above 1000.

• Boundary layer induced blockage accounts for the reduction in efficiency with Reynolds number.
• The reduction in mass flow efficiency is dominant because it is a linear function of the blockage. Isp
efficiency is less affected because the exit velocity is a weak function of the effective area ratio until it
is reduced below 7.

• A 20 degree expansion angle offers the best trade-off between divergence losses and viscous losses over
the operating range tested. As the operating Reynolds number increases, the optimum angle will
decrease.
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Chapter 4

Cold-Gas Thruster Fabrication

4.1 Microfabrication Description

Microfabrication is the prime tool used in the development of Microelectromechanical systems. It is the
geometrical or chemical alteration of a base material through etching or diffusion to create structures that
enable a desired electrical or mechanical behavior. These processes were initially developed by the microelec-
tronics industry to facilitate the batch-fabrication of integrated circuits on the most popular semiconductor,
silicon. Silicon is an excellent working material in its single crystal form. It has a very high fracture strength
and high thermal conductivity.

The scale of these devices are typically limited between the size of the silicon wafer used and the resolution
of the lithography used to pattern features of interest. At MIT, 100 mm diameter wafers (soon to be converted
to 150 mm) ranging anywhere from 300 microns to 1mm thick (500 microns is standard thickness) are used for
processing. The lithography step, described later, can resolve features as small as 2 microns when operated
with a standard ultraviolet source with a contact mask. These limits are guidelines for the fabrication of
devices that are primarily created through the techniques of surface micromachining, bulk micromachining
and wafer bonding.

4.1.1 Surface Micromachining

Surface micromachining can be generalized as the build-up of structures through the deposition and selective
removal of thin films. These films can be a chemically altered form of the silicon substrate such as oxide or
nitride, a deposited layer of metal, such as gold or nickel, or a deposited layer of silicon in its polycrystalline
form. Surface micromachining is primarily used for thin films and the creation of CMOS devices in integrated
circuits, but has found application in the MEMS community for creating suspended beams and membranes.
Additional applications, and a more detailed account of surface micromachining can be found in Guckel and
Burns [32].

4.1.2 Bulk Micromachining

Bulk micromachining refers to the selective removal of the silicon substrate to create three dimensional
structures. These structures are generally of much higher aspect ratio than fabricated using surface micro-
machining. This material can be removed through a physical means such as sputtering or ion milling, which
relies upon the momentum of an inert particle to induce surface material removal [33]. Bulk micromachining
can also refer to a chemical process, such as a wet etch, to remove the base material. The effectiveness can
be generally categorized by the anisotropy of the etch, that is, how preferential the etch is in the direction
of interest relative to the etching in the other directions.
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Figure 4.1: Example of anisotropic etching of silicon with KOH using oxide as a masking material. This results in
square nozzles with at 32.5 degree divergence. Notice the sharp corners at the throat. [34]

Anisotropic Chemical Etching

As described in Chapter 1, the first batch-fabricated micronozzles were created by the anisotropic etching of
silicon with KOH [14]. The silicon can be masked by oxide against the KOH etch. This etch is anisotropic
because the silicon crystalline planes in the < 100 > direction are etched preferentially to those in the
< 111 > direction at a ratio of 400:1 at an etch rate of 1.4 microns/minute. Thus, the resultant feature
will lie almost exactly along the < 111 > crystalline plane, and will be at an included angle of 57.4◦ to the
surface. Figure 4.1 depicts the results of such an etch on a square feature etched into oxide with silicon as
the underlying substrate.

This technique has been used to manufacture inkjet printheads due to the ability to maintain tight
tolerance on such small features. If this feature is etched from both sides, in a well-aligned manner, a
converging-diverging nozzle can be created which will allow an acceleration of gases to supersonic velocities.
The drawbacks are that the etch is limited to the 32.5◦ expansion and the thickness of the wafers available.
Neither of these are optimal in creating a nozzle specifically tailored to achieving supersonic velocities.

Deep Reactive Ion Etching

Reactive ion etching combines physical and chemical etching techniques by accelerating an ion which reacts
with silicon on the surface. This etching provides high etch rate, anisotropy, and selectivity of etching silicon
relative to the masking material. An alternative is now available for significantly improving the performance
of a conventional RIE. The time-multiplexed deep etcher (TMDE), patented by Robert Bosch, Gmbh [35],
utilizes a cycle alternating between the etchant SF6 and the passivation material C4F8. Surface Technology
Systems (STS) has employed this technique to create an etcher that can achieve trench aspect ratios of 30:1.
The STS etcher consists of a 1000 Watt RF power source which is a single coil around the chamber used
to create the high density plasma. In addition, a 300 Watt supply connected to the wafer electrode can be
used to bias the potential of the wafer with respect to the plasma. Thus, the energy of the ions reaching the

58



a)

b)

c)

a) b) c)

Figure 4.2: Gas flow cycles during plasma etching. Overlaps occur due to finite response times of flow controllers [36]

Figure 4.3: Micrograph view of an anisotropic etch (left) and the scalloping observed on the walls due to the
periodic etch/deposition[36]

substrate, as well as ion flux, can be controlled.
The etching cycle, shown in figure 4.2 [36], illustrates the TMDE scheme. The etching occurs during the

SF6 flow, which occurs laterally as well as vertically. The polymer passivation occurs during the C4F8 flow.
When the cycle reverts back to the SF6, the passivating film is preferentially removed at the bottom of the
trenches due to ion bombardment, while preventing the etch of the sidewalls. Thus, the lateral penetration
depends upon the etch recipe, but is on the order of 300 nm. The etch rate of silicon depends upon feature
size as well as aspect ratio. The tailoring of this recipe to the features of interest are described in a future
section and in greater depth by Ayon et al. [36]. The results are shown in figure 4.3. This figure also depicts
the scalloping that arises due to the cyclic etch and passivation scheme.

4.1.3 Wafer Bonding

Surface and bulk micromachining can be augmented with the ability to bond wafers together in order to
convert etched trenches into sealed cavities. Borosilicate glass can be bonded to silicon with an anodic bond,
and two silicon wafers can be joined through fusion bonding. Both processes are described in the following
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subsections.

Anodic Bonding

With flow channels etched into the silicon substrate, a capping wafer must be bonded so a cavity is formed
and the flow is contained. In some instances, optical access to these channels is desired. In addition, glass
offers a lower thermal and electrical conductivity than silicon. Pyrex is generally used because it maintains
a similar coefficient of thermal expansion, reducing residual stress in the bond. Recently, other types of
borosilicate glass have been developed which permit a matched coefficient of thermal expansion to higher
temperatures.

This process was first described by Wallis and Pomerantz [37]. The bond is formed by placing an RCA
cleaned (NH4OH : H2O2 : H2O : (1:1:3) followed by HCl : H2O2 : H2O (1:1:3)) silicon wafer in contact with
a piranha (H2SO4 : H2O2 (3:1)) cleaned glass wafer. Both of these cleans will remove organic contaminants
and particulates from the surfaces. The mated pair is heated to 400− 500◦C, 3 bars of pressure is applied,
and an electric potential of 1000 V is placed across the stack. The borosilicate glass contains mobile sodium
ions which migrate toward the negative electrode away from the silicon-glass interface. The field, created
by the negative charges along the interface, assists in the chemical bonding of the surfaces. Though bond
strengths are not explicitly reported by Wallis and Pomerantz, they suggest bond strengths above 2000 psi
have been achieved. Rogers [38] investigates the requirements and constraints for anodic bonding to a greater
depth.

Fusion Bonding

If the capping wafer is silicon and not glass, a fusion bond is used to join the surfaces. This process is similar
to the anodic bond in that the contacting wafers must be specularly cleaned prior to contact and possess a
surface roughness ∼ 1 nm, thus a mirror polished wafer is required. Particulate in either process will prevent
bonding locally.

The fusion bond relies upon the RCA clean due to its ability to create a hydrophilic surface. Grunder [39]
examined silicon surfaces after this clean and found a high concentration of OH groups attached to the
dangling bonds on the wafer surface. The attractive force, albeit weak, between the two wafer surfaces
begins with hydrogen bonds between the OH groups. A permanent bond can only be formed with a high
temperature annealing step. The anneal serves to dehydrate the interface. At about 200◦C, this forms a
siloxane or (Si−O−Si) bond and water as a byproduct. As the temperature increases, the oxygen diffuses
into the substrate as a trapped atom, and the siloxane is reduced to covalently bonded Si− Si atoms. The
strength of the bond is a function of the annealing temperature. Ristic [40] quotes this in terms of the surface
energy to be 500 erg/cm2 for low temperature bonds (< 600◦ anneal) and 1000 erg/cm2 for high temperature
bonds (> 1000◦ anneal). The applicability of bonded sensors is explored in depth by Schmidt [41].

4.2 Process Flow for Micronozzle Fabrication

The micronozzle process flow is straightforward in principle. The challenge lies in attaining a highly variable
geometry that maintains anisotropy over the full height of the structure. Large features etch faster than
smaller features, which causes the smaller features to distort when performing a deep etch. If small features
of a constant geometry are etched, wall roughness becomes accentuated. These trade-offs are examined in the
following sections. This section presents the process which is the backbone for the micronozzle fabrication.
The fabrication goals are:

• Create a micronozzle with a throat less than 20 microns and an expansion ratio of 20:1
• Perform the nozzle etch to a depth of 500 microns

• Maintain less than 1 micron variation in feature size over the etch depth
• Maintain wall roughness less than 1 micron to prevent shocks
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Figure 4.4: Cross-section of the silicon device wafer at key points in the fabrication process. a) begin with a clean
< 100 > silicon wafer b) coat in photoresist and pattern through exposure through features in a mask
c) DRIE through nozzle feature d) Strip resist and anodically bond to glass

The process sequence is shown in Figure 4.4, in cross section. The following steps detail this process:

• A clean double-polished < 100 > wafer is protected with photoresist that can be applied with thick-
nesses up to 12 microns. This is done by spin coating the resist at 1000 rpm.

• The resist is patterned by an exposure of 370 seconds for a power density of 6mW/cm2 at a wavelength
of 460nm and developed in MIF-440 developer for 6 minutes. The pattern is a trench of constant width
(known as a halo), which defines the geometry of interest.

• With the pattern transferred through lithography, the resulting features are etched through the wafer
using DRIE. Typical etch rates are measured between 2 to 3 microns/min depending on feature size
and recipe. The silicon wafers are mounted to quartz wafers with photoresist to prevent the backside
helium coolant from leaking when the features etch through the wafer. The quartz allows the cleared
features to be detected by inspection since it is optically clear.

• The resist is stripped and the handle wafer separated through a piranha clean.
• The upper surface is anodically bonded to a Pyrex wafer at 500◦ C with 1000 Volts and 2400 mbars
of pressure applied across the stack. This task is accomplished with an Electronic Visions/Aligner
Bonder. The aligner permits the 1 mm gas injection holes, which are pre-drilled into the glass, to
line-up with the chambers. The glass wafer has an auxiliary hole drilled in it so that electrical contact
can be made with the silicon through a brass spring, when the second glass wafer is bonded to the
stack. This contact allows a voltage to be applied only relative to the second glass wafer and the
silicon.

• Finally, the wafer is diced along lanes which intersect the nozzle, but prevent the nozzle geometry
from being distorted by inaccurate blade alignment. The recesses are 1 mm wide as to not affect the
expansion of gases from the critical geometries. The dicing exposes the flow channel permitting the
gas to discharge from the nozzle through the edge of the die. The exit cavity of nozzle is shown in
figure 4.5.
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Figure 4.5: SEM of the nozzle exhaust cavity. Nozzle exit plane is small opening centered in the cavity.

The die layout was chosen so that its package could be integrated with the macroscopic gas-delivery
system. If the bonded silicon wafer was diced into individual nozzles, the die would be less than 2 mm2

apiece and difficult to handle. Thus, there are 9 nozzles per die as in figure 4.6. Also, if the gas were to be
injected into the chamber along the nozzle axis, the interface would be a 300x1200 micron rectangular orifice.
Outside of a very difficult bond to small diameter tubing, there is not a reasonable packaging solution for
axial injection to a single nozzle, and thus the injection hole is perpendicular to the nozzle chamber, and
multiple nozzles are on a die.
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Figure 4.6: Arrangement of individual nozzles in a die. Six discharge to the environment, and the three in the
center discharge into an on-chip cavity for benchtop testing.

4.3 Process Analysis and Enhancement

This section reviews each of the improvements made in the fabrication of the nozzles, and the resulting
effects. The largest effort was focused toward overcoming the aspect ratio dependent etching characteristics
of plasma etchers. As mentioned previously, this causes larger features to etch faster than smaller features.
A test of 5 different recipes (variable coil power, flow rates, and electrode power) shows that almost every
option results in this loading effect. Figure 4.7, from Ayon et al. [36] illustrates this trend.

4.3.1 Full Geometry Etch

The first trial attempted to etch the full nozzle-plenum geometry simultaneously, the results are shown
in figure 4.8. The DRIE performs well for about 200 microns depth with the full geometry. There is
noticeable loading effect at the throat, which is designed to have a width of 8 microns. The etch rate is
0.3 microns/minute less than the larger features. Ultimately, the throat region becomes distorted through
the overetching that is necessary to clear it. This distortion is obvious near the bottom of the throat in
Figure 4.9. This loading effect can be tailored through optimization of the etch parameters to provide a
degree of three-dimensionality to the nozzles. By lowering the inlet and outlet divergence angles, the nozzle
floor will gradually slope from the plenum to a minimum at the throat, and increase to a maximum at the
exit. This would allow even further increase in the Reynolds number for a low-thrust propulsion system, as
per the argument of equation (2.4).

Figure 4.10 illustrates an alternative nozzle geometry, the bell nozzle, etched to 100 microns. This shows
that a well defined curvature can be maintained to this depth as well as highlighting the wall smoothness.
This process results in functioning nozzles, but the geometry is distorted at large depths and prevents
adequate comparison to the fluid model.
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Figure 4.7: Variability of etch rate with feature size for different etch recipes [36]. This reduction in etch rate
is termed the loading-effect. The recipe number corresponds to a proprietary combination of etch
parameters documented by MIT.

4.3.2 Nested Masking

One attempt at reducing the loading effect was to use a nested mask set that allows the nozzles to be etched
initially to a depth of about 40 microns before the larger plenum features are exposed. An oxide layer is
patterned with the nozzles, and then coated with photoresist, which is patterned with the settling chamber.
The STS etcher begins the etch in the nozzle region, and then the oxide is stripped in the settling cham-
ber region with a buffered oxide etch. The wafer then goes back into the STS to complete the etch. The
success of this scheme is too constrained to timing the etches to finish simultaneously, and once again leads
to overetching and feature distortion. Figure 4.11 depicts the overetching which occurs due to the nozzle
completing the etch prior to the settling chamber. Figure 4.12 shows the interface issues of etching a feature
around a previously etched trench. Since there is polymer coating the sidewalls during the nozzle etch, it
must be stripped in an O2 plasma prior to the plenum etch. The remnants of the polymer cause the nozzle
to be very rough where it interfaces the settling chamber. It is apparent from these results that success
would only be possible through etching a constant feature size.
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Flow Direction

Figure 4.8: SEM of the nozzle-plenum system etched simultaneously for two different nozzle geometries

Figure 4.9: Close-up of a similar nozzle throat to that in figure 4.8
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Figure 4.10: SEM of a bell nozzle exit plane, etched to 250 microns. Notice the smooth walls as well as the
anisotropy.

Figure 4.11: An example of overetching which occurs when a nested mask is not properly timed
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Figure 4.12: Poor feature interface due to nested feature not clearing properly
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Table 4.1: Comparison of design nozzle geometries and the result after fabrication

Design Throat Design Expansion Fabricated Throat Fabricated Expansion
Width (µm) Ratio Width Ratio

10 10:1 19 5.4:1
10 25:1 18 15.3:1
25 10:1 34 7.1:1
25 25:1 37.5 16.9:1

4.3.3 Halo Masking

The optimal geometry was eventually achieved by etching a feature of constant size to maintain an equal
loading. A halo mask accomplishes this. The nozzle outline is defined by a 10-micron trench outlining the
feature of interest, as illustrated in figure 4.4b. If the etch is completely through the wafer, the centerbody
will fall out during the resist strip and rinse cycle. Because of small feature distortion, best results are
obtained for etches 300 microns in depth. Figure 4.13 is a micrograph of a nozzle for which this process was
used. The 2-D nature of this nozzle is striking. There is only a 1-micron variation in feature size from the
top to the bottom of the wafer.

The etch recipe was optimized for this particular geometry. As shown by Ayon [36] et al., higher coil
power improves etch anisotropy and etch rate, at the cost of selectivity. Thus, the etches will appear more
uniform, but the protecting photoresist is consumed much faster, and the achievable depth is reduced. The
full geometry, in section 4.3.1, was etched with a coil power of 600 Watts, but the halo geometry achieved
its best results for 800 Watts. The electrode power was 12 Watts during the etch cycle with the etchant
flowing at 105 sccms and 6 Watts during the passivation, with the polymer flowing at 40 sccms. This results
in an etch rate of about 1.6 microns per minute, greatly reduced from the 3 microns per minute that could
be achieved for a 50 micron feature.

The wall roughness is larger for this type of mask due to the small halo trench. The roughness is on the
order of 800 nm, where it had been about 300 nm with the previous processes. Since the resist tapers from
its full thickness to zero thickness at the feature edge, as illustrated in figure 4.4b, the tapered region clears
faster than the full thickness resulting in the increased roughness and feature enlargement during very long
etches. The features are 10 microns on the mask and become 18 microns by the completion of the etch. It
may be possible to mitigate this effect with an oxide mask. Other nozzles which were tested are shown in
figure 4.14. All fabricated nozzles and their design values are listed in table 4.1.

Most of the design goals were met, with the exception of etch depth. Since coil power was increased to
obtain high anisotropy, etch selectivity suffered, and depth was reduced. This was sacrificed to achieve the
highest anisotropy possible.
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Figure 4.13: 5.4:1 nozzle with a 19 micron throat created using a halo mask. The depth of all nozzles in this section
was 308 microns.

Figure 4.14: a) 7:1 nozzle with a 34 micron throat b) 15.3:1 nozzle with a 18 micron throat. Both were created
using a halo mask
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Gas Injection Manifold

O-Ring
Seal - Parker 001

Nozzle Chip

Clamping Plate

Figure 4.15: Packaging solution for the micronozzle study. Pre-drilled hole in die is clamped to an o-ring in a
gas-injection manifold.

4.4 Packaging

Figure 4.15 depicts the gas injection manifold that allows the die to interface with a standard high-pressure
source. The manifold consists of an o-ring gland that runs to a 1

4” pipe fitting that is interconnected with
stainless steel tubing. The die is clamped against the o-ring to prevent fluid leakage. A valve and regulator
are present upstream to allow flow control to the nozzle. The o-ring is a standard Parker-001, of 40 durometer
hardness. The 50 and 60 durometer were tried initially, but they cracked the glass at clamping pressures
required for sealing.
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4.4.1 Entrance Effects

In order to evaluate the microfabricated nozzle as a propulsion device, the entire on-chip system should be
examined for potential losses which would threaten its performance. The fluid delivery system leading up
to the chip consists of large diameter valves and lines, which at these low flow rates represent very little
resistance to the flow. The concern that the gas injected into the nozzle’s settling chamber through the
equivalent of a 90◦ miter bend would have a large total pressure loss, and a large z-velocity component.

A 2-D simulation using the commercial code FLUENT is used to determine whether the pressure drop
across the settling chamber or residual z-velocity prior to gas injection poses an inconsistency with assump-
tions on the nozzle boundary conditions employed in the CFD. Figure 4.16 illustrates the entrance flow for
the Re = 1450 flow. As is expected, a separation region forms due to the imbalance in the inertia forces on
the fluid and the centripetal forces around the bend. This separation region grows with increasing throat
Reynolds number. The reattachment length is the x-distance from the bend at which the flow becomes fully
axial. In this analysis, fully axial flow is defined as the z-velocity being less than 1% of the x-velocity. Fig-
ure 4.17 depicts the variation of the reattachment length with the throat Reynolds number. The normalized
channel length of all nozzles tested is 8.1, which is greater than the reattachment length for all Reynolds
numbers tested. Therefore, the flow can be considered axial. The reattachment length will be even shorter
in the device than in the simulation due to the 3-D nature of inlet, which will allow the separation region to
expand in the y-direction.

The pressure drop across the plenum is a function of the dynamic pressure. Since the mass flow is choked,
the mean chamber velocity is constant over the range of throat Reynolds numbers. This value is 1.8 m/s
and results in a chamber Reynolds number from 18 to 370 for throat Reynolds numbers of 175 to 3721. The
FLUENT simulation predicts that the pressure drop across the plenum for the range of Reynolds numbers is
negligible. It never exceeds 0.01% of the total pressure, which is of the same order as the dynamic pressure
in the chamber.
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Figure 4.16: Streamlines in xz-plane of nozzle chamber at a Re = 1450. A 2-D simulation with FLUENT is used
to compute the flow field.
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Figure 4.17: Reattachment point of separation bubble downstream of injection inlet (distance normalized by chan-
nel height). This is the point the flow returns to nearly axial.
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4.5 Summary

Advancements in microfabrication have lead to the creation of high aspect ratio structures. Deep reactive
ion etching was used to create 2-dimensional contoured nozzles. These nozzles have throat widths 5 times
smaller than previously achieved and yet maintain anisotropy as well as permitting a smoothly varying
geometry. The fabrication results are summarized as:

• Anisotropic nozzles are best fabricated with a halo mask when used in conjunction with high coil
power during the etch cycle. This minimizes loading for geometries of variable feature sizes and greatly
improves anisotropy.

• Wall Roughness is less than 1 micron, and feature variation is less than 1 micron from the top to the
bottom of the etch.

• Nozzle feature sizes enlarge due to resist taper near feature. This may be prevented with an oxide
mask.

• Nozzle etch depth for a 10 micron trench is limited to 300 microns due to poor selectivity at high coil
power etches. Oxide masks can be used to reach greater etch depth, though anisotropy will suffer due
to aspect ratio dependent etching.

• Two-sided anodic bonding can be accomplished as long as electrical contact can be made with silicon
during the second bond.

• Gas injection into the nozzle is best accomplished through an elastomer seal to a port pre-drilled into
the glass prior to anodic bonding.

• Gas injection perpendicular to the nozzle inlet has little affect on pressure drop or axial velocity, as
long as the chamber is sufficiently long to allow the flow to recover.
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Chapter 5

Cold-Gas Thruster Testing

This chapter presents the experimental testing of the cold-gas nozzles. This testing is grouped into mass
flow tests performed at MIT and thrust tests performed at the Aerospace Corporation in Redondo Beach,
California. The mass flow tests help to quantify the viscous losses. But, only by quantifying the thrust can
the propellant efficiency of the nozzle be assessed.

5.1 Test Set-up

5.1.1 Mass Flow Testing

A schematic of the test stand assembled at the MIT Fluid Dynamics Research Laboratory is shown in
figure 5.1. Grade 5 nitrogen is chosen as the gas source because it is relatively inert. Helium, a noble gas
which is inert by nature, is not used because it is very difficult to contain due to its small atomic size, which
has a tendency to leak. Grade 5 nitrogen is a purer form of dry nitrogen with less than 0.1% of trace gases. It
is important to reduce the propellant to its purest component since performance is a function of the average
molecular weight of the gas.

The system consists of 1
8” copper tubing connecting the gas supply to the nozzle. This is connected

through a series of Swagelok fittings. The flow rate is measured with a Hastings-Teledyne HFM-200 0-1000
sccms flow meter (0-10 mg/s). This flow meter is inherently linear with an accuracy of ±1% of the full scale
reading (i.e. ±10sccms). The pressure is measured at the source by an analog gauge and at the manifold
location by an Omega PX303-3005V digital pressure transducer. This is accurate to 0.3% of full scale (i.e.
±1 psi).

A 0.5 micron filter is placed in line to prevent contamination from clogging the nozzle. In addition a
solenoid valve is placed in line to activate the flow for thruster testing. Since the flow rate in the system
is so low, the pressure drop is measured at less than 1 psi from supply to nozzle manifold at the maximum
operating flow rate of 1000 sccm.

Initial tests were performed exhausting to atmospheric pressure. Subsequently, a 5 liter bell jar was
modified by placing a feed line through the bulkhead, and allowing the manifold to be mounted inside the
jar. This jar was then pumped down to 0.5 torr and maintained below 30 torr over the full range of operation.
The flow, for most test cases, is in the underexpanded regime and choked for all cases.

5.1.2 Thrust Stand

The thrust stand located at the Aerospace Corporation is identical in functionality to the mass flow stand,
except that the bell jar is replaced by a vacuum chamber and the nozzle is mounted to a thrust plate.

The vacuum chamber is approximately 10000 liters and is evacuated by roughing pumps and a mechanical
blower. This configuration can achieve a back pressure between 100-200 mTorr. Outside of the chamber,
pressure and mass flow transducers are in the supply line. Thus, all of the data that was taken at MIT, can
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Figure 5.1: Mass Flow Test Assembly. The gas flow through the nozzle is discharged into a bell jar evacuated to 1
torr. This allows mass flow through the overexpanded nozzle to be measured.
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Figure 5.2: Thrust Stand Schematic. The thrust against a restoring spring allows the displacement to be measured,
and the subsequent thrust to be evaluated. Weights of known mass hanging from the pulley provide a
calibration thrust to the stand.
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also be duplicated at the Aerospace Corporation. The MKS 1000 sccm mass flow meter with an accuracy of
1% of full scale is in-line.

The gas injection manifold with attached nozzle is mounted to the thrust plate atop the inverted pendu-
lum, as in figure 5.2. The plate thrusts against restoring springs, and displacement is measured to determine
the thrust level. The accuracy of this system is ±0.2 mN and ±0.2 psia [14] for thrust and pressure respec-
tively. Unfortunately, there is no damping on the thrust plate, thus, the accuracy diminishes to 1 mN due
to the oscillations and the inability to maintain a constant reading.

The stand is calibrated by applying a known force to the plate and measuring the voltage output. The
force is applied by hanging known weights from a wire attached to the plate. The wire runs over a low
friction pulley to redirect the gravity force vector from vertical to parallel to the plate. By performing the
calibration, the thrust measurement can be corrected for the resistance of the propellant supply line. The
smallest calibration weight is equivalent to 9.21 mN of thrust. This is the only data point used to resolve the
thrust-voltage output curve around the testing point. Any nonlinearities that might exist at low thrusts will
be smoothed over in the calibration. However, for additional weights used in calibration, the thrust stand
remains linear over a large range of thrusts and should be reliable at the low thrusts, also.

5.2 Uncertainty Analysis

As explained in section 5.1, there is an inherent uncertainty in the measurements. This is quantified for each
measured quantity (pressure, flow rate, thrust). In addition, there will be uncertainty introduced by the way
the measurements are taken. For example, the ambient is measured to be at 22.5◦ C, and this is assumed to
be the same as the supply temperature. In addition, pressure is measured upstream of the settling chamber,
but at these low flow rates, the pressure drops are very low (less than 1 psi). Both of these measurements
entail some uncertainty since they are not located directly in the settling chamber.

The uncertainties in the feature geometry, while having no affect on the accuracy of the thrust and mass
flow, directly affect the derived quantities of thrust, mass flow, and Isp efficiency. Without exact knowledge
of the throat area, the ideal mass flow rate cannot be predicted. This leads to uncertainty in the Cd. Since
Reynolds number is also a function of throat width, there will be uncertainty when assessing performance
as a function of this parameter.

The throat is a critical point in the geometry, because it sets the mass flow rate in the choked condition.
The nozzle is measured using an optical microscope with a calibrated stage. By translating the stage in x
and y, a distance between two points can be determined. This method was used to measure the throat,
exit, and nozzle length to an accuracy of 0.5 microns. This is a 2.5% uncertainty in the throat width for
the smallest nozzles tested. In addition, it sets the area ratio of the nozzle. Such a variation can result in
an uncertainty of ±1 in the expansion ratio for the smallest features. The depth of the nozzles is measured
by the observation of fringes from an interferometer on the focal plane. These fringes are focused on the
top surface, and, through a calibrated adjustment of the focal plane they are focused on the bottom surface.
This is accurate to ±1 micron, although the uncertainty is a smaller percentage of the feature size (∼ 0.3%).

The largest source of uncertainty is in the thrust measurement, and at low Reynolds numbers, the uncer-
tainty is larger than the value being measured. In addition, this uncertainty also occurs in the calibration of
the thrust stand, which could alter the nature of the efficiency variation with Reynolds number. Variation
of the slope of the calibration curve can displace the efficiency versus Reynolds number curve horizontally,
whereas the uncertainty in the measurement shifts the curve vertically.

To summarize, the uncertainty bars presented with the experimental data come from three sources:
uncertainty in the geometry, the inherent uncertainty of the instruments, and the assumptions of the mea-
surements which increase the uncertainty. The latter of the three is the most difficult to quantify, but, with
the reasonable assumptions made, it is shown to be small.
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Figure 5.3: Mass flow measurements for 3 nozzles of 5.4:1 area ratio and 20 micron throats. Variation of results is
minimal because the geometric variation in manufactured nozzles is minimal.

5.3 Test Results

5.3.1 Mass Flow Test Results

Tests were run on all of the nozzle geometries to assess their performance. Figure 5.3 compares 3 nozzles
with throat widths of 21± 1 microns, and area ratios of 5.4:1. This figure shows the similarity in the nozzle
responses to chamber pressure. This is due to the small variations in nozzle geometry from sample to sample.
Though this plot appears linear, the mass flow is decreasing faster than linear at low pressures due to low
Reynolds number viscous effects. Figure 5.4 depicts the percent deviation of flow rate from the linear slope
connecting the highest flow rate tested and the origin. This is as high as 12% at the lowest pressure tested.
This curve has a maximum since it must also pass through zero flow rate at zero applied pressure. This
maximum cannot be resolved due to limitations on regulated pressure.

78



0 20 40 60 80 100 120 140
0

2

4

6

8

10

12

14

Chamber Pressure (psia)

P
er

ce
nt

 F
lo

w
 R

at
e 

D
ev

ia
tio

n 
fr

om
 L

in
ea

r

Figure 5.4: Deviation of mass flow in figure 5.3 from linear slope connecting origin and the maximum flow rate
data point. The deviation is due to increased viscous effects at low Reynolds numbers.

5.3.2 Thrust Test Results

The mass flow test procedures were repeated at the Aerospace Corporation, with the manifold mounted on
the thrust stand in the vacuum chamber. Thus, thrust was measured in addition to mass flow, chamber
pressure, and ambient pressure. The experiments were run on three conical nozzle geometries of 7.1:1,
15.3:1 and 16.9:1 expansion ratios. Their respective throat widths were 34, 18, and 37.5 microns. The mass
flow results are shown in figure 5.5. Whereas the previous section highlighted the repeatability of nozzle
performance for similar nozzles within the same batch, figure 5.5 compares different nozzle geometries. As
expected, the mass flow decreases with throat size for a given pressure. The thrust results as a function of
chamber pressure are shown in figure 5.6. Just as with the mass flow, the nozzle thrust for a given pressure
decreases with throat area. This is due to thrust being a product of the mass flow and exit velocity.

The Isp is a derived quantity indicating the thrust per unit weight flow rate and defined in equation (3.34).
Of interest to propulsion system designers is the variation of Isp with thrust, as depicted in figure 5.7. This
clearly indicates which is the best nozzle for each thrust level. The largest geometric expansion ratio nozzle
has the highest performance above 2 mN. At 2 mN, there is a crossover with the 15.3:1 nozzle, which has a
smaller throat diameter, but a larger exit-plane aspect ratio. As will be demonstrated shortly, this causes
the exit velocity to decrease rapidly at low Reynolds numbers, due to the low effective area ratio.
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Figure 5.5: Mass Flow variation with chamber pressure for 3 nozzle geometries. Larger throats result in larger flow
rates for the same pressure.
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Figure 5.7: Isp variation with thrust. The dramatic reduction at low thrusts is due to the increase in viscous effects
present at low chamber pressures, and hence low thrusts.

5.4 Comparisons between Numerical and Experimental Data

The two-dimensional computational analysis described in Chapter 3 serves as the benchmark to which the
experiments are compared. Figures 5.8-5.10 depict the coefficient of discharge variation with Reynolds
number for each of the three nozzle geometries tested. Within the uncertainty of the measurement, the Cd
agrees with the numerical computation for all but the lowest Reynolds numbers, for all cases. The deviation
of the results from the numerical solution increases with decreasing Reynolds number. There are several
factors influencing the deviation. Endwall boundary layers, which are neglected in the 2-D simulation,
account for a portion of the loss. At the lowest Reynolds numbers, the endwall boundary layers account for
additional 10% loss in throat area. Nonequilibrium effects may also account for a portion of the deviation.

The thrust and Isp efficiencies decrease with Reynolds number in a much more dramatic fashion than
the Cd. Figures 5.11 - 5.13 depict this for thrust efficiency, and Figures 5.14 - 5.16 for the Isp efficiency.
This is much larger than the Cd because the mass flow rate is set at the throat, by the choked condition,
and thrust and Isp are determined at the exit-plane. Since the flow is continuing to evolve downstream of
the throat, viscous losses continue to decrease the performance much beyond that seen in the Cd. It should
stand out, however, that the decrease is far beyond that predicted by the two-dimensional model. Once
again the endwall boundary layers further reduce the effective area ratio of the nozzle, and subsequently the
exit velocity achieved by the flow. This, in turn, reduces the thrust and Isp. The losses are quantified in the
next section.

The uncertainty bars in the figures are based on the analysis presented in section 5.2. All of the uncer-
tainties are quantified as a fixed number. They all grow relative to the measured value as Reynolds number
decreases, because the fixed uncertainty becomes a larger fraction of the measurement as the measurement
decreases. In the case of the thrust measurements, the uncertainty for the smallest thrust is the size of the
measurements. The uncertainty is a smaller fraction of the total thrust for larger nozzles.

Figure 5.17 depicts the variation of thrust coefficient with Reynolds number for the 16.9:1 nozzle. This is
a good performance indicator because it illustrates the effectiveness of the nozzle. At the highest Reynolds
number cases, the nozzle performance is as expected. Once the Cf drops below 1.2, it has a lower performance
than that of isentropic flow through a choked orifice of the same scale as the throat. This highlights the
useful regime of the nozzle, and the substantial viscous effects.
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Figure 5.8: Mass flow efficiency (Cd) variation with Reynolds number for the 7.1:1 geometry. The Cd compares
well with the experiment for all but the lowest Reynolds numbers. This is where the boundary layers
are the thickest.
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Figure 5.9: Mass flow efficiency (Cd) variation with Reynolds number for the 15.3:1 geometry
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Figure 5.10: Mass flow efficiency (Cd) variation with Reynolds number for the 16.9:1 geometry
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Figure 5.11: Thrust efficiency variation with Reynolds Number for the 7.1:1 nozzle geometry
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Figure 5.12: Thrust efficiency variation with Reynolds Number for the 15.3:1 nozzle geometry
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Figure 5.13: Thrust efficiency variation with Reynolds Number for the 16.9:1 nozzle geometry
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Figure 5.14: Isp efficiency variation with Reynolds Number for the 7.1:1 nozzle geometry
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Figure 5.15: Isp efficiency variation with Reynolds Number for the 15.3:1 nozzle geometry
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Figure 5.16: Isp efficiency variation with Reynolds Number for the 16.9:1 nozzle geometry
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Figure 5.17: Comparison of the numerical results and the experimental results of the coefficient of thrust as it
varies with Reynolds number for the 16.9:1 nozzle
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5.5 Experimental Deviation from the Numerical Calculations

This section examines the impact of several sources of performance loss, which could account for the deviation
of the test data from the predictions of the numerical analysis. The uncertainty bars indicated one source of
the discrepancy and was explained in a previous section. This section looks at the flow field, and the effect
of unmodeled flow characteristics.

5.5.1 Endwall Boundary Layer Blockage

Section 3.7.1 concluded that a majority of the performance variation with Reynolds number is associated
with the blockage created by the boundary layers. Additional performance losses will be incurred due to
boundary layer interactions at the corners, as well as a breakdown in the thin boundary layer assumption
which allows the outflow state variables to be extrapolated from the nozzle interior. To first order, the
correction for blockage should provide a guide for optimum nozzle operation. However, if the computational
analysis reported in Chapter 3 is to be used to estimate the nozzle performance, the blockage generated in the
full geometry must be considered. The best solution would be to pursue a three-dimensional computation.
However, the 2-D simulation of the flow in the largest of these nozzles takes 4 days to run on a Silicon
Graphics workstation, and an additional dimension of 50 grid points would take 50 times as long for each
operating condition. With the computational resources at hand, this is unacceptable. The 2-D simulations,
however, provide insight into the boundary layer thickness at a given cross-section.

Just as the geometry was altered in section 3.7.1 to produce a 2-D effective area ratio, the full 3-D
geometry can be approximated by subtracting the displacement thickness from all four walls that make up
the nozzle cross-section. Since the boundary layer that is developing on the endwalls is driven by the same
core velocity as the sidewalls, the displacement thickness should be the same as that computed in the 2-D
simulation. In reality, the endwall boundary layers will be thinner due to the flow channel diverging, but
this will be counteracted by a thickening that will occur due to the slower flow found in a reduced area-ratio
nozzle. Thus, this will serve as a first approximation to the performance loss in the full 3-D nozzle, as long
as the core flow is unaltered by the displacement thickness of the endwall, which is true for large exit aspect
ratios (high ho/D).

The variation of the effective area ratio with Reynolds number for nozzles of different width-to-depth
aspect ratios are shown in figures 5.18-5.19. The exit plane of the nozzle and the effective exit area at the
lowest Reynolds number are shown as insets in these figures. Both nozzles are 308 microns deep. Since the
15.3:1 nozzle has an 18 micron throat and only a 275 micron exit, it has a larger exit plane aspect ratio for
a similar expansion ratio. For the nozzles tested, the aspect ratios are 1.14 for the 15.3:1 nozzle and 0.48 for
the 16.9:1 nozzle.

As the Reynolds number decreases, the displacement thickness increases, and it reduces the effective
area ratio at a given cross-sectional location (defined as the geometric or actual area ratio). For the 16.9:1
nozzle, the exit aspect ratio is small enough to cause the effective area ratio to reach a maximum within the
nozzle. For these operating conditions, the additional length of nozzle drives performance down because of
the increase in viscous losses from additional boundary layer growth. These plots seem to indicate that a
dramatic performance drop should accompany these large adjustments in effective area ratio. However, the
performance variation with expansion ratio is minimal. Figure 5.20 depicts the variation of exit Mach number
with expansion ratio using a quasi-1-D analysis. Since the exit velocity is a function of the exit speed of
sound, the chamber temperature sets the maximum exit velocity that can be achieved for a nozzle of infinite
expansion ratio. This is 790 m/s for the 300 K chamber temperature present in these runs. The corresponding
exit velocity is depicted on the right side of figure 5.20. Therefore, increasing the expansion ratio from 4 to
16 only contributes 10% to the Isp. As stated in section 3.7.1, the primary factor in performance reduction is
the boundary layer thickness at the throat, which drives down mass flow efficiency and ultimately the thrust
efficiency, and not the reduction in effective area ratio.

The flow variables can be computed from a quasi-1-D analysis of the effective area ratio depicted in
figures 5.18-5.19. These flow variables can be used to compute thrust and Isp for the quasi-3-D geometry.
The corrected thrust and Isp efficiencies for the 16.9:1 nozzle are shown in figures 5.21- 5.22, respectively.
Though this rudimentary model does not match the experimental data exactly, it does indicate that the
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Figure 5.18: Variation of the quasi-3-D effective area ratio with actual geometric area ratio. This is for a nozzle
with an exit height to width aspect ratio of 0.48.
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endwall blockage accounts for a large portion of the performance loss. Furthermore, it is indicative of the
rapid drop in the performance at Reynolds numbers below 1000.

Figure 5.23 depicts the endwall corrections in thrust efficiency for the 15.3:1 nozzle. Since the exit plane
aspect ratio is nearly double, the endwall corrections are minor. The same trend is noted in the 16.9:1
case, but there is a dramatic reduction in measured thrust performance for each operating condition that
is not explained by the endwall correction. This quasi-1-D analysis suggests that the 15.3:1 nozzle should
out-perform the 16.9:1 nozzle because it has double the aspect ratio in the exit plane. This should result in a
reduction of endwall effects, and an increase in Isp over that delivered by the 16.9:1 nozzle. And, it suggests
the performance should not deviate much from the 2-D simulation. Test results in figure 5.7 do show this
higher performance, but only at the lowest Reynolds numbers. At high Reynolds number, the 16.9:1 has
the highest performance. Once again, this trend is difficult to discern due to the uncertainty of the thrust
measurements.

Additional thrust and mass flow data were taken for the portion of this research detailed in Chapter 6.
This data was taken on a thrust stand with improved resolution and damping. The Reynolds number in
this case was lowered by increasing the chamber temperature (lowering chamber density). A preview of this
data is shown in figure 5.24. This improved data does resolve that the variation of thrust efficiency with
Reynolds number is much less than shown in the previous figures, but the corrected numerical results are
still different from those experimentally measured. In order for the deviation to be an endwall effect, the
boundary layers would have to be twice as thick as predicted by the simulation. This is not the case, since
they should at best be the same size as the sidewalls.

Though the endwalls can incur blockage that reduces the performance by 40% in the lowest Reynolds
number cases, in most cases it accounts for 3− 10% variation in performance due to a reduction in effective
area ratio. Thus, there are additional effects not modeled that are reducing the performance.
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Figure 5.21: Thrust efficiency variation with Reynolds Number for the 16.9:1 nozzle geometry. This is for a nozzle
with an exit height to width aspect ratio of 0.48.
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Figure 5.22: Isp efficiency variation with Reynolds Number for the 16.9:1 nozzle geometry. This is for a nozzle with
an exit height to width aspect ratio of 0.48.
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Figure 5.23: Thrust efficiency variation with Reynolds Number for the 15.3:1 nozzle geometry. This is for a nozzle
with an exit height to width aspect ratio of 1.14.
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5.5.2 Nonequilibrium Effects

The energy in the chamber is a function of the temperature, which characterizes the intermolecular collisions
of the gas. As the gas expands, the thermal energy of the molecules is converted into directed translational
energy (kinetic energy). The time it takes for gas to reach local equilibrium is referred to as the relaxation
time. The relaxation time is a function of the intermolecular collisions and can be computed as

t =
1
ν
= NAcc̄ , (5.1)

where ν is the collision frequency, N is the number density of the gas, Ac is the collisional cross-sectional
area, and c̄ is the mean molecular speed that can be computed as

√
3RT . In order for the gas to be considered

in equilibrium, the residence time in the flow chamber must be much greater than the relaxation time. As
seen in equation (5.1), the relaxation is a function of the number density; therefore, this effect increases with
decreasing Reynolds number. Thus, as the gas is expanding in the nozzle, the relaxation time is increasing.

At standard conditions, the relaxation time is on the order of 1 nanosecond. The flow time from the
throat to the exit of the 16.9:1 nozzle is 2 microseconds. Therefore, the flow is well within equilibrium at
this condition. However, as the pressure decreases in the nozzle, the relaxation time increases; meanwhile,
the residence time also decreases due to the increased velocity, and shorter distance left to travel. In the
boundary layer, the temperature is higher than the core due to the thermal gradient created by the relatively
warm wall. This, also, increases the relaxation time. Once a fluid particle reaches the location of the 3:1 area
ratio in the supersonic portion of the nozzle, the relaxation time is 1% of the residence time in the core and
less in the boundary layer due to the slower velocity. This will represent a loss in the conversion of thermal
energy into kinetic energy. In order to gauge the magnitude of this loss, an equilibrium gas model must be
introduced into the CFD to resolve the true velocity. But, to first order, the reduction in exit energy could
be considered to be 1% of the gain achieved past the 3:1 area ratio.

A more difficult timescale to assess is the rotational relaxation rate. Whereas translational relaxation
can be accurately determined from the hard sphere model as used in equation (5.1), the rotational collision
cross-section is dependent upon angle and energy of collision. A model presented by Belikov and described
by Gochberg [42] can be used to determine the relaxation time of nitrogen with temperature, and is valid over
the range of 6-320 K. A plot of the ratio of rotational relaxation time to residence time at the location of the
3:1 area ratio is shown in figure 5.25. This is the ratio at the wall, and decreases toward the centerline due to
the thermal gradient in the boundary layer. For the operating pressures investigated, this model reveals that
the rotational relaxation is three times that of the translation. This is still only 3% of the residence time of
the fluid particles at the highest Reynolds numbers, but increases to 9% in the boundary layer at the lowest
Reynolds number cases. If a diatomic gas flow is rotationally frozen, it will behave as a monatomic gas due
to the loss of two degrees of freedom. A rotationally frozen flow would have 15% less kinetic energy because
it is bound in the rotational energy. Therefore, a 10% nonequilibrium would result in a 1.5% deviation from
the predicted efficiency. Thus, it appears that nonequilibrium effects, while significant in some regions of
the boundary layer at low Reynolds numbers, are not the sole source of discrepancy between the simulation
and experiment.

Though this calculation is not presented here, a DSMC calculation by Zelesnik et al. [12] showed that
the Isp efficiency for an axisymmetric conical nozzle operating at a Reynolds number 117 was 79%. (The
thrust coefficient in this simulation was 1.10.) This was for an identical nozzle to that tested by Grisnik
et al. [10], and the DSMC numerical result was very close to their experimental results. Since the DSMC
calculation looks at discrete particles, and the model transfers energy between internal and translational
energy modes through the Larson-Borgnakke model, this method captures the intermolecular reduction in
momentum leaving the nozzle that the current CFD does not.

5.5.3 Roughness Induced Transition

As discussed in section 3.7.2, the flow should not transition due to Tolmein-Schlichting instabilities due
to the low operating Reynolds numbers. However, that does not preclude roughness-induced transition to
turbulence. The effect on performance would be very difficult to quantify without a simulation that includes
a turbulence model.
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Figure 5.25: Ratio of the rotational relaxation time to the residence time at the wall of the nozzle. This computation
was performed at the 3:1 area ratio in the supersonic portion of the nozzle for various Reynolds numbers
based on the Belikov model described in Gochber [42]

The dissipation in a turbulent flow can increase 2 to 10,000 times that of a laminar flow. This implies
a large deviation from the numerical results from the 2-D laminar flow model. However, only the highest
Reynolds numbers tested would be affected by this transition, and these are, once again, the very cases that
are in agreement with the model prediction. Therefore, it seems unlikely that transition is occurring in the
nozzle flow.

5.5.4 Effect of Simulation Outlet Boundary Conditions

Ivanov et al. [13] performed finite volume and DSMC computations on geometries similar to silicon etched
nozzles. Though their DSMC calculations produced results similar to the N-S simulation presented in this
work, they claim there is a significant over prediction when extrapolated outflow conditions are used. In
their studies, the extrapolated outflow conditions resulted in less of an expansion than the DSMC solution
with a portion of the plume modeled. This leads to a much lower pressure along the wall, and less thrust.
They show the difference in efficiency as 3% at Reynolds numbers over 1000, and 8% at 120. Zelesnik et al.
also modeled a portion of the plume in their DSMC calculation, and noted a similar loss in efficiency. This
would account for the improved accuracy of their calculation.

5.6 Performance Comparison with Other Experiments and Mod-

els

The following table summarizes the results of other Cold-Gas thrusters of similar thrust levels. The nozzles
tested by Grisnik [10] were conventionally machined axisymmetric nozzles of various geometries (bell, conical,
and trumpet), with the smallest throat diameter of 640 microns. Janson [14] implemented an anisotropically
etched nozzle, as describe in Chapter 4, with a 250 µm× 250 µm square throat. A side-by-side comparison
is presented in table 5.6. The KOH nozzles are operating at a higher Reynolds number, but the lower
performance suggests flow losses beyond Reynolds number effects (such as separation).

Isp efficiencies of the different computational analyses described in Chapter 1 are compared in figure 5.26.
The similarity in the results between this work and Grisnik et al. lends credence to the measurements
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Table 5.1: Comparison of the performance of DRIE nozzles with conventionally machined nozzles, and KOH etched
nozzles

Chamber Reynolds Thrust (mN) Isp
Pressure (psia) Number (seconds)

DRIE Nozzles 85 3492 9.91 66.63
Conventional Nozzles 3.32 3000 9.65 61.96

KOH Nozzles 25 3258 9 < 56
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Figure 5.26: Isp efficiency variation with Reynolds Number for models and experiments of other investigators.

made here. However, in no other case except the Zelesnik DSMC calculation did the experiment match the
simulation to within the uncertainty of the measurement.

A list of possible deviations due to unmodeled effects has been presented in section 5.5. However, it is
likely that there is some element of the physics missing from the analysis in Chapter 3 that is preventing a
better correlation with the experimental data.
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5.7 Summary

The experimental test results indicate that the DRIE fabricated nozzle performs better than other cold-gas
nozzles in the 2-12 mN thrust range. Nozzle performance characteristics can be summarized as follows:

• The thrust and Isp efficiencies for the largest nozzle are 90%, or within 2% of that predicted by
numerical simulations at large Reynolds numbers.

• As the Reynolds number decreases, the performance deviates from that of the numerical analysis.

• There are several reasons the experimental results deviate from the model predictions:

a) Uncertainty in the measurements at low thrusts is of the order of the magnitude of the mea-
surementitself .

b) Blockage that occurs due to the boundary layer formation on the endwalls is not modeled.

c) Translational and Rotational Relaxation times beyond a 3:1 area ratio are a measurable fraction
of the residence time.

d) Flow divergence is increased substantially by the additional expansion present at the nozzle
exit, and is not modeled with extrapolated boundary conditions.

• The endwall blockage can be accounted for by correcting the effective area ratio with a similar dis-
placement thickness as computed for the 2-D case. This causes dramatic variation in the simulation
data, and matches the trend found in the experiments for low exit aspect ratio nozzles. This is not the
case for nozzles of unity aspect ratio.

• The laminar flow and absence of shocks in the nozzle is validated due to the similarity of the test
results to the simulation data for operating conditions in which turbulence or shocks may occur.
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Chapter 6

Electrothermal Augmentation

As discussed in previous chapters, the microthruster performance is primarily gauged by the Isp, which is
an indication of the exit velocity or momentum of the propellant. This is a strong function of the chamber
energy or temperature. By transferring stored electrical energy into the settling chamber, which increases
the fluid enthalpy, the exit velocity will increase. In the isentropic nozzle, the exit velocity can be computed
by a simple energy balance between the internal energy and the momentum of the gas in the chamber with
that present at the exit. As can be found in Sutton [43], this result is:

uexit =

√
2γRTo
γ − 1 (1−

Pe
Po
)

γ−1
γ , (6.1)

where ue is the exit velocity, To is the chamber temperature, R is the propellant gas constant, and γ is the
ratio of specific heats. The pressure ratio is from the exit plane to the chamber. This derivation assumes
the nozzle injection velocity is very small as well as constant specific heats. This equation shows that as
chamber temperature increases, fluid exit velocity increases.

This concept has been used for many years to increase thruster performance, and represents a trade-off
of one consumable for another (power for propellant). While on-orbit, the power can be replenished from
the solar arrays, whereas the gas can not. This is a trade-off between the extra weight needed in the power
system for heater operation and that of the propellant savings. This trade-off is left for a systems level study.

6.1 Background

A variety of MEMS applications employ a heater. Microreactors heat reactants for chemical production [44].
Valves create sealing by thermal expansion of the poppet such as those developed by Redwood Microsys-
tems [45]. Even fiber-optic switches have employed evaporating fluid as an optical switch. In general, each
of these heaters has employed a thin-film metal or polysilicon as a resistor. Current passing through the
resistor dissipates heat. The resistors can be winding to increase the surface area without decreasing the
resistance, as is depicted in figure 6.1.

The concept is to get the heat from the source into the fluid through convective heat transfer. The goal
is to maximize the heat transfer efficiency while minimizing the pressure drop across the heater. The heat
transfer can be modeled by Newton’s Law of Cooling which states

q = hA(Tw − Tf ) , (6.2)

where h is the convection coefficient, A is the surface area, q is the heat transfer rate, and the subscripts
f and w refer to temperatures of the fluid and wall respectively. The convection coefficient is set by flow
parameters, such as Reynolds number, which will be described in the section on heater modeling. At, this
point the important driver is the wall surface area. By increasing the convective area, the power transferred

97



Wire Bond Pad

Platinum Resistor
Patterned on a capping silicon wafer

Figure 6.1: Metal or polysilicon resistor defined by photolithography techniques for resistojet applications

increases. This is very important when making a design choice between possible micromachined heater
architectures.

6.2 Resistojet Architecture

The thruster is designed to operate with similar packaging to the cold-gas system, with slight modification
to minimize conduction losses into the supports. The benchmark thruster is to operate with a chamber
temperature of 700◦C at a pressure of 2.5 atmospheres and a flow rate of 1000 sccms through a 50 micron
nozzle of 25:1 area ratio. Without losses, this would result in an Isp of 159 seconds.

5.8 Watts of dissipated power would be required for the flow to reach the goal temperature of 700◦C. Using
equation (6.2) to solve for area and a convection coefficient of 280 W/mK computed from equation (6.15),
a chamber 1 cm long and 1 mm wide would be required.

In order to improve the heat exchanger, the convective area must be increased over that available with
a flat-plate heater. For this reason, an array of fins is fabricated in the chamber in parallel with the nozzle.
Figure 6.2 is an illustration of the design. A copper electrode will supply current to the silicon. The fins
serve to increase surface area, and as resistors for dissipating the heat.

The conductive properties of silicon offer several advantages to the system level design. Most obvious, it
allows the fins to serve as the heat source. Second, the highly doped silicon moves the intrinsic operating
point to very high temperatures (≥ 700◦C). This offers a very stable operating point while the heater
is operated in a constant current fashion. For temperatures lower than the intrinsic point, increases in
temperature increase resistivity, which increases power dissipation and temperature. If the temperature
increases above the intrinsic point, the reverse effect occurs. Fluctuations that incur higher temperatures
result in a resistance drop and consequently a power drop. This cooling occurs until the intrinsic point is
again reached. Thus, the intrinsic point is a naturally stable operating condition. This behavior is described
in detail in section 6.3.2.

At this juncture, the effectiveness of on-chip insulation is investigated. The advantage of micromachining
is that nearly all materials are selected for the ability to insulate or conduct electricity. However, due to
the thermophysical properties of matter, good electrical conductors are generally good thermal conductors,
and the same is true for insulators. This might allow the fins to be fabricated on an insulator, and prevent
the heat from escaping into the substrate. The alternative is to allow the entire resistojet chip to run at
the chamber temperature (due to the high thermal conductivity of silicon), and insulate at the die level.
However, since the insulated thruster will take longer to heat up, it will suffer in performance during a short
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duration firing, and the isothermal thruster architecture will be implemented.
Several compromises were made in order to demonstrate the utility of the first generation resistojet.

Better design in future generations will minimize thermal losses as well as the thermal transient. These
compromises were:

• The nozzle throat width was chosen to be identical to the fin spacing so that the loading effect would
minimized. The nozzle throat can be smaller in future iterations to increase Reynolds number for the
same thrust.

• Large voids are place on either side of the chamber to decrease heat dissipation in a region not interact-
ing with the gas. The voids were kept smaller than desired from an electrical standpoint to increase the
strength of the die, which needs to withstand the clamping force of the electrode. Future generations
should be made from a honeycomb pattern to increase strength and minimize conduction, as well as,
thermal mass.

• A large majority of the heat loss could be recovered by making the gas supply line the conductive lead.
This would rely on a more advanced bond to the lead than was used here.

• The device was designed with a larger plenum than necessary to facilitate the attachment of gas lead,
and to leave room for the clamp for the electrical leads.

Section A-A
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Figure 6.2: a) Detail of completed resistojet etch b) bonded resistojet with packaged electrode. Current is passed
through chip, and preferentially passes through fins due to large resistance around the voids.
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• A copper film could be deposited directly to the silicon through E-beam deposition. The copper lead
could then be brazed directly to the device to eliminate the need for a clamp.

6.3 Heater Thermal Model

With a heater design selected, the geometry is to be optimized to yield the highest heater effectiveness while
maintaining the lowest pressure drop. The heater effectiveness is defined as

ε =
Tfluid, exit − Tfluid, inlet
Twall, exit − Tfluid, inlet

, (6.3)

This is the ratio of the temperature rise of the fluid to the maximum possible temperature rise that could
occur for this wall temperature. An infinitely long heater would bring the fluid up to the wall temperature.

The heater design parameters can be divided into two groups: those that govern heat transfer and those
that govern power dissipation. Heat transfer in this instance is a convective transport problem and will be
governed by the bulk motion of the fluid. Thus, fin spacing or gap (wgap), the height of the channel (ho), the
length of the channel (L), and the number of channels form the heater design space. The power dissipation
is governed by the fin width, and the resistivity of the silicon.

The operational parameters of the device are the mass flow rate (ṁ), the current supplied to the device
(i), and the gas supply temperature. As will be explained later, the heater is operated in a constant current
mode. With these parameters specified, a thermal model is implemented that will determine for the steady-
state operating condition: the power that is dissipated, the pressure drop across the fins, and the exit
temperature, which will allow effectiveness to be computed.

6.3.1 Governing Equations and Correlations

A 1-D model is selected so that variations at each local cross-section can be neglected, and only variations
along the length of the fin are examined. As the fin spacing grows, there will be a larger thermal variation at
each cross-section. But for the spacing examined in this analysis, the 1-D model can be justified by applying
the classic problem of temperature distribution in fully developed duct flow, as derived in White [29]. The
two-dimensional energy equation, which is written as:

ρcpu
∂T

∂x
= k
∂2T

∂y2
, (6.4)

where k is the thermal conductivity of the fluid, cp is the specific heat of the fluid, and u is the velocity. The
x direction is the direction of the flow, and the y direction is normal to the wall, and are defined in figure 6.3.
The aspect ratio of these channels are 10 to 1, so the z-components are neglected. The wall temperature is
known because of the nature of the heating. The flow is symmetric, which implies a Neumann condition at
the center. The temperature variation along the fluid (∂T∂x ) is assumed constant. Therefore, the temperature
profile at a given x location can be found by integrating the energy equation, which reduces to

Tw − T = w2
fin

ρcpu

k

∂T

∂x
(
y

wgap
− y2

w2
gap

) . (6.5)

where Tw is the wall temperature, wfin is the width of the fin, wgap is the fin spacing, and k is the fluid
conductivity. The temperature variation across the channel is 20◦C at the exit for a 10 m/s flow through a
50 micron channel of 700◦C wall temperature. This is small compared to the magnitude of the temperature,
and will be neglected for design purposes.

The model assumes that heat is being generated at a rate set by the electrical model, which is detailed
later. The dissipation is treated as a volumetric heating source within the fin. The heat transfer is computed
by performing an energy balance on differential fin and fluid elements as shown in figure 6.3. The heat is
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Figure 6.3: A) An energy balance is performed on differential elements of the fin and fluid to determine equilib-
rium temperatures. Arrows represent heat transfer paths B) Effective Heater cross-sectional area and
convective area of the full geometry are used despite this being a 1-D analysis.

transferred to the fluid through Newton’s Law of cooling from equation (6.2) and into the up and downstream
portions of the fin through conduction.

In order to enhance the fidelity of the model, and take advantage of the heater symmetry, the heat
transfer analysis is performed for the fin segment shown in figure 6.3b. The channel symmetry plane is the
boundary on both sides of the fin. The conduction area is the full cross-section, and the convection area is
the wetted area outlined. By taking into account the upper and lower surfaces, a closer approximation to
the heater geometry is made.

The energy inputs for both the fin and fluid control volumes obey the following energy balance.

Ėin − Ėout + Ėgen = Ėstored . (6.6)

where Ė is the heat power. Applying this equation to each control volume, the following system results.

−kwAc
d2Tw
dx2

dx+ hPdx(Tw − Tf)− q̇Acdx = 0 (6.7)

ṁcpdTf = Ph(Tw − Tf )dx , (6.8)

where equation (6.7) is defined for the fin, and equation (6.8) is defined for the fluid. The first term in
equation (6.7) is the conduction along the fin. The second term is the convective transfer to the fluid. The
final term is the volumetric heat dissipation. Equation (6.8) is the balance between the energy convected
downstream, on the left-hand side of the equation, and the heat transfer to the wall, on the right hand side.
kw is the fin thermal conductivity. Ac is the fin cross-sectional area that governs conduction through the fin.
P is the perimeter of the channel cross-section that governs the convective heat transfer. h is the convection
coefficient. q̇ is the volumetric heat generated. cp is the coefficient of specific heat. By dividing each
equation through by the differential dx, and cancelling terms, the following system of governing equations
is established:
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d2Tw
dx2

+
hP

kwAc
(Tw − Tf )− q̇

kw
= 0 (6.9)

dTf
dx

=
Ph

ṁcp
(Tw − Tf ) . (6.10)

This coupled system requires three boundary conditions. The fins are assumed to be insulated at each
end, and the inlet fluid temperature is specified. These are formulated as

dTw
dx

∣∣∣∣
x=o

= 0;
dTw
dx

∣∣∣∣
x=L

= 0; Ti = 300K; (6.11)

The equations and boundary conditions can be non-dimensionalized by the inlet temperature (Ti) and
channel height (ho) to simplify the equations to three parameters.

d2Tw
dx2

+ Bi(Tw − Tf )− s∗ = 0 (6.12)

dTf
dx

= St(Tw − Tf) (6.13)

where Bi =
hPh2

o

kwAc
; s∗ =

q̇h2
o

Tikw
; St =

hhoP

ṁcp

As denoted by their symbols, the coefficient of the wall-fluid temperature difference in the fin equation
is a form of the Biot (Bi) number, and in the fluid equation the coefficient of the wall-fluid temperature
difference is a form of the Stanton (St) number. The non-dimensional source term is represented by s∗.

It is important to observe the relevance of each of the non-dimensional parameters. The Biot number
governs the ratio of the conduction along the fin to the convective heat transfer. High Biot numbers combined
with high fin length-to-width aspect ratios result in large temperature differences between the entrance region
and exit region of the fins. This is because the heat transfer in the entrance region is so high that all of the
heat generated locally goes into the fluid, and relies on heat generated downstream to be conducted along
the fin, so it can enter the fluid in the entrance region. The Stanton number plays a similar role, as it governs
the ratio between the convection rate and the advection rate along the fluid. Thus, when Biot number is
low and Stanton number is high, the fins are nearly isothermal. Finally, the source term merely scales the
volumetric heat dissipation, relative to that conducted along the wall. When the ratio of Stanton number to
the source term is high, then the heater effectiveness will be high. This is due to all of the dissipated heat
being carried away by the fluid, which is indicative of a high Stanton number flow.

As mentioned previously, the heat transfer is governed by the fluid mechanics occurring within the
channel. Thus, the convection parameter h is a function of Reynolds number as well as the distance along
the fin the fluid has traveled. The correlation for computing the heat transfer coefficient was developed by
Stephan and is reported by Kakač et al. [46] for developing flow along parallel duct walls. This is computed
from average Nusselt number based on constant temperature walls and Reynolds number based on inlet
velocity:

NuT = 7.55 +
0.024(Pr/X∗)1.14

1 + 0.0358 (Pr)0.81

(X∗)0.64

(6.14)

where

Pr =
µcp
kw

; X∗ =
x

D/2

RePr
; Re =

ρuiwgap/2
µ

; NuT =
hwgap/2
kf

.
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6.3.2 Electrical Model

The source term in the heater model is a function of the volumetric heating occurring within the fin. The
heating occurs because of ohmic dissipation from the current passing through the silicon. The resistivity of
the silicon, however, varies with temperature.

At low temperatures, a pure silicon lattice is a perfect insulator because all of the available electrons are
covalently bonded to the neighboring silicon atoms in the lattice. As the temperature increases, the energy
of the thermal vibrations is high enough to break some of these bonds, creating electron-hole pairs, which are
free to move within the lattice. A hole is the positive charge imbalance left behind once an electron leaves
the valence band. Holes are also charge carriers, and can be conducted through the lattice just as electrons.
These thermally-generated electrons and holes are referred to as intrinsic carriers. The number of intrinsic
carriers (ni) are a function of temperature and can be found from statistical mechanics. This is formulated
in Ashcroft and Mermin [47] as

ni = 4.83× 1021T 3/2e−
EG
2kT , (6.15)

where k is the Boltzman constant of 8.69×10−5eV/K, T is the temperature, and EG is the band gap energy,
which for silicon is 1.12 eV . The electrical conductivity (σ) can be computed as a function of carrier mobility,
and the charge of each carriers by

σ = q[µnn+ µpp] = q[µn + µp]Ni =
1
ρ
, (6.16)

where n and p are the concentration of electrons and holes and µn and µp are their mobilities. The conduc-
tivity is equivalent to the inverse of the resistivity Since the electrons and holes (of charge q) are created
simultaneously, Np = Nn = Ni for an intrinsic conductor . The carrier mobility (µ) quantifies the ease
with which the carriers move through the lattice and decreases with increasing temperature. This, in turn,
decreases the conductivity, and is the basis for the temperature coefficient of resistivity.

Silicon, in the lattice, can be substituted by a dopant atom. Typical dopants are boron (p-type) and
phosphorous (n-type). Boron has one less valence electron than silicon, and thus contributes a hole to the
lattice without a corresponding electron being created. This is termed an acceptor, and the concentration of
acceptor carriers is NA. Phosphorous has one more valence electron that it contributes to the lattice without
a corresponding hole being created. This is termed a donor, and the concentration of donor carriers is ND.
In an extrinsic semiconductor, the carriers are almost entirely from the dopant atoms. Not enough silicon
to silicon bonds have been broken for the intrinsic carrier concentration to be significant. The conduction
is still governed by equation (6.16); however, in a p-type wafer p ≈ NA 
 ni, and the equation can be
reformulated as

σ = qµANA . (6.17)

Therefore, when the temperature of the silicon is low, the conductivity is extrinsic, and is governed by
equation (6.17). As the lattice is thermally excited, and Ni ∼ NA, the semiconductor becomes intrinsic,
and the conductivity is governed by equation (6.16). Figure 6.4 illustrates the variation in resistivity (the
inverse of conductivity) with temperature as measured by Pearson and Bardeen [48]. As the temperature
increases, the resistivity gradually increases due to the mobility reduction. Once the intrinsic carriers become
significant, there is a dramatic reduction in the resistivity. In this model, a p-type doping of 1x1019 atoms/cc
is used because it is the highest doping of commercially available silicon wafers. This results in an intrinsic
temperature of ∼ 700◦C.

Heater Stability

The previously mentioned stability will prevent thermal runaway from occurring in the heater. For gases, the
viscosity increases with temperature. Thus, if a local hotspot occurs, the pressure drop across a particular
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Figure 6.4: Resistance variation with temperature for boron-doped silicon with a doping of 1×1019 carriers/cc [48].
The intrinsic point occurs when the silicon carriers are dominant over the dopant acceptor carriers. This
is the stable point during constant current operation.

channel could increase dramatically thus lowering the heat transfer due to low flow, and ultimately leading
to failure. Such a failure was investigated by Kalamas [49] for particle bed nuclear reactors which is a similar
heat transfer problem to that of the bank of fins, operating at similar Reynolds numbers. He found through
a stability analysis that for a similar temperature rise, the reactor became unstable at Reynolds numbers
based on a particle size of 10. The Reynolds number based on fin diameter (similar to the particle diameter
established by Kalamas) is on the order of 100, and assures the stability of the system. However, the nature
of the fin electrical conductivity due to availability of intrinsic carriers will reduce the power output and
mitigate any instability.

Heat Dissipation

The electrical model would not be complete without an understanding of how current density distribution
affects heat dissipating in the cross-section shown in figure 6.3b. In this figure, the electrodes are located
along the top and bottom branches of the “I” and current passes vertically. To determine the current density,
and hence power dissipation, Laplace’s equation must be solved inside this domain. The governing equation
is

∇2V = 0 , (6.18)

where V is the voltage with respect to ground. The current density (j) is then computed from

j = σE , (6.19)

where σ is the conductivity of the material, and E is the E-field, which is the spatial derivative of voltage
( ∂V∂X ). Ultimately, the volumetric heating is of interest, and can be computed from

P

V
= Ej̇ (6.20)

= σE2 . (6.21)
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Figure 6.5: Contours of power dissipation throughout the domain. The values are symmetric about the centerline
of the fin. Non-dimensional quantities can be converted to dimensional values with equations (6.22)
and 6.21.

In order to understand the relative potential throughout the domain, the governing system is non-
dimensionalized by the applied voltage. This allows the dissipation to computed in the capping wafer, and
the fins. The following relations are a result of the non-dimensionalization.

V ∗ =
V

V o
; E∗ =

Ho

Vo
E; j∗ =

σVo
Ho
E∗; X∗ =

X

Ho
, (6.22)

where Ho is the height of the fin. Once again, symmetry can be applied to the problem, both along the
horizontal and vertical. The planes of symmetry that define the fin become insulated boundary conditions,
and are formulated as

∂V ∗

∂X∗ = 0 , (6.23)

whereas, the boundaries that are in contact with the electrodes are Dirchlet conditions set to the value of
the applied voltage. In the non-dimensionalized system, the boundary conditions are

V ∗ = 1 on the upper surface (6.24)
V ∗ = 0 on the lower surface . (6.25)

A simulation using the Matlab PDE toolbox was used to compute the E-field throughout the domain.
Figure 6.5 shows the volumetric dissipation in the cross-sections of different geometries. The governing
parameter is the relative width of the fin to the channel. This influences the amount of dissipation which
occurs in the capping wafers relative to the fin. In the limiting case, of an infinitely wide channel, the
dissipation would occur entirely in the fin. Conversely, if there were no channel, the dissipation would be
uniform.

For Case A, the dissipation in the capping wafer is 32% of that within the fin. (The E-field in the capping
wafer is 56% of fin; however, the dissipation goes like the E-field squared.) Case B has 20% and case C has
5%. These values are combined to compute the total dissipation within the fin, and are fed directly into the
thermal model as the source term.
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Figure 6.6: Temperature Profiles for a heater with 5 fins 500 microns long, 100 microns wide, and a gap of 50
microns between fins. The governing parameters are Bi = 1.09, S∗ = 0.46, and St = 6.51

6.3.3 Design Studies

Returning to the goal of finding the optimum length that minimizes pressure drop and maximizes effective-
ness, a number of model test cases were run. To best understand the effect of the governing non-dimensional
parameters, let us consider four cases and determine how they drive the solution to the optimum. Fig-
ures 6.6-6.8 depict these temperature profiles for various operating parameters. All cases are operating at a
mass flow rate of 7.87 × 10−6 or 378 sccms. This was chosen to keep the operating power below 10 watts,
and at the same time maintain as high a throat Reynolds number as possible (approximately 550 at this
operating condition).

Figure 6.6 depicts the wall and fluid temperature profiles for a heater with 5 fins 500 microns long, 100
microns wide, and a gap of 50 microns between fins. This results in a heater effectiveness of 99.5% and
a pressure drop of 0.2135 atm. This would be a very reasonable design. The pressure drop is small, and
nearly all of the possible temperature rise is achieved. The governing parameters for this arrangement are
Bi = 1.09, S∗ = 0.46, and St = 6.51.

Figure 6.7 depicts the wall and fluid temperature profiles for a heater with 10 fins 125 microns long,
50 microns wide, and a gap of 50 microns between fins. In this case, the non-dimensional parameters are
Bi = 1.76, S∗ = 1.47, and St = 12.96. This results in a heater effectiveness of 97.02% and a pressure drop
of 0.026 atm. The ratio of the Stanton number to source term has dencreased from the previous case, and
as expected, the effectiveness has dropped, but only by 3%. However, the pressure drop has decreased by a
factor of 10. Thus, this is deemed a much better design due to the higher injected pressure. The fins remain
almost isothermal, and the low cross-section of the fins will increase the electrical resistance, thus driving the
current down. For both cases, the dissipated power is 7.67 Watts, which is set by the flow rate and desired
temperature rise.

The fin gap is kept constant between the two cases for fabrication reasons. The gap should match the
throat diameter, so that a halo mask can be used as described in chapter 4. This will allow a constant
loading to be maintained during etching, and prevent features from distorting.

Figure 6.8 depicts the wall and fluid temperature profiles for a heater with 5 fins 125 microns long,
50 microns wide, and a gap of 50 microns between fins. In this case, the non-dimensional parameters are
Bi = 1.80, S∗ = 2.52, and St = 6.61. This results in a heater effectiveness of 85.1% and a pressure drop of
0.047 atm. By halving the number of fins, the mass flow through a given channel is doubled. This reduces
the temperature rise, as well as, increases the pressure drop. This is realized in the lowest Stanton number
to source term ratio, and the lowest effectiveness, yet. This is clearly not the direction in which the design
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should move.
Finally, the case represented by the surface micromachined resistor shown in figure 6.1 is analyzed. This

would be equivalent to a case with 1 fin. Even with a chamber 7 mm long, the heater effectiveness is
only 90.4% with a pressure drop of 0.014 atm. Thus, using the design with fins, a much more compact
arrangement can be attained with a similar pressure drop.

Table 6.1 details the design space studied and results obtained with the thermal model. The first entry
is the design selected as optimal for the given fabrication and operation.
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Figure 6.7: Temperature Profiles for a heater with 10 fins 125 microns long, 50 microns wide, and a gap of 50
microns between fins. The governing parameters are Bi = 1.09, S∗ = 0.46, and St = 6.51
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Figure 6.8: Temperature Profiles for a heater with 5 fins 125 microns long, 50 microns wide, and a gap of 50 microns
between fins. The governing parameters are Bi = 1.80, S∗ = 2.52, and St = 6.61
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6.3.4 Parasitic losses

While the model presented in the previous section is effective for determining the steady-state temperatures,
it does not consider the losses of heat energy through conduction through the gas supply line, electrical
leads, or the radiation to the environment. Since the heater is to be run at the intrinsic temperature, the
losses can be estimated from Fourier’s Law for the conduction and the Stefan-Boltzman Law for radiation,
which is stated as

q = εσA(T 4
s − T 4

environment) , (6.26)

where A is the surface area, ε is the surface emissivity, σ is the Stefan-Boltzman constant which is 5.67 ×
10−8 W

m2K4 . The surface emissivity of a highly polished surface, such a silicon, is about 0.1. The surface
area of the device is 1.67 cm2. The radiation losses alone could account for 4.1 Watts. The conduction
through the gas injection tube which has a cross-sectional area of 2.55× 10−7m2 and a thermal conductivity
of 17.3 W

mK is 0.1 Watt.
The conduction losses through the leads is a bit more complex since they are carrying current, which

generates heat within the lead. A simple analysis of ohmic heat generated in a differential element, with
known boundary temperatures, can be used to compute the heat loss. This was presented by Martinez-
Sanchez [50]. The heat loss is formulated as

q = Akleadβ
Thot − Tcold cos(βL)

sin(βL)
(6.27)

where

β =
I

A

√
α

klead
, (6.28)

where α is the temperature coefficient of resistivity, which is 6.69× 10−11 Ω−m
K for copper, I is the current, k

is the thermal conductivity which is averaged to 360 W
m2K4 . Over the range of currents 0.5-10 Amps, the heat

loss is 3.2-7.0 per lead. The length of the lead was not optimized since it was constrained by the requirements
of the vacuum chamber and thrust stand. If this lead length is optimized, this could be reduced to 0.2 Watts
per lead, a substantial savings.

The total heat loss for the current required is ∼ 25 watts. This is in addition to the 5.8 Watts required
to operate at the benchmark mass flow rate.
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Pattern 1- Relief etched (5 um) in Top Wafer as
well as into oxide on Device Wafer. Etch hole
in top wafer for gas injection port

Pattern 2 - Protect Fins with Photoresist 
to give halo a 50 um head start of fins

Strip  resist and continue to etch using Oxide
as a mask until center pieces fall out

Begin with <100> Silicon

PECVD 5 microns Oxide

Plasma Etch Resistojet Pattern 
into Oxide (a)

Protect Fin Pattern with Photoresist (b)

DRIE Etch all of nozzle except 
fins to 50 microns

Strip Resist (c)

Continue DRIE until all features 
except fins are through wafer

Strip Oxide

Bond Silicon wafers to upper and 
lower surfaces

Process as shown at 
cross-section A-A'

a)

b)

c)
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Figure 6.9: Fabrication sequence of microresistojet.

6.4 Resistojet Fabrication

With the design selected from the trade study performed on heater geometries, it is fabricated in a similar
fashion to the cold-gas thrusters described in chapter 4. The same etching rules apply in order to achieve
the highest anisotropy possible. However, a new technique must be implemented to achieve the suspended
fins in the settling chamber.

Figure 6.9 illustrates the fabrication sequence required to maintain the integrity of the fins after the
through etch of the nozzle. A halo mask is implemented as before, however, it must be nested so that the
thruster outline is completed before the fins are completely etched through. A nested mask is achieved by
etching the nozzle fin pattern in oxide that is deposited using PECVD. This can be deposited to thickness
up to 40 microns, however, the residual stress results in substantial wafer bowing. Since the selectivity of
the STS etcher of silicon to oxide is about 150:1, 4 microns is sufficient to mask an etch through the wafer.
An anisotropic etch of the oxide with photoresist as the mask can be performed in the MTL using the AME
5000 etcher, and a CHF3 chemistry.

With the pattern now etched in the oxide, the fins can be masked with resist, while the rest of the
pattern is being etched. This etch is performed to a depth between 50 and 100 microns. When the resist is
subsequently stripped and the full pattern etched. A bus bar supporting the fins will remain once the feature
etch is complete. The rest of the lanes will etch completely through and the nozzle and plenum center bodies
will drop out. The final device is illustrated in figure 6.2. The capping wafers are attached through a fusion

111



bond to silicon wafers of the same doping as the thruster wafer. This way, all of the silicon will go intrinsic
at the same temperature, and the resistances will be similar between the upper, middle, and lower surfaces.

The structure is packaged by clamping two copper electrodes to the thruster as shown in figure 6.2b.
The potential difference in the two electrodes will cause current to flow through the fins, and outer chamber
wall. The void on either side of the fins is to create a large resistance so that the current flows preferentially
through the fins and not the surrounding material. As mentioned earlier, this void could be made larger, but
is minimized for the first generation thruster to support clamping. The upper surface has been pre-etched
with a hole, which is aligned with the chamber, so that gas can be injected through the upper surface. The
gas is injected into the hole through a 5 cm length of Kovar tubing which is attached to silicon through the
use of a glass frit. The opposite end of the tubing is brazed to a stainless steel plate. The plate is then
clamped with an O-ring to the same manifold as described in chapter 4. This allows a high temperature gas
interconnect to be achieved.

The greatest difficulty in the fabrication sequence is the nested masking step. As illustrated in chapter 4,
figure 4.2, the passivation step leaves a residual polymer on the sidewalls. When the photoresist mask is
removed and the space between the fins is to be etched, there is residual polymer on the wall intersecting
the chamber etch. This polymer causes a very small sheet of silicon to remain intact and possibly block the
flow between the fins. Figure 6.10 is a scanning electron micrograph of the first attempt at the nested mask.
There is silicon “grass”, which is approximately one-half of the fin height, obstructing the flow path.

It is known that the polymer can burned off with an oxygen plasma, but it requires direct impingement
of the ions. Since the polymer is on the sidewalls, it is difficult to obtain much reduction in the grass with
an intermediate oxygen plasma alone. The silicon etch parameters must be optimized. By increasing the
plasma density and ion energy by increasing the coil power on the etch step, the resulting grass can be
considerably diminished. Figure 6.11 shows the bank of fins etched with the same recipe as before, but with
a coil power of 800 Watts instead of 750 Watts. The grass is nearly eradicated. However, there appears
to be considerable over etching of the fins. Their profile is tapered from top to bottom, and the width is
approximately 15 microns smaller than the design. Figure 6.12 is a SEM of 775 Watt etch, which is half
way between the previous two attempts. This etch yields very small grass height, and yet maintains the
geometry of the features. Such a compromise in power is the result of tailoring the etch recipe to the mask.
The oxygen plasma is still used after the resist strip and prior to the full feature etch for it is still credited
with somewhat improving etch performance.

The etches performed during this fabrication sequence are 491 microns deep as opposed to the cold-gas
nozzles, which were only 308 microns deep. Since the nozzles have larger features (50 micron throats), the
etch must be deeper to maintain a similar exit plane aspect ratio. After fabrication, the nozzle specifications
are: Fin length: 112.5 microns, Throat Width: 65 microns, Expansion Ratio: 8.26:1, Fin width: 41 microns,
Fin Gap: 60.5 microns. The exit plane aspect ratio was 1.01.

The final concern is whether the capping wafer will properly bond to a fin that is only 50 microns wide.
Flexibility in the bus bar as well as the weakness of the thin support could lead to the features not bonding,
or in the worst case, fracture. However, the initial test shows that both 100 micron wide fins, as well as
the 50 micron fins, are bonded to the upper surface, as shown in figure 6.13. If the bond did not occur,
this would preclude current from flowing into the fins, which would be realized as a higher than expected
operating voltage.

112



Figure 6.10: First attempt at the resistojet etch. Grass in between the fins will obstruct flow, and is a result of the
nested mask
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Figure 6.11: Increased coil power during the etch, following an oxygen plasma, has eradicated the grass at the
expense of feature anisotropy

Figure 6.12: Intermediate coil power eliminates the grass and maintains etch anisotropy
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a) 100 micron thick fins b) 50 micron thick fins

Figure 6.13: SEMs of a) 100 micron fins with 50 micron gaps bonded to thesilicon wafer b) 50 micron fins bonded
to the silicon wafer. The bond was successful for both dimensions on all fins. No fractures were
incurred.

6.5 Resistojet Testing

With the silicon micromachined into the geometry of interest, the thruster is to be packaged to interface
with testing equipment. One of the difficulties in working with silicon is making electrical contact. In
general, a p-n junction occurs between the metal lead and silicon, which results in behavior similar to a
diode. In a diode, current does not flow below a threshold voltage. In addition, there can be a large contact
resistance between the atomically smooth silicon surface and the copper electrodes, which will be used to
create the potential difference across the fins. In order to facilitate the copper-silicon interface, a metallic
paste was used to make contact. SilverGoopTM, a product of Swagelok, is designed as a thread lubricant
for high temperature applications (up to 1500◦ F). Its silver base allows current to flow and since it is a
liquid, it fills in the gaps between electrode and silicon. The SilverGoop is applied to the electrodes, which
are clamped onto the die using a ceramic package. The package provides the necessary contact force, and
thermally insulates the thruster from excessive heat losses. The copper leads are held inside ceramic sleeves
to thermally, and electrically isolate them from the surrounding structure. The integrated set-up is depicted
in figure 6.14. The Kovar tubing, which is attached to the silicon via the glass frit is brazed to a stainless
steel backing. The backing is clamped via an O-ring to the manifold previously fabricated for the cold-flow
experiments.

Temperature data is taken with a type-K thermocouple mounted directly to the silicon chip with Silver-
Goop as the adhesive. Since they are operated in series with an identical thermocouple at a known reference
temperature, these thermocouples are accurate to ±4◦C,. The current source is an HP-403a 0-20 VDC
0-120 A Power Supply. The readout on the supply is accurate to 10 milliamps, and 1 millivolt. Mass flow,
pressure, temperature and power settings, as well as thrust, are read by a Keithly multi-channel voltmeter,
and post-processed using Matlab.

6.5.1 Electrical Tests

The first goal was to demonstrate the capabilities of the heater prior to flowing gas through the device. The
design criteria specified in table 6.1 are based on ideal conditions with no heat losses. Based on the required
power, and the fin dimensions, the electrical resistance of the device should be 4.65 Ω. However, since this
is a benchtop test, convective cooling will be significant in addition to those losses analyzed in section 6.3.4.
Figure 6.15 illustrates in a strip-chart format the temperature and power histories of the heater at various
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Ceramic Package

Ceramic encased
copper leads

Gas Supply line
from chip to manifoldThrust Stand mount

Figure 6.14: Integrated thruster testing in vacuum chamber. Copper leads are clamped to nozzle by means of
a ceramic package. Gas is injected through a Kovar tube brazed to the manifold on one end, and
attached to the silicon with a glass frit on the other.

current settings.
The temperature increases at about 25◦C/sec during the initial rise. The temperature then rises to a

steady value over the next 300 seconds. This is due to the increasing power dissipation with temperature.
Once the current was set to 6.06 Amps, sufficient power was dissipated to reach the intrinsic temperature,
and the temperature rose above that point, and subsequently plummeted with the drop in dissipation. It
then increased, and dropped again, repeating the cycle until the steady state was reached. As can be seen
from the figure, even while the current was continually increased, the power dissipation remained constant,
as did the temperature. This is better illustrated in figure 6.16, which is the same data but plotted as
temperature versus current. The current is set, and the temperature increases through increased dissipation
from the change in resistivity of the silicon with temperature. The temperature is flat beyond 6 Amps due
to the constant dissipation. There is still a long period oscillation occurring, which in time will stabilize,
but its amplitude is less than 20 degrees. These figures allow us to experimentally derive the intrinsic
temperature as being between 690 − 710◦C, and demonstrate the ability to stably operate at the intrinsic
temperature. The benchmark assessments of a 900◦C intrinsic temperature were based on the range of
resistivities (0.01 − 0.02 Ω − cm) quoted for these wafers. The lowest value was selected for the analysis
in the first half of the chapter. As it turns out, the higher resistivity was present, and a 700◦C intrinsic
temperature is realized. This coincides to the predicted value for that temperature.

In addition to the uncertainty in the resistivity, there was a deviation from the predicted resistance of
the thruster. It was originally calculated to be 4.65 Ω at temperature, but is experimental determined to be
1.2 Ω. This is partially due to the resistivity being twice the assumed value. But it is also due to current
leakage through other portions of the thruster, other than the fins. If the rest of the current path between
the electrodes is modeled as the shortest distance through the silicon not passing through the fins, we find
that the rest of the thruster has a resistance of one-half of the path through the fins. This increases the
required current by a factor of 5 to achieve the required power dissipation in the fins, which is the same as
the current measured during the heater operation.

One of the first trials was operated in constant voltage mode due to a malfunction in the power sup-
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Figure 6.15: Heater Temperature during the test at various current and dissipated power settings. The time
history plot illustrates transient behavior as well as power and current levels needed to achieve a given
temperatures.

ply. Once the intrinsic point was reached, the resistance decreases exponentially, and dissipated power
increases. This melted the heater and electrodes, which implies a minimum temperature of 1600 K. Thus,
the importance of appropriate power control hardware is emphasized.
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Figure 6.16: Heater temperature as a function of applied current. Once temperature has reached stability, increases
in current do not increase temperature.

6.5.2 Vacuum Chamber Thrust Tests

The newly built thrust stand at MIT is identical to that used in the previous test with the added feature of
velocity damping, which greatly improves the accuracy of the measurements. Though it is sensitive to 0.1
mN, drift in the zero point after calibration or during firing, results in an uncertainty of±0.5 mN. In addition,
the calibration weights are in 3.8 mN increments as compared to the testing at Aerospace corporation, which
was in 9.1 mN increments. This offers a better resolution of any nonlinearities in the calibration.

Mass flow and pressure are read from the same meters used in the benchtop testing in Chapter 5, and are
located in the fluid line outside of the vacuum chamber. In addition, thermocouples are mounted on the chip,
which is assumed isothermal, the electrical lead (approximately 10 cm from the chip), and the gas injection
tubing. This instrumentation will allow the fluid temperature and the thermal losses to be estimated.

Figure 6.17 shows the thruster nozzle exit during heater operation. The manifold is integrated with a
solenoid valve such that the flexible supply line can be charged to a given pressure right up to injection into
the manifold. This allows the change in line flexibility with pressure to be accounted for in the calibration.

The vacuum chamber is approximately 30 m3 and is pumped down with roughing pumps to 50 mTorr.
Cryo pumps are available for achieving 10−6 Torr, but the roughing pumps are sufficient for the thruster
testing.

The testing begins by calibrating the thrust stand with the thruster off, but the line charged to the
specified pressure. The calibration samples ten points at each weight setting, and averages them. The
thruster is then run while it is cold and the thrust response is averaged over 5 minutes. With the damping
and the pressure control available from the regulator, the steady state is reached by the first data point after
actuation (< 5 seconds).

Once the cold flow is run, power is supplied by a current source in 0.25 Amp increments. Each current
setting is run for 7 minutes to obtain an average and allow transients to settle. The chip temperature, in
general, over shoots the steady-state for a given current setting, but equilibrates within 30 seconds.
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Nozzle Chip
(Glowing Red Hot)

Figure 6.17: View of the nozzle opening during heater operation. The thermal deformation of the leads has caused
the ceramic package to rise off of the support. This could potentially lead to frit failure.

The greatest difficulty with the gas flow test was the delicate nature of the Kovar-silicon bond. Thus,
it became readily apparent that the ceramic clamp described earlier was not ideal. Since the gas injection
tube is clamped to the manifold, and the thruster is suspended by the bond to the cantalevered tubing, the
ceramic package must be adequately supported as to not stress the bond. However, the thermal expansion of
the electrical leads, ceramic package, and gas tubing in some cases lead to cracking of the seal, but in most
cases worked properly. For this reason, the thruster was only run to 420◦C for the test results presented
here. An earlier run was taken to the full 700◦C, but began leaking after two thermal cycles. In order to get
multiple data sets, this was limited to the lower temperatures to capture the performance data, and reduce
thermal fatigue.

6.5.3 Thrust Test Results

A steady state average is established for each operating condition, and is depicted in dimensional form in
figure 6.18. The tests are run on an 8.25:1 expansion ratio nozzle with a throat width of 65 microns, and a
nozzle depth of 491 microns. The plenum contains 10 fins of 125 microns in length and 50 micron spacing. For
the cold results, the thrust is reduced by reducing the operating pressure. The results at specified pressures
are achieved by increasing the power dissipation, and subsequently the heater temperature. Ideally, the
thrust is only a function of pressure. Ideal thrust is computed as:

T = ρu2
eAe + PeAe =

P

RT
γRTM2

eAe + PeAe . (6.29)

Since temperature cancels out of the momentum component, the ideal thrust should not vary with
chamber temperature. However, as temperature increase, the Reynolds number decreases, and the exit
Mach number decreases due to the boundary layer blockage effects described in Chapter 5. For this reason,
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Figure 6.18: Performance of the thruster at various thrust levels for both heated and unheated devices. As tempera-
ture increases, thrust should remain constant and Isp will increase. However, increases in temperature
reduce the Reynolds number and cause the thrust to decrease.

the thrust reduces with temperature, and even more importantly, the Isp relative to the theoretical also
decreases significantly. This causes the deviation from vertical, which would be the ideal for this case.

The cold thrust results reduce with chamber pressure at a much slower rate than previously demonstrated,
due to the improved thrust results, and increased exit-plane aspect ratio of 1.01.

The temperature data from the cold runs answers an outstanding question from the numerical analysis.
That is, the silicon remains at the supply temperature during the thruster operation. This justifies the
isothermal wall assumption. As the gas expands through the nozzle, the temperature drops and heat is
transferred from the wall to the flow. This will cause the chip to lose energy and lower the wall temperature.
However, the amount of energy lost from the chip is small compared to the heat capacity of the silicon and
support package. Therefore nozzle is receiving enough heat from the external structure to maintain the chip
temperature constant for the duration of the testing.

Figure 6.18 is evidence that viscous effects are causing the thrust and Isp performance to deviate from the
theoretical. Therefore, if we normalize the data by the Reynolds number as previously shown in Chapter 5,
the viscous effects become apparent. Figure 6.19 shows the mass flow efficiency for the Reynolds numbers
at the two operating pressures tested. The Reynolds number is still defined as before in equation (2.4), but
the properties (such as viscosity) are allowed to vary with temperature. Since there is similarity occurring
within the nozzles, the efficiency should be consistent with Reynolds number for different pressures as well
as temperature. Figure 6.19 shows that this is, in fact, the case for a comparison with the previous cold
runs and the current hot runs. Since the boundary layers develop at the same rate for the same Reynolds
numbers, the efficiency decreases with Reynolds in the same fashion. There is some deviation at the lowest
Reynolds numbers between the cold run and the hot runs. This is on the order of 5%. The accuracy of the
measurements is 2% at this flow rate. Also, the accuracy of the temperature information would create a
100 point uncertainty in the Reynolds number as well as an additional 2% change in the Cd. Therefore, the
difference in the hot and cold data is within the uncertainty of the measurements, and the different nozzles
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Figure 6.19: Coefficient of Discharge variation with Reynolds number for heated cases in comparison to previous
experimental runs of the old nozzle design which are unheated.

compare well when normalized by the similarity parameter.
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Figure 6.20: Thrust Efficiency variation with Reynolds number for heated cases in comparison to previous experi-
mental runs of the old nozzle design which are unheated
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Figure 6.21: Isp Efficiency variation with Reynolds number for heated cases in comparison to previous experimental
runs of the old nozzle design which are unheated. This, along with figures 6.19 and 6.20, verify that
Reynolds number is the governing similarity parameter.
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Figure 6.22: Thrust Efficiency variation with Reynolds Number for the 8.26:1 nozzle geometry. This is compared
to a 2-D CFD simulation with endwall corrections. Maximum overprediction is 13%
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Figure 6.23: Isp Efficiency variation with Reynolds Number for the 8.26:1 nozzle geometry. This is compared to a
2-D CFD simulation with endwall corrections. The maximum overprediction is 13%
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The consistency between hot and cold performance parameters is again evident in figure 6.20, which
depicts the thrust efficiency variation with Reynolds number. The uncertainty in the measurement is ±5%.
Once again, the uncertainty in the temperature leads to an uncertainty in the Reynolds number that could
account for the variation in the data. Similarly, this trend is reflected in the Isp efficiency found in figure 6.21.
Both of these figures are also evidence that the efficiencies do not drop off nearly as fast as found in the
first set of runs of the cold nozzle in Chapter 5, due to the improved thrust measurements and larger exit-
plane aspect ratio. The thrust and Isp efficiencies for the 8.26:1 area ratio nozzle are compared to the 2-D
CFD simulations with endwall corrections in figures 6.22-6.23. The maximum overprediction of the thrust
and Isp efficiencies is 13%. Though the predictions are outside the uncertainty of the measurement, it is
understood that the corrections merely provide a first approximation of the endwall boundary layers. In
addition, there are breakdowns in the assumptions of equilibrium flow and exit-plane extrapolation that can
lead to significant frozen and flow divergence losses.

6.5.4 Overall Heated Thruster Assessment

The fluid flow in the heated thruster performs as expected. The efficiencies scale with Reynolds number as
they did with the cold-gas tests. In dimensional numbers, the Isp was continually increasing with chamber
temperature despite the reduction in Isp efficiency.

Though the propulsion system operates as expected at a given temperature, the amount of power required
to reach that temperature is significantly higher than predicted. This is to be expected since the initial
modeling was performed without thermal losses. Initial estimates for parasitic losses in section 6.3.4 assumed
that the heat lost by radiation and conduction would occur on a surface area the size of the die. As it turns
out, the ceramic package becomes much hotter than initially expected and loses heat due to conduction
to the thrust stand, as well as increased radiation losses. Figure 6.24 depicts the variation of power input
to achieve thruster temperatures for both runs. The amount of energy required to heat the fluid to the
operating temperature is also indicated on the graph. The difference between this calculation and the actual
power is the loss at a given temperature. These losses are within 1.8 Watts of the predicted losses at the
highest power setting, which is within the uncertainty of the measurements. This indicates that all of the
heat loss is accounted for, and is dominated by the conduction through the power leads (13.6 Watts at the
highest power).

The propulsive efficiency is used to evaluate the overall performance of the device. It is computed as

ηprop =
1
2
T 2

ṁ

1
2

T 2
ideal

ṁideal
+ Pinput

(6.30)

where the thrust squared divided by ṁ represents the thrust power. The propulsive efficiency, therefore,
represents the efficiency of the conversion of electrical power and stored energy as pressure to thrust power.
Figure 6.25 illustrates the variation of this efficiency with Reynolds number. Since Reynolds number is
reduced by increasing temperature in this case, the thermal gradients and losses are low at high Reynolds
numbers. In this region, the efficiency is dominated by the fluid losses due to viscosity. As temperature is
increased, and subsequently the Reynolds number decreases, the thermal losses become larger, thus lowering
the overall efficiency. There is also an increase in the viscous losses at the lower Reynolds number which
accounts for about 40% of the inefficiency, whereas the remainder is due to thermal losses.

A majority of the thermal loss is into the leads. There is a lead length which offers the optimal trade-off
between power dissipated in the lead, and heat conducted along the lead, and is derived in the notes by
Martinez-Sanchez [50]. It was not possible to operate at this length because of the constraints of the vacuum
chamber, and thrust stand. If the length is optimized, an improved performance, plotted as least losses in
figure 6.25, can be achieved.

Based on the raw performance numbers, as well as the efficiencies, it is possible to assess whether or not
it is worth implementing electrothermal augmentation at this scale. From the performance numbers, the Isp
was continually increasing with thruster temperature. In addition, the thrust was well within the desirable
range for microsatellite applications. However, the power consumption is still high. Without losses, 5.8 Watts
is required to run at the intrinsic temperature, which is near the total power produced by a microspacecraft.
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However, the thrusters are run in short bursts, and the nozzles come up to temperature quickly. Thus,
this power is used for only a limited amount of time, and would allow this power requirement to be met
on an intermittent basis. With a proper operations plan, the thrusters could easily be incorporated into a
microsatellite for station keeping, but probably not for attitude control unless it is a low duty cycle. One
such relationship often used by mission planners is the variation in efficiency with Isp as show in figure 6.26.
This shows the price in power, in terms of efficiency, for operating at a higher Isp.

The losses can be considerably reduced by fabricating the device with the capability of regeneratively
cooling the thruster with the propellant, and bringing the outer wall temperature down. However, the losses
are dominated by the conduction through the leads, which can be significantly reduced by implementing
the optimal lead length. Both of these oculd be accomplished if the gas lead was the electrical lead. The
conduction losses could drop by 98% for the optimal length.

With a proper package and electrical interfaces, the efficiency at the lowest Reynolds numbers could be
increased to above 40%. This would require the device be fabricated with a smaller throat to lower the mass
flow (and power) for a given thrust. In addition, the optimal lead length as well as smaller surface area
for the nozzle should be used. A device with 40% efficiency with an Isp of over 100 seconds would offer a
significant advantage over the cold microthruster or a conventionally machined device of similar thrust.
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power versus propellant trade-off of the thruster.
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6.6 Summary

By increasing the chamber energy, the amount of mass flow required to achieve a thrust level is reduced.
This decreases the amount of propellant required during a mission, and subsequently reduces the satellite
mass. The following is a summary of the analysis and testing reported in this chapter:

• By increasing the heat transfer to the fluid through fins present in the chamber, device length and
pressure drop in the chamber can be minimized.

• By running the entire chip at the operating temperature, fabrication is simplified with very little loss
in performance.

• The optimal nozzle geometry of interest is a bank of 10 fins spaced 50 microns apart, and 125 microns
long for the benchmarked flow rate of 350 sccms.

• Heater test demonstrate stable operation at the intrinsic point when powered in constant current mode.
• Thrust results demonstrate an Isp of 93 seconds for a wall temperature of 419◦C. The 18.6 watts of
power is required to reach these conditions. This results in a propulsive efficiency of 17%.

• Thrust and Isp efficiency exhibit the same variation with Reynolds number as the computational
simulations. The simulations, however, underpredict boundary layer thicknesses, and subsequently
overpredict the efficiencies by 13%.
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Chapter 7

Conclusions and Recommendations

From the outset of this research, the task has been to demonstrate the miniaturization of the propulsion sys-
tem by incorporating Microelectromechanical systems. Components that were amenable to microfabrication
were identified. This was accomplished by establishing the capabilities of microfabrication technologies, and
assessing the operating parameters required to achieve the optimum performance. Since the performance of
a propulsion system is a function of the momentum exchange of the pressurized gas, the nozzle was chosen
as the focus of this work, in order to assess the capabilities of a truly micropropulsion system.

This work has confirmed the performance variation of the nozzles is strictly a function of the Reynolds
number. As shown analytically, the operating Reynolds number for a given thrust can be increased by
fabricating the throat as small as possible, and operating at a higher pressure. This lowers thrust, while
reducing viscous losses. The Reynolds number can be used to gauge the blockage created by the boundary
layers, and the subsequent reduction of effective area ratio of the nozzle due this blockage. This work has
established that by operating the nozzles at Reynolds numbers above 1500, thrust and Isp efficiencies above
80% can be achieved. Below this number, viscous effects rapidly increase, driving the performance down. In
addition, the low operating pressure results in high relaxation times preventing the gas from obtaining full
equilibrium in the flow.

By optimizing the operating point for the deep reactive ion etching of silicon, nozzles of variable geometry
and minimum features of 18 microns were created. Flexibility in the definition of the nozzle geometry allows
an arbitrary expansion ratio to be set, and the fabrication of contoured features to guard against separation.
The first generation nozzles were limited to exit-plane aspect ratios of less than 1. This greatly increased
the influence of the endwall boundary layers on performance, due to the blockage they create. At the lowest
Reynolds numbers, the effective area ratio was reduced to less than one. The most recent nozzle designs
have larger aspect ratios, and the influence of endwall blockage is greatly reduced.

The testing has demonstrated a cold gas Isp of 66 seconds at a thrust level of 10 mN. This is higher
than previous microdevices, or conventionally-machined cold-gas propulsion systems of this thrust level. By
simultaneously etching fins into the plenum during fabrication, which serve as resistors to dissipate heat, an
Isp of 83 seconds at a thrust level of 12 mN was demonstrated for 420◦C chamber temperature. Though
the thermal losses were substantial, the fluid performance is as expected, and can be improved with better
insulation methods, most notably, the reduction in lead length. The MEMS community is currently lacking
fast-acting microvalves capable of high pressure sealing. However, standard small valves have actuation times
of a few milliseconds [2]. This would create an Ibit of the order of 30µNs. Initial studies at JPL indicate
that Ibit < 15µNs for control authority of less than 10−5rad/sec.

7.1 Impact on Propulsion Technologies

With the demonstrated performance enhancements over current technologies, this work serves as a driver
for further microcomponent development. It shows that the nozzle-plenum system can be fabricated and
operated in a device less than 10 grams. By operating the devices for hours without failure, we have dispelled
the concerns of failure due to contamination. All of this should serve as a motivation for the development
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of microvalves to create a truly integrated propulsion system. In addition, benchtop tests demonstrated
700◦C temperatures are achievable, and would permit an Isp of 110 seconds after viscous losses. This should
encourage further investigation into on-chip insulation to reduce thermal losses.

7.2 Impact on MEMS

This work significantly contributed to the improvement of DRIE performance through recipe optimization.
A variable geometry flow feature was fabricated with high anisotropy. It also established a method for
creating a bulk-micromachined heater for enhancing heat transfer to a flow, and simultaneously providing
a stable operating temperature at the intrinsic point. This will prevent thermal runaway from occurring in
gas systems, where the viscosity increases with temperature.

7.3 Recommendations for Future Work

Since it has been established that the performance of these systems is dominated by viscous effects, and that
they can be mitigated by operating at a higher Reynolds number, the nozzle throat area should be reduced
further to achieve higher performance at the lower thrust levels tested. This can be accomplished with the
recent improvements of DRIE and photolithography, which maintain a 10 micron trench to 400 micron etch
depth. This would double the operating Reynolds number.

In addition, the boundary layer development can be reduced by decreasing the nozzle length. By relying
upon the loading effect of the etcher, nozzles could be created with shallower throats, and diverging exit
sections, lending an element of three dimensionality to the etch. This will serve to reduce the throat area
(hence driving up the Reynolds number for a given thrust), and increasing the expansion ratio for a given
length. Both of these schemes will decrease the viscous effects significantly, and allow a cold Isp of greater
than 60 seconds for thrusts of 1 mN and possibly less.

It is realized that the devices developed in this work can be further optimized to improve performance.
Many suggestions have been mentioned throughout this work, and are summarized here.

• As mentioned above, the nozzle throat can be reduced through a proper implementation of the loading
effect to achieve a 3-dimensional nozzle expansion. This will also reduce the boundary layer develop-
ment length for a given area ratio.

• The microresistojet could use the gas lead as the electrical lead to minimize conduction losses as well
as regeneratively heat the propellant.

• If the thruster is run a pulsed fashion, on chip insulation may be beneficial. This would reduce heat
losses locally.

• Larger amounts silicon in the thruster plane can be removed to lower the thermal transient. This
could be replaced with a honeycomb pattern to improve integrity while minimizing mass and forcing
the electrical current path through the fins.

• A lower molecular weight propellant could be implemented to improve specific impulse. A higher
density liquid propellant could be used to make this a vaporizing liquid microthruster.
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Appendix A

Non-Dimensionalization

The Finite-Volume Navier-Stokes simulation utilizes non-dimensional parameters for its computations. All
parameters are non-dimensionalized by the the throat (subscript t) conditions. These variables are defined
by:

x =
x∗

D∗
t

; y =
y∗

D∗
t

; u =
u∗

a∗t
; v =

v∗

a∗t
; t =

t∗
D∗

t

a∗
t

(A.1)

ρ =
ρ∗

ρ∗t
; p =

p∗

ρ∗a2∗
t

; e =
e∗
a2

∗
t

; Re =
ρ∗a∗tD

∗
t

µ∗t
; Pr =

cpt
∗µ∗t
k∗t

(A.2)

where Dt is the throat width and at is the speed of sound. All properties with an asterisk are dimensional
quantities. All state variable values are based on the isentropic definition at Mach 1. The following are
relations of total conditions in the plenum to the sonic condition:

P

Po
= 0.5283;

ρ

ρo
= 0.6339;

T

To
= 0.8333; (A.3)
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Appendix B

Code Listing

The following pages are a listing of ns.c, a C-program used to simulate the viscous flow through a converging-
diverging nozzle. This version uses extrapolation to determine the boundary values throughout the entire
exit plane, though the hooks are still in place to specify exit pressure in the subsonic portion of the boundary
layer.

In order to run the code from an initial guess, an input file containing the grid x and y dimensions,
number of iterations, the operating Reynolds number, chamber pressure, temperature, and throat diameter
needs to be created. These values specify the operating conditions and the dimensional parameters that are
used to vary the gas properties with temperature and pressure. In addition to the input file, two grid files
of the x and y grid point locations for each point in row i and column j.

The code can be run from the initial condition of Quasi 1-D flow with a parabolic patch to wall conditions,
or from a previous solution by RESTART. All constants are specified in the initial define commands, such as
artificial viscosity of both first and second order (AV4 and AV2), gas constants such as R, Molecular Weight
(MW), and Prandtl Number (PR), and code operation parameters, like the time step safety factor.

The code is controlled through Main, and following subroutines perform the specified operations:

Init Vars: Initializes the state vector for each grid point
Calc I step: Computes initial time step for the artificial viscosity for first iteration
IFlux: Calculates the invisicid fluxes based on the state vector
VFlux: Calculates the viscous fluxes based on the state vector, including artificial viscosity
Cell Areas: Computes the area of each cell. This is used for weighting the residual for each timestep.
IFLUX: Computes intermediate value of state vector for each stage of the Runge-Kutta timestepping.
FUpdate: Corrects the state vector based on the final stage of the time step.
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;
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c
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;
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;
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c
t
 
l
o
c
a
l
e
{

 
 
d
o
u
b
l
e
 
u
,
l
;
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;
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c
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f
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s
t
r
u
c
t
 
p
o
i
n
t
 
*
*
g
r
i
d
)
;

v
o
i
d
 
B
a
c
k
d
o
o
r
(
)

{  
 
s
q
u
i
t
_
f
l
a
g
=
1
;
 
 

 
 
s
i
g
n
a
l
(
S
I
G
Q
U
I
T
,
B
a
c
k
d
o
o
r
)
;
 

} /
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
M
A
I
N
 
 
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 
 

m
a
i
n
(
)

{  
 
i
n
t
 
n
_
c
n
d
s
,
 
n
_
r
n
d
s
,
 
i
r
,
 
i
t
=
0
,
i
j
,
i
i
,
 
t
s
t
e
p
s
,
i
c
,
i
v
,
p
n
t
;

 
 
f
l
o
a
t
 
b
_
r
a
d
=
0
.
0
,
c
l
r
n
c
,
r
e
y
n
o
,
f
r
e
s
x
,
f
r
e
s
y
,
o
l
d
r
e
s
i
d
u
a
l
=
8
8
8
8
,
t
i
m
e
=
0
,

 
 
*
*
t
s
t
e
p
,
c
d
1
,
c
d
2
;

 
 
f
l
o
a
t
 
c
d
3
,
c
d
4
,
c
d
5
,
c
d
6
,
c
d
7
,
c
d
8
,
A
t
,
i
n
v
t
h
r
,
 
M
i
e
;

 
 
f
l
o
a
t
 
t
o
t
t
,
t
o
t
p
,
t
h
r
t
D
,
 
r
e
s
m
=
0
.
0
;

 
 
d
o
u
b
l
e
 
n
d
_
a
n
g
l
r
_
s
e
p
=
0
.
0
;

 
 
s
t
r
u
c
t
 
n
o
d
e
 
*
*
s
t
a
t
e
,
 
*
*
i
s
t
a
t
e
,
 
*
f
f
;

 
 
s
t
r
u
c
t
 
f
l
u
x
 
*
*
i
f
l
u
x
,
 
*
*
v
f
l
u
x
;
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2
 
 
s
t
r
u
c
t
 
p
o
i
n
t
 
e
c
c
t
r
y
,
 
*
*
g
r
i
d
;

 
 
s
t
r
u
c
t
 
a
_
c
e
l
l
 
*
*
a
r
e
a
;

 
 
s
t
r
u
c
t
 
l
o
c
a
l
e
 
*
t
e
,
 
*
t
s
,
 
*
n
e
,
 
*
n
s
;

 
 
F
I
L
E
 
*
f
p
o
,
 
*
f
p
t
,
 
*
f
p
s
;

 
 
 
 
s
i
g
n
a
l
(
S
I
G
Q
U
I
T
,
B
a
c
k
d
o
o
r
)
;

 
 
 
 
/
*
*
*
*
 
G
e
t
 
g
r
i
d
 
d
e
n
s
i
t
y
 
p
a
r
a
m
e
t
e
r
s
 
*
*
*
*
/

 
 
f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
"
 
N
u
m
b
e
r
 
o
f
 
N
o
d
e
s
 
i
n
 
t
h
e
 
x
-
d
i
r
e
c
t
i
o
n
:
 
"
)
;

 
 
s
c
a
n
f
 
(
"
%
d
"
,
&
n
_
c
n
d
s
)
;

 
 
f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
"
 
N
u
m
b
e
r
 
o
f
 
N
o
d
e
s
 
i
n
 
t
h
e
 
y
-
d
i
r
e
c
t
i
o
n
:
 
"
)
;

 
 
s
c
a
n
f
 
(
"
%
d
"
,
&
n
_
r
n
d
s
)
;

 
 
/
*
*
*
*
 
G
e
t
 
f
l
o
w
 
p
a
r
a
m
e
t
e
r
s
 
*
*
*
*
/

 
 
f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
"
 
T
i
m
e
s
t
e
p
s
:
 
"
)
;

 
 
s
c
a
n
f
 
(
"
%
d
"
,
&
t
s
t
e
p
s
)
;
 

 
 
f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
"
 
R
e
y
n
o
l
d
s
 
N
u
m
b
e
r
 
B
a
s
e
d
 
o
n
 
T
h
r
o
a
t
:
 
"
)
;

 
 
s
c
a
n
f
 
(
"
%
l
f
"
,
&
r
e
y
n
o
)
;

 
 
f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
"
 
P
l
e
n
u
m
 
P
r
e
s
s
u
r
e
:
 
"
)
;

 
 
s
c
a
n
f
 
(
"
%
l
g
"
,
&
t
o
t
p
)
;

 
 
f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
"
 
P
l
e
n
u
m
 
T
e
m
p
e
r
a
t
u
r
e
:
 
"
)
;

 
 
s
c
a
n
f
 
(
"
%
l
f
"
,
&
t
o
t
t
)
;

 
 
f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
"
 
T
h
r
o
a
t
 
D
:
 
"
)
;

 
 
s
c
a
n
f
 
(
"
%
l
g
"
,
&
t
h
r
t
D
)
;

 
 
f
p
r
i
n
t
f
(
s
t
d
e
r
r
,
"
\
n
"
)
;

 
 
/
*
*
*
*
 
A
l
l
o
c
a
t
e
 
m
e
m
o
r
y
 
f
o
r
 
w
o
r
k
i
n
g
 
a
r
r
a
y
s
 
*
*
*
*
/

 
 
g
r
i
d
 
=
 
(
s
t
r
u
c
t
 
p
o
i
n
t
 
*
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
p
o
i
n
t
 
*
)
)
)
;

 
 
g
r
i
d
[
0
]
 
=
 
(
s
t
r
u
c
t
 
p
o
i
n
t
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
n
_
c
n
d
s

 
 
 
 
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
p
o
i
n
t
)
)
)
;

 
 
s
t
a
t
e
 
=
 
(
s
t
r
u
c
t
 
n
o
d
e
 
*
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
n
o
d
e
 
*
)
)
)
;

 
 
s
t
a
t
e
[
0
]
 
=
 
(
s
t
r
u
c
t
 
n
o
d
e
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
n
_
c
n
d
s

 
 
 
 
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
n
o
d
e
)
)
)
;

 
 
f
f
 
=
 
(
s
t
r
u
c
t
 
n
o
d
e
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
n
o
d
e
 
)
)
)
;

 
 
i
s
t
a
t
e
 
=
 
(
s
t
r
u
c
t
 
n
o
d
e
 
*
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
n
o
d
e
 
*
)
)
)
;

 
 
i
s
t
a
t
e
[
0
]
 
=
 
(
s
t
r
u
c
t
 
n
o
d
e
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
n
_
c
n
d
s

 
 
 
 
 
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
n
o
d
e
)
)
)
;

 
 
i
f
l
u
x
 
=
 
(
s
t
r
u
c
t
 
f
l
u
x
 
*
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
f
l
u
x
 
*
)
)
)
;

 
 
i
f
l
u
x
[
0
]
 
=
 
(
s
t
r
u
c
t
 
f
l
u
x
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
n
_
c
n
d
s

 
 
 
 
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
f
l
u
x
)
)
)
;

 
 
v
f
l
u
x
 
=
 
(
s
t
r
u
c
t
 
f
l
u
x
 
*
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
f
l
u
x
 
*
)
)
)
;

 
 
v
f
l
u
x
[
0
]
 
=
 
(
s
t
r
u
c
t
 
f
l
u
x
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
n
_
c
n
d
s

 
 
 
 
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
f
l
u
x
)
)
)
;

 
 
a
r
e
a
 
=
 
(
s
t
r
u
c
t
 
a
_
c
e
l
l
 
*
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
a
_
c
e
l
l
 
*
)
)
)
;

 
 
a
r
e
a
[
0
]
 
=
 
(
s
t
r
u
c
t
 
a
_
c
e
l
l
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
n
_
c
n
d
s

 
 
 
 
 
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
a
_
c
e
l
l
)
)
)
;

 
 
t
s
t
e
p
 
=
 
(
f
l
o
a
t
 
*
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
s
i
z
e
o
f
(
f
l
o
a
t
 
*
)
)
)
;

 
 
t
s
t
e
p
[
0
]
 
=
 
(
f
l
o
a
t
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
n
_
c
n
d
s
*
s
i
z
e
o
f
(
f
l
o
a
t
)
)
)
;

 
 
t
e
 
=
 
(
s
t
r
u
c
t
 
l
o
c
a
l
e
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
c
n
d
s
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
l
o
c
a
l
e
)
)
)
;

 
 
t
s
 
=
 
(
s
t
r
u
c
t
 
l
o
c
a
l
e
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
c
n
d
s
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
l
o
c
a
l
e
)
)
)
;

 
 
n
e
 
=
 
(
s
t
r
u
c
t
 
l
o
c
a
l
e
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
c
n
d
s
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
l
o
c
a
l
e
)
)
)
;

 
 
n
s
 
=
 
(
s
t
r
u
c
t
 
l
o
c
a
l
e
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
c
n
d
s
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
l
o
c
a
l
e
)
)
)
;

 
 
f
o
r
 
(
i
r
=
1
;
 
i
r
<
n
_
r
n
d
s
;
 
i
r
+
+
)
{

 
 
 
 
g
r
i
d
[
i
r
]
 
=
 
g
r
i
d
[
i
r
-
1
]
 
+
 
n
_
c
n
d
s
;

 
 
 
 
s
t
a
t
e
[
i
r
]
 
=
 
s
t
a
t
e
[
i
r
-
1
]
 
+
 
n
_
c
n
d
s
;

 
 
 
 
i
s
t
a
t
e
[
i
r
]
=
 
i
s
t
a
t
e
[
i
r
-
1
]
+
 
n
_
c
n
d
s
;

 
 
 
 
i
f
l
u
x
[
i
r
]
 
=
 
i
f
l
u
x
[
i
r
-
1
]
 
+
 
n
_
c
n
d
s
;

 
 
 
 
v
f
l
u
x
[
i
r
]
 
=
 
v
f
l
u
x
[
i
r
-
1
]
 
+
 
n
_
c
n
d
s
;

 
 
 
 
a
r
e
a
[
i
r
]
 
 
=
 
a
r
e
a
[
i
r
-
1
]
 
 
+
 
n
_
c
n
d
s
;

 
 
 
 
t
s
t
e
p
[
i
r
]
 
=
 
t
s
t
e
p
[
i
r
-
1
]
 
+
 
n
_
c
n
d
s
;

 
 
}

 
 
#
i
f
n
d
e
f
 
M
O
V
I
N
G
_
G
R
I
D

 
 
i
f
l
x
f
a
c
e
 
=
 
(
s
t
r
u
c
t
 
f
l
x
f
a
c
e
 
*
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
s
i
z
e
o
f

(
s
t
r
u
c
t
 
f
l
x
f
a
c
e
 
*
)
)
)
;

 
 
i
f
l
x
f
a
c
e
[
0
]
 
=
 
(
s
t
r
u
c
t
 
f
l
x
f
a
c
e
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
r
n
d
s
*
n
_
c
n
d
s

 
 
 
 
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
f
l
x
f
a
c
e
)
)
)
;

 
 
f
o
r
 
(
i
r
=
1
;
 
i
r
<
n
_
r
n
d
s
;
 
i
r
+
+
)

 
 
 
 
i
f
l
x
f
a
c
e
[
i
r
]
 
=
 
i
f
l
x
f
a
c
e
[
i
r
-
1
]
 
+
 
n
_
c
n
d
s
;

#
e
n
d
i
f

 
 
f
p
o
 
 
=
 
f
o
p
e
n
(
"
x
.
d
a
t
"
,
"
r
"
)
;

 
 
 
 
f
o
r
(
i
j
=
0
;
i
j
<
 
n
_
r
n
d
s
;
 
i
j
+
+
)
{

 
 
 
 
f
o
r
(
i
i
=
0
;
 
i
i
<
 
n
_
c
n
d
s
;
 
i
i
+
+
)
 
{

 
 
 
 
 
 
f
s
c
a
n
f
(
f
p
o
,
 
"
%
l
f
"
,
 
&
g
r
i
d
[
i
j
]
[
i
i
]
.
x
)
;

 
 
 
 
}

 
 
}

 
 
f
c
l
o
s
e
(
f
p
o
)
;

 
 
 
 
 
 
f
p
t
=
f
o
p
e
n
(
"
y
.
d
a
t
"
,
"
r
"
)
;

f
o
r
(
i
j
=
0
;
i
j
<
n
_
r
n
d
s
;
i
j
+
+
)
 
{

 
 
f
o
r
(
i
i
=
0
;
i
i
<
n
_
c
n
d
s
;
i
i
+
+
)
 
{

 
 
 
 
f
s
c
a
n
f
(
f
p
t
,
 
"
%
l
f
"
,
 
&
g
r
i
d
[
i
j
]
[
i
i
]
.
y
)
;

 
 
 
 
 
 
}

} f
c
l
o
s
e
(
f
p
t
)
;

 
 
 
 
 

 
 
p
r
i
n
t
f
(
"
\
n
 
G
r
i
d
 
R
e
a
d
 
C
o
m
p
l
e
t
e
 
%
i
 
%
i
\
n
"
,
n
_
c
n
d
s
,
n
_
r
n
d
s
)
;

#
i
f
d
e
f
 
R
E
S
T
A
R
T

 
 
f
p
s
 
 
=
 
f
o
p
e
n
(
"
t
i
m
e
.
d
a
t
"
,
"
r
"
)
;

 
 
d
o
{

#
i
f
d
e
f
 
U
N
S
T
E
A
D
Y

 
 
 
 
i
f
(
!
(
f
e
o
f
(
f
p
s
)
)
)
{

 
 
 
 
 
 
f
s
c
a
n
f
(
f
p
s
,
 
"
%
i
 
%
l
g
 
%
l
g
 
%
l
g
 
%
l
g
 
%
l
g
"
,
&
i
t
,
&
t
s
t
e
p
[
0
]
[
0
]
,
&
t
i
m
e
,

 
 
 
 
 
&
r
e
s
i
d
u
a
l
,
 
&
c
d
1
,
 
&
c
d
2
)
;

 
 
 
 
}

 
 
 
 

#
e
l
s
e

 
 
 
 
i
f
(
!
(
f
e
o
f
(
f
p
s
)
)
)
{

 
 
 
 
 
 
f
s
c
a
n
f
(
f
p
s
,
 
"
%
i
"
,
&
i
t
)
;

 
 
 
 
 
 
f
s
c
a
n
f
(
f
p
s
,
 
"
%
e
"
,
&
r
e
s
i
d
u
a
l
)
;

 
 
 
 
}

#
e
n
d
i
f

 
 
}
w
h
i
l
e
(
p
n
t
=
g
e
t
c
(
f
p
s
)
 
!
=
E
O
F
)
;

 
 
 
 
 
 
f
c
l
o
s
e
(
f
p
s
)
;

 
 
t
s
t
e
p
s
 
=
i
t
+
t
s
t
e
p
s
;

 
 
f
p
s
 
 
=
 
f
o
p
e
n
(
"
t
i
m
e
.
d
a
t
"
,
"
a
"
)
;

 
 
M
i
e
=
I
n
i
t
_
V
a
r
s
(
n
_
r
n
d
s
,
n
_
c
n
d
s
,
n
d
_
a
n
g
l
r
_
s
e
p
,
g
r
i
d
,
s
t
a
t
e
,
i
f
l
u
x
,
 
v
f
l
u
x
,
 
b
_
r
a
d
,

t
o
t
p
,
 
t
o
t
t
,
 
r
e
y
n
o
,
 
f
f
,
 
t
e
,
 
t
s
,
 
n
e
,
 
n
s
)
;

 
 
A
t
=
(
g
r
i
d
[
n
_
r
n
d
s
-
1
]
[
n
_
c
n
d
s
-
1
]
.
y
-
g
r
i
d
[
0
]
[
n
_
c
n
d
s
-
1
]
.
y
)
;

 
 
i
n
v
t
h
r
=
p
o
w
(
s
t
a
t
e
[
n
_
r
n
d
s
/
2
]
[
n
_
c
n
d
s
-
1
]
.
w
[
1
]
,
2
)
/

 
 
 
 
s
t
a
t
e
[
n
_
r
n
d
s
/
2
]
[
n
_
c
n
d
s
-
1
]
.
w
[
0
]
*
A
t
;
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3
 
 
 
 
L
o
a
d
_
V
a
r
s
(
n
_
r
n
d
s
,
n
_
c
n
d
s
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;
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e
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p
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;
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p
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;
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s
 
 
=
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p
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"
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*
p
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i
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i
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r
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i
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]
[
n
_
c
n
d
s
-
1
]
.
y
)
;

 
 
i
n
v
t
h
r
=
p
o
w
(
s
t
a
t
e
[
n
_
r
n
d
s
/
2
]
[
n
_
c
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]
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i
d
)
;
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p
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i
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i
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;

 
 
p
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r
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,
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)
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i
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i
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c
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n
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i
d
,
s
t
a
t
e
,
t
s
t
e
p
)
;
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c
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n
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,
g
r
i
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;
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u
m
p
_
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n
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r
n
d
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,
n
_
c
n
d
s
,
s
t
a
t
e
,
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o
t
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,
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o
t
t
,
t
h
r
t
D
,
g
r
i
d
)
;

d
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_
I
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r
n
d
s
,
n
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n
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,
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r
i
d
,
s
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a
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f
l
u
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,
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e
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;
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n
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n
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r
i
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u
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r
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U
p
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r
n
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,
n
_
c
n
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,
i
s
t
a
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,
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a
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,
i
f
l
u
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,
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u
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a
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i
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n
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_
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,
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r
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y
n
o
,
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,
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e
,
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n
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;
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r
n
d
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,
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n
d
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r
i
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,
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s
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;
 

 
 
I
U
p
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r
n
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,
n
_
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n
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s
,
i
s
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a
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s
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f
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f
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i
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,
3
,
 
r
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,
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n
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;
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i
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,
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p
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n
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t
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f
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u
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u
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i
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r
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,
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,
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n
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;
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i
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p
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l
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r
e
y
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,
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,
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n
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n
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,
 
r
e
s
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;

 
 
i
t
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;

#
i
f
d
e
f
 
U
N
S
T
E
A
D
Y
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=
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]
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c
d
1
=
m
d
o
t
(
n
_
r
n
d
s
,
n
_
c
n
d
s
,
s
t
a
t
e
,
g
r
i
d
,
1
0
)
;
 

 
 
 
 
 
 
c
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c
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c
d
4
=
m
d
o
t
(
n
_
r
n
d
s
,
n
_
c
n
d
s
,
s
t
a
t
e
,
g
r
i
d
,
7
5
)
;

 
 
 
 
 
 
c
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c
d
6
=
m
d
o
t
(
n
_
r
n
d
s
,
n
_
c
n
d
s
,
s
t
a
t
e
,
g
r
i
d
,
1
5
5
)
;

 
 
 
 
 
 
c
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c
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c
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c
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c
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c
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i
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p
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{
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n
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i
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;

#
e
n
d
i
f

 
 
 
 
 
 
s
q
u
i
t
_
f
l
a
g
 
=
 
0
;

 
 
 
 
 
 
}
 
 

 
 
 
 
 
 

 
 
 
 
}
 
w
h
i
l
e
(
i
t
 
<
 
t
s
t
e
p
s
)
;
 

/
*
w
h
i
l
e
(
r
e
s
i
d
u
a
l
=
=
r
e
s
i
d
u
a
l
 
&
&
 
r
e
s
i
d
u
a
l
>
R
_
M
A
X
)
;
 
*
/

 
p
r
i
n
t
f
(
"
%
d
\
t
%
e
\
n
"
,
i
t
,
r
e
s
i
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i
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i
d
,
t
o
t
t
,
t
o
t
p
,
t
h
r
t
D
,
i
n
v
t
h
r
,
M
i
e
)
;

 
 
 
t
h
i
c
k
(
n
_
c
n
d
s
,
n
_
r
n
d
s
,
s
t
a
t
e
,
g
r
i
d
)
;

 
 
/
*
 
p
r
i
n
t
f
(
"
T
h
e
 
t
o
t
a
l
 
a
x
i
a
l
 
t
h
r
u
s
t
 
i
s
 
%
f
 
a
n
d
 
t
h
e
 
m
a
s
s
 
r
e
s
i
d
u
a
l
 
i
s
 
%
e
 
\
n
"

 
 
,
t
h
,
r
e
s
m
)
;
 
*
/

 
 
 
p
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;
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n
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c
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p
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*
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c
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R
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c
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c
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c
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b
l
2
,
 
i
c
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u
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e
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]
[
2
6
0
]
,
p
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c
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c
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]
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p
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i
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p
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p
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p
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n
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n
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_
c
-
1
]
.
y
-
g
r
i
d
[
n
_
r
-
2
]
[
n
_
c
-
1
]
.
y
)
)
;

 
 
d
t
p
=
s
q
r
t
(
(
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
x
-
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
2
]
.
x
)
*

 
 
 
(
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
x
-
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
2
]
.
x
)
+

 
 
 
(
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
y
-
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
2
]
.
y
)
*

 
 
 
(
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
y
-
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
2
]
.
y
)
)
;

 
 
x
t
=
(
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
x
-
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
2
]
.
x
)
/
d
t
p
;

 
 
y
t
=
(
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
y
-
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
2
]
.
y
)
/
d
t
p
;

 
 
/
*
x
n
=
(
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
x
-
g
r
i
d
[
n
_
r
-
2
]
[
n
_
c
-
1
]
.
x
)
/
d
s
;

 
 
y
n
=
(
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
y
-
g
r
i
d
[
n
_
r
-
2
]
[
n
_
c
-
1
]
.
y
)
/
d
s
;
*
/

 
 
a
l
p
h
=
a
t
a
n
(
(
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
y
-
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
2
]
.
y
)

 
 
 
 
 
/
(
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
x
-
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
2
]
.
x
)
)
;

 
 
i
f
(
a
l
p
h
 
<
 
0
)
{

 
 
 
 
e
p
s
=
3
*
p
i
/
2
+
a
l
p
h
;

 
 
}
e
l
s
e
{

 
 
 
 
e
p
s
=
3
*
p
i
/
2
+
a
l
p
h
;

 
 
}

 
 
 
x
n
=
c
o
s
(
e
p
s
)
;

 
 
 
y
n
=
s
i
n
(
e
p
s
)
;
 

 
 
i
j
a
c
1
=
 
1
/
(
x
t
*
y
n
-
y
t
*
x
n
)
;

 
 
x
s
 
=
 
(
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
x
-
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
2
]
.
x
)
;

 
 
y
s
 
=
 
(
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
y
-
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
2
]
.
y
)
;

 
 
x
e
 
=
 
0
.
5
*
(
3
*
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
x
-
4
*
g
r
i
d
[
n
_
r
-
2
]
[
n
_
c
-
1
]
.
x

 
 
 
 
+
g
r
i
d
[
n
_
r
-
3
]
[
n
_
c
-
1
]
.
x
)
;

 
 
y
e
 
=
 
0
.
5
*
(
3
*
g
r
i
d
[
n
_
r
-
1
]
[
n
_
c
-
1
]
.
y
-
4
*
g
r
i
d
[
n
_
r
-
2
]
[
n
_
c
-
1
]
.
y

 
 
 
 
+
g
r
i
d
[
n
_
r
-
3
]
[
n
_
c
-
1
]
.
y
)
;

 
 
t
s
[
n
_
c
-
1
]
.
u
 
=
 
i
j
a
c
1
*
(
y
n
*
x
s
-
x
n
*
y
s
)
;

 
 
n
s
[
n
_
c
-
1
]
.
u
 
=
 
i
j
a
c
1
*
(
-
y
t
*
x
s
+
x
t
*
y
s
)
;

 
 
t
e
[
n
_
c
-
1
]
.
u
 
=
 
i
j
a
c
1
*
(
y
n
*
x
e
-
x
n
*
y
e
)
;

 
 
n
e
[
n
_
c
-
1
]
.
u
 
=
 
i
j
a
c
1
*
(
-
y
t
*
x
e
+
x
t
*
y
e
)
;
 

 
 

 
 

 
 
 
 
 
 
r
e
t
u
r
n
 
M
i
e
;

} v
o
i
d
 
L
o
a
d
_
V
a
r
s
(
i
n
t
 
n
_
r
,
 
i
n
t
 
n
_
c
,
 
s
t
r
u
c
t
 
n
o
d
e
 
*
*
s
t
a
t
e
,
 
s
t
r
u
c
t
 
f
l
u
x
 
*
*
i
f
l
u
x
,
 

 
 
 
 
 
 
 
s
t
r
u
c
t
 
f
l
u
x
 
*
*
v
f
l
u
x
)

{  
 
i
n
t
 
i
r
,
 
i
c
,
 
i
v
,
 
r
s
t
e
p
,
 
c
s
t
e
p
;

 
 
f
l
o
a
t
 
*
s
t
;

 
 
d
o
u
b
l
e
 
p
,
u
,
v
,
r
h
o
;

 
 
d
o
u
b
l
e
 
*
i
f
l
x
,
 
*
v
f
l
x
;

 
 
F
I
L
E
 
*
f
p
_
r
h
o
,
 
*
f
p
_
p
,
 
*
f
p
_
u
,
 
*
f
p
_
v
;

 
 

 
 
f
p
_
r
h
o
 
=
 
f
o
p
e
n
(
"
r
.
d
a
t
"
,
"
r
"
)
;

 
 
f
p
_
p
 
 
 
=
 
f
o
p
e
n
(
"
p
.
d
a
t
"
,
"
r
"
)
;

 
 
f
p
_
u
 
 
 
=
 
f
o
p
e
n
(
"
u
.
d
a
t
"
,
"
r
"
)
;

 
 
f
p
_
v
 
 
 
=
 
f
o
p
e
n
(
"
v
.
d
a
t
"
,
"
r
"
)
;

 
 

#
i
f
d
e
f
 
D
O
U
B
G
R
I
D

 
 
r
s
t
e
p
 
=
 
c
s
t
e
p
 
=
 
2
;

#
e
l
i
f
 
d
e
f
i
n
e
d
 
D
O
U
B
C
N
D
S

 
 
r
s
t
e
p
=
1
;

 
 
c
s
t
e
p
=
2
;

#
e
l
s
e

 
 
r
s
t
e
p
 
=
 
c
s
t
e
p
 
=
 
1
;

#
e
n
d
i
f
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8
 
 
f
o
r
(
i
r
=
0
;
 
i
r
<
n
_
r
;
 
i
r
+
=
r
s
t
e
p
)
{

 
 
 
 
f
o
r
(
i
c
=
0
;
 
i
c
<
n
_
c
;
 
i
c
+
=
c
s
t
e
p
)
{

 
 
 
 
 
 
s
t
 
=
 
s
t
a
t
e
[
i
r
]
[
i
c
]
.
w
;

 
 
 
 
 
 
f
s
c
a
n
f
(
f
p
_
r
h
o
,
"
%
l
f
"
,
&
r
h
o
)
;

 
 
 
 
 
 
f
s
c
a
n
f
(
f
p
_
u
,
 
 
"
%
l
f
"
,
&
u
)
;

 
 
 
 
 
 
f
s
c
a
n
f
(
f
p
_
v
,
 
 
"
%
l
f
"
,
&
v
)
;

 
 
 
 
 
 
f
s
c
a
n
f
(
f
p
_
p
,
 
 
"
%
l
f
"
,
&
p
)
;

  
 
 
 
 
 
s
t
[
0
]
 
=
 
r
h
o
;

 
 
 
 
 
 
s
t
[
1
]
 
=
 
r
h
o
*
u
;

 
 
 
 
 
 
s
t
[
2
]
 
=
 
r
h
o
*
v
;

 
 
 
 
 
 
s
t
[
3
]
 
=
 
p
/
G
M
A
1
+
0
.
5
*
r
h
o
*
(
u
*
u
+
v
*
v
)
;

 
 
 
 
 

 
 
 
 
 
/
*
*
*
*
 
S
k
i
p
 
a
 
c
o
l
u
m
n
 
i
n
 
d
a
t
a
 
f
i
l
e
s
 
i
f
 
w
e
 
a
r
e
 
c
o
a
r
s
e
n
i
n
g
 
c
i
r
c
u
m
f
.
 
d
i
r
.
 
*
*
*
*
/

#
i
f
 
d
e
f
i
n
e
d
 
H
A
L
F
C
N
D
S
 
|
|
 
d
e
f
i
n
e
d
 
H
A
L
F
G
R
I
D
 
 
 
 
 
 

 
 
 
 
 
 
f
s
c
a
n
f
(
f
p
_
r
h
o
,
"
%
l
f
"
,
&
r
h
o
)
;

 
 
 
 
 
 
f
s
c
a
n
f
(
f
p
_
u
,
 
 
"
%
l
f
"
,
&
u
)
;

 
 
 
 
 
 
f
s
c
a
n
f
(
f
p
_
v
,
 
 
"
%
l
f
"
,
&
v
)
;

 
 
 
 
 
 
f
s
c
a
n
f
(
f
p
_
p
,
 
 
"
%
l
f
"
,
&
p
)
;
 
 
 
 
 
 

#
e
n
d
i
f

 
 
 
 
 
 

 
 
 
 
 
 
/
*
*
*
*
 
Z
e
r
o
 
f
l
u
x
e
s
 
f
o
r
 
f
i
r
s
t
 
i
t
e
r
a
t
i
o
n
 
*
*
*
*
/

 
 
 
 
 
 
i
f
l
x
 
=
 
i
f
l
u
x
[
i
r
]
[
i
c
]
.
w
;

 
 
 
 
 
 
v
f
l
x
 
=
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
;

 
 
 
 
 
 
f
o
r
 
(
i
v
=
0
;
i
v
<
4
;
i
v
+
+
)

i
f
l
x
[
i
v
]
 
=
 
v
f
l
x
[
i
v
]
 
=
 
0
;
 
 
 
 
 
 

 
 
 
 
}
 
 
 
 
 
 
 

 
 
 
 
/
*
*
*
*
 
S
k
i
p
 
a
 
r
o
w
 
i
n
 
d
a
t
a
 
f
i
l
e
s
 
i
f
 
w
e
 
a
r
e
 
c
o
a
r
s
e
n
i
n
g
 
r
a
d
i
a
l
 
d
i
r
e
c
t
i
o
n
 
*
*
*
*
/

#
i
f
d
e
f
 
H
A
L
F
G
R
I
D

 
 
 
 
i
f
(
i
r
<
n
_
r
-
1
)
{

 
 
 
 
 
 
f
o
r
(
i
c
=
0
;
 
i
c
<
n
_
c
;
 
i
c
+
=
c
s
t
e
p
)
{

f
s
c
a
n
f
(
f
p
_
r
h
o
,
"
%
l
f
 
%
l
f
"
,
&
r
h
o
,
&
r
h
o
)
;

f
s
c
a
n
f
(
f
p
_
u
,
 
 
"
%
l
f
 
%
l
f
"
,
&
u
,
&
u
)
;

f
s
c
a
n
f
(
f
p
_
v
,
 
 
"
%
l
f
 
%
l
f
"
,
&
v
,
&
v
)
;

f
s
c
a
n
f
(
f
p
_
p
,
 
 
"
%
l
f
 
%
l
f
"
,
&
p
,
&
p
)
;

 
 
 
 
 
 
}

 
 
 
 
}

#
e
n
d
i
f

 
 
}

 
 
f
c
l
o
s
e
(
f
p
_
r
h
o
)
;

 
 
f
c
l
o
s
e
(
f
p
_
p
)
;

 
 
f
c
l
o
s
e
(
f
p
_
u
)
;

 
 
f
c
l
o
s
e
(
f
p
_
v
)
;

} /
*
~
~
~
~
 
T
h
i
s
 
f
u
n
c
t
i
o
n
 
i
n
t
e
r
p
o
l
a
t
e
s
 
d
a
t
a
 
f
r
o
m
 
a
 
c
o
a
r
s
e
 
g
r
i
d
 
o
n
t
o
 
a
 
f
i
n
e
 
g
r
i
d
 
~
~
*
/

v
o
i
d
 
D
g
r
i
d
_
I
n
t
e
r
p
o
l
a
t
e
(
i
n
t
 
n
_
r
,
 
i
n
t
 
n
_
c
,
 
s
t
r
u
c
t
 
n
o
d
e
 
*
*
s
t
a
t
e
,
 

 
 
 
 
 
 
 
s
t
r
u
c
t
 
f
l
u
x
 
*
*
i
f
l
u
x
,
 
s
t
r
u
c
t
 
f
l
u
x
 
*
*
v
f
l
u
x
)

{  
 
i
n
t
 
i
r
,
i
c
,
i
v
;

 
 
d
o
u
b
l
e
 
*
i
f
l
x
,
*
v
f
l
x
;

 
 
/
*
*
*
*
 
I
f
 
w
e
 
a
r
e
 
d
o
u
b
l
i
n
g
 
b
o
t
h
 
r
a
d
i
a
l
 
a
n
d
 
c
i
r
c
u
m
f
e
r
e
n
t
i
a
l
 
n
o
d
e
s
,
 
f
i
r
s
t
 
f
i
l
l

 
 
 
 
g
a
p
s
 
i
n
 
r
a
d
i
a
l
 
d
i
r
e
c
t
i
o
n
 
o
n
 
p
a
r
t
i
a
l
l
y
 
f
i
l
l
e
d
 
c
o
l
u
m
n
s
 
b
y
 
i
n
t
e
r
p
o
l
a
t
i
n
g

 
 
 
f
r
o
m
 
r
o
w
s
 
a
b
o
v
e
 
a
n
d
 
b
e
l
o
w
 
e
m
p
t
y
 
p
o
s
i
t
i
o
n
 
*
*
*
*
/

#
i
f
d
e
f
 
D
O
U
B
G
R
I
D

 
 
f
o
r
(
i
r
=
1
;
i
r
<
n
_
r
-
1
;
i
r
+
=
2
)

 
 
 
 
f
o
r
(
i
c
=
0
;
i
c
<
n
_
c
;
i
c
+
=
2
)

 
 
 
 
 
 
f
o
r
(
i
v
=
0
;
i
v
<
4
;
i
v
+
+
)

s
t
a
t
e
[
i
r
]
[
i
c
]
.
w
[
i
v
]
=
0
.
5
*
(
s
t
a
t
e
[
i
r
-
1
]
[
i
c
]
.
w
[
i
v
]
+
s
t
a
t
e
[
i
r
+
1
]
[
i
c
]
.
w
[
i
v
]
)
;

#
e
n
d
i
f

 
 
 
 
/
*
*
*
*
 
F
i
l
l
 
i
n
 
m
i
s
s
i
n
g
 
p
o
r
t
i
o
n
s
 
o
f
 
r
o
w
s
 
b
y
 
i
n
t
e
r
p
o
l
a
t
i
n
g
 
f
r
o
m
 
c
o
l
u
m
n
s

 
 
 
 
t
o
 
t
h
e
 
l
e
f
t
 
a
n
d
 
r
i
g
h
t
 
o
f
 
e
m
p
t
y
 
p
o
s
i
t
i
o
n
 
*
*
*
*
/

 
 
f
o
r
(
i
r
=
0
;
i
r
<
n
_
r
;
i
r
+
+
)
{

 
 
 
 
f
o
r
(
i
c
=
1
;
i
c
<
n
_
c
-
1
;
i
c
+
=
2
)

 
 
 
 
 
 
f
o
r
(
i
v
=
0
;
i
v
<
4
;
i
v
+
+
)

s
t
a
t
e
[
i
r
]
[
i
c
]
.
w
[
i
v
]
=
0
.
5
*
(
s
t
a
t
e
[
i
r
]
[
i
c
-
1
]
.
w
[
i
v
]
+
s
t
a
t
e
[
i
r
]
[
i
c
+
1
]
.
w
[
i
v
]
)
;

 
 
 
 
f
o
r
(
i
v
=
0
;
i
v
<
4
;
i
v
+
+
)

 
 
 
 
 
 
s
t
a
t
e
[
i
r
]
[
i
c
]
.
w
[
i
v
]
=
0
.
5
*
(
s
t
a
t
e
[
i
r
]
[
i
c
-
2
]
.
w
[
i
v
]
+
s
t
a
t
e
[
i
r
]
[
0
]
.
w
[
i
v
]
)
;
 

 
 
}

 
 

 
 
/
*
*
*
*
 
I
n
i
t
i
a
l
i
z
e
 
f
l
u
x
e
s
 
f
o
r
 
f
i
r
s
t
 
i
t
e
r
a
t
i
o
n
 
*
*
*
*
/

 
 
f
o
r
(
i
r
=
0
;
i
r
<
n
_
r
;
i
r
+
+
)

 
 
 
 
f
o
r
(
i
c
=
0
;
i
c
<
n
_
c
;
i
c
+
+
)
{

 
 
 
 
 
 
i
f
l
x
 
=
 
i
f
l
u
x
[
i
r
]
[
i
c
]
.
w
;

 
 
 
 
 
 
v
f
l
x
 
=
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
;

 
 
 
 
 
 
f
o
r
 
(
i
v
=
0
;
i
v
<
4
;
i
v
+
+
)

i
f
l
x
[
i
v
]
 
=
 
v
f
l
x
[
i
v
]
 
=
 
0
;

 
 
 
 
}

}
 
 
 
 
 
 
 

/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
I
n
i
t
i
a
l
 
T
i
m
e
s
t
e
p
 
 
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 
 

/
*
~
~
~
~
 
T
h
i
s
 
f
u
n
c
t
i
o
n
 
c
a
l
c
u
l
a
t
e
s
 
a
n
 
i
n
i
t
i
a
l
 
t
i
m
e
 
s
t
e
p
 
(
n
e
e
d
e
d
 
b
y
 
t
h
e
 
a
r
t
i
f
i
c
i
a
l
 

 
 
v
i
s
c
o
s
i
t
y
 
t
e
r
m
s
)
 
f
o
r
 
t
h
e
 
f
i
r
s
t
 
i
t
e
r
a
t
i
o
n
 
~
~
~
~
*
/

v
o
i
d
 
C
a
l
c
_
I
_
T
S
t
e
p
(
i
n
t
 
n
_
r
,
 
i
n
t
 
n
_
c
,
 
s
t
r
u
c
t
 
p
o
i
n
t
 
*
*
g
r
i
d
,
 
s
t
r
u
c
t
 
n
o
d
e
 
*
*
s
t
a
t
e
,

 
 
f
l
o
a
t
 
*
*
t
s
t
e
p
)

{  
 
i
n
t
 
i
r
,
i
c
,
i
c
p
1
,
i
c
m
1
,
i
c
m
2
,
i
c
p
2
;

 
 
f
l
o
a
t
 
u
,
v
,
u
_
h
a
t
,
v
_
h
a
t
,
r
h
o
,
p
,
a
,
d
x
d
s
,
d
x
d
n
,
d
y
d
s
,
d
y
d
n
,

 
 
 
 
R
e
_
x
,
R
e
_
y
,
t
,
*
w
,
j
a
c
,
a
_
t
e
m
p
;

 
 
s
t
r
u
c
t
 
p
o
i
n
t
 
*
g
r
p
1
,
 
*
g
r
,
 
*
g
r
p
2
,
 
*
g
r
m
1
,
 
*
g
r
m
2
;
 

 
 

 
 
t
s
t
e
p
[
0
]
[
0
]
 
=
 
8
8
8
8
;

 
 
f
o
r
(
i
r
=
0
;
i
r
<
n
_
r
-
1
;
i
r
+
+
)
{

 
 
 
 
g
r
p
1
 
=
 
g
r
i
d
[
i
r
+
1
]
;

 
 
 
 
g
r
p
2
 
=
 
g
r
i
d
[
i
r
+
2
]
;

 
 
 
 
g
r
 
 
 
=
 
g
r
i
d
[
i
r
]
;

 
 
 
 
g
r
m
1
 
=
 
g
r
i
d
[
i
r
-
1
]
;

 
 
 
 
g
r
m
2
 
=
 
g
r
i
d
[
i
r
-
2
]
;

 
 
 
 

 
 
 
 
f
o
r
(
i
c
=
0
;
i
c
<
n
_
c
;
i
c
+
+
)
{

 
 
 
 
 
 

 
 
 
 
 
 
w
 
=
 
s
t
a
t
e
[
i
r
]
[
i
c
]
.
w
;

 
 
 
 
 
 

 
 
 
 
 
 
i
c
p
2
 
=
 
i
c
+
2
;

 
 
 
 
 
 
i
c
p
1
 
=
 
i
c
+
1
;

 
 
 
 
 
 
i
c
m
1
 
=
 
i
c
-
1
;

 
 
 
 
 
 
i
c
m
2
 
=
 
i
c
-
2
;

 
 
 
 
 
 

 
 
 
 
 
 
i
f
(
i
c
<
1
)
{

d
x
d
s
=
0
.
5
*
(
-
3
*
g
r
[
i
c
]
.
x
+
4
*
g
r
[
i
c
p
1
]
.
x
-
g
r
[
i
c
p
2
]
.
x
)
;

d
y
d
s
=
0
.
5
*
(
-
3
*
g
r
[
i
c
]
.
y
+
4
*
g
r
[
i
c
p
1
]
.
y
-
g
r
[
i
c
p
2
]
.
y
)
;

 
 
 
 
 
 
}
e
l
s
e
 
i
f
(
i
c
>
n
_
c
-
2
)
{

d
x
d
s
=
0
.
5
*
(
3
*
g
r
[
i
c
]
.
x
-
4
*
g
r
[
i
c
m
1
]
.
x
+
g
r
[
i
c
m
2
]
.
x
)
;

d
y
d
s
=
0
.
5
*
(
3
*
g
r
[
i
c
]
.
y
-
4
*
g
r
[
i
c
m
1
]
.
y
+
g
r
[
i
c
m
2
]
.
y
)
;

 
 
 
 
 
 
}
e
l
s
e
{

d
x
d
s
 
=
0
.
5
*
(
g
r
[
i
c
p
1
]
.
x
-
g
r
[
i
c
m
1
]
.
x
)
;

 
 
 
 
 
 
d
y
d
s
 
=
0
.
5
*
(
g
r
[
i
c
p
1
]
.
y
-
g
r
[
i
c
m
1
]
.
y
)
;

 
 
 
 
 
 
}

 
 
 
 
 
 

 
 
 
 
 
 
i
f
(
i
r
<
1
)
{
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d
x
d
n
=
0
.
5
*
(
-
3
*
g
r
[
i
c
]
.
x
+
4
*
g
r
p
1
[
i
c
]
.
x
-
g
r
p
2
[
i
c
]
.
x
)
;

d
y
d
n
=
0
.
5
*
(
-
3
*
g
r
[
i
c
]
.
y
+
4
*
g
r
p
1
[
i
c
]
.
y
-
g
r
p
2
[
i
c
]
.
y
)
;

 
 
 
 
 
 
}
e
l
s
e
 
i
f
(
i
r
>
n
_
c
-
2
)
{

d
x
d
n
=
0
.
5
*
(
3
*
g
r
[
i
c
]
.
x
-
4
*
g
r
m
1
[
i
c
]
.
x
+
g
r
m
2
[
i
c
]
.
x
)
;

d
y
d
n
=
0
.
5
*
(
3
*
g
r
[
i
c
]
.
y
-
4
*
g
r
m
1
[
i
c
]
.
y
+
g
r
m
2
[
i
c
]
.
y
)
;

 
 
 
 
 
 
}
e
l
s
e
{

d
x
d
n
 
=
0
.
5
*
(
g
r
p
1
[
i
c
]
.
x
-
g
r
m
1
[
i
c
]
.
x
)
;

d
y
d
n
 
=
0
.
5
*
(
g
r
p
1
[
i
c
]
.
y
-
g
r
m
1
[
i
c
]
.
y
)
;

 
 
 
 
 
 
}

 
 
 
 
 
 

 
 
 
 
 
 
r
h
o
=
w
[
0
]
;

 
 
 
 
 
 
u
 
=
 
w
[
1
]
/
r
h
o
;

 
 
 
 
 
 
v
 
=
 
w
[
2
]
/
r
h
o
;

 
 
 
 
 
 
j
a
c
 
=
 
d
x
d
s
*
d
y
d
n
 
-
 
d
x
d
n
*
d
y
d
s
;
 

 
 
 
 
 
 
u
_
h
a
t
=
u
*
d
y
d
n
-
v
*
d
x
d
n
;

 
 
 
 
 
 
v
_
h
a
t
=
v
*
d
x
d
s
-
u
*
d
y
d
s
;

 
 
 
 
 
 
u
_
h
a
t
 
=
 
A
B
S
(
u
_
h
a
t
)
;

 
 
 
 
 
 
v
_
h
a
t
 
=
 
A
B
S
(
v
_
h
a
t
)
;

 
 
 
 
 
 
p
 
=
 
G
M
A
1
*
(
w
[
3
]
 
-
 
0
.
5
*
(
w
[
1
]
*
w
[
1
]
/
w
[
0
]
+
 
w
[
2
]
*
w
[
2
]
/
w
[
0
]
)
)
;
 

 
 
 
 
 
 
a
 
=
 
s
q
r
t
(
G
M
A
*
p
/
r
h
o
)
;

 
 
 
 
 
 
R
e
_
x
 
=
 
r
h
o
*
(
u
_
h
a
t
+
a
)
;

 
 
 
 
 
 
R
e
_
y
 
=
 
r
h
o
*
(
v
_
h
a
t
+
a
)
;

 
 
 
 
 
 
a
_
t
e
m
p
 
=
 
d
x
d
s
*
d
x
d
n
+
d
y
d
n
*
d
y
d
s
;

 
 
 
 
 
 
t
 
=
 
2
.
8
2
8
4
*
A
B
S
(
j
a
c
)
/
(
T
S
_
S
F
*
(
1
+
2
/
M
I
N
(
R
e
_
x
,
R
e
_
y
)
)
*
(
u
_
h
a
t
+

 
 
 
 
 
 
v
_
h
a
t
+
a
*
s
q
r
t
(
d
x
d
s
*
d
x
d
s
+
d
y
d
s
*
d
y
d
s
+
d
x
d
n
*
d
x
d
n
+
d
y
d
n
*
d
y
d
n
+
2
*
A
B
S
(
a
_
t
e
m
p
)
)
)
)
;

  
 
 
 
 
 
t
s
t
e
p
[
0
]
[
0
]
 
=
 
M
I
N
(
t
s
t
e
p
[
0
]
[
0
]
,
t
)
;

 
 
 
 
 
 

 
 
 
 
}

 
 
}

} /
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
D
u
m
p
 
G
r
i
d
 
 
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 
 

/
*
~
~
~
~
 
T
h
i
s
 
f
u
n
c
t
i
o
n
 
d
u
m
p
s
 
a
 
c
o
p
y
 
o
f
 
t
h
e
 
c
u
r
r
e
n
t
 
g
r
i
d
 
t
o
 
d
i
s
k
 
~
~
~
~
*
/

v
o
i
d
 
D
u
m
p
_
G
r
i
d
(
i
n
t
 
n
_
r
,
 
i
n
t
 
n
_
c
,
 
s
t
r
u
c
t
 
p
o
i
n
t
 
*
*
g
r
i
d
)

{
 
 

 
 
i
n
t
 
i
r
,
 
i
c
;

 
 
F
I
L
E
 
*
o
u
t
x
,
 
*
o
u
t
y
;

 
 
 
 
o
u
t
x
 
=
 
f
o
p
e
n
(
"
g
r
i
d
_
x
"
,
"
w
"
)
;

 
 
o
u
t
y
 
=
 
f
o
p
e
n
(
"
g
r
i
d
_
y
"
,
"
w
"
)
;

 
 
 
 
f
o
r
 
(
i
r
=
0
;
 
i
r
<
n
_
r
;
 
i
r
+
+
)
{

 
 
 
 
f
o
r
(
i
c
=
0
;
 
i
c
<
n
_
c
;
 
i
c
+
+
)
{

 
 
 
 
 
 
f
p
r
i
n
t
f
(
o
u
t
x
,
"
%
f
 
"
,
g
r
i
d
[
i
r
]
[
i
c
]
.
x
)
;

 
 
 
 
 
 
f
p
r
i
n
t
f
(
o
u
t
y
,
"
%
f
 
"
,
g
r
i
d
[
i
r
]
[
i
c
]
.
y
)
;

 
 
 
 
}

 
 
 
 
f
p
r
i
n
t
f
(
o
u
t
x
,
"
\
n
"
)
;

 
 
 
 
f
p
r
i
n
t
f
(
o
u
t
y
,
"
\
n
"
)
;

 
 
}

 
 
f
c
l
o
s
e
(
o
u
t
x
)
;

 
 
f
c
l
o
s
e
(
o
u
t
y
)
;

} /
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
I
F
L
U
X
 
 
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 
 

/
*
~
~
~
~
 
T
h
i
s
 
f
u
n
c
t
i
o
n
 
c
a
l
c
u
l
a
t
e
s
 
i
n
v
i
s
c
i
d
 
(
E
u
l
e
r
 
e
q
u
a
t
i
o
n
)
 
f
l
u
x
e
s
 
f
r
o
m

 
 
t
h
e
 
s
t
a
t
e
 
v
e
c
t
o
r
 
s
u
p
p
l
i
e
d
 
a
s
 
’
i
n
p
u
t
’
 
a
n
d
 
s
t
o
r
e
s
 
t
h
e
m
 
i
n
 
’
i
f
l
u
x
’
 
~
~
~
~
*
/
 
 
 

v
o
i
d
 
C
a
l
c
_
I
F
l
u
x
(
i
n
t
 
n
_
r
,
 
i
n
t
 
n
_
c
,
 
s
t
r
u
c
t
 
p
o
i
n
t
 
*
*
g
r
i
d
,
 
s
t
r
u
c
t
 
n
o
d
e
 
*
*
i
n
p
u
t
,

s
t
r
u
c
t
 
f
l
u
x
 
*
*
s
u
m
f
l
x
,
 
d
o
u
b
l
e
 
t
h
e
t
a
_
s
t
e
p
,
 
i
n
t
 
w
f
a
c
t
)

{  
 
i
n
t
 
i
r
,
 
i
c
,
 
i
c
p
1
,
 
i
c
m
1
,
 
i
v
;

 
 
f
l
o
a
t
 
u
,
 
v
,
 
p
,
 
f
[
4
]
,
 
g
[
4
]
,
 
*
i
n
,
 
p
b
,
 
b
r
a
d
,
 
d
x
w
1
,
 
d
y
w
1
,
 
d
x
w
2
,
 
d
y
w
2
,

 
 
 
 
d
x
e
1
,
 
d
y
e
1
,
 
d
x
e
2
,
 
f
2
[
4
]
,
g
2
[
4
]
;

 
 
f
l
o
a
t
 
d
y
e
2
;

 
 
d
o
u
b
l
e
 
d
x
n
,
 
d
y
n
,
 
d
x
s
,
 
d
y
s
,
 
d
x
e
,
 
d
y
e
,
 
d
x
w
,
 
d
y
w
;

#
i
f
n
d
e
f
 
M
O
V
I
N
G
_
G
R
I
D

 
 
s
t
a
t
i
c
 
i
n
t
 
c
_
f
l
a
g
=
0
;

 
 
s
t
r
u
c
t
 
f
l
x
f
a
c
e
 
*
i
f
f
c
;

#
e
n
d
i
f

 
 

 
 
/
*
 
C
o
m
p
u
t
e
 
F
l
u
x
e
s
 
f
r
o
m
 
W
a
l
l
s
 
*
/

 
 

 
 
/
*
 
L
o
w
e
r
 
L
e
f
t
 
C
o
r
n
e
r
*
/

 
 
/
*
 
S
o
m
e
 
t
e
r
m
s
 
f
o
r
 
f
=
x
+
y
 
a
r
e
 
l
e
f
t
 
i
n
 
c
o
m
m
e
n
t
s
,
 
t
h
i
s
 
i
s
 
t
o
 
a
l
l
o
w
 
a
n
 
e
a
s
y

c
h
e
c
k
 
i
n
 
t
h
e
 
f
l
u
x
 
c
a
l
c
u
l
a
t
i
o
n
s
.
 
T
h
e
 
f
l
u
x
 
o
f
 
t
h
e
 
g
r
i
d
 
s
h
o
u
l
d
 
i
d
e
n
t
i
c
a
l
l
y
 
e
q
u
a
l

 
t
o
 
2
.
 
 
T
h
u
s
 
i
f
 
f
=
x
+
y
,
 
t
h
e
 
s
t
a
t
e
 
v
a
r
i
a
b
l
e
s
 
s
h
o
u
l
d
 
a
l
l
 
b
e
 
2
*
/
 

  
 
u
 
=
 
i
n
p
u
t
[
0
]
[
0
]
.
w
[
1
]
 
/
 
i
n
p
u
t
[
0
]
[
0
]
.
w
[
0
]
;

 
 
v
 
=
 
i
n
p
u
t
[
0
]
[
0
]
.
w
[
2
]
 
/
 
i
n
p
u
t
[
0
]
[
0
]
.
w
[
0
]
;

 
 
 
 

 
 
/
*
*
*
*
 
C
a
l
c
u
l
a
t
e
 
t
h
e
 
p
r
e
s
s
u
r
e
 
a
t
 
t
h
i
s
 
n
o
d
e
 
*
*
*
*
/

 
 
p
 
=
 
G
M
A
1
*
(
i
n
p
u
t
[
0
]
[
0
]
.
w
[
3
]
 
-
 
0
.
5
*
(
i
n
p
u
t
[
0
]
[
0
]
.
w
[
1
]
*
u
 

 
 
 
 
+
 
i
n
p
u
t
[
0
]
[
0
]
.
w
[
2
]
*
v
)
)
;
 

 
 

 
 
/
*
*
*
*
 
C
a
l
c
u
l
a
t
e
 
f
l
u
x
 
v
e
c
t
o
r
s
 
*
*
*
*
/

 
 

 
 

 
 
f
[
0
]
 
=
 
i
n
p
u
t
[
0
]
[
0
]
.
w
[
1
]
;

 
 
/
*
f
[
0
]
 
=
 
g
r
i
d
[
0
]
[
0
]
.
x
+
g
r
i
d
[
0
]
[
0
]
.
y
;
*
/

 
 
f
[
1
]
 
=
 
i
n
p
u
t
[
0
]
[
0
]
.
w
[
1
]
*
u
+
p
;

 
 
f
[
2
]
 
=
 
g
[
1
]
 
=
 
i
n
p
u
t
[
0
]
[
0
]
.
w
[
1
]
*
v
;

 
 
f
[
3
]
 
=
 
(
i
n
p
u
t
[
0
]
[
0
]
.
w
[
3
]
+
p
)
*
u
;

 
 
g
[
0
]
 
=
 
i
n
p
u
t
[
0
]
[
0
]
.
w
[
2
]
;

 
 
/
*
g
[
0
]
 
=
 
g
r
i
d
[
0
]
[
0
]
.
x
 
+
 
g
r
i
d
[
0
]
[
0
]
.
y
;
*
/

 
 
g
[
2
]
 
=
 
i
n
p
u
t
[
0
]
[
0
]
.
w
[
2
]
*
v
+
p
;

 
 
g
[
3
]
 
=
 
(
i
n
p
u
t
[
0
]
[
0
]
.
w
[
3
]
+
p
)
*
v
;

 
 

 
 
d
x
w
1
=
0
;

 
 
d
y
w
1
=
0
;

 
 
d
x
e
1
 
=
 
0
.
5
*
(
g
r
i
d
[
0
]
[
1
]
.
x
 
-
 
g
r
i
d
[
0
]
[
0
]
.
x
)
;

 
 
d
y
e
1
 
=
 
0
.
5
*
(
g
r
i
d
[
0
]
[
1
]
.
y
 
-
 
g
r
i
d
[
0
]
[
0
]
.
y
)
;

 
 
d
x
n
 
=
 
0
.
5
*
(
g
r
i
d
[
1
]
[
0
]
.
x
 
-
 
g
r
i
d
[
0
]
[
0
]
.
x
)
;

 
 
d
y
n
 
=
 
0
.
5
*
(
g
r
i
d
[
1
]
[
0
]
.
y
 
-
 
g
r
i
d
[
0
]
[
0
]
.
y
)
;

 
 
f
o
r
(
i
v
=
0
;
i
v
<
4
;
i
v
+
+
)
{

 
 
 
 
s
u
m
f
l
x
[
1
]
[
1
]
.
w
[
i
v
]
 
+
=
 
(
f
[
i
v
]
*
d
y
e
1
-
g
[
i
v
]
*
d
x
e
1
)
 
-
 

 
 
 
 
 
 
(
f
[
i
v
]
*
d
y
n
-
g
[
i
v
]
*
d
x
n
)
;

 
 
 
 
s
u
m
f
l
x
[
1
]
[
0
]
.
w
[
i
v
]
 
+
=
 
(
d
y
e
1
*
f
[
i
v
]
-
d
x
e
1
*
g
[
i
v
]
)
-

(
d
y
n
*
f
[
i
v
]
-
d
x
n
*
g
[
i
v
]
)
;

 
 
 
 
s
u
m
f
l
x
[
0
]
[
1
]
.
w
[
i
v
]
 
+
=
 
(
d
y
e
1
*
f
[
i
v
]
-
d
x
e
1
*
g
[
i
v
]
)
 
-

 
 
 
 
 
 
(
d
y
n
*
f
[
i
v
]
-
d
x
n
*
g
[
i
v
]
)
;

 
 
 
 
s
u
m
f
l
x
[
0
]
[
0
]
.
w
[
i
v
]
 
+
=
 
(
d
y
e
1
*
f
[
i
v
]
-
d
x
e
1
*
g
[
i
v
]
)
 
-

 
 
 
 
 
 
(
d
y
n
*
f
[
i
v
]
-
d
x
n
*
g
[
i
v
]
)
;

 
 
}

 
 

 
 
/
*
*
*
*
 
S
t
o
r
e
 
p
r
e
s
s
u
r
e
 
f
o
r
 
l
a
t
e
r
 
u
s
e
 
*
*
*
*
/

 
 
i
n
p
u
t
[
0
]
[
0
]
.
p
=
p
;

 
 
 

 
 
/
*
 
r
e
p
e
a
t
 
f
o
r
 
u
p
p
e
r
 
l
e
f
t
 
c
o
r
n
e
r
*
/

 
 

 
 
u
 
=
 
i
n
p
u
t
[
n
_
r
-
1
]
[
0
]
.
w
[
1
]
 
/
 
i
n
p
u
t
[
n
_
r
-
1
]
[
0
]
.
w
[
0
]
;

 
 
v
 
=
 
i
n
p
u
t
[
n
_
r
-
1
]
[
0
]
.
w
[
2
]
 
/
 
i
n
p
u
t
[
n
_
r
-
1
]
[
0
]
.
w
[
0
]
;
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/
*
*
*
*
 
C
a
l
c
u
l
a
t
e
 
t
h
e
 
p
r
e
s
s
u
r
e
 
a
t
 
t
h
i
s
 
n
o
d
e
 
*
*
*
*
/

 
 
p
 
=
 
G
M
A
1
*
(
i
n
p
u
t
[
n
_
r
-
1
]
[
0
]
.
w
[
3
]
 
-
 
0
.
5
*
(
i
n
p
u
t
[
n
_
r
-
1
]
[
0
]
.
w
[
1
]
*
u
 

+
 
i
n
p
u
t
[
n
_
r
-
1
]
[
0
]
.
w
[
2
]
*
v
)
)
;
 

 
 
 
 
 
 
/
*
*
*
*
 
C
a
l
c
u
l
a
t
e
 
f
l
u
x
 
v
e
c
t
o
r
s
 
*
*
*
*
/

 
 
f
2
[
0
]
 
=
 
i
n
p
u
t
[
n
_
r
-
1
]
[
0
]
.
w
[
1
]
;

 
 
/
*
f
2
[
0
]
 
=
 
g
r
i
d
[
n
_
r
-
1
]
[
0
]
.
x
+
g
r
i
d
[
n
_
r
-
1
]
[
0
]
.
y
;
*
/

 
 
f
2
[
1
]
 
=
 
i
n
p
u
t
[
n
_
r
-
1
]
[
0
]
.
w
[
1
]
*
u
+
p
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i
o
n
 
*
*
*
*
/

 
 
t
s
t
e
p
[
0
]
[
0
]
 
=
 
8
8
8
8
;

 
 

 
 
f
o
r
(
i
r
=
0
;
 
i
r
<
n
_
r
-
1
;
 
i
r
+
+
)
{

 
 
 
 

 
 
 
 
/
*
*
*
 
B
o
t
t
o
m
 
w
o
r
k
i
n
g
 
v
e
c
t
o
r
 
o
f
 
p
r
e
v
i
o
u
s
 
r
o
w
 
b
e
c
o
m
e
s
 
t
o
p
 
w
v
 
f
o
r
 
t
h
i
s
 
r
o
w
*
*
*
/

 
 
 
 
i
f
(
!
(
i
r
%
2
)
)
{

 
 
 
 
 
 
b
o
t
 
=
 
e
t
e
m
p
;

 
 
 
 
 
 
t
o
p
 
=
 
o
t
e
m
p
;

 
 
 
 
}
e
l
s
e
{

 
 
 
 
 
 
b
o
t
 
=
 
o
t
e
m
p
;

 
 
 
 
 
 
t
o
p
 
=
 
e
t
e
m
p
;

 
 
 
 
}

 
 
 
 

 
 
 
 
g
r
 
 
=
g
r
i
d
[
i
r
]
;

 
 
 
 
g
r
p
1
=
g
r
i
d
[
i
r
+
1
]
;

 
 
 
 
n
d
=
i
n
p
u
t
[
i
r
]
;

 
 
 
 
n
d
1
=
i
n
p
u
t
[
i
r
+
1
]
;

 
 
 
 
n
d
2
=
i
n
p
u
t
[
i
r
+
2
]
;

 
 
 
 

 
 
 
 
t
o
p
[
0
]
.
u
=
n
d
1
[
0
]
.
w
[
1
]
/
n
d
1
[
0
]
.
w
[
0
]
;

 
 
 
 
t
o
p
[
0
]
.
v
=
n
d
1
[
0
]
.
w
[
2
]
/
n
d
1
[
0
]
.
w
[
0
]
;

 
 
 
 
t
o
p
[
0
]
.
t
=
n
d
1
[
0
]
.
p
/
n
d
1
[
0
]
.
w
[
0
]
;
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14
 
 
 
 
f
o
r
(
i
c
=
0
;
i
c
<
n
_
c
;
i
c
+
+
)
{

 
 
 
 
 
 

 
 
 
 
 
 
i
c
p
1
=
i
c
+
1
;

 
 
 
 
 
 
i
c
m
1
=
i
c
-
1
;

 
 
 
 
 
 

 
 
 
 
 
 
i
f
(
i
c
 
<
n
_
c
-
1
)
 
{

 
 
 
 
 
 
 
 
t
o
p
[
i
c
p
1
]
.
u
 
=
 
n
d
1
[
i
c
p
1
]
.
w
[
1
]
/
n
d
1
[
i
c
p
1
]
.
w
[
0
]
;

 
 
 
 
 
 
 
 
t
o
p
[
i
c
p
1
]
.
v
 
=
 
n
d
1
[
i
c
p
1
]
.
w
[
2
]
/
n
d
1
[
i
c
p
1
]
.
w
[
0
]
;

 
 
 
 
 
 
 
 
t
o
p
[
i
c
p
1
]
.
t
 
=
 
G
M
A
*
n
d
1
[
i
c
p
1
]
.
p
/
n
d
1
[
i
c
p
1
]
.
w
[
0
]
;

 
 
 
 
 
 
}

 
 
 
 
 
 

 
 
 
 
 
 
/
*
*
*
*
 
S
a
v
e
 
c
e
n
t
r
o
i
d
 
l
o
c
a
t
i
o
n
 
o
f
 
c
e
l
l
 
b
e
l
o
w
 
c
u
r
r
e
n
t
 
c
e
l
l
 
b
e
f
o
r
e
 
i
t
 
i
s
 

o
v
e
r
w
r
i
t
t
e
n
 
b
y
 
c
e
n
t
r
o
i
d
 
l
o
c
a
t
i
o
n
 
o
f
 
c
e
l
l
 
a
b
o
v
e
 
c
u
r
r
e
n
t
 
c
e
l
l
 
*
*
*
*
/

 
 
 
 
 
 
i
f
(
i
r
>
0
)
{

i
f
(
i
c
>
0
)
{

 
 
l
w
r
m
1
x
c
 
=
 
l
w
r
x
c
;

 
 
l
w
r
m
1
y
c
 
=
 
l
w
r
y
c
;

}
e
l
s
e
{

 
 
l
w
r
m
1
x
c
 
=
0
;

 
 
l
w
r
m
1
y
c
 
=
0
;
 

} l
w
r
x
c
 
=
 
t
o
p
[
i
c
]
.
x
c
;

l
w
r
y
c
 
=
 
t
o
p
[
i
c
]
.
y
c
;
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
}

 
 
 
 
 
 

 
 
 
 
 
 

i
f
(
i
r
<
n
_
r
-
2
 
&
&
 
i
c
 
<
 
n
_
c
-
1
)
 
{

 
 
t
o
p
[
i
c
]
.
x
c
 
=
 
0
.
2
5
*
(
g
r
i
d
[
i
r
+
2
]
[
i
c
]
.
x
+
g
r
i
d
[
i
r
+
2
]
[
i
c
p
1
]
.
x
+

 
 
 
 
 
g
r
p
1
[
i
c
]
.
x
+
g
r
p
1
[
i
c
p
1
]
.
x
)
;

 
 
t
o
p
[
i
c
]
.
y
c
 
=
 
0
.
2
5
*
(
g
r
i
d
[
i
r
+
2
]
[
i
c
]
.
y
+
g
r
i
d
[
i
r
+
2
]
[
i
c
p
1
]
.
y
+

 
 
 
 
 
g
r
p
1
[
i
c
]
.
y
+
g
r
p
1
[
i
c
p
1
]
.
y
)
;

 
 
}
 
e
l
s
e
 
i
f
(
i
c
 
>
 
n
_
c
-
2
 
&
&
 
i
r
<
n
_
r
-
2
)
 
{

 
 
t
o
p
[
i
c
]
.
x
c
 
=
 
0
.
5
*
(
g
r
i
d
[
i
r
+
2
]
[
i
c
]
.
x
+
g
r
p
1
[
i
c
]
.
x
)
;

 
 
t
o
p
[
i
c
]
.
y
c
 
=
 
0
.
5
*
(
g
r
i
d
[
i
r
+
2
]
[
i
c
]
.
y
+
g
r
p
1
[
i
c
]
.
y
)
;

} /
*
*
*
*
 
C
a
l
c
u
l
a
t
e
 
t
h
e
 
g
e
o
m
e
t
r
i
c
 
p
a
r
a
m
e
t
e
r
s
 
f
o
r
 
t
h
e
 
d
e
r
i
v
a
t
i
v
e
s
.
 
 
N
o
t
e
 

 
 
t
h
a
t
 
0
.
5
 
c
o
e
f
s
 
c
a
n
c
e
l
 
i
n
 
f
i
n
a
l
 
p
r
o
d
u
c
t
s
,
 
s
o
 
t
h
e
y
 
a
r
e
 
d
r
o
p
p
e
d
 
*
*
*
*
/

 
 
 
 
 
 
 
 
/
*
 
C
a
l
c
u
l
a
t
e
 
t
h
e
 
g
e
o
m
e
t
r
i
c
 
d
e
r
i
v
a
t
i
v
e
s
 
a
t
 
t
h
e
 
p
s
e
u
d
o
n
o
d
e
s
*
/

i
f
(
i
c
 
<
 
n
_
c
-
1
)
 
{

 
 

 
 

 
 
d
x
d
s
 
=
 
g
r
p
1
[
i
c
p
1
]
.
x
+
g
r
[
i
c
p
1
]
.
x
 
-
 
(
g
r
[
i
c
]
.
x
+
g
r
p
1
[
i
c
]
.
x
)
;

 
 
d
x
d
n
 
=
 
g
r
p
1
[
i
c
]
.
x
+
g
r
p
1
[
i
c
p
1
]
.
x
 
-
 
(
g
r
[
i
c
]
.
x
+
g
r
[
i
c
p
1
]
.
x
)
;

 
 
d
y
d
s
 
=
 
g
r
p
1
[
i
c
p
1
]
.
y
+
g
r
[
i
c
p
1
]
.
y
 
-
 
(
g
r
[
i
c
]
.
y
+
g
r
p
1
[
i
c
]
.
y
)
;

 
 
d
y
d
n
 
=
 
g
r
p
1
[
i
c
]
.
y
+
g
r
p
1
[
i
c
p
1
]
.
y
 
-
 
(
g
r
[
i
c
]
.
y
+
g
r
[
i
c
p
1
]
.
y
)
;

 
 

 
 
 
 
 
 
 
 
}
 
e
l
s
e
 
{

 
 
 
 
 
 
 
 
 
 
d
x
d
s
=
(
g
r
p
1
[
i
c
]
.
x
+
g
r
[
i
c
]
.
x
)
-
(
g
r
p
1
[
i
c
m
1
]
.
x
+
g
r
[
i
c
m
1
]
.
x
)
;

 
 
 
 
 
 
 
 
 
 
d
y
d
s
=
(
g
r
p
1
[
i
c
]
.
y
+
g
r
[
i
c
]
.
y
)
-
(
g
r
p
1
[
i
c
m
1
]
.
y
+
g
r
[
i
c
m
1
]
.
y
)
;

 
 
 
 
 
 
 
 
 
 
d
x
d
n
=
(
g
r
p
1
[
i
c
]
.
x
+
g
r
p
1
[
i
c
m
1
]
.
x
)
-
(
g
r
[
i
c
]
.
x
+
g
r
[
i
c
m
1
]
.
x
)
;

 
 
 
 
 
 
 
 
 
 
d
y
d
n
=
(
g
r
p
1
[
i
c
]
.
y
+
g
r
p
1
[
i
c
m
1
]
.
y
)
-
(
g
r
[
i
c
]
.
y
+
g
r
[
i
c
m
1
]
.
y
)
;

 
 
 
 
 
 
 
 
} /
*
 
 
p
r
i
n
t
f
(
"
%
i
 
%
i
 
D
i
s
t
r
i
b
u
t
e
 
F
l
u
x
 
\
n
"
,
i
c
,
i
r
)
;
 
*
/

/
*
*
*
*
 
C
a
l
c
u
l
a
t
e
 
J
a
c
o
b
i
a
n
 
*
*
*
*
/

j
a
c
 
=
 
d
x
d
s
*
d
y
d
n
 
-
 
d
x
d
n
*
d
y
d
s
;

 
 
 
 
 
 
 
 
 
 
 
i
f
(
j
a
c
<
0
)
 
p
r
i
n
t
f
(
"
N
e
g
a
t
i
v
e
 
J
a
c
o
b
i
a
n
!
 
%
i
 
%
i
\
n
"
,
i
r
,
i
c
)
;

/
*
 
C
a
l
c
u
l
a
t
e
 
l
e
n
g
t
h
 
o
f
 
f
a
c
e
s
 
f
o
r
 
f
l
u
x
 
d
i
s
t
r
i
b
u
t
i
o
n
 
*
/

i
f
(
i
r
<
n
_
r
-
1
)
{

 
 
d
x
n
 
=
 
0
.
5
*
(
t
o
p
[
i
c
]
.
x
c
 
-
 
b
o
t
[
i
c
]
.
x
c
)
;

 
 
d
y
n
 
=
 
0
.
5
*
(
t
o
p
[
i
c
]
.
y
c
 
-
 
b
o
t
[
i
c
]
.
y
c
)
;

} e
l
s
e
{

 
 
d
x
n
=
0
;

 
 
d
y
n
=
0
;

} i
f
(
i
c
>
0
)
{

 
 
d
x
w
 
=
0
.
5
*
(
b
o
t
[
i
c
]
.
x
c
-
b
o
t
[
i
c
m
1
]
.
x
c
)
 
;

 
 
d
y
w
 
=
0
.
5
*
(
b
o
t
[
i
c
]
.
y
c
-
b
o
t
[
i
c
m
1
]
.
y
c
)
 
;

}
e
l
s
e
 
{

 
 
 
 
 
 
 
 
 
 
d
x
w
 
=
0
.
0
;

 
 
 
 
 
 
 
 
 
 
d
y
w
 
=
0
.
0
;

}
 
 
 
 

i
f
(
i
r
>
0
)
{
 

 
 
d
x
s
 
=
 
0
.
5
*
(
l
w
r
x
c
 
-
 
b
o
t
[
i
c
]
.
x
c
)
;

 
 
d
y
s
 
=
 
0
.
5
*
(
l
w
r
y
c
 
-
 
b
o
t
[
i
c
]
.
y
c
)
;

}
e
l
s
e
 

 
 
d
x
s
=
d
y
s
=
0
;

i
f
(
i
c
<
 
n
_
c
-
1
)
{

 
 
d
x
e
 
=
 
0
.
5
*
(
b
o
t
[
i
c
p
1
]
.
x
c
 
-
 
b
o
t
[
i
c
]
.
x
c
)
;

 
 
d
y
e
 
=
 
0
.
5
*
(
b
o
t
[
i
c
p
1
]
.
y
c
 
-
 
b
o
t
[
i
c
]
.
y
c
)
;

}
e
l
s
e
{

 
 
d
x
e
=
0
.
0
;

 
 
d
y
e
=
0
.
0
;

} /
*
*
*
*
 
I
n
v
e
r
t
 
J
a
c
o
b
i
a
n
 
f
o
r
 
l
a
t
e
r
 
c
o
n
v
e
n
i
e
n
c
e
 
*
*
*
*
/

i
j
a
c
 
=
 
1
/
j
a
c
;

/
*
*
*
*
 
C
a
l
c
u
l
a
t
e
 
f
l
o
w
 
d
e
r
i
v
a
t
i
v
e
s
 
f
o
r
 
t
h
i
s
 
c
e
l
l
 
*
/

i
f
(
i
c
 
<
 
n
_
c
-
1
)
{

 
 

 
 
d
u
d
s
 
=
 
n
d
1
[
i
c
p
1
]
.
w
[
1
]
/
n
d
1
[
i
c
p
1
]
.
w
[
0
]
+
n
d
[
i
c
p
1
]
.
w
[
1
]
/
n
d
[
i
c
p
1
]
.
w
[
0
]

 
 
 
 
-
 
(
n
d
1
[
i
c
]
.
w
[
1
]
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
]
.
w
[
1
]
/
n
d
[
i
c
]
.
w
[
0
]
)
;

 
 
d
u
d
n
 
=
 
n
d
1
[
i
c
]
.
w
[
1
]
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
1
[
i
c
p
1
]
.
w
[
1
]
/
n
d
1
[
i
c
p
1
]
.
w
[
0
]

 
 
 
 
-
 
(
n
d
[
i
c
]
.
w
[
1
]
/
n
d
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
p
1
]
.
w
[
1
]
/
n
d
[
i
c
p
1
]
.
w
[
0
]
)
;

 
 
d
v
d
s
 
=
 
n
d
1
[
i
c
p
1
]
.
w
[
2
]
/
n
d
1
[
i
c
p
1
]
.
w
[
0
]
+
n
d
[
i
c
p
1
]
.
w
[
2
]
/
n
d
[
i
c
p
1
]
.
w
[
0
]

 
 
 
 
-
 
(
n
d
1
[
i
c
]
.
w
[
2
]
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
]
.
w
[
2
]
/
n
d
[
i
c
]
.
w
[
0
]
)
;

 
 
d
v
d
n
 
=
 
n
d
1
[
i
c
]
.
w
[
2
]
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
1
[
i
c
p
1
]
.
w
[
2
]
/
n
d
1
[
i
c
p
1
]
.
w
[
0
]

 
 
 
 
-
 
(
n
d
[
i
c
]
.
w
[
2
]
/
n
d
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
p
1
]
.
w
[
2
]
/
n
d
[
i
c
p
1
]
.
w
[
0
]
)
;

 
 
d
t
d
s
 
=
 
n
d
1
[
i
c
p
1
]
.
p
/
n
d
1
[
i
c
p
1
]
.
w
[
0
]
+
n
d
[
i
c
p
1
]
.
p
/
n
d
[
i
c
p
1
]
.
w
[
0
]

 
 
 
 
-
 
(
n
d
1
[
i
c
]
.
p
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
]
.
p
/
n
d
[
i
c
]
.
w
[
0
]
)
;

 
 
d
t
d
n
 
=
 
n
d
1
[
i
c
]
.
p
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
1
[
i
c
p
1
]
.
p
/
n
d
1
[
i
c
p
1
]
.
w
[
0
]

 
 
 
 
-
 
(
n
d
[
i
c
]
.
p
/
n
d
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
p
1
]
.
p
/
n
d
[
i
c
p
1
]
.
w
[
0
]
)
;

 
 
d
u
d
x
 
=
 
i
j
a
c
*
(
d
y
d
n
*
d
u
d
s
-
d
y
d
s
*
d
u
d
n
)
;

 
 
d
u
d
y
 
=
 
i
j
a
c
*
(
d
x
d
s
*
d
u
d
n
-
d
x
d
n
*
d
u
d
s
)
;

 
 
d
v
d
x
 
=
 
i
j
a
c
*
(
d
y
d
n
*
d
v
d
s
-
d
y
d
s
*
d
v
d
n
)
;

 
 
d
v
d
y
 
=
 
i
j
a
c
*
(
d
x
d
s
*
d
v
d
n
-
d
x
d
n
*
d
v
d
s
)
;

 
 
d
t
d
x
 
=
 
i
j
a
c
*
(
d
y
d
n
*
d
t
d
s
-
d
y
d
s
*
d
t
d
n
)
;

 
 
d
t
d
y
 
=
 
i
j
a
c
*
(
d
x
d
s
*
d
t
d
n
-
d
x
d
n
*
d
t
d
s
)
;

 
 

 
 
/
*
*
*
*
 
T
a
k
e
 
f
l
o
w
 
s
p
e
e
d
 
a
s
 
a
v
e
r
a
g
e
 
o
v
e
r
 
f
o
u
r
 
c
e
l
l
 
n
o
d
e
s
 
*
*
*
*
/

 
 
u
 
 
=
 
0
.
2
5
*
(
n
d
1
[
i
c
p
1
]
.
w
[
1
]
/
n
d
1
[
i
c
p
1
]
.
w
[
0
]
+
n
d
[
i
c
p
1
]
.
w
[
1
]
/
n
d
[
i
c
p
1
]
.
w
[
0
]

 
 
 
 
 
+
 
n
d
1
[
i
c
]
.
w
[
1
]
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
]
.
w
[
1
]
/
n
d
[
i
c
]
.
w
[
0
]
)
;

 
 
v
 
 
=
 
0
.
2
5
*
(
n
d
1
[
i
c
p
1
]
.
w
[
2
]
/
n
d
1
[
i
c
p
1
]
.
w
[
0
]
+
n
d
[
i
c
p
1
]
.
w
[
2
]
/
n
d
[
i
c
p
1
]
.
w
[
0
]

 
 
 
 
 
+
 
n
d
1
[
i
c
]
.
w
[
2
]
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
]
.
w
[
2
]
/
n
d
[
i
c
]
.
w
[
0
]
)
;
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}
 
e
l
s
e
{
 
 
 

 
 
 
 
d
u
d
s
 
=
 
n
d
1
[
i
c
]
.
w
[
1
]
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
]
.
w
[
1
]
/
n
d
[
i
c
]
.
w
[
0
]

 
 
 
 
-
 
(
n
d
1
[
i
c
m
1
]
.
w
[
1
]
/
n
d
1
[
i
c
m
1
]
.
w
[
0
]
+
n
d
[
i
c
m
1
]
.
w
[
1
]
/
n
d
[
i
c
m
1
]
.
w
[
0
]
)
;

 
 
d
u
d
n
 
=
 
n
d
1
[
i
c
]
.
w
[
1
]
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
1
[
i
c
m
1
]
.
w
[
1
]
/
n
d
1
[
i
c
m
1
]
.
w
[
0
]

 
 
 
 
-
 
(
n
d
[
i
c
]
.
w
[
1
]
/
n
d
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
m
1
]
.
w
[
1
]
/
n
d
[
i
c
m
1
]
.
w
[
0
]
)
;

 
 
d
v
d
s
 
=
 
n
d
1
[
i
c
]
.
w
[
2
]
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
]
.
w
[
2
]
/
n
d
[
i
c
]
.
w
[
0
]

 
 
 
 
-
 
(
n
d
1
[
i
c
m
1
]
.
w
[
2
]
/
n
d
1
[
i
c
m
1
]
.
w
[
0
]
+
n
d
[
i
c
m
1
]
.
w
[
2
]
/
n
d
[
i
c
m
1
]
.
w
[
0
]
)
;

 
 
d
v
d
n
 
=
 
n
d
1
[
i
c
]
.
w
[
2
]
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
1
[
i
c
m
1
]
.
w
[
2
]
/
n
d
1
[
i
c
m
1
]
.
w
[
0
]

 
 
 
 
-
 
(
n
d
[
i
c
]
.
w
[
2
]
/
n
d
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
m
1
]
.
w
[
2
]
/
n
d
[
i
c
m
1
]
.
w
[
0
]
)
;

 
 
d
t
d
s
 
=
 
n
d
1
[
i
c
]
.
p
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
]
.
p
/
n
d
[
i
c
]
.
w
[
0
]

 
 
 
 
-
 
(
n
d
1
[
i
c
m
1
]
.
p
/
n
d
1
[
i
c
m
1
]
.
w
[
0
]
+
n
d
[
i
c
m
1
]
.
p
/
n
d
[
i
c
m
1
]
.
w
[
0
]
)
;

 
 
d
t
d
n
 
=
 
n
d
1
[
i
c
]
.
p
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
1
[
i
c
m
1
]
.
p
/
n
d
1
[
i
c
m
1
]
.
w
[
0
]

 
 
 
 
-
 
(
n
d
[
i
c
]
.
p
/
n
d
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
m
1
]
.
p
/
n
d
[
i
c
m
1
]
.
w
[
0
]
)
;

 
 
 
 
d
u
d
x
 
=
 
i
j
a
c
*
(
d
y
d
n
*
d
u
d
s
-
d
y
d
s
*
d
u
d
n
)
;

 
 
d
u
d
y
 
=
 
i
j
a
c
*
(
d
x
d
s
*
d
u
d
n
-
d
x
d
n
*
d
u
d
s
)
;

 
 
d
v
d
x
 
=
 
i
j
a
c
*
(
d
y
d
n
*
d
v
d
s
-
d
y
d
s
*
d
v
d
n
)
;

 
 
d
v
d
y
 
=
 
i
j
a
c
*
(
d
x
d
s
*
d
v
d
n
-
d
x
d
n
*
d
v
d
s
)
;

 
 
d
t
d
x
 
=
 
i
j
a
c
*
(
d
y
d
n
*
d
t
d
s
-
d
y
d
s
*
d
t
d
n
)
;

 
 
d
t
d
y
 
=
 
i
j
a
c
*
(
d
x
d
s
*
d
t
d
n
-
d
x
d
n
*
d
t
d
s
)
;
 
 

 
 
 
 
/
*
*
*
*
 
T
a
k
e
 
f
l
o
w
 
s
p
e
e
d
 
a
s
 
a
v
e
r
a
g
e
 
o
v
e
r
 
t
w
o
 
c
e
l
l
 
n
o
d
e
s
 
*
*
*
*
/

 
 
u
 
 
=
 
0
.
5
*
(
n
d
1
[
i
c
]
.
w
[
1
]
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
]
.
w
[
1
]
/
n
d
[
i
c
]
.
w
[
0
]
)
;

 
 
v
 
 
=
 
0
.
5
*
(
n
d
1
[
i
c
]
.
w
[
2
]
/
n
d
1
[
i
c
]
.
w
[
0
]
+
n
d
[
i
c
]
.
w
[
2
]
/
n
d
[
i
c
]
.
w
[
0
]
)
;

}
 

 
 
 
 
 
 
/
*
*
*
*
 
P
r
e
-
c
a
l
c
u
l
a
t
e
 
c
o
e
f
f
i
c
i
e
n
t
s
 
o
f
 
s
h
e
a
r
 
a
n
d
 
h
e
a
t
 
f
l
u
x
 
t
e
r
m
s
 
*
*
*
*
/

#
i
f
n
d
e
f
 
M
U

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
r
h
o
=
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
0
]
;

 
 
 
 
 
 
u
=
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
1
]
/
r
h
o
;

 
 
 
 
 
 
v
=
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
2
]
/
r
h
o
;

 
 
 
 
 
 
p
 
=
 
G
M
A
1
*
(
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
3
]
 
-
 
0
.
5
*
r
h
o
*
(
u
*
u
+
v
*
v
)
)
;
 

 
 
 
 
 
 
t
 
=
 
G
M
A
*
p
/
r
h
o
;

 
 
 
 
 
 
m
u
g
p
=
m
u
0
*
p
o
w
(
(
t
o
t
t
*
T
t
T
1
*
t
/
T
0
)
,
1
.
5
)
*
(
T
0
+
S
)
/
(
T
t
T
1
*
t
*
t
o
t
t
+
S
)
;

 
 
 
 
 
 
m
u
t
=
m
u
0
*
p
o
w
(
(
t
o
t
t
*
T
t
T
1
/
T
0
)
,
1
.
5
)
*
(
T
0
+
S
)
/
(
T
t
T
1
*
t
o
t
t
+
S
)
;

M
U
=
m
u
g
p
/
m
u
t
;

#
e
n
d
i
f

q
c
o
e
f
f
 
=
 
-
M
U
/
(
G
M
A
1
*
R
e
*
P
R
)
;

t
c
o
e
f
f
_
d
 
 
=
 
-
2
*
M
U
/
(
3
*
R
e
)
;

t
c
o
e
f
f
_
o
d
 
=
 
-
M
U
/
R
e
;

/
*
*
*
*
 
C
a
l
c
u
l
a
t
e
 
s
t
r
e
s
s
e
s
 
a
n
d
 
f
l
u
x
 
v
e
c
t
o
r
s
 
a
t
 
p
s
e
u
d
o
n
o
d
e
s
 
*
*
*
*
/

t
x
x
 
=
 
t
c
o
e
f
f
_
d
*
(
2
*
d
u
d
x
-
d
v
d
y
)
;

t
x
y
 
=
 
t
c
o
e
f
f
_
o
d
*
(
d
u
d
y
+
d
v
d
x
)
;

t
y
y
 
=
 
t
c
o
e
f
f
_
d
*
(
2
*
d
v
d
y
-
d
u
d
x
)
;

f
[
0
]
 
=
 
t
x
x
;

 
 
 
 
 
 
 
 
/
*
f
[
0
]
 
=
 
b
o
t
[
i
c
]
.
x
c
+
b
o
t
[
i
c
]
.
y
c
;
*
/

f
[
1
]
 
=
 
t
x
y
;

f
[
2
]
 
=
 
u
*
t
x
x
+
v
*
t
x
y
+
q
c
o
e
f
f
*
d
t
d
x
;

g
[
0
]
 
=
 
t
x
y
;

 
 
 
 
 
 
 
 
/
*
g
[
0
]
 
=
 
b
o
t
[
i
c
]
.
x
c
+
b
o
t
[
i
c
]
.
y
c
;
*
/

g
[
1
]
 
=
 
t
y
y
;

g
[
2
]
 
=
 
u
*
t
x
y
+
v
*
t
y
y
+
q
c
o
e
f
f
*
d
t
d
y
;
 

/
*
*
*
*
 
C
a
l
c
u
l
a
t
e
 
t
i
m
e
 
s
t
e
p
 
a
c
c
o
r
d
i
n
g
 
t
o
 
C
F
L
 
c
o
n
d
i
t
i
o
n
 
*
*
*
*
/

i
f
(
i
r
>
0
)
{

 
 
i
f
(
i
c
>
0
)
{

 
 
 
 
d
x
d
n
 
=
 
0
.
5
*
(
b
o
t
[
i
c
m
1
]
.
x
c
+
b
o
t
[
i
c
]
.
x
c
-
(
l
w
r
m
1
x
c
+
l
w
r
x
c
)
)
;

 
 
 
 
d
x
d
s
 
=
 
0
.
5
*
(
b
o
t
[
i
c
]
.
x
c
+
l
w
r
x
c
-
(
b
o
t
[
i
c
m
1
]
.
x
c
+
l
w
r
m
1
x
c
)
)
;

 
 
 
 
d
y
d
n
 
=
 
0
.
5
*
(
b
o
t
[
i
c
m
1
]
.
y
c
+
b
o
t
[
i
c
]
.
y
c
-
(
l
w
r
m
1
y
c
+
l
w
r
y
c
)
)
;

 
 
 
 
d
y
d
s
 
=
 
0
.
5
*
(
b
o
t
[
i
c
]
.
y
c
+
l
w
r
y
c
-
(
b
o
t
[
i
c
m
1
]
.
y
c
+
l
w
r
m
1
y
c
)
)
;

 
 
 
 
i
f
(
i
c
 
>
 
n
_
c
-
2
)
{

 
 
 
 
 
 
d
x
d
s
=
d
x
d
s
*
0
.
5
;

 
 
 
 
 
 
d
y
d
s
=
d
y
d
s
*
0
.
5
;

 
 
 
 
}

 
 
 
 

 
 
 
 
j
a
c
 
=
 
d
x
d
s
*
d
y
d
n
 
-
 
d
x
d
n
*
d
y
d
s
;

 
 
 
 
r
h
o
=
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
0
]
;

 
 
 
 
u
 
=
 
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
1
]
/
r
h
o
;

 
 
 
 
v
 
=
 
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
2
]
/
r
h
o
;

 
 
 
 
 
 
 
 
 
 
 
 
p
=
G
M
A
1
*
(
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
3
]

 
 
 
 
-
0
.
5
*
(
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
1
]
*
u
+
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
2
]
*
v
)
)
;

 
 
 
 
u
_
h
a
t
=
u
*
d
y
d
n
-
v
*
d
x
d
n
;

 
 
 
 
v
_
h
a
t
=
v
*
d
x
d
s
-
u
*
d
y
d
s
;

 
 
 
 
u
_
h
a
t
 
=
 
A
B
S
(
u
_
h
a
t
)
;

 
 
 
 
v
_
h
a
t
 
=
 
A
B
S
(
v
_
h
a
t
)
;

 
 
 
 
a
 
=
 
s
q
r
t
(
G
M
A
*
p
/
r
h
o
)
;

 
 
 
 
R
e
_
x
 
=
 
r
h
o
*
(
u
_
h
a
t
+
a
)
;

 
 
 
 
R
e
_
y
 
=
 
r
h
o
*
(
v
_
h
a
t
+
a
)
;

 
 
 
 
a
_
t
e
m
p
 
=
 
d
x
d
s
*
d
x
d
n
+
d
y
d
n
*
d
y
d
s
;

 
 
 
 
t
s
t
e
p
[
i
r
]
[
i
c
]
 
=
 
2
.
8
2
8
4
*
A
B
S
(
j
a
c
)
/

 
 
 
 
 
 
(
T
S
_
S
F
*
(
1
+
2
/
M
I
N
(
R
e
_
x
,
R
e
_
y
)
)
*

 
 
 
 
 
 
 
(
u
_
h
a
t
+
v
_
h
a
t
+
a
*
s
q
r
t
(
d
x
d
s
*
d
x
d
s
+
d
y
d
s
*
d
y
d
s
+
d
x
d
n
*
d
x
d
n
+
d
y
d
n
*
d
y
d
n

 
 
 
+
2
*
A
B
S
(
a
_
t
e
m
p
)
)
)
)
;

 
 
 
 
t
s
t
e
p
[
0
]
[
0
]
 
=
 
M
I
N
(
t
s
t
e
p
[
0
]
[
0
]
,
t
s
t
e
p
[
i
r
]
[
i
c
]
)
;

 
 
}
 

}

#
i
f
d
e
f
 
A
V
4
_
C
O
E
F

p
d
e
r
i
v
=
0
.
0
1
;

#
i
f
d
e
f
 
U
N
S
T
E
A
D
Y

 
 
 
 
 
 
a
v
4
_
c
o
n
s
t
 
=
 
A
V
4
_
C
O
E
F
*
a
r
e
a
[
i
r
]
[
i
c
]
.
v
i
s
c
/
t
s
t
e
p
[
0
]
[
1
]
;

#
e
l
s
e

 
 
 
 
 
 
a
v
4
_
c
o
n
s
t
 
=
 
A
V
4
_
C
O
E
F
*
a
r
e
a
[
i
r
]
[
i
c
]
.
v
i
s
c
/
t
s
t
e
p
[
i
r
]
[
i
c
]
;

#
e
n
d
i
f

#
e
n
d
i
f

i
c
m
2
=
i
c
-
2
;

i
c
p
2
=
i
c
+
2
;

#
i
f
d
e
f
 
A
V
2
_
C
O
E
F

#
i
f
d
e
f
 
U
N
S
T
E
A
D
Y

a
v
2
_
c
o
n
s
t
 
=
 
r
e
s
i
d
u
a
l
*
A
V
2
_
C
O
E
F
*
a
r
e
a
[
i
r
]
[
i
c
]
.
v
i
s
c
/
t
s
t
e
p
[
0
]
[
1
]
;

#
e
l
s
e

a
v
2
_
c
o
n
s
t
 
=
 
r
e
s
i
d
u
a
l
*
A
V
2
_
C
O
E
F
*
a
r
e
a
[
i
r
]
[
i
c
]
.
v
i
s
c
/
t
s
t
e
p
[
i
r
]
[
i
c
]
;

#
e
n
d
i
f

#
e
n
d
i
f

/
*
*
*
*
 
D
i
s
t
r
i
b
u
t
e
 
e
a
c
h
 
t
e
r
m
 
i
n
 
f
l
u
x
 
v
e
c
t
o
r
 
t
o
 
a
p
p
r
o
p
r
i
a
t
e
 
n
o
d
e
s
.
 
 
N
o
t
e
 

 
 
t
h
a
t
 
v
i
s
c
o
u
s
 
f
l
u
x
 
f
o
r
 
f
i
r
s
t
 
t
e
r
m
 
i
n
 
s
t
a
t
e
 
v
e
c
t
o
r
 
i
s
 
z
e
r
o
,
 
s
o
 
v
e
c
t
o
r
s

 
 
a
r
e
 
o
f
f
s
e
t
 
b
y
 
o
n
e
 
*
*
*
*
/

f
o
r
(
i
v
=
0
;
i
v
<
3
;
i
v
+
+
)
{
 

 
 
i
v
p
1
 
=
 
i
v
+
1
;

 
 

 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
 
+
=
 
-
f
[
i
v
]
*
d
y
w
+
g
[
i
v
]
*
d
x
w
 
-

 
 
 
 
(
f
[
i
v
]
*
d
y
s
-
g
[
i
v
]
*
d
x
s
)
;
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3:
17

16
 
 
v
f
l
u
x
[
i
r
+
1
]
[
i
c
]
.
w
[
i
v
p
1
]
 
+
=
 
f
[
i
v
]
*
d
y
n
-
g
[
i
v
]
*
d
x
n
 
+
 

 
 
 
 
(
f
[
i
v
]
*
d
y
w
-
g
[
i
v
]
*
d
x
w
)
;

 
 
 
 
i
f
(
i
c
 
<
 
n
_
c
-
1
)
 
{

 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
p
1
]
.
w
[
i
v
p
1
]
 
+
=
 
f
[
i
v
]
*
d
y
s
-
g
[
i
v
]
*
d
x
s
 
-

 
 
 
 
 
 
(
f
[
i
v
]
*
d
y
e
-
g
[
i
v
]
*
d
x
e
)
;
 

 
 
 
 
v
f
l
u
x
[
i
r
+
1
]
[
i
c
p
1
]
.
w
[
i
v
p
1
]
 
+
=
 
f
[
i
v
]
*
d
y
e
-
g
[
i
v
]
*
d
x
e
 
-

 
 
 
 
 
 
(
f
[
i
v
]
*
d
y
n
-
g
[
i
v
]
*
d
x
n
)
;

 
 
}
 

 
 

#
i
f
d
e
f
 
A
V
4
_
C
O
E
F

 
 
/
*
*
*
*
 
A
p
p
l
y
 
f
o
u
r
t
h
-
o
r
d
e
r
 
a
r
t
i
f
i
c
i
a
l
 
v
i
s
c
o
s
i
t
y
 
*
*
*
*
/

 
 
i
f
(
i
r
>
0
 
&
&
 
!
(
i
v
%
2
)
)
{

 
 
 
 
 
i
f
(
i
r
>
1
 
&
&
 
i
r
<
n
_
r
-
2
)
{

 
 
 
 
 
 

 
 
 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
]
 
+
=
 
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*
(
i
n
p
u
t
[
i
r
+
2
]
[
i
c
]
.
w
[
i
v
]
-

 
 
4
*
i
n
p
u
t
[
i
r
+
1
]
[
i
c
]
.
w
[
i
v
]
+
6
*
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
]
-

 
 
4
*
i
n
p
u
t
[
i
r
-
1
]
[
i
c
]
.
w
[
i
v
]
+
i
n
p
u
t
[
i
r
-
2
]
[
i
c
]
.
w
[
i
v
]
)
;

 
 
 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
 
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

(
i
n
p
u
t
[
i
r
+
2
]
[
i
c
]
.
w
[
i
v
p
1
]
-
4
*
i
n
p
u
t
[
i
r
+
1
]
[
i
c
]
.
w
[
i
v
p
1
]

 
+
6
*
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
-
4
*
i
n
p
u
t
[
i
r
-
1
]
[
i
c
]
.
w
[
i
v
p
1
]

 
+
i
n
p
u
t
[
i
r
-
2
]
[
i
c
]
.
w
[
i
v
p
1
]
)
;

 
 
 
 
 
 

 
 
 
 
}
e
l
s
e
{

 
 
 
 
 
 
i
f
(
i
r
=
=
1
)
{

v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
]
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

 
 
(
i
n
p
u
t
[
3
]
[
i
c
]
.
w
[
i
v
]
-
4
*
i
n
p
u
t
[
2
]
[
i
c
]
.
w
[
i
v
]

 
 
 
+
6
*
i
n
p
u
t
[
1
]
[
i
c
]
.
w
[
i
v
]
-
3
*
i
n
p
u
t
[
0
]
[
i
c
]
.
w
[
i
v
]
)
;

v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

 
 
(
i
n
p
u
t
[
3
]
[
i
c
]
.
w
[
i
v
p
1
]
 
-
 
4
*
i
n
p
u
t
[
2
]
[
i
c
]
.
w
[
i
v
p
1
]

 
 
 
+
6
*
i
n
p
u
t
[
1
]
[
i
c
]
.
w
[
i
v
p
1
]
-
3
*
i
n
p
u
t
[
0
]
[
i
c
]
.
w
[
i
v
p
1
]
)
;

 
 
 
 
 
 
}

 
 
 
 
 
 
e
l
s
e
 
i
f
(
i
r
=
=
n
_
r
-
2
)
{

v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
]
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

 
 
(
6
*
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
]
-
3
*
i
n
p
u
t
[
i
r
+
1
]
[
i
c
]
.
w
[
i
v
]

 
 
 
-
4
*
i
n
p
u
t
[
i
r
-
1
]
[
i
c
]
.
w
[
i
v
]
+
i
n
p
u
t
[
i
r
-
2
]
[
i
c
]
.
w
[
i
v
]
)
;

v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

 
 
(
6
*
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
-
3
*
i
n
p
u
t
[
i
r
+
1
]
[
i
c
]
.
w
[
i
v
p
1
]

 
 
 
-
4
*
i
n
p
u
t
[
i
r
-
1
]
[
i
c
]
.
w
[
i
v
p
1
]
+
i
n
p
u
t
[
i
r
-
2
]
[
i
c
]
.
w
[
i
v
p
1
]
)
;

 
 
 
 
 
 
}

 
 
 
 
}

 
 
 
 

 
 
 
 
i
f
 
(
i
c
>
1
 
&
&
 
i
c
<
n
_
c
-
2
)
 
{

 
 
 
 
 

 
 
 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
]
 
+
=
 
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

(
i
n
p
u
t
[
i
r
]
[
i
c
p
2
]
.
w
[
i
v
]
-
4
*
i
n
p
u
t
[
i
r
]
[
i
c
p
1
]
.
w
[
i
v
]

 
+
6
*
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
]
-
4
*
i
n
p
u
t
[
i
r
]
[
i
c
m
1
]
.
w
[
i
v
]

 
+
i
n
p
u
t
[
i
r
]
[
i
c
m
2
]
.
w
[
i
v
]
)
;

 
 
 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
 
+
=
 
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

(
i
n
p
u
t
[
i
r
]
[
i
c
p
2
]
.
w
[
i
v
p
1
]
-
4
*
i
n
p
u
t
[
i
r
]
[
i
c
p
1
]
.
w
[
i
v
p
1
]

 
+
6
*
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
-
4
*
i
n
p
u
t
[
i
r
]
[
i
c
m
1
]
.
w
[
i
v
p
1
]

 
+
i
n
p
u
t
[
i
r
]
[
i
c
m
2
]
.
w
[
i
v
p
1
]
)
;
 

 
 
 
 
}
 
e
l
s
e
 
i
f
(
i
c
 
=
=
 
1
)
{

 
 
 
 
 
 

 
 
 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
]
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

(
i
n
p
u
t
[
i
r
]
[
3
]
.
w
[
i
v
]
-

 
4
*
i
n
p
u
t
[
i
r
]
[
2
]
.
w
[
i
v
]
+
6
*
i
n
p
u
t
[
i
r
]
[
1
]
.
w
[
i
v
]
-

 
3
*
i
n
p
u
t
[
i
r
]
[
0
]
.
w
[
i
v
]
)
;

 
 
 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

(
i
n
p
u
t
[
i
r
]
[
3
]
.
w
[
i
v
p
1
]
-

 
4
*
i
n
p
u
t
[
i
r
]
[
2
]
.
w
[
i
v
p
1
]
+
6
*
i
n
p
u
t
[
i
r
]
[
1
]
.
w
[
i
v
p
1
]
-

 
3
*
i
n
p
u
t
[
i
r
]
[
0
]
.
w
[
i
v
p
1
]
)
;

 
 
 
 
 
 

 
 
 
 
}
 
e
l
s
e
 
i
f
(
i
c
 
=
=
 
n
_
c
-
2
)
{

 
 
 
 
 

 
 
 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
]
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

(
6
*
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
]

 
-
3
*
i
n
p
u
t
[
i
r
]
[
i
c
+
1
]
.
w
[
i
v
]
-
4
*
i
n
p
u
t
[
i
r
]
[
i
c
-
1
]
.
w
[
i
v
]
+

 
i
n
p
u
t
[
i
r
]
[
i
c
-
2
]
.
w
[
i
v
]
)
;

 
 
 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

(
6
*
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]

 
-
3
*
i
n
p
u
t
[
i
r
]
[
i
c
+
1
]
.
w
[
i
v
p
1
]
-
4
*
i
n
p
u
t
[
i
r
]
[
i
c
-
1
]
.
w
[
i
v
p
1
]
+

 
i
n
p
u
t
[
i
r
]
[
i
c
-
2
]
.
w
[
i
v
p
1
]
)
;

  
 
 
 
 
}
 
e
l
s
e
 
i
f
(
i
c
 
=
=
 
n
_
c
-
1
)
{

 
 
 
 
 
 

/
*

 
 
 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
]
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

(
-
2
*
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
]
-
1
2
*
i
n
p
u
t
[
i
r
]
[
i
c
-
1
]
.
w
[
i
v
]

 
+
3
6
*
i
n
p
u
t
[
i
r
]
[
i
c
-
2
]
.
w
[
i
v
]

 
-
2
8
*
i
n
p
u
t
[
i
r
]
[
i
c
-
3
]
.
w
[
i
v
]
+
6
*
i
n
p
u
t
[
i
r
]
[
i
c
-
4
]
.
w
[
i
v
]
)
;

 
 
 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

(
-
2
*
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]

 
-
1
2
*
i
n
p
u
t
[
i
r
]
[
i
c
-
1
]
.
w
[
i
v
p
1
]
+
3
6
*
i
n
p
u
t
[
i
r
]
[
i
c
-
2
]
.
w
[
i
v
p
1
]

 
-
2
8
*
i
n
p
u
t
[
i
r
]
[
i
c
-
3
]
.
w
[
i
v
p
1
]
+
6
*
i
n
p
u
t
[
i
r
]
[
i
c
-
4
]
.
w
[
i
v
p
1
]
)
;

*
/

 
 
 
 
 
 
/
*
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
]
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

(
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
]
-
4
*
i
n
p
u
t
[
i
r
]
[
i
c
-
1
]
.
w
[
i
v
]

 
+
6
*
i
n
p
u
t
[
i
r
]
[
i
c
-
2
]
.
w
[
i
v
]
+

 
-
4
*
i
n
p
u
t
[
i
r
]
[
i
c
-
3
]
.
w
[
i
v
]
+
4
*
i
n
p
u
t
[
i
r
]
[
i
c
-
4
]
.
w
[
i
v
]
)
;

 
 
 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
+
=
p
d
e
r
i
v
*
a
v
4
_
c
o
n
s
t
*

(
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]

 
-
4
*
i
n
p
u
t
[
i
r
]
[
i
c
-
1
]
.
w
[
i
v
p
1
]
+
6
*
i
n
p
u
t
[
i
r
]
[
i
c
-
2
]
.
w
[
i
v
p
1
]
+

 
-
4
*
i
n
p
u
t
[
i
r
]
[
i
c
-
3
]
.
w
[
i
v
p
1
]
+
4
*
i
n
p
u
t
[
i
r
]
[
i
c
-
4
]
.
w
[
i
v
p
1
]
)
;
*
/

 
 
 
 
}

 
 
 

 
 
 

#
i
f
d
e
f
 
A
V
2
_
C
O
E
F

 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
]
 
+
=
 
a
v
2
_
c
o
n
s
t
*

 
 
 
 
 
 
(
i
n
p
u
t
[
i
r
-
1
]
[
i
c
]
.
w
[
i
v
]
-

 
 
 
 
 
 
 
4
*
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
]
+
i
n
p
u
t
[
i
r
+
1
]
[
i
c
]
.
w
[
i
v
]

 
 
 
 
 
 
 
+
i
n
p
u
t
[
i
r
]
[
i
c
m
1
]
.
w
[
i
v
]
+
i
n
p
u
t
[
i
r
]
[
i
c
p
1
]
.
w
[
i
v
]
)
;

 
 
 
 
v
f
l
u
x
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
 
+
=
 
a
v
2
_
c
o
n
s
t
*

 
 
 
 
 
 
(
i
n
p
u
t
[
i
r
-
1
]
[
i
c
]
.
w
[
i
v
p
1
]
-

 
 
 
 
 
 
 
4
*
i
n
p
u
t
[
i
r
]
[
i
c
]
.
w
[
i
v
p
1
]
+
i
n
p
u
t
[
i
r
+
1
]
[
i
c
]
.
w
[
i
v
p
1
]
+

 
 
 
 
 
 
 
i
n
p
u
t
[
i
r
]
[
i
c
m
1
]
.
w
[
i
v
p
1
]
+
i
n
p
u
t
[
i
r
]
[
i
c
p
1
]
.
w
[
i
v
p
1
]
)
;

#
e
n
d
i
f

 
 
 
 

 
 
}
 
 

 
 
 
 

#
e
n
d
i
f

 
 

}
 
 
 
 
}

 
 
}

 
 

 
 

} /
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
 
 
 
 
C
e
l
l
 
A
r
e
a
s
 
 
 
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
/
 
 

/
*
~
~
~
~
 
T
h
i
s
 
f
u
n
c
t
i
o
n
 
c
a
l
c
u
l
a
t
e
s
 
t
h
e
 
c
e
l
l
 
a
r
e
a
 
a
s
s
o
c
i
a
t
e
d
 
w
i
t
h
 
e
a
c
h
 
n
o
d
e
.
 
 

 
 
T
h
i
s
 
a
r
e
a
 
i
n
c
l
u
d
e
s
 
a
l
l
 
f
o
u
r
 
c
e
l
l
s
 
w
h
i
c
h
 
i
n
c
l
u
d
e
 
e
a
c
h
 
n
o
d
e
 
~
~
~
~
*
/

v
o
i
d
 
C
a
l
c
_
A
r
e
a
s
(
i
n
t
 
n
_
r
,
 
i
n
t
 
n
_
c
,
 
s
t
r
u
c
t
 
p
o
i
n
t
 
*
*
g
r
i
d
,
 
s
t
r
u
c
t
 
a
_
c
e
l
l
 
*
*
a
r
e
a
)

{
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ns
.c

99
/0

4/
10

19
:1

3:
17

17
 
 
i
n
t
 
i
r
,
 
i
c
,
 
i
c
m
1
,
 
i
c
p
1
;

 
 
d
o
u
b
l
e
 
a
,
a
v
;

 
 
s
t
r
u
c
t
 
a
_
c
e
l
l
 
*
a
r
,
 
*
a
r
p
1
;

 
 
s
t
r
u
c
t
 
p
o
i
n
t
 
*
g
r
,
 
*
g
r
p
1
,
 
*
e
t
e
m
p
,
 
*
o
t
e
m
p
,
 
*
c
u
r
r
,
 
*
p
r
e
v
;

 
 
 
 
e
t
e
m
p
 
=
 
(
s
t
r
u
c
t
 
p
o
i
n
t
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
c
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
p
o
i
n
t
)
)
)
;

 
 
o
t
e
m
p
 
=
 
(
s
t
r
u
c
t
 
p
o
i
n
t
 
*
)
m
a
l
l
o
c
(
(
s
i
z
e
_
t
)
(
n
_
c
*
s
i
z
e
o
f
(
s
t
r
u
c
t
 
p
o
i
n
t
)
)
)
;

 
 
 
 
f
o
r
(
i
r
=
0
;
i
r
<
n
_
r
;
i
r
+
+
)

 
 
 
 
f
o
r
(
i
c
=
0
;
i
c
<
n
_
c
;
i
c
+
+
)

 
 
 
 
 
 
a
r
e
a
[
i
r
]
[
i
c
]
.
i
n
v
s
 
=
 
0
;

 
 
 
 
f
o
r
(
i
r
=
0
;
i
r
<
n
_
r
-
1
;
i
r
+
+
)
{

 
 
 
 
i
f
(
i
r
%
2
)
{

 
 
 
 
 
 
p
r
e
v
 
=
 
e
t
e
m
p
;

 
 
 
 
 
 
c
u
r
r
 
=
 
o
t
e
m
p
;

 
 
 
 
}
e
l
s
e
{

 
 
 
 
 
 
p
r
e
v
 
=
 
o
t
e
m
p
;

 
 
 
 
 
 
c
u
r
r
 
=
 
e
t
e
m
p
;

 
 
 
 
}

 
 
 
 

 
 
 
 
g
r
 
=
 
g
r
i
d
[
i
r
]
;

 
 
 
 
g
r
p
1
 
=
 
g
r
i
d
[
i
r
+
1
]
;

 
 
 
 
a
r
 
 
 
=
 
a
r
e
a
[
i
r
]
;

 
 
 
 
a
r
p
1
 
=
 
a
r
e
a
[
i
r
+
1
]
;

 
 
 
 

 
 
 
 
f
o
r
(
i
c
=
0
;
i
c
<
n
_
c
;
i
c
+
+
)
{

 
 
 
 
 
 

 
 
 
 
 
 
i
c
m
1
 
=
 
i
c
-
1
;

 
 
 
 
 
 
i
c
p
1
 
=
 
i
c
+
1
;

 
 
 
 
 
 

 
 
 
 
 
/
*
*
*
*
 
C
a
l
c
u
l
a
t
e
 
a
r
e
a
 
o
f
 
c
e
l
l
 
w
h
i
c
h
 
t
h
i
s
 
n
o
d
e
 
i
s
 
l
o
w
e
r
 
l
e
f
t
 
c
o
r
n
e
r
 
*
*
*
*
/
 

 
 
 
 
 
 

 
 
 
 
 
 
i
f
(
i
c
<
 
n
_
c
-
1
)
{

a
 
=
 
0
.
5
*
(
(
g
r
p
1
[
i
c
+
1
]
.
x
-
g
r
[
i
c
]
.
x
)
*
(
g
r
p
1
[
i
c
]
.
y
-
g
r
[
i
c
+
1
]
.
y
)
-

 
(
g
r
p
1
[
i
c
]
.
x
-
g
r
[
i
c
+
1
]
.
x
)
*
(
g
r
p
1
[
i
c
+
1
]
.
y
-
g
r
[
i
c
]
.
y
)
)
;

 
 
 
 
 
 
}
 
e
l
s
e
 
{

 
 
 
 
 
 
 
 
a
=
0
.
0
;

 
 
 
 
 
 
}

 
 
 
 
 
 

 
 
 
 
 
 
a
=
A
B
S
(
a
)
;

 
 
 
 
 
 

 
 
 
 
 
 
/
*
*
*
*
 
A
d
d
 
t
h
i
s
 
a
r
e
a
 
t
o
 
a
l
l
 
n
o
d
e
s
 
w
h
i
c
h
 
m
a
k
e
 
u
p
 
c
e
l
l
 
*
*
*
*
/

 
 
 
 
 
 

 
 
 
 
 
 
a
r
[
i
c
]
.
i
n
v
s
 
+
=
 
a
;

 
 
 
 
 
 
a
r
p
1
[
i
c
]
.
i
n
v
s
 
+
=
 
a
;

 
 
 
 
 
 

 
 
 
 
 
 
i
f
(
i
c
 
<
 
n
_
c
-
1
)
{

a
r
[
i
c
p
1
]
.
i
n
v
s
 
+
=
 
a
;
 

a
r
p
1
[
i
c
p
1
]
.
i
n
v
s
 
+
=
 
a
;

 
 
 
 
 
 
}

 
 
 
 

 
 
 
 
 
 
i
f
(
i
c
<
n
_
c
-
1
)
{

c
u
r
r
[
i
c
]
.
x
 
=
 
0
.
2
5
*
(
g
r
[
i
c
]
.
x
+
g
r
[
i
c
+
1
]
.
x
+
g
r
p
1
[
i
c
]
.
x
+
g
r
p
1
[
i
c
+
1
]
.
x
)
;

c
u
r
r
[
i
c
]
.
y
 
=
 
0
.
2
5
*
(
g
r
[
i
c
]
.
y
+
g
r
[
i
c
+
1
]
.
y
+
g
r
p
1
[
i
c
]
.
y
+
g
r
p
1
[
i
c
+
1
]
.
y
)
;

 
 
 
 
 
 
}
 
e
l
s
e
 
{

c
u
r
r
[
i
c
]
.
x
 
=
 
0
.
5
*
(
g
r
[
i
c
]
.
x
+
g
r
p
1
[
i
c
]
.
x
)
;

c
u
r
r
[
i
c
]
.
y
 
=
 
0
.
5
*
(
g
r
[
i
c
]
.
y
+
g
r
p
1
[
i
c
]
.
y
)
;

 
 
 
 
 
 
}

 
 
 
 
 
 

 
 
 
 
 
 
i
f
(
 
i
c
 
>
 
0
 
)
{

i
f
(
i
r
>
0
 
&
&
 
i
r
<
n
_
r
-
1
)
{

 
 
a
v
 
=
 
0
.
5
*
(
(
c
u
r
r
[
i
c
]
.
x
-
p
r
e
v
[
i
c
m
1
]
.
x
)
*
(
c
u
r
r
[
i
c
m
1
]
.
y
-
p
r
e
v
[
i
c
]
.
y
)
-

 
 
 
 
(
c
u
r
r
[
i
c
m
1
]
.
x
-
p
r
e
v
[
i
c
]
.
x
)
*
(
c
u
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=
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.
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.
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]
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]
[
i
c
]
.
w
[
2
]
/
r
h
o
;

 
 
 
 
r
e
2
=
s
t
a
t
e
[
2
]
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]
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]
=
(
t
e
[
i
c
]
.
l
/
t
s
[
i
c
]
.
l
/
G
M
A
1

*
(
s
t
a
t
e
[
0
]
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=
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/
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=
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]
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/
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;
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{
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;
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;
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]
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]
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]
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.
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i
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;
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;
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=
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{ f
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Appendix C

Process Traveler

The following are process steps undertaken to fabricate the cold-gas microthrusters. The processes were
performed in the Integrated Circuits Laboratory (ICL) and Technology Research Laboratory (TRL). The
raw materials are:

Nozzle wafer (N) - < 100 > Silicon 500 microns thick
Handle wafer (H) - Quartz Wafer
Injection Plate (P1) - Pyrex wafer pre-drilled with gas injection holes
Back Plate (P2) - Plain Pyrex wafer

Location Wafer Machine Process Specifications
TRL N HMDS Standard HMDS cycle
TRL N Coater Coat wafer with AZ 4620 spin

at 1750/1000/7000 rpm for 10/60/9 seconds
TRL N Pre-bake 30 min at 90◦C
TRL N Karl Suss 2 Expose halo mask for 360 seconds
TRL N Photo-Wet-L Develop for 5:30 in Mif-440
TRL H Coater Spin on thick resist at 3000 rpm; Mount to device wafer
TRL N,H Post-bake 90◦C for 30 minutes
TRL N,H STS Etch using Recipe STS-56 for approximately 200 minutes

for a halo trench of 50 microns
TRL N,H Acid Hood Strip resist and separate handle wafer in piranha clean
TRL N,P1,P2 Acid Hood Piranha clean Pyrex and silicon in clean labware
TRL N,P1 EV Bonder Align glass and silicon holes in the aligner

Bond at 500◦C with 1000 Volts
TRL N/P1,P2 EV Bonder Place Brass Spring in auxiliary hole repeat previous bond step
ICL N/P1/P2 Diesaw Cut along dicing lanes with glass blade to permit operation
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The process was enhanced to produce the microresistojets developed in chapter 7. They are fabricated
using the following steps and raw material:

Thruster wafer (T) - < 100 > Silicon 500 microns thick of at least 1× 1019 p-type doping
Handle wafer (H) - Quartz Wafer
Injection Plate (IP) - Silicon Wafer identical to T wafer
Back Plate (BP) - Unprocessed Silicon wafer identical to IP and T

Location Wafer Machine Process Specifications
ICL IP,T RCA Station Standard RCA clean
ICL IP,T Concept 1 PECVD oxide 4 microns thick
ICL IP,T Tube B5 Densify Oxide for 1 hour using recipe-180
TRL IP,T HMDS Standard HMDS cycle
TRL IP,T Coater Spin on thick resist at 3000 rpm

to protect back side from AME damage
TRL IP,T Pre-bake 30 min at 90◦C
TRL IP,T Coater Coat side w/ oxide with AZ 4620

at 1750/1000/7000 rpm for 10/60/9 seconds
TRL IP,T Pre-bake 30 min at 90◦C
TRL IP,T Karl Suss 2 Expose Injection hole mask on IP for 360 seconds

and nozzle-fin mask on T
TRL IP,T Photo-Wet-L Develop for 5:30 in Mif-440
TRL IP,T Post-bake 90◦C for 30 minutes
ICL IP,T AME 5000 Etch Oxide using Recipe: Nagle CHF3
TRL IP,T Acid Hood Strip resist in piranha clean
TRL H Coater Spin on thick resist at 3000 rpm; Mount to IP wafer
TRL H Post-bake 90◦C for 30 minutes
TRL IP STS Etch using Recipe STS-56 for ∼ 200 minutes

for a halo trench of 50 microns
TRL IP Acid Hood Strip resist and separate hand wafer in piranha clean
TRL IP ,T HMDS Standard HMDS cycle
TRL T Coater Coat side w/ oxide with OCG 825-35 spin

at 200/700/2000 rpm for 10/6/30 seconds
TRL T Pre-bake 30 min at 90◦C
TRL T Karl Suss 2 Expose using fin protection mask for 60 seconds
TRL T Photo-Wet-L Develop for 1:30 in OCG 934 1:1
TRL T Post-bake 120◦C for 30 minutes
TRL T STS Etch using Recipe STS-56 for approximately 25 minutes
TRL T Acid Hood Strip resist in piranha clean
ICL T Asher Place in asher for 5 minutes to strip side wall passivation
TRL H Coater Spin on thick resist at 3000 rpm; Mount to T wafer
TRL H Post-bake 90◦C for 30 minutes
TRL T STS Continue Etch using Recipe STS-56 for ∼ 175 minutes

Stop when all trenches are clear but those between fins
TRL T Acid Hood Strip resist in piranha clean and separate handle
TRL T,BP,IP RCA Station Perform RCA clean on silicon wafers prior to bonding
TRL T,BP,IP EV Bonder Align and bond IP, BP and T simultaneously
TRL T/BP/IP Tube B3 Anneal wafer stack at 1100◦C for 1 hour

ramp up at 20◦C/min
ICL T/BP/IP Diesaw Cut along dicing lanes with glass blade to permit operation

158



Bibliography

[1] Collins D. Kukkonen K. and Venneri S. Miniature, low-cost, highly Autonomous Spacecraft-A Focus
for the New Millennium. In 46th International Astronautical Congress. IAF-96-U.2.06, 1996.

[2] J. Mueller. Thruster Options for Microspacecraft: a Review and Evaluation of Existing Hardware and
Emerging Technologies. In 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.
AIAA 97-3058, 1997.

[3] London A. P. A Systems Study of Propulsion Technologies for Orbit and Attitude Control of Mi-
crospacecraft. Master’s thesis, Massachusetts Institute of Technology, 1996.

[4] G. Sutherland and M. Maes. A Review of Microrocket Technology: 10−6 to 1 lbf Thrust. Journal of
Spacecraft and Rockets, 3(8):1153–1163, 1966.

[5] V. Khayms and M. Martinez-Sanchez. Design of a Miniaturized Hall Thruster for Microsatellites. In
32rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. AIAA 96-3291, 1996.

[6] Massier P. Back L. Noel M. and Saheli F. Viscous Effects on the Flow Coefficient for a Supersonic
Nozzle. AIAA Journal, 8(3):605–607, 1970.

[7] G. A. Kuluva N. M. Hosack. Supersonic Nozzle Discharge Coefficients at Low Reynolds Numbers. AIAA
Journal, 9(9):1876–1877, 1971.

[8] D. Rothe. Electron-beam Studies of Viscous Flow in Supersonic Nozzles. AIAA Journal, 9(5):804–811,
1971.

[9] W. Rae. Some Numerical Results on Viscous Low-Density Nozzle Flows in the Slender-Channel Ap-
proximation. AIAA Journal, 9(5):811–821, 1971.

[10] T. A. Grisnik, S. P. Smith and Saltz L.E. Experimental Study of Low Reynolds Number Nozzles. In
19th AIAA/DGLR/JSASS Internation Electric Propulsion Conference. AIAA 87-0992, 1987.

[11] S. C. Kim. Calculations of Low-Reynolds-Number Resistojet Nozzles. Journal of Spacecraft and Rockets,
31(4):259–264, March-April 1994.

[12] M. Zelesnik, D. Micci and L. Long. Direct Simulation Monte Carlo Model of Low Reynolds Number
Nozzle Flows. Journal of Propulsion and Power, 10(4):546–553, 1994.

[13] Ivanov M.S. Markelov G.N. Ketsdver A.D. and Wadworth D.C. Numerical Study of Cold Gas Micronoz-
zle Flows. In 37th Aerospace Sciences Meeting and Exhibit. AIAA 99-0166, 1999.

[14] S.W. Janson and H. Helvajian. Batch-Fabricated Microthrusters: Initial Results. In 32nd
AIAA/ASME/SAE/ASEE Joint Propulsion Conference. AIAA-96-2988, 1996.

[15] Lewis D.H. Janson S.W. Cohen R.B. Antonsson E.K. Digital Micropropulsion. In MEMS ’99 Orlando,
FL. IEEE, 1999.

[16] S. W. Janson. Batch-Fabricated Resistojets: Initial Results. In International Electric Propulsion
Conference. Electri Rocket Propulsion Society IEPC-97-070, 1997.

159



[17] Mueller J. Tang W. Wallace A. Li W. Bame D. Chakraborty I. and Lawton R. Design, Analysis and
Fabrication of a Vaporizing Liquid Micro-Thruster. In 33rd AIAA/ASME/SAE/ASEE Joint Propulsion
Conference and Exhibit. AIAA 97-3054, 1997.

[18] J.D. Anderson. Hypersonic and High Temperature Gas Dynamics. McGraw-Hill, 1st edition, 1989.

[19] B. Van Leer. Flux-vector Splitting for the Euler Equations. Lecture Notes in Physics, 170:507–512,
1982.

[20] E.S. Piekos. Personal communication and documentation. 1996.

[21] Anderson D.A. Tannehill J.C. and Pletcher R.H. Computational Fluid Mechanics and Heat Transfer.
Taylor and Francis, 1st edition, 1984.

[22] W. Jameson, A. Schmidt and E. Turkel. Numerical Solution of the Euler Equations by Finite Volume
Methods Using Runge-Kutta Time Stepping Schemes. AIAA 81-1259, 1981.

[23] C. Hirsch. Numerical Computation of Interal and External Flows. John Wiley and Sons, 2nd edition,
1990.

[24] J. Peraire. Personal communication. 1996.

[25] W. M. Rohsenow. Heat, Mass, and Momentum Transfer. Prentice-Hall, 1st edition, 1961.

[26] E. B. Arkilic. Measurement of the Mass Flow and Tangential Momentum Accomodation Coefficient in
Silicon Micromachined Channels. PhD thesis, Massachusetts Institute of Technology, 1997.

[27] J.D. Hoffman. Numerical Methods for Engineers and Scientists. McGraw-Hill, 1st edition, 1992.

[28] J. Steger and R. Sorenson. Automatic Mesh-Point Clustering in Grid Generation with Elliptic Partial
Differential Equations. Journal of Computational Physics, 33:405–410, 1979.

[29] F. M. White. Viscous Fluid Flow. McGraw-Hill, 2nd edition, 1991.

[30] L.M. Mack. Boundary-Layer Linear Stability Theory. In Special Course on Stability and Transition in
Laminar Flow, volume 709. AGARD, 1984.

[31] Schlichting H. Boundary Layer Theory. Artech House, 4th edition, 1979.

[32] D. Guckel, H. Burns. A technology for integrated transducers. In Technical Digest, International
Conference on Solid-State Sensors and Actuators (Transducer ’85). IEEE, 1985.

[33] Senturia S.D. Schmidt M.A. Harrison D.J. Microsystems: Mechanical, Chemical, Optical. MIT, 1.2
edition, 1996.

[34] T. Diepold. A Micromachined Continuous Ink Jet Print Head for High Resolution Printing. In Mi-
crosensor and Actuator Technology. TU-Berlin, 1998.

[35] Gmbh Robert Bosch. Method for Anisotropically Etching Silicon. Patents 4855017 and 4784720(USA),
and 4241045C1(Germany).

[36] Ayon A.A Lin C.C. Braff R.A. Schmidt M.A. Bayt R.L. Sawin H.H. Etching Characteristics and Profile
Control in a Time Multiplexed Inductively Coupled Plasma Etcher. In Solid-State Sensor and Actuator
Workshop. Transducers Research Foundation, 1998.

[37] G. Wallis and D. I. Pomerantz. Field Assisted Glass-Metal Sealing. Journal of Applied Physics,
40(10):3946–3949, Septemeber 1969.

[38] T. Rogers and J. Kowal. Selection of glass, anodic bonding conditions and material compatibility for
silicon-glass capacitive sensors. Sensors and Actuators A, 46(113):113–120, Septemeber 1995.

160



[39] M. Grundner and H. Jacob. Investigation on hydrophilic and hydrophobic silicon < 100 > wafer surfaces
by x-ray photoelectron and high-rsolution electron energy-loss spectroscopy. Journal of Applied Physics,
A39:73, 1986.

[40] L. Ristic. Sensor Technology and Devices. Artech House, 1st edition, 1994.

[41] M.A. Schmidt. Silicon wafer-bonding for micromechanical devices. Technical Digest, Solid State Sensor
and Actuator Workshop, pages 127–131, 1994.

[42] L.A. Gochberg and B.L. Haas. Evaluation of Rotational Relaxation Rate Models in Low-Density Ex-
panding Flows of Nitrogen. In 30th AIAA Thermophysics Conference. AIAA 95-2070, 1995.

[43] G. P. Sutton. Rocket Propulsion Elements. Wiley-InterScience, 6th edition, 1992.

[44] K.F. (with others) Jensen. Micromachined Chemical Reactors for Heterogeneously Catalyzed Partial
Oxidation Reaction. AlChe Journal, 143:3059–3069, 1997.

[45] Fitch J.S. Henning A.K. Arkilic E.B. and Harris J.M. Pressure-Based Mass-Flow Control Using
Thermopneumatically-Actuated Microvalves. In Solid-State Sensor and Actuator Workshop. Trans-
ducers Research Foundation, 1998.

[46] R. K. Kakac, S. Shah and A. E. Bergles. Low Reynolds Number Flow Heat Exchangers. Hemisphere
Publishing, 1st edition, 1983.

[47] D. N. Ashcroft, N.W. Mermin. Solid State Physics. Holt, Rinehart and Winston, 1st edition, 1976.

[48] G. L. Pearson and J. Bardeen. Electrical properties of Pure Silicon and Silicon Alloys Containing Boron
and Phosphorous. Physical Review, 75(1):865–886, 1949.

[49] J. Kalamas. A Three-Dimensional Flow Stability Analysis of the Particle Bed Nuclear Reactor. PhD
thesis, Massachusetts Institute of Technology, 1993.

[50] M. Martinez-Sanchez. Electrical Leads with Least Thermal Losses. In 16.522 course notes on Electric
Propulsion, 1996.

161


