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We present a coupled immersed interface method-boundary element method (IIM-BEM)
numerical technique that predicts the behaviour of deformable cells under the effect of both
hydrodynamic and electrical forces. This technique is applied to the study of a hybrid
electrical-mechanical trap for single-cell trapping. We report on the effect of different
combinations of electrode positions and mechanical properties of the trap on the maximum
loading and unloading Reynolds numbers. We also report on the effect that cells moving with the
flow have on cells which have been already trapped in a cavity.

Introduction

Individual cell trapping and manipulation is rapidly becoming
one of the most useful tools in biomedical research.1–3 Creating
large arrays of individual cell traps allows detailed statistical
studies of cell responses to different treatments with a minimal5
consumption of reactants. The technology currently used to
create arrays of single-cell traps is based on combinations of
surface patterning, microfluidic design, and electrical fields.4,5

Amongst the electrical techniques used to manipulate biolog-
ical material, dielectrophoretic (DEP) traps show great promise,10
as they are highly sensitive to the electrical properties of cells—
allowing for accurate cell separation6,7 and characterization8,9—
and have the ability to stably trap cells suspended in a liquid
while avoiding all contact with the container walls.

Dielectrophoretic traps work by creating a non-homogeneous15
electrical field within the trap volume. As a cell enters the trap
it is polarized by the external field; then the interaction between
the electrical field gradient and the cell polarization produces
a net force which is used to trap the cell. Depending on the
dielectric properties of the liquid buffer and the cell, and on the20
frequency of the applied field, the DEP force can be positive (cells
move towards the highest field region in the trap) or negative
(cells move towards the electric field minimum in the trap).10,11

Although positive dielectrophoresis tends to produce stronger
trapping fields, it has the severe disadvantage of moving the cells25
towards the electrode edges where the heat dissipation is highest
and the cells may contact the container walls.12 In most cases
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these are characteristics to be avoided with living material, and
for this reason we have chosen negative DEP cell traps to show
the capabilities of our technique. 30

Although the use of hybrid electrical-mechanical devices to
trap single cells has been demonstrated in experiments4 there are
at present no systematic studies of their loading and unloading
characteristics. The use of numerical methods is ideal for this
purpose, as many different trap configurations can be studied 35
in a controlled manner and in a relatively short period of time.
However, as pointed out by Rosenthal et al.,13 the inclusion
of both rigid and flexible boundaries in the numerical analysis
of hybrid DEP-mechanical traps is a very difficult task. It is the
purpose of this work to introduce the coupled IIM-BEM method 40
as a flexible tool for the study of the complex phenomena that
takes places in electrical-mechanical traps.

In our numerical studies, the immersed interface method
(IIM) provides the means of calculating hydrodynamic effects
and fluid-structure interaction effects such as cell deformation, 45
and the boundary element method (BEM) is used to calculate
the electric fields and their effects on the particle. The imple-
mentations of the IIM and the BEM used in this work have
both been independently tested.14,15 By using both IIM and BEM
techniques together, we can explore the behavior of target cells in 50
detail, and describe the cell deformation and motion under the
effects of both the electric and the flow fields. In addition, we can
also analyze how a trapped cell behaves when it interacts with
a second cell suspended in the fluid. This provides important
information that is needed in order to ensure that a single-cell is 55
trapped per trapping site in an array instead of two or more.

This paper is divided into four main sections. Section two
describes the IIM and the BEM techniques, section three
describes a study of a two-dimensional single-cell trap that uses
both mechanical and dielectrophoretic trapping for maximum 60
effect, and finally, section four contains the discussion of our
results.

Materials and methods

Governing equations. The application we consider includes
a viscous flow problem and an electrostatic problem as shown 65
in Fig. 1. For the viscous flow problem, we consider the
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Fig. 1 A typical domain in which the Navier–Stokes equations and
electrostatic problems are solved. See main text for the different electrode
combinations used.

incompressible Navier–Stokes equations formulated in primitive
variables, written as

q(ut + (u·∇)u) + ∇p = lDu + F (1)

∇·u = 0 (2)

with boundary conditions5

u|∂X = ub (3)

where u is the fluid velocity, p is the pressure, q is the density, and
l the viscosity of the fluid. Throughout this paper, we assume
that the fluid density q and the viscosity l are constant over
the whole domain. The Navier–Stokes equations are considered
in a 2-dimensional bounded domain X that contains rigid
boundaries and deformable material interfaces C(t). The effect
of the material interface C(t) immersed in the fluid results in a
singular force F which has the form

F(x, t) =
∫

C(t)

f (s, t)d (x − X(s, t)) ds, (4)

where X(s,t) is the arc-length parametrization of C(t), s is the
arc-length, x = (x,y) is spatial position, and f(s,t) is the force
strength. Here, d(x) is the two-dimensional Dirac function. The
motion of the interfaces satisfies

∂

∂t
X (s, t) = u (X, t) =

∫
X

u (x, t) d (x − X (s, t)) dx. (5)

The strength of the singular forces at the rigid boundaries
is determined by solving a small system of equations at each
timestep to impose the no-slip conditions at the rigid boundaries.
The forces that the deformable boundary exerts on the fluid10
are the elastic force and the dielectrophoretic force, which are
applied to the fluid through the jump conditions,

f(s,t) = felastic(s,t) + fDEP(s,t) (6)

The elastic force, felastic(s,t), exerted by the immersed boundary
on the fluid is given as

f elastic(s, t) = ∂

∂s
(T (s, t) s (s, t)) , (7)

where T(s,t) is defined as

T(s, t) = T0

(∣∣∣∣∂X(s, t)
∂s0

∣∣∣∣ − 1
)

(8)

and s (s,t) is the unit tangential vector to the interface,

s (s, t) = ∂X
∂s

/∣∣∣∣∂X
∂s

∣∣∣∣ (9)

Here, s and s0 are the arc-lengths measured along the current
and undeformed configuration of the interface, respectively. The 15
scalar T 0 is the stiffness constant which describes the elastic
property of the flexible boundary.

The DEP force, fDEP (s,t), is calculated by solving an elec-
trostatic problem in a system with conductors (the electrodes)
and piecewise homogeneous dielectrics (the fluid, the particle 20
and the substrate). Assuming neutrally charged particles this
problem is governed by Laplace’s equation within each of the
material subdomains:

∇2φ = 0 (10)

The boundary conditions applied are given potential values 25
at the electrodes and continuity of the potential and the
normal component of the electric displacement at every material
interface:

φ(x) = φ0 if x ∈ electrode surface (11)

φ1 (x) = φ2 (x)

ẽ1

∂φ1

∂n

∣∣∣∣
x

= ẽ2

∂φ2

∂n

∣∣∣∣
x


 if x ∈ interface (12)

where ẽi = ei − jri/x is the complex permittivity of material i; ei 30
and ri are the dielectric permittivity and the electric conductivity
of medium i; j is

√−1 and x is the radial frequency of the external
field.

The electric field is calculated as the negative of the gradient
of the potential: 35

E = −∇φ (13)

The total force acting on a suspended particle can be
calculated using the Maxwell stress tensor method, where the
total force is calculated as the integrated stress tensor TM over
the surface C of the particle:

F (t)DEP =
∮

(TM · n) dC (14)

where n is the unit vector normal to the surface and t is time.
In most DEP studies the electric field has a frequency below
100 MHz and, therefore, a wavelength that is at least a few
metres long. This is several orders of magnitude larger than the
dimensions of typical electrode structures in DEP devices and
thus the near-field approximation can be used and effects due to
magnetic field components neglected.16 In this approximation
the Maxwell stress tensor for a general, conductive dielectric
medium, is given by:

TM = e

(
EE − 1

2
E2I

)
(15)

This is regarded as the most rigorous approach to derive field-
induced forces. For an applied harmonic electrical field the time-
averaged net DEP force on a particle using this method is given
as:16

〈FDEP (t)〉 = ef

4

∮ {[
(Ef E

∗
f + E∗

f Ef ) − |Ef |2 I
] · n

}
dC (16)

2 | Lab Chip, 2008, xxx, 1–9 This journal is © The Royal Society of Chemistry 2008



Here, EfE*
f is the diadic product of the electric field and its

complex conjugate, and the subscript f indicates quantities cor-
responding to the fluid medium where the particle is suspended.
The dependence in time t is kept because as the particle moves
the average DEP force will change due to the different electric
field distribution. Notice that this approximation will only be
valid as long as the frequency of the externally applied field is
much higher than the velocity at which changes in position of the
particle occur. Let the particle velocity divided by the particle
size, f move = up/dp, define a frequency associated to the particle
movement. Typical frequencies of DEP traps belong in the MHz
range, taking a typical cell of diameter of 10 lm and a typical
velocity of cell transport in microchannels of 1 mm/s we find
that:

ffield

fmove

≈ 106

(10−3/10−5)
= 104 � 1 (17)

which certainly allows us to use the average DEP force as
described above.

To couple efficiently this force calculation to the IIM, we
must provide the force density at the interface, as given by the
differential form of eqn (16):

〈FDEP (t)〉 = ef

4

[
(Ef E

∗
f + E∗

f Ef ) − |Ef |2 I
] · n (18)

The IIM and the BEM complement each other because the
BEM can provide the electrical force at any point in the surface
of a suspended cell, and the IIM requires this force to predict5
the level of deformation and movement of the cell in each time
step of the simulation. On the other hand, the BEM solver takes
as input the new position and shape of the interface provided
by the IIM and produces new values of the force which are then
fed back to the IIM solver. The coupled system is solved using10
a semi-implicit time integration scheme and this procedure is
repeated continuously.

Electric field calculation using BEM. The indirect formula-
tion of the BEM17,18 with only sources has been chosen because
its implementation for systems with multiple material interfaces15
is simpler than the corresponding implementation for the direct
formulation. In this technique, the interfaces separating two
dielectric materials are represented by equivalent polarization
charge densities, and the interfaces separating a dielectric from
a conductor are represented by a total charge density that is the20
sum of the free charge of the conductor and the polarization
charge of the dielectric.

The interfaces in the problem are discretized using isopara-
metric quadratic line elements, and using the collocation method
a system of linear equations describing the electrical problem is25
obtained.

The equations for a system with i =1, · · · ,Ne nodes in the
electrodes, i = Ne + 1, · · · N nodes in the dielectric inter-
faces, and a total of NE elements in the discretized surfaces
are:

φ i = 1
2pe0

NE∑
j

∑
k

qs,jk

∫
Cj

Mjk (r′) ln
1

|r − r′|dC ′,

i = 1, . . . , Ne (19)

qs,i = ẽe − ẽi

2p (ẽe + ẽi)

NE∑
j

∑
k

qs,jk

∫
Cj

Mjk (r′)
(r − r′) · n̂
|r − r′|2 dC ′,

i = Ne + 1, . . . , N. (20)

In these equations φ i and qs,i stand for the potential and the
charge density at node i, qs,jk is the charge density at node k
of element j, and Mjk is the kth shape function in element 30
j. This yields a dense matrix system that must be solved for
qs,i.

The linear system is solved using the GMRES iterative
method19 with a simple Jacobi preconditioner.20 The first
timestep is solved using a zero guess for the solution vector. 35
Subsequent solutions use the solution vector from previous
timestep as the initial guess for the solver; this greatly reduces
the solution time.

Once the solution to the equations is found, the electric field at
any point in the domain can be obtained by using the expression
E = −∇φ where the derivatives of the potential are taken directly
over eqn (19):

Ei = 1
2pe0

NE∑
j

∑
k

qs,jk

∫
Cj

Mjk (r′)
(r − r′) · î
|r − r′|2 dC ′,

i = x, y, z (21)

Viscous flow calculation using IIM. The immersed interface
method is employed to solve the Navier–Stokes equations by 40
using the finite different method on a staggered Cartesian grid.
The IIM was originally proposed by LeVeque and Li21,22 for
solving elliptic equations and Stokes flow. The method was
developed further for the Navier–Stokes equations.23–25 The IIM
was also used for solving the two-dimensional streamfunction- 45
vorticity equations on irregular domains.26–28 Recently, the IIM
has been developed to handle rigid and flexible boundaries
simultaneously.14

Our IIM for solving viscous flow problem is largely based
on that described in Le et al.14 The singular forces along the 50
cell interfaces are the elastic and dielectrophoretic forces, which
are computed based on the configuration of the interfaces. The
DEP force is calculated by solving an electrostatic problem
using the BEM technique. BEM is a natural choice for solving
the electrostatic problem because the only quantity that we are 55
interested in is the DEP force acting along the cell boundary. The
singular force at the rigid boundary is determined by imposing
the no-slip condition. Once all the singular forces have been
computed, the jump in pressure and jumps in the derivatives of
both pressure and velocity are calculated and incorporated into 60
the finite difference discretization to obtain a sharp interface
resolution.

Our numerical algorithm is based on the pressure-increment
projection algorithm for the discretization of the Navier–
Stokes equations with special treatment at the grid points 65
near the interface.14 The spatial discretization is carried out
on a standard marker-and-cell (MAC) staggered grid similar
to that found in Kim and Moin.29 Given the velocity un, the
pressure pn−1/2, and the singular forces fn, fn+1, we compute
the 70
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velocity un+1 and pressure pn+1/2 at the next time step as follows:
Step 1: Compute an intermediate velocity field u* by solving

u∗ − un

Dt
= − (u∇u)n+ 1

2 − 1
q
∇pn+ 1

2

+ l

2q

(∇2
h u∗ + ∇2

h un
) + C 1 (22)

u*|∂X = ub

where the advective term is extrapolated using the formula,

(u∇u)n+ 1
2 = 3

2
(u∇hu)n − 1

2
(u∇hu)n−1 + C 2 + c 1 [u∇u]s (23)

and the pressure gradient is approximated simply as,

∇pn+ 1
2 = GMACpn− 1

2 + C 3 + c 2 [∇p]s (24)

Step 2: Compute a pressure increment wn+1 and update
pressure and velocity field

∇2
h wn+1 = q

DMACu∗

Dt
+ C4, n∇wn+1

∣∣
∂X

= 0, (25)

un+1 = u∗ − 1
q

DtGMACwn+1 + C 5, (26)

pn+1/2 = pn−1/2 + wn+1 − l

2q

(
DMACu∗) + C6 (27)

We note that the above projection method is analogous
to the pressure-increment projection method30 at most of the
grid points except at some grid points near the interface. The5
discretization of the Navier–Stokes equations at those grid
points near the interface needs to be modified to account for
the jump conditions across the interface due to the presence of
singular forces at the interface. The coefficients Ci, i = 1,. . .,6,
are the spatial correction terms added to the finite difference10
equations at the points near the interface to improve the accuracy
of the local finite difference approximations. These correction
terms can be computed by using the generalized finite difference
formulas14,31 if we know the jumps in the solution and their
derivatives. The explicit form of the coefficients Ci, i = 1,. . .,6 can15
be found in Le et al.14 In addition to the spatial correction terms,
we also need to perform corrections for the jump in time. The
term [.]s in eqns (23) and (24) denotes a jump in time and is only
non zero when the interface crosses the grid point over the time
interval considered. The coefficients c 1 and c 2 correspond to the20
first order corrections in time.14 In the above expressions, ∇hand
∇2

h are the standard central difference operators, GMAC and DMAC

are the MAC gradient and divergence operators, respectively.14

In our projection method, we need to solve, at each timestep,
two Helmholtz equations for u* in eqn (22) and one Poisson25
equation for wn+1 in eqn (25). Since the correction terms in eqns
(22) and (25) only affect the right-hand sides of the discrete
systems for the Helmholtz and Poisson equations, we can take
advantage of the fast solvers from FISHPACK32 to solve these
equations.30

Results

In this section we present a validation study of the numerical
methodology followed by the detailed analysis of three different
electrode configurations for the fixed geometry shown in Fig. 1

and the effect of changes in the geometry for the most efficient 35
of the three electrode configurations. After this analysis, we also
present a series of simulations which assess the effect of having
more than a single particle in the trapping area.

Model validation

In this section we compare numerical predictions from our 40
model with previously published experimental results by Dürr
et al.,33 where the threshold velocity of latex beads was measured
as a function of the applied potential at the electrodes.

Dürr et al. considered pairs of electrodes situated opposite
to one another in the top and bottom walls of a microchannel. 45
Each electrode pair is equivalent to a parallel plate capacitor,
and in this configuration the electrical field gradient at the ends
of the electrodes generates the necessary DEP force to stop or
deviate the particles moving along the microchannel.

We focus on one of the measurements reported by Dürr 50
et al., the threshold velocity for a latex sphere of diameter
2 lm as a function of the potential difference between a pair
of electrodes of width 20 lm in a channel of height 25 lm. This
case is adequate for comparison with our 2D model because the
electrodes used in the experiment are very long in comparison 55
with their width (4.85 mm in length vs. 20 lm in width) and so
end effects in the direction normal to the flow are negligible.

The buffer suspension conductivity for both the experiments
and our numerical calculations was rf = 0.06 S m−1, and its
dielectric permittivity ef = 80, and the frequency of the applied 60
field 2.0 MHz. The values reported by Dürr et al. for the
conductivity and permittivity of the latex particles, rp = 0 S
m−1 and ep = 3.5, were also used in the simulation without
modification.

The numerical predictions from our model are close to the 65
experimental results, as shown in Fig. 2, but the threshold veloc-
ity is consistently underestimated at high potential values. After
careful consideration we concluded that this deviation was due
to ignoring of the thermal effects in the numerical calculation.
At high values of the applied potential the temperature of the 70
liquid will increase due to Joule heating,34 producing a reduction
in the viscosity and therefore reducing the force that the liquid

Fig. 2 Comparison of predicted holding velocities and experimental
values reported by Dürr et al.33 Excellent agreement between numerical
and experimental values is found when considering the temperature
induced change in the liquid viscosity.

4 | Lab Chip, 2008, xxx, 1–9 This journal is © The Royal Society of Chemistry 2008



exerts on the particle. An approximate equation describing the
temperature increase in the liquid due to the electric field in
DEP traps was given35 as ∇2(∇T) = −r|E|2/j where r and j
are the electric and thermal conductivity of the liquid and E is
the electric field. An order of magnitude calculation gives:

DT
Dx2

≈ r

j
|E|2 ≈ r

j

(
V
Dx

)2

(28)

This yields the simple expression DT ≈ rV 2/j. Using r =
0.06 S m−1 as in the measurements made by Dürr et al. and j =
0.6 J ms−1 K−1 as the thermal conductivity of water, we obtain
DT ≈ 0.1V 2

We consider a variation of the viscosity with temperature5
of the form used by Petersen et al.,36 l(T) = 2.761 ×
10−6exp(1713/T) For a temperature increase DT in the fluid,
and assuming that the fluid force exerted on the particle is pro-
portional to the fluid viscosity, we can correct our calculations
for the threshold velocity v using:10

mcorrected(U ,T) = m(U)cf (T ,DT) (29)

where U is the applied potential and the correction factor cf is
given by:

cf (T, DT) = l (T)
l (T + DT)

= exp
(

1713
T

)
exp

(
1713

T+DT

) (30)

Once this viscosity correction is taken into account our
calculations agree very well with the measured values of the
threshold velocity across the full range of potential values as
shown in Fig. 2.15

Numerical analysis of trap design

Our first objective was to investigate the effect of adding a
dielectrophoretic trapping force to a simple mechanical trap for
different Reynolds numbers. We chose a fixed trap geometry, in
which the physical well had a depth D = 20 lm and a width20
W = 30 lm, and three different electrode configurations.

The different electrode configurations can be described by
referring to Fig. 1. In electrode configuration 1 (EC-1) electrodes
one to four are active, in electrode configuration 2 (EC-2)
electrodes three to six are active, and in electrode configuration25
3 (EC-3), only electrodes five and six are active. The electric field
generated by each of the three electrode configurations when
the particle is outside the cavity is shown in Fig. 3. The electric
field minimum in these figures would correspond to the particle
trapping location in the absence of hydrodynamics forces. For30
EC-1 the particle would be trapped inside the physical well, while
for EC-2 the particle could be trapped either in the center of the
channel, hovering over the physical well, or inside the well. The
two minima of the electric field in EC-2 are separated by a field
bottleneck that makes the movement from one of the minima to35
the other difficult . In EC-3 the situation is not as clear as for the
other two configurations. It appears, however, that in this case
the particle could be trapped either near the top of the channel
or inside the well depending on the initial conditions.

The particle studied had a diameter of 10 lm, stiffness40
constant T 0 = 1 dyne cm−1, and its conductivity and permittivity
were rp = 2 × 10−3 S m−1 and ep = 2.5, respectively. The
stiffness value chosen corresponds to that reported for a typical

Fig. 3 Electric field for the three different electrode configurations of
(a) EC-1, (b) EC-2 and (c) EC-3. Notice how the presence of the particle
alters the field distribution within the traps.

lipid bilayer.37 This value is similar to those of endothelial cells
and chondrocytes. Healthy erythrocytes and other blood cells 45
are typically softer, with stiffness values on the order of 10−2

dyne cm−1,38 but their stiffness can increase dramatically due to
sickness. The fluid buffer was assumed to be water with rf =
10−4 S m−1 and ef = 80. The substrate was taken to be an
insulating material with rs = 0 S m−1 and es = 2.0. The frequency 50
of the applied potential is 1 MHz in all cases, which leads to
negative dielectrophoresis in the region of maximum strength
for the chosen materials. It is assumed that the cell and the
fluid buffer have the same density q = 103 kg m−3 and viscosity
l = 10−3 kg ms−1. In all our simulations, a parabolic velocity 55
profile with maximum velocity Umax is prescribed at the inlet
boundary. This Umax is varied to change the Reynolds number,
Re = qUmaxL/l where L is the height of the channel which has
the value of 25 lm in all examples.

Our first test was to assume that a particle was initially trapped 60
in the center of the physical well and then run several simulations
where the flow rate was progressively increased until the particle
moved out of the cavity. We found that while a purely mechanical
trap (with no active electrodes) released the particle for flow
speeds above Umax = 1.0 mm s−1 (Re = 0.025) as shown in 65
Fig. 4(a), all three electrode designs kept the particle trapped
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Fig. 4 Trajectory of the particle in the trap with: (a) pure mechanical
trap releases the particle at Umax = 1mm s−1, (b) electrode configuration
1 (EC-1) holds the particle trapped until Umax = 5 mm s−1 (Re = 0.125).
Solid dots correspond to the same control point on the boundary at
different times.

within the cavity beyond this value, although they also released
the particle once the flow speed was sufficiently increased.

Our simulations indicate that both configurations EC-2 and
EC-3 provide much stronger trapping than EC-1, and that EC-3
is the strongest configuration of the three. This can be attributed5
to the strong gradient generated at the edges of electrodes 5
and 6 (Fig. 1) which are only active in configurations EC-2 and
EC-3. At flow speeds above 5.0 mm s−1 (Re = 0.125), electrode
configuration 1 allows the particle to leave the cavity as shown in
Fig. 4(b), while electrode configurations 2 and 3 keep the particle10
trapped. Electrode configuration 3 keeps the particle trapped at
flow speeds as high as of 10 mm s−1 (Re = 0.25), an order of
magnitude higher than the pure mechanical trap.

Although EC-3 gives the best configuration to use once the
particle has been trapped, if the trap cannot capture passing15
particles, then its strength once it has been loaded, is meaningless
for a trapping device designed to work in a continuous mode. In
order to evaluate the effect of the three electrode configurations
on the loading characteristics of the trap, we released a particle
upstream of the trap—initial position as shown in Fig. 3—and20

tracked its movement until it was stopped in an equilibrium
position or moved beyond the physical well region.

From the trajectories shown in Fig. 5, it is clear that only
configuration 1 of the electrodes can possibly trap a particle
originally placed outside the cavity inside the physical well. 25

Fig. 5 Trajectory of the particle in the trap. (a) EC-1 at Umax =
0.5 mm s−1 (Re = 0.0125), (b) EC-2 at Umax = 0.2 mm s−1 (Re = 0.005),
(c) EC-3 at Umax = 0.2 mm s−1 (Re = 0.005). No trapping occurred for
the purely mechanical trap for this initial position of the particle, even
for extremely low Reynolds numbers.
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For all the three cases, the particle stops at a minimum of
the electrical field, which is expected of a particle experiencing
negative dielectrophoresis. However, neither electrode configu-
ration 2 nor configuration 3 cause the particle to traverse towards
the physical well, and therefore are not suitable for loading5
hybrid DEP traps. Notice that the particle is only trapped in
configuration EC-2 (outside the cavity, as shown in Fig. 5(b))
for very low flow rates (Umax = 0.2 mm s−1, or Re = 0.005) as
compared to those in EC-1 (Fig. 5(a)).

In view of these results we next focused our studies on10
electrode configuration 1 since, although it does not provide
the strongest trapping once the trap is loaded, it is the only
configuration that enhances both the trapping strength and the
loading efficiency of a purely mechanical trap. It is possible to
design a trap with selectively activated electrodes to initially15
utilize EC-1 to move the particle into the cavity, and then switch
to EC-3 to keep the particle trapped under higher flow rates.
This requires identifying accurately the entry of the article into
the cavity, and will be the subject of future work.

Trapping single-cell20

Using electrode configuration 1, we studied the effect of varying
the height and width of the physical well. In particular, we
studied how the trap width and depth affected the loading and
strength characteristics of the trap. For all the tests the initial
position of the particle is outside the cavity as shown in Fig. 3.25

Effect of the mechanical trap depth

Intuitively, the depth of the well should be important for
trapping strength, as it should be much easier to remove a
particle from a shallow trap than from a deep trap. But we
expect that, eventually, the trap depth should reach a value where30
increasing it further has no effect on the trapping strength, as
the particle will not have time to move downwards into the
regions of the well which are isolated from the bulk flow. In
order to test this idea, we fixed the trap width at W = 30 lm and
changed the depth of the well to study how the trapping strength35
was affected. For each depth, we then ran simulations with
increasingly high Reynolds numbers and tracked the particle
movement through the complete process of loading/unloading.
We determined the critical Reynolds number Rec for each value
of the depth as that Re for which the particle could no longer40
be trapped inside the mechanical well due to the hydrodynamic
forces. This corresponds to the critical Reynolds number for
loading.

The results in Fig. 6(a) show precisely this behavior. In this
case, after the well has reached a depth equal to 1.5 times the45
particle diameter increasing it further has no effect on the critical
Reynolds number and therefore, the trapping strength. It is
important to note that, even though this would be the expected
behavior of the particle, without an efficient numerical method
as presented in this work it would not be feasible to calculate50
quantitatively the optimal depth for a DEP hybrid trap.

Effect of the mechanical trap width

The width of a physical well has a very strong effect in the loading
characteristics of the trap. If the physical well is too narrow it

Fig. 6 Effect of cavity depth (a) and width (b) on the critical Reynolds
number for a particle initially situated outside of the cavity as shown in
Fig. 3. Notice the existence of an optimal width for the trap.

will be very difficult to trap the particle as the liquid velocity 55
increases. On the other hand, if it is too wide the particle will
simply skim over the well and move off without being trapped.
In order to study this behavior we fixed the trap depth to D =
15 lm, which lies in the region where trapping strength is not
affected by the trap depth, and changed the width of the well to 60
see how it affected the critical Reynolds number.

Fig. 6(b) shows that narrow traps are weak and that the
critical Reynolds number increases until it reaches a maximum
for a width value equal to three times the particle size. After
this maximum value is reached the critical Reynolds number 65
decreases again, indicating that the trap becomes less effective.

Trapping multiple-cells

To show the flexibility of our technique, we present the results
of the interaction between a trapped particle and a second
particle moving downstream for two different positions of the 70
trapped particle. The study was done for a fixed geometry
with a physical well of depth 15 lm and width 30 lm
with electrode configuration 1 and a maximum flow speed
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Umax = 0.8 mm s−1 (Re = 0.02). Both particles have identical
mechanical and electrical properties.

Movie 1 (Electronic Supplementary Information†) shows the
effect that a trapped particle has on other particles in the
channel. When the trapped particle is at the center of the5
physical well (left column) the second particle is not trapped,
but rather rolls over the already trapped particle and continues
its downstream path. The second particle initially pushes the
trapped particle, then rolls over it and collides with the edge of
the well (t = 0.08) and continues its downstream path (t = 0.14)10
without being trapped.

When the trapped particle is closer to the leading edge of
the physical well—Movie 2—the second particle is trapped.
The initial steps are similar to those in the previous case, with
the second particle pushing the trapped particle forward, then15
rolling over it, but when it comes into contact with the edge
of the physical well it starts moving downwards (t = 0.20) and
is eventually trapped (t = 1.60). In both examples, the particle
interaction is shown to produce a rotation. This is due to the
faster flow on the outside of the well, which produces a net20
torque on the particles and induces a rotational movement.

Similar differences in behavior can also be obtained by
keeping the trapped particle at a constant initial position but
changing the position of the electrodes and the dimensions of
the well. These simulations show that small differences in the25
traps can lead to single- or multiple-cell trapping. Numerical
simulations are ideally suited to produce controlled studies of
single-cell traps, as dynamical behavior of the trap can be studied
for controlled changes in all relevant parameters. Future studies
using numerical tools should focus on the analysis of issues of30
practical relevance in cell trapping and separation, such as the
effect of polydisperse size distributions on the behaviour and
performance of the traps.

Conclusions

We have presented the coupled immersed interface method-35
boundary element method numerical technique for the so-
lution of problems involving electrostatic and fluid forces
on deformable bodies. We have shown the flexibility of the
technique by applying it to the realistic problem of single-cell
dielectrophoretic trap design.40

We have found that, for the geometry used, there is an optimal
width of the mechanical trap that allows maximum loading
and trapping efficiency, and that beyond a certain value the
depth of the well does not influence the trapping strength.
These are significant findings that highlight the relevance of45
simulation techniques in the design of biological cell traps.
Quantitative tools like the IIM-BEM technique can be used
to optimize current device designs and to provide insight into
the development of future designs. More importantly, the use of
these tools can shorten the production cycle of new devices.50

The IIM-BEM technique was also applied to the analysis
of multiple particle interaction in dielectrophoretic traps. As
shown in the text, what we initially designed as a single-cell trap
could turn into a multi-cell trap under certain circumstances.
This influence of minor changes in the performance of single-55
cell dielectrophoretic traps indicates that detailed studies of the

loading and unloading of DEP traps are needed in order to
guarantee the desired mode of operation.

Numerical methods are the ideal tools to do these detailed
studies, as all relevant parameters can be changed in a controlled 60
manner, and their effect on the dynamic behavior of the trap
analyzed. Amongst other numerical methods the IIM-BEM
is particularly well suited for this purpose, as it depicts the
main physics (viscous flow, elastic deformation, electrostatics)
that are relevant in DEP traps and many other micro-electro- 65
mechanical-devices. More importantly, this technique is capable
of dealing with both rigid and flexible boundaries, extending the
use of quantitative simulation tools to a much wider class of
devices than other techniques.

The authors are currently working on extensions of the 70
method that will consider different viscosity ratios between the
cell and the fluid buffer, as well as three-dimensional geometries.
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