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Abstract. A new method, Fourier model reduction, for obtaining stable, accurate, low-order
models of very large linear systems is presented. The technique draws on traditional control and dy-
namical system concepts and utilizes them in a way which is computationally very efficient. Discrete-
time Fourier coefficients of the large system are calculated and used to construct a reduced-order
model that preserves stability properties of the original system. Many coefficients can be calculated,
which results in a very accurate representation of the system dynamics, but only a single factorization
of the large system is required. The resulting system can be further reduced using explicit formulae
for balanced truncation. The method is applied to two computational fluid dynamic systems, which
model unsteady motion of a two-dimensional subsonic airfoil and unsteady flow in a supersonic dif-
fuser. In both cases, the new method is found to work extremely well. Results are compared to
models developed using the proper orthogonal decomposition and Arnoldi method. In comparison
with these widely used techniques, the new method is computationally more efficient, preserves the
stability of the original system, uses both input and output information, and, for smooth transfer
functions, is valid over a wide range of frequencies.
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1. Introduction. Model reduction is a powerful tool which has been applied
throughout many different disciplines, including controls, fluid dynamics, structural
dynamics, and circuit design. In many situations, high-order, complicated numerical
models accurately represent the problem at hand but are unsuitable for the desired
application, for instance, for coupling between disciplines, as in aeroelastic analyses,
or for control design. The goal of model reduction is to develop a model with a low
number of states, which captures the system dynamics accurately over a range of
frequencies and forcing inputs. For very large systems, the cost of reduction may also
be an issue.

Many effective reduction techniques have been developed in a controls context. An
optimal reduced model is one that minimizes the H-infinity norm of the difference be-
tween the reduced and original system transfer functions; however, no polynomial-time
algorithm is known to achieve this goal. Algorithms such as optimal Hankel model
reduction [1, 3, 12] and balanced truncation [16] have been widely used throughout
the controls community to generate suboptimal reduced models with strong guaran-
tees of quality. These algorithms can be performed in polynomial time; however, the
computational requirements make them impractical for application to large systems
such as those encountered in computational fluid dynamic (CFD) applications. In
this case, system orders exceed 104 and the computation of grammians is imprac-
tical. For this reason, many of the control-based reduction concepts have not been
transferred to other disciplines. Several methods have been developed for computing
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approximations to the grammians for large systems, including the approximate sub-
space iteration [2], least squares approximation [19], and Krylov subspace methods
[9, 7]; however, these algorithms are complicated and computationally intensive.

Other techniques have been developed and widely used throughout the fluids
community. The typical approach is to first determine an orthonormal basis, and to
then project the large CFD system onto this reduced space to derive the reduced-order
model. In particular, the proper orthogonal decomposition (POD), also known as
Karhunen–Loéve expansions [15], has been developed as a popular method of deriving
basis vectors for high-order systems using the method of snapshots [21, 8]. This
technique has been considered for a broad range of fluid dynamic applications, which
are reviewed in Dowell and Hall [5]. Another class of reduction techniques that are
based on matching moments of the system transfer function has been developed for
analysis of large linear circuits. For instance, the Arnoldi algorithm can be used to
generate vectors which form an orthonormal basis for the Krylov subspace, and has
been applied to model reduction of RLC circuits [20] and turbomachinery aeroelastic
applications [24].

While the POD and Arnoldi techniques have been shown to be effective for model
reduction of large systems, they lack many of the desirable properties possessed by
methods such as optimal Hankel model reduction. In particular, neither the POD
nor the Arnoldi method is guaranteed to result in a stable reduced-order model de-
rived from a stable CFD system. In practice, for CFD applications, these techniques
sometimes yield unstable models despite the original system being stable. Moreover,
the POD does not take account of system outputs when performing the reduction,
and hence the reduced-order models produced may be inefficient. The POD has been
suggested as a means to obtain an approximate balanced truncation for large systems
using both inputs and outputs [13, 23]; however, the reduction approach is computa-
tionally expensive and offers no stability guarantees.

In this paper, a new technique for performing model reduction of very large
systems is presented. This method draws on classical dynamical system and control
theory concepts and applies them using an iterative procedure that is very efficient
for large systems. The resulting reduced-order models are guaranteed to preserve the
stability properties of the original system and have an associated error bound that
depends on the smoothness of the original transfer function. The concept is similar
to moment-matching methods, such as Arnoldi, except that the transfer function
expansion is performed in the discrete frequency domain and a projection framework is
not utilized. This idea was also explored in [4], where a Padé approximation is applied
to a bilinear transformation of the transfer function. In [4], the Arnoldi or Lanczos
algorithms are applied in the transformed domain; here, we take a different approach
by computing the Fourier expansion of the discrete-frequency transfer function. Model
reduction based on such a Fourier expansion was suggested in [6] and [25]. In [6] and
[25], the Fourier coefficients of the expansion were calculated approximately using
a fast Fourier transform (FFT) algorithm. The FFT approach requires frequency
response data to be provided, making the algorithm prohibitively expensive for many
large-scale applications.

In this paper, an algorithm is proposed that allows the Fourier coefficients of a
discrete-time transfer function to be computed exactly. The algorithm uses an efficient
iterative procedure, thus allowing its application to large-scale problems. A subset of
the Fourier coefficients is used to construct a discrete-time (DT) reduced model. This
model can then be converted to a continuous-time state-space model, or the method
can be augmented with a further reduction step via balanced truncation. Due to the
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particular structure of the DT model, the formulae for balanced truncation can be
derived explicitly and applied efficiently.

The organization of the paper is as follows. In the following section, the dynam-
ical system arising from implementation of CFD is briefly described. The Fourier
model reduction (FMR) technique is then presented and compared with the Arnoldi
and POD approaches. Examples are considered in the context of two different CFD
applications, both of which require fluid models of low order. The first example in-
vestigates the unsteady motion of a two-dimensional airfoil, which forms the fluid
component of an aeroelastic analysis. The second example derives a model of the flow
dynamics of a supersonic inlet that will be used to derive active control strategies.
Finally, conclusions are presented.

2. CFD model. Consider a general linearized CFD model, which can be written
as

G : E
d

dt
x = Ax + Bu, y = Cx + Du,(2.1)

where x(t) ∈ Rn contains the n unknown perturbation flow quantities at each point
in the computational grid. For example, for two-dimensional, compressible, inviscid
flow, which is governed by the Euler equations, the unknowns at each grid point
are the perturbations in flow density, Cartesian momentum components, and flow
energy. The vectors u(t) and y(t) in (2.1) contain the system inputs and outputs,
respectively. The definition of inputs and outputs will depend upon the problem at
hand. In aeroelastic analysis of a wing, inputs consist of wing motion, while outputs
of interest are the forces and moments generated. For control purposes, the output
might monitor a flow condition at a particular location which varies in response to a
disturbance in the incoming flow.

The linearization matrices A, B, C, D, and E in (2.1) are evaluated at steady-
state conditions. The descriptor matrix E is included for generality and may contain
some zero rows, which arise from implementation of flow boundary conditions. On
solid walls, a condition is imposed on the flow velocity, while at farfield boundaries
certain flow parameters are specified, depending on the nature of the boundary (in-
flow/outflow) and the local flow conditions (subsonic/supersonic). Although these
prescribed quantities could be condensed out of (2.1) to obtain a smaller state-space
system, such a manipulation is often complicated and can destroy the sparsity of the
system. The more general form of the system is therefore considered.

The system (2.1) is efficient for time computations since a time discretization,
such as backward Euler, can be applied and the resulting large n × n system matrix
factored just once for a time-dependent calculation. However, the order of the system
is still prohibitively high for many applications, such as aeroelasticity and active flow
control. In the next section, we present an efficient method with quality guarantees to
reduce the size of the system while retaining an accurate representation of important
flow dynamics.

3. Fourier series model reduction. We consider the task of finding a low-
order, stable, continuous-time, linear-time invariant (LTI), state-space model

Ĝ :
d

dt
x̂(t) = Âx̂(t) + B̂u(t), ŷ(t) = Ĉx̂(t) + D̂u(t)(3.1)

which approximates well the given stable model (2.1). We consider first the case of
a single-input, single-output (SISO) system, and then the extension to a multiple-
input, multiple-output (MIMO) problem. Typically, A and E in (2.1) are sparse,
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Fig. 3.1. Comparing G and Ĝ.

square matrices of very large dimension n > 104, and the desired order k of Ĝ is less
than 50.

The quality of Ĝ as an approximation of G is defined as the H-infinity norm of
the difference between their transfer functions:

‖Ĝ−G‖∞ = sup
ω∈R

|Ĝ(jω) −G(jω)|,(3.2)

which in turn equals the square root of the maximal energy

‖ŷ − y‖2
2 =

∫
t

|ŷ(t) − y(t)|2dt(3.3)

of the difference e = ŷ − y, which can be generated when testing both G and Ĝ with
an arbitrary unit energy input u as shown in Figure 3.1. With this measure of model
reduction error, if a good reduced model Ĝ is found, G can be represented, for design
or analysis purposes, as a series connection (i.e., a sum) of Ĝ and a small “uncertain”
error system ∆ = G − Ĝ, and the standard results from robustness analysis can be
applied to predict the effect of replacing G with Ĝ in even larger scale systems.

No efficient (polynomial-time) solution is known for the problem of minimizing
‖Ĝ − G‖∞ subject to the order and stability constraints imposed on Ĝ. There are
polynomial-time algorithms (optimal Hankel model reduction and balanced trunca-
tion) which produce suboptimal reduced models with strong guarantees of quality.
However, the computational burden of these methods is still quite heavy, which makes
their direct application impractical for n > 104.

In this paper, a very low complexity algorithm is introduced, which allows one
to find an “intermediate” approximation of G by a model Ḡ of order in the range of
hundreds. While Ḡ is not an optimal reduced model of G, it satisfies an attractive
guaranteed H-infinity quality bound. After Ḡ is found, the second round of more
demanding model reduction, such as balanced truncation, is applied to Ḡ to produce
a high-quality, low-order, reduced model Ĝ.

3.1. Fourier series of DT systems. Consider the full DT LTI system model
g defined by the difference equations

g : x(t + 1) = ax(t) + bu(t), y(t) = cx(t) + du(t),(3.4)

where a, b, c, d are given matrices of coefficients, x(t) ∈ Rn is the system state, and
u(t), y(t) are scalar input and output. It will be assumed that g is stable, i.e., ρ(a) < 1,
where ρ(M) denotes the spectral radius of M , defined as the maximal absolute value
of its eigenvalues.

The transfer function

g(z) = d + c(zI − a)−1b(3.5)
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has the Fourier decomposition

g(z) =

∞∑
k=0

gkz
−k,(3.6)

where

g0 = d, gk = cak−1b (k = 1, 2, . . .).(3.7)

The Fourier expansion converges exponentially for |z| > ρ(a). Note that the first m
Fourier coefficients gk are easy to calculate using the “cheap” iterative process

gk = chk−1, hk = ahk−1 (k = 1, . . . ,m), where h0 = b,(3.8)

which is, in theory, “stable” since ρ(a) < 1. In practice, if a has eigenvalues that
lie very close to the unit circle, numerical resolution may be lost as the iterations
proceed.

Let ĝm denote the mth-order approximation of g based on the Fourier series
expansion

ĝm(z) =

m∑
k=0

gkz
−k.(3.9)

The following simple result provides an estimate of the approximation error:

‖g − ĝm‖∞ = max
|z|=1

|g(z) − ĝm(z)|;(3.10)

this result ties it to the smoothness of G as follows.
Theorem 3.1. For q = 1, 2, . . .

‖g − ĝm‖2
∞ ≤ m1−2q

2π(2q − 1)

∫ π

−π

|g(q)(ejτ )|2dτ,(3.11)

where g(q) is the qth derivative of g with respect to τ .
Proof.

|g(z) − ĝm(z)|2 =

∣∣∣∣∣
∞∑

k=m+1

gkz
−k

∣∣∣∣∣
2

=

∣∣∣∣∣
∞∑

k=m+1

gkk
qz−kk−q

∣∣∣∣∣
2

.

Using the Cauchy inequality and considering z = ejτ ,

∣∣g(ejτ ) − ĝm(ejτ )
∣∣2 ≤

( ∞∑
k=m+1

|gk|2 k2q

)( ∞∑
k=m+1

k−2q

)

≤
( ∞∑

k=0

|gk|2 k2q

)(∫ ∞

m

dx

x2q

)
.
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Using the fact that (
∂

∂τ

)q

g
(
ejτ

)
=

∞∑
k=0

(−jk)
q
gke

−jkτ

and applying Parseval’s theorem, we obtain

|g(ejτ ) − ĝm(ejτ )|2 ≤ m1−2q

2π(2q − 1)

∫ π

−π

|g(q)(ejτ )|2dτ.

3.2. Fourier series of continuous-time systems. Consider the full continu-
ous-time LTI system model G defined by the system (2.1), where u(t), y(t) are scalar
input and output. If E is invertible, then x = x(t) is the system state. It will be
assumed that G is stable, i.e., that all roots of the characteristic equation det(sE −
A) = 0 have negative real part, and that C(sE−A)−1B remains bounded as s → ∞.

Let ω0 > 0 be a fixed positive real number. The transfer function

G(s) = D + C(sE −A)−1B(3.12)

has the Fourier decomposition

G(s) =

∞∑
k=0

Gk

(
s− ω0

s + ω0

)k

.(3.13)

This decomposition was suggested in [6]; however, no means was provided to calculate
the Fourier coefficients Gk. Instead, an approximate FFT algorithm was used. Here,
an efficient iterative procedure is proposed to directly calculate the Fourier coefficients
as follows.

Consider the identity

G(s) = g(z) = d + c(zI − a)−1b for z =
s + ω0

s− ω0
,

which allows one to apply the observations and theorem from the previous subsection
to this case. Note that by comparing (3.6) and (3.13), it can be seen that Gk = gk.
The Fourier coefficients are therefore given by the formulae

G0 = d, Gk = cak−1b (k = 1, 2, . . .),(3.14)

d = D + C(ω0E −A)−1B,(3.15)

a = (ω0E + A)(ω0E −A)−1,(3.16)

c = 2ω0C(ω0E −A)−1,(3.17)

b = −E(ω0E −A)−1B,(3.18)

which are relatively straightforward to obtain using algebraic manipulations. An
outline of the derivation is as follows.

Consider manipulation of the term (sE − A)−1 in (3.12). Using the relationship
between continuous and discrete frequency, we obtain

(sE −A)−1 =

(
ω0

(z + 1)

(z − 1)
E −A

)−1

=

(
1 − 1

z

)
(ω0E −A)

−1

[
I − 1

z
(ω0E + A) (A− ω0E)

−1

]−1

.(3.19)
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The last term in the above equation can be expanded using the well-known Maclaurin
series [

I − 1

z
ā

]−1

= I +
ā

z
+

ā2

z2
+

ā3

z3
+ · · · ,(3.20)

where ā = (ω0E+A)(A−ω0E)−1. The next step is to substitute the expansion (3.20)
into (3.19), multiply out the terms, and use the fact that

(ω0E −A)
−1

(ā− I) = −2ω0 (ω0E −A)
−1

E (ω0E −A)
−1

.(3.21)

Finally, incorporating B, C, and D from (3.12) yields the final result given in (3.13)
through (3.18).

3.3. Reduced model construction. To construct an mth-order reduced model,
one first calculates the Fourier coefficients, g0, g1, . . . , gm. The DT reduced model is
then given by

ĝ : x̂[t + 1] = âx̂[t] + b̂u[t],

ŷ[t] = ĉx̂[t] + d̂u[t],(3.22)

where

â =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 . . .
1 0 0 0 . . .
0 1 0 0 . . .
0 0 1 0 . . .

0 0 0
. . .

⎤
⎥⎥⎥⎥⎦ , b̂ =

⎡
⎢⎢⎣

1
0
0
...

⎤
⎥⎥⎦ ,(3.23)

ĉ = [ g1 g2 . . . gm ] , d̂ = g0.

It should be noted that if the original system g is stable, then the reduced system ĝ is
also guaranteed to be stable. This is due to the orthogonality properties of the Fourier
expansion; taking a truncated number of Fourier terms, as in (3.9), automatically
results in a stable approximation of a stable system.

Different alternatives could be chosen for the DT system representation. The
controller canonical form above was selected, as in [6], for the purpose of an efficient
second step of reduction. An effective approach is to use the efficient iterative pro-
cedure to calculate several hundred coefficients, resulting in an intermediate reduced
model of the form (3.22). A second reduction step using balanced truncation can now
be performed easily, since the expressions for the grammians are known explicitly. For
the DT reduced model (3.22), the controllability matrix is the identity matrix and the
observability matrix is the Hankel matrix that has ĉ as its first row. The balancing
vectors can therefore be obtained by computing the singular vectors of the mth-order
Hankel matrix

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎣

g1 g2 g3 . . . gm−1 gm
g2 g3 g4 . . . gm 0
g3 g4 g5 . . . 0 0
...

...
...

...
...

gm−1 gm 0 . . . 0 0
gm 0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.(3.24)



FOURIER MODEL REDUCTION FOR LARGE-SCALE APPLICATIONS 951

The Hankel singular values, σi, i = 1, 2, . . . ,m, of the intermediate reduced system
are given by the singular values of Γ.

The final reduced system, g̃, is computed as

ã = V ′
kâVk, b̃ = V ′

k b̂, c̃ = ĉVk, d̃ = d̂,(3.25)

where Vk is a matrix whose columns are the first k singular vectors of Γ, and k is
chosen according to the distribution of Hankel singular values. Specifically, it can be
shown that the following error bound holds:

||Ĝ− G̃||∞ ≤ 2

m∑
i=k+1

σi,(3.26)

where Ĝ is the transfer function of the intermediate system obtained using m Fourier
coefficients, and G̃ is the final reduced model derived by retaining k states in the
balanced truncation step. It should be noted that the application of optimal Hankel
model reduction to the intermediate reduced model would yield a bound on the error
lower than that in (3.26); however, balanced truncation can be applied very efficiently
since the grammians are known explicitly. This also avoids the explicit construction
of the intermediate system, as can be seen in the following algorithm.

3.4. Model reduction algorithm. The FMR algorithm is summarized in the
following steps:

1. Choose a value of ω0. The value of ω0 should reflect the frequency range
of interest. The nominal value is unity; however, if the response at high
frequencies is of interest, a higher value of ω0 should be chosen. One can
visualize the transformation from continuous to discrete time as a mapping
of the imaginary axis in the s-plane to the unit circle in the z-plane. The
value of ω0 then describes the compression of frequencies around the unit
circle.

2. Calculate m + 1 Fourier coefficients using (3.14)–(3.18). Using the iterative
procedure, any number of coefficients can be calculated with a single nth-
order matrix factorization.

3. Using (3.24), calculate the mth-order Hankel matrix. Calculate its singular
values and singular vectors.

4. Using (3.25), construct a kth-order DT system, g̃. The value of k is chosen
according to the distribution of Hankel singular values of the intermediate
system.

5. Convert the kth-order, DT reduced model to a continuous-time model using
the relationships

Â = ω0 (â− I)
−1

(â + I) ,(3.27)

B̂ = 2ω0 (â− I)
−1

b̂,(3.28)

Ĉ = −ĉ (â− I)
−1

,(3.29)

D̂ = d̂− ĉ (â− I)
−1

b̂.(3.30)

The error bounds corresponding to the above algorithm are given in (3.11) and
(3.26) for the first and second stages of the reduction, respectively. The Hankel
singular values of the intermediate system provide a straightforward, quantitative
means to choose k, the size of the final reduced model; however, the error bound given
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in (3.11) is not readily computable. One way to determine the appropriate number of
Fourier coefficients, m, is to monitor the magnitudes of the coefficients, gk, which tend
to decrease quickly with increasing index k. A tolerance on the coefficient magnitude
can thus be used to set a stopping criterion for the iterative procedure. Note that
the exact distribution of coefficients will depend upon the transfer function under
consideration. For near resonant systems, the magnitudes of the Fourier coefficients
will not decrease quickly, and many coefficients will be needed to gain an accurate
representation. For such systems, other algorithms, such as Arnoldi-based reduction,
may yield better results.

3.5. MIMO systems. Although the above algorithm was derived for SISO sys-
tems, it can be easily extended to the MIMO case. In fact, the steps above are
essentially unchanged. Consider the general case of p inputs and q outputs. For
step 2, one can still use (3.14)–(3.18) to calculate the Fourier coefficients, although
now each gk is a q × p matrix. The iterative procedure is still very efficient, since
consideration of multiple inputs and outputs requires only additional system solves.

In step 3, one again uses (3.24) to construct the Hankel matrix. The size of
this matrix will now be mq × mp. The balanced truncation in step 4 proceeds as
before, noting only that each scalar entry of â and b̂ in (3.23) is replaced with a
block entry (zero matrix or identity matrix, as appropriate) of size p× p. Finally, the
transformations in step 5 are valid for the MIMO case.

In the results section, two examples will be presented that demonstrate the ef-
fectiveness of this approach. We first compare the advantages of FMR with other
commonly used techniques.

3.6. Comparison with alternative reduction methods. The POD is the
most widely used reduction method in the fluid dynamics community. The basic idea
is to collect a set of snapshots, which are solutions of the linearized CFD model at
selected time instants or frequencies. These snapshots are then combined to form
an efficient basis, which is optimal in the sense that it minimizes the error between
the exact and projected CFD data. While the method results in reduced-order mod-
els which accurately reproduce those dynamics included in the sampling process, the
models are not valid outside the sampled range. If snapshots are obtained in the
time domain, it can be difficult to choose an appropriate forcing function, and typ-
ically many snapshots are required to obtain accurate results. Using the frequency
domain to compute snapshots is often more convenient; however, each frequency sam-
pled requires an nth-order matrix factorization. Moreover, the reduced-order models
obtained via the POD offer no guarantee of stability.

The Arnoldi method has also been used for model reduction of large CFD systems.
The goal of moment-matching techniques, such as the Arnoldi method, is to determine
a reduced-order model by matching moments (or Taylor series coefficients) of the
high-order system transfer function. The Arnoldi method has an advantage over the
POD in that a sequence of basis vectors can be generated in the frequency domain
with just a single nth-order matrix factorization, and the approach of generating
an intermediate model which can be subsequently further reduced via Hankel model
reduction or balanced truncation also sometimes works effectively for this technique.
A two-stage reduction process using Arnoldi followed by balanced truncation has
been used by a number of authors for control and circuit applications [6, 11, 18]. The
Arnoldi method can be applied using system inputs and/or outputs [17]; however,
the resulting reduced-order models are not guaranteed to be stable. Arnoldi-based
reduction does preserve the definiteness of the system, which for many applications is
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Table 3.1

Comparison of reduction techniques for CFD systems.

Method Reduction Frequency Stability Reduction
cost range preserved considers

Time POD O(1) Selected No Inputs
Frequency POD O(No. of snapshots) Selected No Inputs

Arnoldi O(1) Restricted No Inputs, Outputs
Multipoint Arnoldi O(No. of freq. points) Wide No Inputs, Outputs

FMR O(1) Problem dependent Yes Inputs, Outputs

sufficient. In particular, for circuit applications, reduced models obtained using the
Arnoldi method preserve the passivity of the system. For CFD applications, passivity
is not important and preservation of definiteness offers no guarantees for stability.
In practice, unstable models are often generated if a large number of Arnoldi basis
vectors is used for the first reduction step.

Since the Arnoldi basis vectors are derived from an expansion about zero fre-
quency, for some applications the resulting reduced-order model can be large if fre-
quencies far away from zero are of interest. The multiple frequency point Arnoldi
method attempts to address this issue by considering transfer function expansions
about multiple frequency points. In this way, accurate models can be derived over a
specified frequency range. The reduction cost in this case is proportional to the num-
ber of frequency points considered. By generating multiple Arnoldi vectors at each
frequency point, the samples can be placed further apart without loss in accuracy.
The multipoint Arnoldi method therefore provides a way to trade between the low
reduction cost of Arnoldi and the frequency span of POD.

Table 3.1 compares the attributes of each of these reduction techniques with the
new FMR approach described in this paper. Reduction cost refers to the number
of nth-order factorizations required. This is the dominating factor in reduction of
large CFD systems, although one should also consider the number of system solves
required. For time-domain POD, many system solves are required, covering the full
snapshot simulation. For frequency-domain POD, one complex solve is required for
each frequency chosen. Arnoldi and multiple-point Arnoldi require one solve per
Arnoldi vector generated, while FMR requires one solve per Fourier coefficient. The
exact computational cost depends on the problem at hand, but in general terms
the cost of time-domain POD, Arnoldi, and FMR can be classed as “low,” that of
multiple-point Arnoldi as “medium,” and that of frequency-domain POD as “high.”

In Table 3.1, frequency range refers to the range of validity of the resulting
reduced-order models. This range is selected a priori for the POD and multipoint
Arnoldi approaches. The validity of the Arnoldi-based reduced-order model is re-
stricted to frequencies close to the expansion points; by choosing these expansion
points appropriately, good results can be obtained, especially for near resonant sys-
tems (see, for example, [10]). The frequency range of validity for the FMR algorithm
depends on the problem at hand. More specifically, as can be seen in the error bound
in (3.11), the accuracy is dependent on the smoothness of the original transfer func-
tion. For relatively smooth transfer functions, such as those encountered in many
CFD applications, a Fourier-based reduced model will often produce good approxi-
mation over a wide frequency range. For near resonant systems with a sharp peak in
the transfer function, many Fourier coefficients will be required to obtain an accurate
model. If the response contains a number of resonance peaks, the number of Fourier
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coefficients required is likely to be prohibitive, and FMR is not recommended as a
reduction algorithm. Similarly, if the original transfer function contains eigenvalues
that are very close to the imaginary axis, numerical resolution may be lost in the
power iteration (3.8) and only a few Fourier coefficients may be calculated accurately.
Arnoldi-based techniques can avoid this problem using orthogonalization to yield a
sound numerical implementation.

Finally, we note that none of the alternative methods are guaranteed to produce a
stable reduced-order model. For certain applications, Arnoldi-based reduction meth-
ods are guaranteed to preserve the passivity of the system. FMR offers no theoretical
guarantees of passivity preservation. In practice, for many applications where pas-
sivity is not an issue, the POD and Arnoldi approaches can often generate unstable
models even though the original system is stable. For these applications, FMR pro-
vides an alternative approach that may yield more accurate reduced models. Two
test cases will now be presented that demonstrate the new methodology. Results will
also be shown to compare FMR against Arnoldi and POD.

4. Results. Two CFD applications will be considered. Each has very different
flow dynamics and uses a different CFD formulation; however, FMR will be shown to
work very effectively for both.

4.1. Subsonic airfoil. The first example is a two-dimensional NACA 0012 air-
foil operating in unsteady plunging motion with a steady-state Mach number of 0.755.
The flow is assumed to be inviscid, so the governing equations are the linearized Euler
equations, which have four unknowns per grid point. A finite volume CFD formula-
tion is used [22] with a CFD mesh containing 3482 grid points, which corresponds to
a total of n = 13,928 unknowns in the linear state-space system. The input to this
system is a rigid plunging motion (vertical motion of the airfoil), while the output of
interest is the lift force generated. This input and output are typical for an aeroelastic
analysis, which typically would also include pitching (angular) motion as an input and
airfoil pitching moment as an output.

Fourier coefficients were generated using (3.14)–(3.18) for several different values
of ω0. Figure 4.1 shows the transfer function of the CFD system compared with the
transfer functions of the resulting reduced-order models. The size of each of these
models is m = 200, which represents two orders of magnitude reduction from the
CFD. However, as can been seen in Figure 4.1, the transfer functions match very
closely over a large frequency range. Since the original CFD model is stable, these
reduced-order models are also all guaranteed to be stable.

A model of size m = 200 is still relatively large for aeroelastic applications;
however, it can be used as an intermediate step for further reduction. Balanced
truncation was applied to the 200th-order DT model for ω0 = 1, and the first thirty
Hankel singular values of the system are shown in Figure 4.2. These data indicate that
a further reduction to five states can be achieved with virtually no loss in accuracy.
While applying optimal Hankel model reduction to the intermediate reduced model
would yield a lower bound on the error, balanced truncation can be applied very
efficiently to the DT system since the grammians are known explicitly. The transfer
function of a five-state model is shown in Figure 4.3 and can be seen to match the
CFD data extremely well.

In order to compare the performance of the new method, reduced-order models
for this problem were computed using the POD and Arnoldi methods. POD snap-
shots were obtained by causing the airfoil to plunge in sinusoidal motion at selected
frequencies. Frequencies were selected at 0.1 increments from ω = 0 to ω = 2.0,
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Fig. 4.1. Transfer function from plunging motion to lift force for subsonic airfoil. Results from
CFD model (n = 13,928) are compared to reduced-order models derived using 200 Fourier coefficients
with ω0 = 1, 5, 10.
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Fig. 4.2. Hankel singular values for subsonic airfoil case. Values are calculated using a 200th-
order model derived using FMR with ω0 = 1.

requiring 21 complex factorizations and solves. From these snapshots a set of POD
basis vectors was obtained. Arnoldi vectors were generated about ω = 0. Using the
same approach as for the new method, 200 Arnoldi vectors were generated (with the
cost of a single nth-order factorization and 200 solves), and balanced truncation was
applied to the resulting 200th-order system. Figure 4.4 shows the transfer functions of
fifth-order reduced-order models constructed using POD, Arnoldi, and the new FMR
approach. It can been seen that even though it is much more expensive to compute
than the other methods, POD has the worst performance. In particular, the figure
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Fig. 4.3. Transfer function from plunging motion to lift force for subsonic airfoil. Results
from CFD model (n = 13,928) are compared to a fifth-order reduced-order model derived from the
m = 200, ω0 = 1 FMR model via balanced truncation.
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Fig. 4.4. Transfer function from plunging motion to lift force for subsonic airfoil. Results
from CFD model (n = 13,928) are compared to fifth-order reduced-order models derived using FMR,
Arnoldi and POD. Both the Arnoldi and FMR models have been created using balanced truncation
from an m = 200 system.

shows that, as expected, the POD-based reduced-order model has a large error outside
the frequency range included in the snapshots. For this example, the Arnoldi-based
reduced-order model shows similar accuracy to the new approach.

4.2. Supersonic diffuser. For the second example, we consider unsteady flow
through a supersonic diffuser as shown in Figure 4.5. The diffuser operates at a
nominal Mach number of 2.2; however, it is subject to perturbations in the incoming
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Fig. 4.5. Mach contours for steady flow through supersonic diffuser. Steady-state inflow Mach
number is 2.2.

flow, which may be due (for example) to atmospheric variations. In nominal operation,
there is a strong shock downstream of the diffuser throat, as can be seen from the Mach
contours plotted in Figure 4.5. Incoming disturbances can cause the shock to move
forward towards the throat. When the shock sits at the throat, the inlet is unstable,
since any disturbance that moves the shock slightly upstream will cause it to move
forward rapidly, leading to unstart of the inlet. This is extremely undesirable, since
unstart results in a large loss of thrust. In order to prevent unstart from occurring, one
option is to actively control the position of the shock. This control may be effected
through flow bleeding upstream of the diffuser throat. In order to derive effective
active control strategies, it is imperative to have low-order models which accurately
capture the relevant dynamics.

There are several transfer functions of interest in this problem. The shock position
will be controlled by monitoring the average Mach number at the diffuser throat. The
reduced-order model must capture the dynamics of this output in response to two
inputs: the incoming flow disturbance and the bleed actuation. In addition, total
pressure measurements at the diffuser wall are used for sensing. The response of this
output to the two inputs must also be captured.

The CFD formulation for this problem is described fully in Lassaux [14]. Again,
we consider the linearized two-dimensional Euler equations. The CFD model has 3078
grid points and 11,730 unknowns.

Figure 4.6 shows the transfer function between bleed actuation and average throat
Mach number. Plotted are the results from the CFD code and FMR with m = 200
and ω0 = 1, 5, 10. The frequency axis is nondimensionalized by f0 = a0/h, where a0 is
the freestream speed of sound and h is the height of the diffuser. As the figure shows,
the reduced-order models capture the dynamics very accurately over a wide range of
frequencies. Typical disturbances might be on the range [0, 2f0]; however, this model
also captures higher frequencies should they occur. At higher frequencies, a slight
error can be observed for the ω0 = 1 model; however, ω0 = 5, 10 yield very accurate
results. This discrepancy highlights the importance of selecting a frequency scaling
factor appropriately. Note that a frequency ω0 = 1 corresponds to f/f0 = 1/2π. The
first 200 Fourier coefficients for the ω0 = 5 case are plotted in Figure 4.7 and can be
seen to reduce in magnitude quite quickly.

While m = 200 represents a significant reduction in order from the CFD, a model
of this size is too large for derivation of active control strategies. Once again, we apply
balanced truncation to further reduce the size of the model. The first thirty Hankel
singular values are plotted in Figure 4.8 for the ω0 = 5 case. Figure 4.8 indicates
that at least ten states should be retained to achieve an accurate representation.
The transfer functions of reduced-order models with five and ten states are compared
against CFD in Figure 4.9. While the model with five states has some error, with just
ten states the results are almost indistinguishable.
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Fig. 4.6. Transfer function from bleed actuation to average throat Mach number for supersonic
diffuser. Results from CFD model (n = 11,730) are compared to reduced-order models derived using
200 Fourier coefficients with ω0 = 1, 5, 10.
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Fig. 4.7. First 200 Fourier coefficients for supersonic diffuser transfer function from bleed
actuation to average throat Mach number. ω0 = 5.

The results obtained using the combined FMR/balanced truncation reduction
approach are compared to Arnoldi models in Figure 4.10. For this case, the two-
step reduction procedure could not be used with the Arnoldi method, since including
more than fifty basis vectors in the first reduced model led to an unstable system.
Instead, the reduced-order models were calculated directly by projection onto the first
k Arnoldi basis vectors. It can be seen in Figure 4.10 that with ten states, FMR is
indistinguishable from the CFD results, while the Arnoldi model has considerable error
for f/f0 > 1.3. If the number of states is increased to thirty, the fit at lower frequencies
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Fig. 4.8. Hankel singular values for supersonic diffuser case. Values are calculated using a
200th-order model derived using FMR with ω0 = 5.
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Fig. 4.9. Transfer function from bleed actuation to average throat Mach number for supersonic
diffuser. Results from CFD model (n = 11,730) are compared to reduced-order models with 5 and
10 states derived from the m = 200 FMR model via balanced truncation.

improves; however, some large oscillations are observed for high frequencies. If the
number of basis vectors is further increased, the behavior at high frequencies becomes
increasingly poor, until eventually an unstable system is obtained. This example
highlights one of the shortcomings of the Arnoldi model reduction approach.

FMR is also applied to the transfer function between an incoming density pertur-
bation and the average Mach number at the diffuser throat. This transfer function
represents the dynamics of the disturbance to be controlled and is shown in Fig-
ure 4.11. As the figure shows, the dynamics contain a delay and are thus more
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Fig. 4.10. Transfer function from bleed actuation to average throat Mach number for supersonic
diffuser. Results from CFD model (n = 11,730) are compared to an FMR/BT model with 10 states
and Arnoldi models with 10 and 30 states.
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Fig. 4.11. Transfer function from incoming density perturbation to average throat Mach number
for supersonic diffuser. Results from CFD model (n = 11,730) are compared to 200th-order FMR
models with ω0 = 5, 10. The ω0 = 10 model is further reduced to k = 30 via balanced truncation.

difficult for the reduced-order model to approximate. Results are shown for FMR
with m = 200 and ω0 = 5, 10. With ω0 = 5, the model has significant error for
frequencies above f/f0 = 2. Choosing a higher value of ω0 improves the fit, although
some discrepancy remains. These higher frequencies are unlikely to occur in typical
atmospheric disturbances; however, if they are thought to be important, the model
could be further improved either by evaluating more Fourier coefficients or by choosing
a higher value of ω0. The ω0 = 10 model is further reduced via balanced truncation
to a system with thirty states without a noticeable loss in accuracy.
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5. Conclusions. Fourier model reduction is a new method for model reduction
of very large linear systems. The method yields accurate, guaranteed stable reduced
models, which can be derived using an efficient iterative procedure. An effective use
of the method is to derive an intermediate DT reduced system, with more states
than desired but which captures the relevant dynamics very accurately, and then
to apply a second model reduction technique. Balanced truncation can be applied
very efficiently to further reduce the system, since the system grammians are known
explicitly. Efficient calculation of the intermediate system is a critical step in enabling
the application of control-based theory to very large systems.

Results have been presented for two large dynamical systems, arising from im-
plementation of CFD methods. While the flow dynamics of the two systems are very
different—one is a subsonic external flow, the other a supersonic internal flow—the
new method is shown to work extremely effectively in both cases. The cost to evaluate
the reduced-order models is much lower than for the commonly used proper orthog-
onal decomposition. Moreover, the new method yields reduced-order models that
produce accurate results over a wide frequency range for smooth transfer functions,
account for system inputs and outputs, and preserve the stability properties of the
original CFD system.
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