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Balanced Model Reduction via the Proper
Orthogonal Decomposition

K. Willcox¤ and J. Peraire†

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

A new method for performing a balanced reduction of a high-order linear system is presented. The technique
combines the proper orthogonal decomposition and concepts from balanced realization theory. The method of
snapshots is used to obtain low-rank, reduced-range approximationsto the system controllabilityand observability
grammiansin either the time or frequency domain.The approximationsare then used to obtaina balancedreduced-
order model. The method is particularly effective when a small number of outputs is of interest. It is demonstrated
for a linearized high-order system that models unsteady motion of a two-dimensional airfoil. Computation of
the exact grammians would be impractical for such a large system. For this problem, very accurate reduced-
order models are obtained that capture the required dynamics with just three states. The new models exhibit far
superior performance than those derived using a conventionalproper orthogonaldecomposition.Although further
development is necessary, the concept also extends to nonlinear systems.

Nomenclature
h = airfoil plunge displacement
K = proper orthogonal decomposition (POD) kernel
m = number of POD snapshots
n = number of states in computational � uid dynamics

(CFD) model
nr = number of states in reduced-ordermodel
R = correlation matrix
T = matrix whose columns contain the balancing

transformationvectors
u; U = vector containing inputs for models, time

and frequency domain
Wc = controllabilitygrammian
Wco = grammian product
Wo = observability grammian
x; X = aerodynamic state vector for CFD model, time

and frequency domain
xr = aerodynamic state vector for reduced-ordermodel
y; Y = vector containing outputs of CFD model, time

and frequency domain
yr = vector containing outputs of reduced-ordermodel
z = dual state vector for CFD model
¾i = i th Hankel singular value
W = basis vector
! = forcing frequency

Introduction

M ODEL reduction is a powerful tool that has been applied
throughout many different disciplines, including controls,

� uid dynamics, and structural dynamics. In many situations, high-
order, complicatednumericalmodels accuratelyrepresentthe prob-
lem at hand, but are unsuitable for the desired application, for
instance, for optimization or for control design. In particular,
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aeroservoelasticdesign can not be effectedwithout low-order, high-
� delity models. Ideally, we would like to develop a model with a
low number of states but that captures the system dynamics accu-
rately over a range of frequencies and forcing inputs. This can be
achieved via reduced-order modeling in which a high-order, high-
� delity model is projected onto a reduced-space basis. If the basis
is chosen appropriately, the relevant high-� delity system dynamics
can be captured with a greatly reduced number of states. The range
of validityof the reduced-ordermodel is determinedby the speci� cs
of the reduction procedure.

Many methods have been suggestedfor determining an appropri-
ate basis. Much of the work has been derived in a controls context.
In particular, the idea of a balanced truncation has been shown to
provide accurate low-order representationsof state-spacesystems.1

To determine the balanced realization,it is necessaryto compute the
grammians of the system, which use information pertaining to both
system inputs and outputs. Although it is relatively straightforward
to compute these matrices in a controls setting where the system
order is moderate, the technique does not extend easily to high-
order systems, where state orders exceed 104. For this reason, many
of the control-based reduction concepts have not been transferred
to other disciplines where model order is typically much higher,
such as computational� uid dynamics (CFD). Severalmethods have
beendevelopedfor computingapproximationsto the grammians for
large systems, including the approximate subspace iteration,2 least
squaresapproximation,3 and Krylov subspacemethods4;5; however,
these algorithmsare complicated,computationallyintensive,and re-
stricted to linear systems.As an alternativemeans of performing the
reduction,Padé approximationshave also been used to approximate
the system transfer function6; however, the resulting reduced-order
models often suffer from instability.

The challenge has, therefore, been to develop effective reduction
procedures suitable for very high-order systems. Much progress in
this area has been made in the � eld of � uid dynamics.7;8 One pos-
sibility for a basis is to compute the eigenmodes of the system.9¡11

Along with the use of static corrections,12 this approach can lead to
ef� cient models, and the eigenmodes themselves often lend physi-
cal insight to the problem. However, for these high-order systems,
solution of such a large nonsymmetric eigenproblem is in itself
a very dif� cult task and in many cases not a viable option. The
proper orthogonal decomposition (POD) technique, also known as
Karhunen–Loéve expansions (see Ref. 13), has been developed as
an alternate method of deriving basis vectors for high-order sys-
tems and, in particular, has been widely applied to � uid dynamic
problems.14¡16 Frequency-domainPOD methodshave also been de-
veloped and applied to a variety of � ow problems.17¡19 However, in
existing applications, only information pertaining to system inputs
has been considered.
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The failure of current � ow model reduction techniques to con-
sider system outputs raises several issues. First, the typical goal
of model reduction is to represent a particular system output accu-
rately.When attemptsare made to capture the appropriatedynamics
without consideration of the relationship between this output and
the system states, inef� cient models may be obtained. If this addi-
tional informationcould be incorporatedto the reductionprocedure,
it is expected that higher degrees of reduction could be achieved.
Second, and more fundamental, a reduction procedure based only
on system inputsmay be highlydependenton the arbitraryscalingof
the state variables.This could lead to reduced-spacerepresentations
that are highly inaccurate.

Dowell and Hall20 discuss the possibility of extracting eigen-
modes or balanced modes directly from a reduced-ordermodel de-
rived using the POD. Although this approach might further reduce
the order of the model, it does not take account of system inputs
at the same fundamental level as the outputs. In fact, the balanced
modes would be derived from a precomputedunbalancedsubspace.
In this work, a method will be presented that allows both inputs
and outputs to be taken into account to obtain a balanced reduced-
order model directly from a high-order system without the need for
an intermediate reduced-order model. Lall et al.21 noted the con-
nection between the system grammians and the POD and used a
Kahunen–Loéve decomposition to obtain an approximate balanced
truncation. Here, we make use of a similar concept that does not
require the construction of the approximate grammians, which in
our case would be computationally prohibitive. Instead, the POD
method of snapshots15 will be used to approximate the grammians
of the system in a very ef� cient way that does not require large
computations or complicated algorithms. The method can also be
implemented in the frequency domain, making it even more com-
putationally ef� cient.

In this paper, the existing concepts of POD and balanced realiza-
tion will be outlined. The new method that combines the two ap-
proacheswill then be presented.Resultswill be shown for reduction
of two high-ordersystems.The � rst caseanalyzedis a randomlygen-
erated state-space system whose exact balanced realization can be
computed,allowing some insight to the performanceof the method.
The second example is the reduction of a CFD model that describes
the unsteady linearized motion of a two-dimensionalairfoil. In this
case, reduction results will be compared to a full simulation of the
CFD model and also to a conventional POD reduction approach.
We then brie� y discuss extension of the methodology to nonlinear
problems, and, � nally, we present some conclusions.

Model Order Reduction
Consider an nth-order linear system

Px D Ax C Bu (1)

y D Cx (2)

where x is the state vector, the vectorsu and y contain the system in-
puts and outputs, respectively,and the order of the system n is high.
The objective of the reduction procedure is to determine an nr th-
order reduced-space basis onto which the state vector can be pro-
jected, that is, x D V xr , and an orthonormal set QV , so that QV V D I .
This basis is chosen appropriatelyso that the reduced-ordersystem

Pxr D QV AV xr C QV Bu (3)

yr D C V xr (4)

accurately reproduces the desired dynamics of the original system
(1) and (2) with many fewer states (nr ¿ n).

Balanced Truncation
The concept of a balanced truncation of a system was � rst intro-

duced by Moore.1 The underlyingidea is to take account of both the
inputs and outputs of the system when determining which states to
retain in the reduced-state representation, but to do so with appro-
priate internalscaling.This scaling is importantbecausea particular
representation of the system is not unique: Any nonsingular linear

transformation can be applied to the system (1) and (2) that effec-
tively allows each state to be scaled by an arbitrary amount. For
example, if we choose the transformation x D T xt , we obtain the
scaled system

Pxt D T ¡1 AT xt C T ¡1 Bu (5)

y D CT xt (6)

that is fully equivalent to Eqs. (1) and (2). A reduction procedure
based only on system inputs or outputs may be heavily dependent
on this arbitrary scaling of the states. In a balanced truncation, we,
therefore, seek a reduction method that is independentof the partic-
ular system scaling.

Reductionof the systemwill be achievedby retainingonly certain
states in the representation.This is equivalent to de� ning a certain
subspace within the state space. Two important subspaces are the
controllable and observable subspaces. The controllable subspace
is that set of states that can be obtained with zero initial state and a
given input u.t/ (also called the set of reachablestates),whereas the
observablesubspacecomprises those states that as initial conditions
couldproducea nonzerooutput y.t/ with noexternalinput.The con-
trollability and observability grammians are each an n £ n matrix
whose eigenvectorsspan the controllableand observablesubspaces,
respectively.These matricesare de� ned for the linearsystem (1) and
(2) as

Wc D
Z 1

0

eAt BB¤eA¤t dt (7)

Wo D
Z 1

0

eA¤ t C ¤CeAt dt (8)

where the asterisk denotes the complex conjugate transpose.
When it is noted that for a single-input/single-output(SISO) sys-

tem the quantity x±.t/ D eAt B is simply the impulse response of the
system [set u.t/ D ±.t/ in Eq. (1)], the controllabilitygrammian can
also be written

Wc D
Z 1

0

x±.t/x¤
± .t/ dt (9)

For theobservabilitygrammian,we need to considerthedual system
(1) and (2):

Pz D A¤z C C¤ud (10)

yd D B¤z (11)

Here, z is the dual state vector. Analogously to Eq. (9), we can write

Wo D
Z 1

0

z±.t/z¤
± .t/ dt (12)

where z±.t/ D eA¤ t C¤ is the impulse response of the dual SISO
system.

To obtain a balanced realization of the system (1) and (2), a state
transformation T is chosen so that the controllability and observ-
ability grammians are diagonal and equal. This so-called balanc-
ing transformation can be computed by � rst calculating the matrix
Wco D Wc Wo and then determining its eigenmodes:

Wco D T 3T ¡1 (13)

It can be seen that the eigenvectors of Wco , that is, Ti , are the ba-
sis vectors that describe the balancing transformation, as follows.
Consider the grammians of the transformed system (5) and (6). By
replacing A with QA D T ¡1 AT and B with QB D T ¡1 B in Eq. (7), we
obtain the following expression for the controllabilitygrammian of
the transformed system:

QWc D T ¡1WcT
¡1¤ (14)
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Similarly, in Eq. (8), we replace A with QA and C with QC D CT to
obtain

QWo D T ¤WoT (15)

For a balanced system, we require QWc D QWo D 6, where 6 is a
diagonal matrix. From Eqs. (14) and (15), we can write

T ¡1Wc D 6T ¤ (16)

WoT D T ¡1¤6 (17)

or

T ¡1WcWoT D 62 (18)

From Eq. (18), it can be seen that the transformationT that balances
the system is that containingthe eigenvectorsof the grammian prod-
uct Wco as its columns.

When Eqs. (18) and (13) are compared, it can also be seen that
the eigenvalues ¸i contained in the diagonal matrix 3 are positive,
real numbers, and ¾i D

p
¸i are known as the Hankel singular val-

ues of the system. The eigenvectors of Wco correspond to states
through which the input is transmitted to the output. The magni-
tudes of the Hankel singularvalues describe the relative importance
of these states and are independent of the particular realization of
the system. In a balanced truncation, only those states are retained
that correspond to large Hankel singular values.

When it is assumed that the nth-order system (1) and (2) has
been transformed to a balanced realization, an error criterion for
model reduction based on Hankel singular values can be derived.22

A truncation of the balanced system is performed in which the � rst
nr states are retained,resulting in a reduced-ordermodel of the form
(3) and (4). The Hankel singular values of the neglected states give
an error bound on the output:

k y.t/ ¡ yr .t/k · 2
nX

i D nr C 1

¾i ku.t/k (19)

where k k denotes the L2 norm.
For large systems, it is not practical to compute the grammians

explicitly using Eqs. (7) and (8). It is more convenient to note that
Wc and Wo satisfy the Lyapunov equations

AWc C Wc A¤ C BB¤ D 0 (20)

A¤Wo C Wo A C C¤C D 0 (21)

See Ref. 23 for more details. Methods have been suggested for
solvingEqs. (20) and (21) when the systems are large, by the use of
approximate subspace iteration,2 least-squaresapproximation,3 and
Krylov subspacemethods (see Refs. 4 and 5), to obtain low-rank ap-
proximationsof thegrammians.However,all of these techniquesare
expensive for very high-order systems and have only been demon-
strated for much smaller problems than those encountered in com-
plicated � uid dynamic applications. In this paper, we will introduce
an ef� cient method for calculatingvery low-rank approximationsto
the grammians using the concepts of the POD that are outlined in
the following section.

POD
The POD has been widely used to determine ef� cient bases for

dynamicsystems. It was introducedfor the analysisof turbulenceby
Lumley14 and is also known as the Karhunen-Loéve decomposition
(see Ref. 13) and principal componentanalysis.24 The basis vectors
W are chosen to maximize the following cost16:

max
8

hj.x; U /j2i=. U ; U / D hj.x; W /j2i=.W ; W / (22)

where .x; W / denotes the scalar product of the basis vector W with
the state vector x.µ; t/, which depends on the spatial coordinates µ
and time t , and where h i represents a time-averaging operation. It

can be shown that a necessary condition for Eq. (22) to hold is that
W is an eigenfunctionof the kernel K de� ned by

K .µ; µ 0/ D hx.µ; t/x¤.µ 0; t/i (23)

Sirovich introduced the method of snapshots as a way of de-
termining the eigenfunctions W without explicitly calculating the
kernel K (Ref. 15). The kernel can be approximated as

K .µ; µ 0/ D 1
m

mX

i D 1

xi .µ/x¤
i .µ 0/ (24)

where xi .µ/ is the instantaneoussystem state or snapshotat a time ti
and thenumberof snapshotsm is suf� cientlylarge.The eigenvectors
of K are of the form

W D
mX

i D 1

¯i xi (25)

where theconstants¯i canbe seen to satisfy theeigenvectorequation

R¯ D 3¯ (26)

and R is now the correlation matrix

Rik D .1=m/.xi ; xk / (27)

Ratherthanperforminga set of simulationsto obtainthe snapshots
xi , the POD basis vectors can be obtained much more ef� ciently
by taking advantage of linearity and the frequency domain. For a
linear system, any general forcing function can be considered as
a superposition of sinusoidally time-varying components each at a
frequency !:

u.t/ D Re

» Z 1

¡1
U.!/e j!t d!

¼
(28)

Because the system is linear, the componentof forcing at frequency
! induces a response that is also harmonic with frequency !, that
is, x.t/ D Xe j!t and y D Ye j!t . The response due to each harmonic
component could be computed separately and then recombined ap-
propriately to obtain the overall response to the general forcing
function. When a single temporal harmonic !k is considered, the
state-space system (1) and (2) can be written in the frequency do-
main as

Xk D . j!k I ¡ A/¡1 BUk (29)

Yk D CXk (30)

As shown in Ref. 17, Eqs. (22) and (23) can be converted to the
frequencydomainusingParseval’s theorem.The result is an approx-
imation to the kernel similar to Eq. (24), but the summation over
temporal states is replacedwith a summation over frequencies.This
can also be seen by consideringan arbitrary snapshotxi in Eq. (24),
which is a linear combinationof harmonic components.Because of
temporal orthogonality, the cross products of components at differ-
ent frequencieswill be zero, thus they result in the same conclusion:
The kernel can be approximated by a summation over frequencies.

The POD snapshots can, therefore, be obtained by choosing a
set of sample frequencies f!k g based on the frequency content of
problems of interest and solving the frequency-domainsystem (29)
to obtain the responses fXkg. The resulting complex response can
be used in a frequency-domain POD analysis as in Ref. 17, or the
real and imaginary part of each complex response can be used as
snapshots in a time domain POD analysis as in Ref. 19.
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Balanced Truncation via the Method of Snapshots
Lall et al.21 describe the connection between the POD and bal-

anced truncation.Note the similarity between the POD kernel func-
tion K de� ned by Eq. (23) and the controllability grammian Wc

de� ned by Eq. (9). In fact, as noted by Lall et al., if the � elds x.µ; t/
in Eq. (23)areobtainedbyexcitingthe systemwith impulsiveinputs,
then the POD results in the constructionof the controllabilitygram-
mian.Further insightcanbegainedbyconsideringtheproblemin the
frequencydomain. Consider an impulsive input: If u.t/ D ±.t/, then
U .!/ D 1 for all values of !. From Eq. (29), the frequency-domain
impulseresponseis, therefore,givenby X .!/ D . j! I ¡ A/¡1 B. Us-
ing Parseval’s theorem to convert Eq. (7) to the frequency domain,
the controllabilitygrammian can be written as

Wc D 1

2¼

Z 1

¡1
. j! I ¡ A/¡1BB¤.¡ j!I ¡ A¤/¡1 d! (31)

This alternate representationof the grammian is also considered in
Ref. 25.

Although the kernel is never explicitly computed in the POD
frequency domain analysis, by choosing a � nite set of discrete fre-
quencies for the snapshots,Eq. (24) can be written

K D 1
m

mX

i D 1

. j!i I ¡ A/¡1BB¤
¡
¡ j!i I ¡ A¤

¢¡1
(32)

By comparing Eqs. (31) and (32), we can see that in the case of
general inputs, the POD kernel is, therefore,an approximationto the
controllabilitygrammian over a chosen, restricted frequency range.
The subspace spanned by the POD basis vectors approximates the
controllabilitysubspace.

It is a natural extension to consider a POD analysis that approxi-
mates the observabilitysubspace.Furthermore, to obtain a balanced
representation of the system, we can then use concepts from a tra-
ditional control balanced truncation. Lall et al.21 used the direct
POD method to obtain approximations to the system grammians.
For a system of order n, this results in the constructionof two n £ n
matrices.Clearly, for very large systems, this approachwill be com-
putationally infeasible, especially given that the matrices will not
be sparse. Here we present an alternative approach that uses the
POD method of snapshots to approximate the grammians, so that
the large matrices need never be explicitly computed.

By obtainingsnapshotsof the dual system (10) and (11), and per-
forming the POD method of snapshots analysis described earlier,
we can calculate p eigenmodesof the observabilitykernel function.
Let these eigenvectorsbe contained in the columns of the matrix X ,
with correspondingeigenvalueson the diagonalentriesof the matrix
3o . Similarly, let the eigenvectorsof the conventional(controllabil-
ity) kernel K be contained in the columns of the matrix Y , with
correspondingeigenvalueson the diagonal entries of the matrix 3c.
Low-rank approximations to the controllability and observability
grammians can then be made as follows:

W p
c D Y 3cY

¤ (33)

W p
o D X3o X ¤ (34)

where the superscript p denotes a pth-order approximation.
Through use of an ef� cient eigenvalue solver, the eigenmodes of

the productW p
c W p

o can then be calculated.In this work, ARPACK26

was used to determine the eigenvalues. This package requires the
user to supply only matrix–vector multiplications; hence, the large
matrices W p

c and W p
o need never be explicitly formed.

The balancingalgorithmcan thereforebe summarizedas follows:
1) Use the method of snapshots to obtain p POD eigenmodes

.Y; 3c/ for the primal system.
2) Use the method of snapshots to obtain p POD eigenmodes

.X; 3o/ for the dual system.
3) Formulate the low-rank approximations W p

c D Y 3cY ¤ and
W p

o D X3o X¤. (The n £ n matrices are never explicitlycalculated.)
4) Obtain the eigenvectors of the product W p

c W p
o to determine

the balancing transformation T .
5) Retain only those eigenvectors in the reduced-spacebasis that

correspond to large Hankel singular values.

Multiple Input/Output Case
The concept extends readily to the multi-input/multi-outputcase;

however, it is important to treat the system in the correct manner if
the correlation with the grammians is to be maintained.

Consider a system with q inputs

u D [u1 u2; : : : ; uq ]T (35)

The matrix B in Eq. (1) can be written

B D [b1 b2; : : : ; bq ] (36)

We now inspect the form of the controllabilitygrammian Wc de� ned
by Eq. (7). Because of the nature of the outer product, the grammian
of the multiple-input system can be written as a sum of grammian
components that correspond to each of the inputs as follows:

Wc D
Z 1

0

eAt b1b¤
1eA¤ t dt C

Z 1

0

eAt b2b¤
2eA¤ t dt

C ¢ ¢ ¢ C
Z 1

0

eAt bqb¤
qeA¤ t dt (37)

The kernel function (23) should, therefore, be written as

K .µ; µ 0/ D hx1.µ; t/x1¤.µ 0; t/ C x2.µ; t/x2¤.µ 0; t/

C ¢ ¢ ¢ C xq .µ; t/xq¤.µ 0; t/i (38)

where x j is the response of the system to forcing in u j only. As
described earlier, the eigenfunctions W of the kernel can be written
as linear combinations of snapshots

W D
qX

j D 1

m jX

i D 1

¯
j

i x j
i (39)

where the number of snapshots m j can vary for different inputs
j . Following the derivation by Sirovich,15 we obtain an eigenvalue
problem for the coef� cients ¯

j
i . We � nd that the resulting system

has an identical form to Eq. (26), with the total number of snapshots
now being given by

m D
qX

j D 1

m j

The POD can, therefore, be applied to a multiple-input problem,
and the approximationof the controllabilitygrammianwill be main-
tained provided snapshots are obtained for each input in turn. The
resultingcollectionof snapshots,x j

i ; i D 1; : : : ; m j ; j D 1; : : : ; q , is
then treated in the same way as for the SISO case. Analogous ar-
guments can be applied to the dual problem so that, for multiple
outputs, snapshotsmust be obtained for each output in turn. It is ev-
ident that, if one is concerned with a large number of outputs, then
the balanced approach will be prohibitively expensive (and could
potentiallyresult in much lower reductionin the numberof states). It
is, therefore,important to characterizethe problemat hand carefully
before choosing a reduction methodology.

Results and Discussion
In this section, the performance of the method will be illus-

trated with two examples. The � rst is a randomly generated, mod-
erately sized problem for which the exact balanced realization can
be computed. The second is a realistic high-order � uid dynamic
problem.

Randomly Generated State-Space System
In this example,we analyzea randomlygeneratedSISO systemof

sizen D 100. The matrixwas chosen to bediagonalwith eigenvalues
distributed uniformly over the interval [¡1 0]. The vectors B and
C were also randomly generated. The exact balanced realization of
the system was determinedby solving the Lyapunovequations.The
Hankel singularvalueswere computed,and the � rst 10 are plotted in
Fig. 1. As Fig. 1 shows, themagnitudesof theHankel singularvalues
decrease very rapidly. This indicates that a balanced truncation of
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Fig. 1 Hankel singular values (o) and square roots of eigenvalues of the approximate grammian product (x), n = 100, p = 20, and m = 40.

the system could provide a very accurate representation with just a
few states.

The approximate balancing method was then applied to the sys-
tem. POD snapshots were taken from the primal and dual systems
at frequency intervals of 1! D 0:05 from ! D 0 to 1. There were
20POD basisvectorscalculatedfor eachsystemandused to form the
approximations to the appropriate grammian. The resulting square
roots of the eigenvalues of the grammian product are also plotted
in Fig. 1, and we see that the method approximates the dominant
Hankel singular values very well.

CFD Model
Resultswill now be presentedfor a two-dimensionalNACA 0012

airfoil operating in unsteady motion with a steady-stateMach num-
ber of 0.755. The airfoil is assumed to move in a single rigid plung-
ing mode (vertical motion with no angular displacement).There is,
therefore, a single system input: the instantaneous velocity of the
airfoil. (A rigid vertical translationhas no effect in a linearizedanal-
ysis.)The outputof interest for this case is the lift forcegeneratedon
the airfoil. Although this is a simpli� ed case, it is chosen to demon-
strate the effectivenessof the methodology with a small number of
inputs and outputs. Additional structural degrees of freedom, such
as rigid angular displacement and velocity (pitching motion) could
be addressed in an analogousway. The � ow is assumed to be invis-
cid, and all motions are assumed to be small. Thus, the governing
equations are the linearized Euler equations.The steady-state pres-
sure contours for this problem are shown in Fig. 2. The CFD mesh
has 3482 grid points, which corresponds to a total of n D 13,928
unknowns in the linear state-space system.

POD snapshots were obtained by causing the airfoil to plunge
in sinusoidal motion at selected frequencies.19 Frequencies were
selected at 0.1 increments from ! D 0:1 to 2.0. Snapshots were
obtained at each frequency by solving the frequency-domain
equations (29) and the corresponding frequency-domainequations
for the dual system with a preconditionedcomplex GMRES algo-
rithm. Thus, 40 snapshots were obtained for each problem (2 per
frequency). The correlation matrices were calculated and the POD
process used to determine the kernel eigenfunctions.

The low-rank approximations to the grammians were formed by
taking 15 eigenmodes for each (p D 15). ARPACK was then used
to calculate the � rst 10 eigenmodes of the grammian product. As
mentioned earlier, it is not necessary to form the grammians or the
product explicitly. Instead, for each problem, 15 eigenvectors,each

Fig. 2 Steady-state pressure contours for NACA 0012 airfoil:
3482 nodes, M = 0.755, and ® = 0.016 deg.

of size n, and 15 eigenvalues were stored, and the matrix multipli-
cations were computed as necessary.Because of the extremely low-
rank approximation of the matrix, the eigenvalue solver converged
very quickly. The resulting � rst 10 eigenvalues of the grammian
product are plotted with £ in Fig. 3. These eigenvalues approxi-
mate the squares of the Hankel singular values of the system, which
are independent of the realization. In a balanced truncation, only
those states are retained that correspond to large Hankel singular
values. From Fig. 3, we see that the magnitudesof eigenvaluesdrop
off very sharply, indicating that the reduced-order model will re-
quire only a few states. In fact, the � rst state contains most of the
system “energy.”

The accuracy of the reduced-ordermodel obtained from the bal-
anced truncation can be assessed via simulation results. Forced re-
sponse of the airfoil to a pulse input in plunge is considered,and the
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Fig. 3 Eigenvalues of the approximate grammian product (approximate the squares of the Hankel singular values of the system): n = 13,928, m = 40,
and p = 10, 15, and 20.

Fig. 4 Response of NACA 0012 airfoil to a pulse input in plunge: M = 0.755, ® = 0.016 deg, and g = 0.01; results from CFD model (13,928 states,
——), conventional POD reduced-order model with eight states (- - - -), and balanced reduced-order model with one state (– – – ).

resultsare comparedto thoseobtainedboth with thehigh-orderCFD
code and with a reduced-ordermodelderivedvia conventionalPOD.
Note that although the basis for the conventionalPOD model is the
same as that used to approximate the controllabilitygrammian, the
derivation of the balanced reduced-ordermodel in no way depends
on the conventional reduced-ordermodel. The conventionalmodel
is presented simply for comparison with the new technique. Static
corrections were also included in the reduced-order models to aid
in capturing high-frequencydynamics.19

The plunge displacement h of the airfoil was prescribed to be

h.t/ D exp
£

¡ g.t ¡ t0/2
¤

(40)

where g is a parameter that determines how sharp the pulse is
and, thus, the value of the maximum signi� cant frequency present.
Figure 4 shows the results for g D 0:01, which corresponds to
!max D 0:48 based on a 1% level. The solid line represents the force
generated on the airfoil as a function of time as calculated with the

high-order CFD model. The two dashed lines are the results ob-
tained using a conventional POD model with eight states and the
new balancedmodel with one state.As Fig. 4 shows, with just a sin-
gle degree of freedom, the balanced reduced-ordermodel captures
the response of the CFD model almost exactly.

The same test was performed for a higher frequency pulse with
g D 0:1. In this case, the highest signi� cant frequency present at a
1% level is !max D 1:34. The frequency content in this pulse input,
therefore,spansmost of the rangesampledby the snapshots.Figure5
shows the results for the CFD model, along with the reduced-order
models with eight (conventional) and three (balanced) degrees of
freedom. Although the balanced model with three states captures
the response extremely accurately, even with eight states the con-
ventionalmodel showsa signi� canterror.This was thehighest-order
model that could be obtained using conventional POD because in-
cluding additional basis vectors caused the reduced-order model
to become unstable. To capture the response more accurately, it
would be necessary to include more snapshots in the conventional
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Fig. 5 Response of NACA 0012 airfoil to a pulse input in plunge: M = 0.755, ® = 0.016 deg, and g = 0.1. Results from CFD model (13,928 states,
——), conventional POD reduced-order model (eight states, - - - -), and balanced reduced-order model (three states, – – – ).

POD analysis. This relatively common occurrence with conven-
tional POD methods seems to be addressed with the balancing
approach.

Discussion
The computation of reduced-order models via the balancing

method is slightly more than twice as expensive as conventional
POD for the SISO system. The greatest computational cost occurs
in the system solves that are required to obtain the � ow snapshots.
Because we must solve the dual system, twice as many snapshots
are required for the balanced POD approach when there are equal
numbers of inputs and outputs. Additionally, there is the small cost
associated with calculating the eigenmodes of the grammian prod-
uct. In many applications, however, one is less concerned with the
cost of obtaining the reduced-ordermodel and more so with the re-
sulting size and quality of the model. As the precedingresults show,
by incorporating both input and output information, very accurate
models can be obtained that have a minimal number of states.

For the example presented here, one might argue that the addi-
tional reduction to three states in the balanced reduced-ordermodel
is insigni� cant comparedto the reductionfrom13,928 to 8 statesus-
ing conventionalPOD. In terms of simulation, this is true; however,
in some applications,such as design of active control strategies, the
smallest possible model is desired, as noted in Ref. 20. The addi-
tional reduction would also be signi� cant for larger-scaleproblems
such as turbomachineryapplications with multiple blade passages.
More important, reduction based on conventional POD is heavily
dependenton the arbitraryscalingof this system.Using the balanced
approach removes this dependency and reduces the potential for an
inaccurate characterizationof the system. Moreover, the models re-
sulting from the balancedmethodologydo not appear to suffer from
the same level of instability as those obtained with conventional
POD. The method outlined here is far more ef� cient than attempts
to calculate system grammians and accuratelyprovides the required
level of information. Also, because the snapshots can be obtained
ef� ciently in the frequency domain, this method is appropriate for
problems with spatial symmetry, such as turbomachinery � ows.

When performing model reduction for any system, it is impor-
tant to keep in mind the limitations of the reduced-order model.
Strictly speaking, the reduced-order model is valid only over the
range of conditions used to generate the reduced-order basis. If
problem parameters are changed or active control is used to alter
the dynamics, then it is possible (if not probable) that the dominant
modes of the system will change. If a reduced-order model is to
be used in such a context, it is vital that the controlled dynamics

and parameter variations are included in the basis derivation pro-
cess. This may be accomplished somewhat more easily using the
frequency-domain approach because one must simply ensure that
the relevant frequency range is sampled adequately.

Throughout the algorithm, there are several arbitrary decisions
to be made. First, the snapshots must be selected. The range over
which the sampling is performed is determined by assessing the
important frequency range in the problems at hand. To determine
the speci� c snapshot locations within this range, one uses a com-
bination of experience and intuition. Often, the required density
of snapshots will be determined a posteriori from the performance
of the reduced-order model. If the desired dynamics cannot be ac-
curately captured, more snapshots must be included in the POD
process and the basis vectors recalculated.It is, therefore, important
to validate the models against known results (in this case against
the CFD model). Second, p, the number of POD eigenmodes to
be used in the low-rank approximation of the grammians, must be
chosen. Again, this will depend on the frequency range of interest,
as well as on the number of modes to be retained in the reduced-
order model. A fairly low number (15) was chosen for the results
presented here; however, the performanceof the models was found
to be fairly robustwith respect to this parameter. In Fig. 3, the eigen-
values of the grammian product are also plotted for p D 10 and 20.
When the number of POD vectors was increased to 20, very little
variation was seen in the eigenvalues. If only 10 POD vectors were
used, the � rst � ve eigenvalues were virtually unchanged, whereas
the next � ve showed some movement. This result is to be expected:
to resolve q eigenvalues of the grammian product accurately, we
should choose p > q in the approximation of the matrices.

The method is � exible in that it can be appliedas described to any
linearized system. The approach also extends to nonlinear systems
using concepts similar to those discussed by Lall et al.21 It is rela-
tively straightforward to obtain an approximation to the controlla-
bility subspace. For example, consider the nonlinear system

Px D f [x.µ; t/; u.t/] (41)

y D g[x.µ; t/] (42)

The POD eigenfunctionswould be calculatedusing snapshots from
simulation of the nonlinear system (41) and (42). The dif� culty
arises with the approximation of the observability subspace. The
concept of a dual system does not exist in a nonlinear setting. Two
possibilitiespresentthemselves.The � rst is to linearizethenonlinear
system (41) and (42) and formulate the dual linearized system (the
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adjoint).The snapshotswould then be obtained from a combination
of nonlinear (primal) and linearized (dual) systems. The second
approach is to follow the method outlined in Ref. 21 that de� nes
an empirical observability grammian based on system outputs for
various initial conditions. For the high-order systems encountered
in CFD applications,this second approach,although more accurate,
would be computationally very expensive. Work is underway to
develop a better approach for handling large nonlinear systems.

Once the grammians have been suitably approximated, the bal-
ancing method can then be used to calculate a linear transformation
of the nonlinear state to obtain the nonlinear reduced-ordermodel

Pxr D T ¡1 f [T xr .µ; t/; u.t/] (43)

yr D g[T xr .µ; t/] (44)

Conclusions
A new method for computing an approximate balanced trunca-

tion of a linear state-space system has been presented.By the use of
the method of snapshots to perform a POD analysis of the primal
and dual systems, low-rank, reduced-range approximations to the
controllability and observability grammians are obtained very ef� -
ciently. This POD analysis can be performed in either the time or
frequency domain. By the incorporation of information pertaining
to both inputs and outputs, the resulting reduced-ordermodels cap-
ture the desired system dynamics with a very low number of states.
The required size of the models is signi� cantly lower than for those
developed using a conventional POD approach, and they demon-
strate improved robustness over a larger range of inputs. Results
have been presented for a very high-order system, and the method
has been shown to work extremely effectively.The concept is appli-
cable to general linearized systems and, with some modi� cations,
can be extended to nonlinear systems.
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