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Abstract. A model-constrained adaptive sampling methodology is proposed for reduction of
large-scale systems with high-dimensional parametric input spaces. Our model reduction method
uses a reduced basis approach, which requires the computation of high-fidelity solutions at a number
of sample points throughout the parametric input space. A key challenge that must be addressed in
the optimization, control, and probabilistic settings is the need for the reduced models to capture
variation over this parametric input space, which, for many applications, will be of high dimension.
We pose the task of determining appropriate sample points as a PDE-constrained optimization
problem, which is implemented using an efficient adaptive algorithm that scales well to systems with
a large number of parameters. The methodology is demonstrated for examples with parametric input
spaces of dimension 11 and 21, which describe thermal analysis and design of a heat conduction fin,
and compared with statistically-based sampling methods. For this example, the model-constrained
adaptive sampling leads to reduced models that, for a given basis size, have error several orders of
magnitude smaller than that obtained using the other methods.
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1. Introduction. Model reduction is a systematic approach to derive cost-
efficient representations of large-scale systems that result, for example, from dis-
cretization of partial differential equations (PDEs). Reduced models are essential
in applications such as optimal design, optimal control, probabilistic analysis, and
inverse problems, for which the physical system must be simulated repeatedly and
thus computations with the large-scale model become prohibitive. To be useful for
these applications, the reduced model must provide an accurate representation of the
large-scale model over a wide range of parameters. When the dimension of the input
parameter space is large, which is the case for many engineering applications of inter-
est, sampling the parametric space efficiently to create the reduced model becomes a
significant challenge.

Common model reduction approaches for dynamical systems include proper or-
thogonal decomposition (POD) and Krylov-based methods. In these methods, the
reduced basis is formed as the span of a set of state solutions, commonly referred to
as snapshots. These snapshots are computed by solving the full system for selected
values of the parameters and selected forcing inputs (and possibly selected frequen-
cies if a Krylov-subspace method is used). The quality of the resulting reduced-order
model is very dependent on the choice of parameters and inputs over which snapshots
are computed. This is because the span of the snapshot determines the span of the re-
duced basis, which in turn determines the quality of the resulting reduced-order model.
A key issue that needs to be addressed therefore is sampling; that is, how to choose the
parameters and inputs over which to compute the basis. In particular, discretization
produces high-dimensional parametric input spaces when the parameters represent
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continuous fields (such as initial conditions, boundary conditions, distributed source
terms, and geometry). Model reduction for high-dimensional parametric input spaces
remains a challenging problem. One can use knowledge of the application at hand to
determine representative parametric inputs, as has been done to sample the param-
eter space for the quasi-convex optimization relaxation method [30], and to generate
a POD or Krylov basis for problems in which the number of input parameters is
small, for example aerodynamic applications [13], Rayleigh-Bénard convection [22],
parametrized design of interconnect circuits [5, 10], and parameters describing inho-
mogeneous boundary conditions for parabolic PDEs [17]. For optimal control appli-
cations, online adaptive sampling has been employed as a systematic way to generate
snapshot information [1, 2, 18, 21]. However, these methods have not been scaled to
problems that contain more than a handful of parameters. The recently developed
iterative rational Krylov algorithm [16] proposes a systematic method for selecting
interpolation points for multipoint rational Krylov approximations based on an H2-
norm optimality criterion. This method has been applied to reduction of large-scale
linear time invariant (LTI) systems, although its extension to parameter dependent
LTI systems remains an open question.

Standard sampling schemes such as uniform sampling (uniform gridding of the
parameter space) or random sampling are another option for creating snapshots. How-
ever, if the dimension of the parameter space is large, uniform sampling will quickly
become too computationally expensive due to the combinatorial explosion of samples
needed to cover the parameter space. Random sampling, on the other hand, might fail
to recognize important regions in the parameter space. One sampling strategy that
provides a compromise between the uniformity and the size of the sample is the strati-
fied sampling family, of which the popular Latin hypercube sampling (LHS) method is
one example [24]. The LHS method is more efficient than uniform sampling and often
more accurate than random sampling. Recently, the centroidal voronoi tessellation
(CVT) sampling method [11] has been shown to outperform LHS, random sampling
Monte Carlo methods, and Hammersley quasi Monte Carlo sequence methods for
statistical sampling and function integration [26].

To address the challenge of sampling a high-dimensional parameter space to build
a reduced basis, the greedy sampling method was introduced in [14,15,31,32]. The key
premise of greedy sampling is to adaptively choose samples by finding the location
at which the estimate of the error in the reduced model is maximum, over a pre-
determined discrete set of parameters. The greedy sampling method was applied to
find reduced models for the parameterized steady incompressible Navier-Stokes equa-
tions [31]. It was also combined with a posteriori error estimators for parameterized
parabolic PDEs, and applied to several optimal control and inverse problems [14,15].

Here, we employ the concept of greedy sampling, and formulate the task of de-
termining appropriate sample locations as a sequence of adaptive model-constrained
optimization problems. The optimization formulation treats the parameter space over
which greedy sampling is applied as continuous; that is, we do not require the a priori
selection of a discrete parameter set. Further, the objective functional to be minimized
employs the true computed error between full-order and reduced-order outputs; thus,
our approach is applicable in cases for which error estimators are unavailable. Unlike
other sampling methods, we demonstrate that the model-constrained optimization
sampling approach scales well to systems with a large number of parameters.

This article is organized as follows. Section 2 presents an overview of projection-
based model reduction and discusses computation of the test basis using a minimum-
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residual approach. Section 3 then describes computation of the trial basis using the
proposed model-constrained optimization adaptive sampling approach. Theoretical
analysis of the method is presented in Section 4, while Section 5 demonstrates the
methodology through an example that considers thermal analysis and design of a heat
conduction fin. Finally, Section 6 presents conclusions.

2. Model reduction via projection. In this section, we present a general
projection framework for model reduction, and discuss computation of the test basis
using a minimum-residual approach.

2.1. General projection framework. Most large-scale model reduction frame-
works are based on a projection approach, which can be described in general terms
as follows. Consider the general dynamical system

R(ẋ(t),x(t), z,u(t)) = 0, x(0) = x0, y = `(x(t), z,u(t)), (2.1)

where x = x(t) ∈ IRn is the state vector of dimension n, z ∈ IRd is the parameter
vector containing d input parameters of interest, t denotes time, x0 is the specified
initial state, u(t) ∈ IRp is a vector of p forcing inputs, y ∈ IRq is a vector containing
q outputs of interest computed by some output operator `, and R is some discrete
operator (for example, a residual operator resulting from a spatial discretization of a
set of PDEs). We are interested in large-scale systems of the form (2.1), typically with
state order n > 105, which might arise from spatial discretization of a set of PDEs,
or from a naturally discrete large-scale simulation, such as in molecular dynamics or
circuit simulation.

In the context of design and optimization, in which the system needs to be simu-
lated repeatedly for many different design parameters z, and for real-time applications,
the full problem (2.1) is too computationally expensive to solve. Instead, we seek an
approximate solution,

x̃(t) = Φxr(t), (2.2)

where Φ = [φ1 φ2 · · · φm] ∈ IRn×m is the trial basis, which contains as columns the m
basis vectors φi, and xr(t) ∈ IRm is the vector of the coordinates of the approximate
solution x̃ in the reduced basis Φ. We also introduce the test basis Ψ ∈ IRn×m, giving
the mth-order reduced model of (2.1) as

ΨTR(Φẋr(t),Φxr(t), z,u(t)) = 0, xr(0) = ΨTx0, yr = `(Φxr(t), z,u(t)), (2.3)

where yr ∈ IRq is the approximate output. We have used the reduced transform (2.2)
and the assumption ΨTΦ = I, where I is the identity matrix, to obtain the initial
condition for the reduced state, xr(0). If the test space is the same as the trial space,
i.e. Ψ = Φ, the reduced system (2.3) is obtained via a Galerkin projection. If the
test space is different from the trial space, the reduced system (2.3) is obtained via a
Petrov-Galerkin projection.

While the model reduction methodology applies to both steady and unsteady
systems, in this paper we consider steady systems of the form

A(z)x = b(z), y = C(z)x, (2.4)

where the matrices A(z) ∈ IRn×n, b(z) ∈ IRn×1, and C(z) ∈ IRq×n in (2.4) depend
nonlinearly on the set of parameters z. The parameters z could be, for example,
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coefficients of the PDEs, such as thermal conductivities, or shape parameters. The
residual of the reduced state is then defined as

R(xr, z) = b(z)−A(z)Φxr, (2.5)

and the projection-based model reduction technique yields a reduced system of the
form

Ar(z)xr = br(z), yr = Cr(z)xr, (2.6)

where Ar(z) = ΨTA(z)Φ, br(z) = ΨTb(z), Cr(z) = C(z)Φ.
In the following we discuss a methodology to construct the test basis Ψ to obtain

a guaranteed stable reduced model for problems that are linear in the state vector as
in (2.4). Construction of the trial basis Φ will be discussed in Section 3.

2.2. Construction of the test basis. For steady problems of the form (2.4),
we first denote e = x − x̃, the state error between the full solution and the reduced
basis approximation. The ATA–norm is defined as ‖v‖ATA = vTATAv,∀v ∈ IRn.
From the residual-error relation R(xr, z) = Ae, where R is defined in (2.5), it is easy
to see that the following identity is true,

‖R‖2 = ‖e‖ATA. (2.7)

If Galerkin projection, i.e. Ψ ≡ Φ, is employed to find the reduced state xr, there
is no guarantee that the reduced model will be stable if A is not symmetric positive
definite.1 This is because the reduced equation (2.6) is obtained by requiring the
residual to be orthogonal to the reduced trial space, and hence the residual could be
arbitrarily large while also being orthogonal to the reduced space.

Alternatively, the approximate solution can be chosen so as to minimize the resid-
ual in (2.5). This is related to least-squares weighted residual methods, in particular
in the finite element context [4,8,9,19]. Recently, the minimum-residual approach has
been successfully used in the reduced-basis context [23,27,28]. The minimum-residual
statement can be expressed in terms of the following least-squares minimization,

xr = arg min
x̄r∈IRm

‖R‖22 = ‖b−AΦx̄r‖22. (2.8)

Setting the gradient of the least-squares function to zero gives the reduced model,

(AΦ)T(AΦ)xr = (AΦ)Tb. (2.9)

Thus, the minimum-residual approach is equivalent to a Petrov-Galerkin projection
with the test basis Ψ = AΦ. This particular Petrov-Galerkin projection is equiv-
alent to Galerkin projection on the normal equation, and by (2.7) yields a reduced
model that minimizes the state error in the ATA–norm. We are now in a position to
prove that the reduced model (2.9) obtained from the minimum-residual statement,
or equivalently from the given Petrov-Galerkin projection, is guaranteed to be stable.

Theorem 2.1. Assume A has a bounded condition number, then the reduced
model (2.9) is stable in the sense that the state error is bounded. In particular, the
following bound holds

‖e‖2 ≤ 1
σA

min

‖R(xr, z)‖2, (2.10)

1If A is, however, symmetric positive definite one can prove that the Galerkin projection yields
an optimal reduced model in the A–norm, that is, the state error is minimized in the A–norm.
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where σA
min is the smallest singular value of A, the reduced state xr is computed from

equation (2.9), and the residual R is defined in (2.5).
Proof: Making use of the inequality for compatible matrix and vector norms

on the error-residual relation e = A−1R and using the definition of the singular
values of a matrix yields the bound (2.10). Since the reduced state found from
equation (2.9) minimizes the residual, the residual is finite (because ‖R(xr, z)‖2 =
minx̄r∈IRm ‖R(x̄r, z)‖2 ≤ ‖R(0, z)‖2 = ‖b(z)‖2). In addition, 1/σA

min is finite due to
the bounded condition number assumption on A. We conclude that the 2–norm error
in the state is bounded. ¤

A priori convergence results are standard in the context of finite element methods
and recently in the reduced basis context [14, 15, 32]. In this light, we present an a
priori convergence result for the above steady reduced model.

Theorem 2.2. As the reduced basis Φ is enriched, i.e. more basis vectors are
added, the state error in the ATA–norm is a non-increasing function of the number
of reduced basis vectors. In particular, there exists m ≤ n at which the state error in
the ATA−norm is strictly monotone decreasing.

Proof: Assume Φ ∈ IRn×m is the current reduced basis. Now adding a new basis
vector φm+1, the new reduced basis is Φ̃ = [Φ, φm+1] ∈ IRn×(m+1). The minimum-
residual statement of the new reduced model is

x∗r = arg min
˜̄xr∈IRm+1

‖b−A[Φ, φm+1]˜̄xr‖22. (2.11)

Comparing the minimization statements (2.8) and (2.11), and using the fact that
span{Φ} ⊂ span{Φ̃} and IRm ⊂ IRm+1, it can be seen that x̄r is a special case of
˜̄xr, where the last element is zero. That is, in (2.11), the residual norm is minimized
in a larger space, and hence the residual should be no larger than that of (2.8).
Equivalently, the state error in the ATA−norm is no larger when the reduced space
is richer. Since the approximate solution is exact if m = n, there exists m ≤ n such
that when more basis vectors are added the state error is smaller. ¤

Note that from the residual error relation R = Ae and the output error relation
y − yr = Ce, we conclude that as the reduced basis is enriched, the residual and
the output error are also improved. This a priori convergence result is important for
the theoretical development of our adaptive sampling method discussed in the next
section.

3. Computation of the trial basis. To determine the reduced model (2.3),
we must determine the trial basis, Φ, that yields a sufficient reduction in the size of
the system while accurately representing full-scale outputs over the parametric input
space. In the case of the POD, the reduced basis is formed as the span of a set of
state solutions, commonly referred to as snapshots. These snapshots are computed
by solving the system (2.1) for selected values of the parameters z. The quality of
the resulting reduced-order model is highly dependent on the choice of parameters for
which snapshots are computed. Two issues arise in selecting an appropriate sample set
of parameters. First, choosing where and how many samples to generate is, in general,
an ad-hoc process. One can use knowledge of the application at hand to determine
representative parameters; however, there exist no guarantees on the quality of the
resulting reduced-order model. Second, in the case that the parametric input space
is of high dimension, the number of high-fidelity system solves required to adequately
cover the space can become prohibitively large. Work has been done to address the
first issue using adaptive sampling methods to create reduced models for optimal
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control applications [1, 2, 18, 21]. In the case of a high-dimensional parametric input
space, the computational cost of determining the reduced basis by these techniques
becomes prohibitive unless some sparse sampling strategy is employed.

3.1. Greedy sampling method. A recently proposed approach to address the
challenge of sampling a high-dimensional parameter space to build a reduced basis is
the greedy algorithm [14, 15, 32]. The basic idea of the greedy algorithm is to adap-
tively choose samples by placing the new sample point at the location in parameter
space where the estimated error in the reduced model is maximal. The approach
taken is to determine a trial parameter set with ntrial parameters. At each point
in this parameter set, the current reduced model is solved to determine the reduced
states, which are then used to compute an error estimate. The parameter location in
the trial set at which the error estimator is maximal is selected as the next sample
point. Full model information is then generated via a full-scale system solve at this
location, the basis is updated using the resulting snapshot information, and the re-
duced model is updated. These steps are then repeated, using the updated reduced
model to compute the reduced states at each of the ntrial parameters. In [14,15], the
greedy sampling algorithm was combined with an a posteriori error estimator and
applied to optimal control and inverse problems. As described in the next section, we
formulate the greedy sampling problem as a model-constrained optimization problem
over the continuous space of parameters.

3.2. Greedy optimization problem. In each cycle of the greedy algorithm,
the key step is to determine the location in parameter space at which the error in the
reduced model outputs is maximal. For the general problem (2.1), given a current
basis Φ, and a time horizon of interest tf , we find the location in parameter space of
maximum output error by solving the optimization problem

max
x,xr,z

G =
1
2

∫ tf

0

‖y − yr‖22 dt (3.1)

where

R(ẋ(t),x(t), z,u(t)) = 0, (3.2)
x(0) = x0, (3.3)

y = `(x(t), z,u(t)), (3.4)
ΨTR(Φẋr(t),Φxr(t), z,u(t)) = 0, (3.5)

xr(0) = ΨTx0, (3.6)
yr = `(Φxr(t), z,u(t)), (3.7)

zmin ≤ z ≤ zmax, (3.8)

where zmin and zmax are respectively lower and upper bounds on the parameter vector
z. Since the cost functional involves the error between the full and the reduced out-
puts, both the full model (3.2)–(3.4) and the reduced model (3.5)–(3.7) are needed to
define the error and therefore are imposed as constraints in the optimization problem.

To solve the optimization problem (3.1)–(3.8), each optimization iteration may
well be expensive, because the constraints include the full model. If a tight out-
put error bound exists, it could be used as the cost functional instead of the true
output error [15, 27, 32]. In that case, the constraints comprise only the reduced
model and the bound constraints, and solving the optimization problem is much less
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expensive since it involves only the full system residual evaluation and not the full
system solve. However, for a general problem, a good error bound may not be avail-
able. Alternatively, an error indicator, for example the squared norm of the residual,
‖R(Φẋr(t),Φxr(t), z,u(t))‖22, can be employed. In such cases, denote the output er-
ror bound or the residual error indicator as Q(xr(t), z,u(t)), and the optimization
problem now reads

max
x,xr,z

G =
∫ tf

0

Q(xr(t), z,u(t)) dt (3.9)

where

ΨTR(Φẋr(t),Φxr(t), z,u(t)) = 0, (3.10)
x0

r = ΨTx0, (3.11)
zmin ≤ z ≤ zmax. (3.12)

The analysis of the method, presented in Section 4, is developed based on the opti-
mization problem using the true output error, (3.1)–(3.8). However, by removing the
full model constraints and using Q(xr(t), z,u(t)) instead of 1

2‖y − yr‖22 in the cost
functional, the results also hold for the optimization problem (3.9)–(3.12). We further
note that we could use other criteria in the objective function, such as those stem-
ming from optimal experimental design [20], provided the formulation is tractable for
large-scale systems, such as those arising from discretization of PDEs.

3.3. Greedy adaptive sampling via model-constrained optimization. The
model-constrained adaptive sampling approach iteratively builds the basis by solving
a sequence of optimization problems of the form (3.1)–(3.8) (or (3.9)–(3.12)). We
denote the parameter vector that solves the maximization problem (3.1)–(3.8) (or
(3.9)–(3.12)) by z∗. Next, we compute the solution x(t) of the full system at this (lo-
cally) worst-case parameter value z∗. This solution information is added to the basis
Φ, for example using the POD. The procedure is then repeated by solving the opti-
mization problem (3.1)–(3.8) (or (3.9)–(3.12)) with the updated basis Φ. Thus, we
are using a systematic, adaptive error metric based on the ability of the reduced-order
model to capture the outputs of interest in order to choose the sample locations that
are (locally) the worst case scenarios. This adaptive sampling approach is summarized
in the following algorithm.

Algorithm 3.1.
Model-Constrained Adaptive Sampling Procedure
1. Given a current reduced basis Φ and initial guess z0, solve the optimization

problem (3.1)–(3.8) (or (3.9)–(3.12)) to find the location in parameter space
at which the error is maximized, i.e. find z∗ = arg maxG(z).

2. If G(z∗) < ε, where ε is the desired level of accuracy, then terminate the
algorithm. If not, go to the next step.

3. With z = z∗, solve the full system (3.2) to compute the state solutions
x(t), t = (0, tf ). Use the span of these state solutions to update the basis
Φ. Go to Step 1.

In the case of a steady problem, in Step 3 we add just one vector to the basis
(using appropriate orthogonalization). For unsteady problems, we may add several
basis vectors at each cycle, depending on the amount of information contained in
the state solutions x(t) (determined, for example using POD). The number of basis
vectors in this case is chosen so that G(z∗) < ε.
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Initially, there are no basis vectors in the reduced basis, Φ = 0, and the reduced
model is a zero-order approximation of the full model. Step 1 of Algorithm 3.1 starts
with an initial guess z0 in the parameter space and moves iteratively towards a local
maximizer. To avoid convergence to a local maximum close to a previous sample
location, and hence to explore the parameter space better, a random initialization of
the optimization variables z is used. An initial guess is accepted only if it is sufficiently
far from the previous sample locations and its corresponding cost functional is larger
than ε. In particular, the smallest allowable distance between an initial guess and all
the existing sample locations is chosen to be 0.5 mini{zmaxi

− zmini
}.

3.4. Solution of the greedy optimization problem. In order to reduce the
offline cost of constructing the reduced model and make the method tractable for
large-scale systems, it is important to use an efficient optimization algorithm that
allows us to exploit the structure of the system. In order to solve the constrained
optimization problem (3.1)–(3.8), we choose to solve an equivalent bound-constrained
optimization problem in the z variables by eliminating the state variables x and xr.
That is, we replace maxx,xr,z G(x,xr, z) with maxz G(x(z),xr(z), z) = maxz G(z),
where the dependence of x and xr on z is implicit through the full equation (3.2) and
reduced state equation (3.5).

The bound constrained optimization problem is given by

max
z
G(z) (3.13)

subject to

zmin ≤ z ≤ zmax. (3.14)

We use the Coleman-Li subspace trust-region interior-reflective Newton framework [6]
to solve the bound-constrained optimization problem (3.13)–(3.14) efficiently. That
is, we use the conjugate gradient (CG) method to determine the subspace over which
the linear system of equations arising at each Newton step is solved, and globalize by
a trust region scheme (e.g. [25]). This method combines the rapid locally-quadratic
convergence rate properties of Newton’s method, the effectiveness of trust region
globalization for treating ill-conditioned problems, and the Eisenstat-Walker idea of
preventing oversolving [12].

The cost of the Coleman-Li method in the context of model-constrained opti-
mization problems such as (3.13)–(3.14) is dominated by the computation of ∇G,
i.e. the gradient of G with respect to z, and the Hessian-vector products arising at
each CG step. The gradient can be computed efficiently—i.e. at the cost of a pair
of (full- and reduced-scale) model solves—using an adjoint method. To illustrate, we
give expressions for adjoint-based computation of the gradient in the case of steady
problems of the form (2.4). We first restate the greedy optimization problem (at a
typical adaptive cycle) in the model-constrained form:

max
x,xr,z

G =
1
2
‖C(z)x−Cr(z)xr‖22, (3.15)

where

A(z)x = B(z), (3.16)
Ar(z)xr = Br(z), (3.17)
zmin ≤ z ≤ zmax. (3.18)
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Next, we define the Lagrangian functional

L(x,xr, z, λ,λr) = G(x,xr, z) + λT [A(z)x−B(z)]
+ λT

r [Ar(z)xr −Br(z)] , (3.19)

where λ ∈ IRn and λr ∈ IRm are the full and the reduced adjoint variables that
respectively enforce the full and the reduced equations. Requiring the gradient of the
Lagrangian with respect to the full states x to vanish yields the full adjoint equations,

AT(z)λ = CT(z) [Cr(z)xr −C(z)x] , (3.20)

while requiring the gradient of the Lagrangian with respect to the reduced states xr

to vanish yields the reduced adjoint equations,

AT
r(z)λr = CT

r(z) [C(z)x−Cr(z)xr] . (3.21)

Finally, the ith component of ∇G is given by the derivative of the Lagrangian with
respect to zi,

∂G
∂zi

=
[
∂C
∂zi

(z)x− ∂Cr

∂zi
(z)xr

]T

[C(z)x−Cr(z)xr] + λT

[
∂A
∂zi

(z)x− ∂B
∂zi

(z)
]

+λT
r

[
∂Ar

∂zi
(z)xr − ∂Br

∂zi
(z)

]
. (3.22)

Thus, in order to compute ∇G, we (1) solve the full and reduced state equations
(3.16) and (3.17) for the full and reduced state variables x and xr; (2) substitute
them into the right sides of the full and reduced adjoint equations (3.20) and (3.21),
and solve the latter for the full and reduced adjoint variables λ and λr; and (3)
evaluate the gradient expression (3.22) using the computed full and reduced state and
adjoint variables.

The Hessian-vector product as required by CG is computed in a matrix-free man-
ner; because it is a directional derivative of the gradient, its computation similarly
involves solution of state-like and adjoint-like equations. Therefore, the optimization
algorithm requires solution of only a pair of state and adjoint systems at each CG
iteration.

4. Analysis of the Adaptive Sampling Approach. In this section, we prove
that a solution of the optimization problem (3.13)–(3.14), and hence the optimization
problem (3.1)–(3.8) or (3.9)–(3.12), exists, and discuss the uniqueness of that solution.
We also show that the adaptive sampling methodology does not revisit previously
sampled points.

4.1. Existence and uniqueness of a maximizer in each greedy optimiza-
tion problem. To begin, let us recall the following theorem.

Theorem 4.1. If G(z1, . . . , zd) : Ω ⊂ IRd → IR is continuous and Ω is a compact
subset of IRd, then there is a maximum point z̄ ∈ Ω such that G(z) ≤ G(z̄), ∀z ∈ Ω.

Proof: The proof can be found, for example, in [29]. ¤
This theorem shows that the greedy optimization problem in each adaptive cycle

has at least one solution by the following corollary.
Corollary 4.2. In each adaptive cycle, assume that the cost functional is a

continuous function in the parameter z. Then there exists at least one solution for
the optimization problem (3.13)–(3.14).
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Proof: Denote Ω as the parameter set defined by the bound constraints (i.e. a
d-cell [29]). Then, it can be proved that a d-cell is compact. Since the states are
eliminated, the cost function G(z) is only a function of the parameter z. Therefore,
if the cost functional G(z) is a continuous function on Ω, Theorem 4.1 applies and
Corollary 4.2 is proved. That is, there exists a solution (a global maximizer according
to the theorem) to the optimization problem (3.13)–(3.14) in each adaptive cycle. ¤

Clearly uniqueness is not guaranteed in the general case since there may be many
local maximizers.

4.2. Properties of the adaptive sampling approach. The following theorem
and corollary show that the adaptive sampling strategy does not revisit previously
sampled points.

Theorem 4.3. Assume that the full model is linear in state x. Then, in the kth

adaptive cycle, the cost functional is less than ε at all the maximizers found in the
previous cycles k̄ < k.

Proof: Recall that in Step 3 of Algorithm 3.1 the span of the state solutions at
the local maximizers found in previous cycles k̄ < k are used as basis vectors such
that the cost functional at these local maximizers is less than ε. Furthermore, we
proved in Section 2 that, for problems that are linear in state x, as the reduced basis
is enriched, the error in the reduced model cannot increase. As a result, the cost
functional in the kth adaptive cycle is less than ε at all the maximizers found in the
previous cycles k̄ < k. ¤

As a consequence of the above theorem, the corollary below is an important result
for the adaptive sampling approach.

Corollary 4.4. Assume that the full model is linear in state x. Then, the
adaptive sampling approach will never sample at previously-sampled points in the pa-
rameter space.

Proof: By definition in (3.1), the cost functional is non-negative. To prove the
corollary, it is sufficient to show that in the kth adaptive cycle the maximizer must be
different from the maximizers found in the previous cycles. First, recall that the cost
functional in the current adaptive cycle is smaller than ε at all previous maximizers,
as proved in Theorem 4.3. Second, we start only at an initial guess where the cost
function is greater than ε. Third, the optimization solver accepts an iterate only
if the cost functional is larger than that at the previous iterate. Using these three
properties, we conclude that the cost functional at a new maximizer must be larger
than ε. Therefore, the maximizer found in the kth adaptive cycle must be different
from the previous maximizers. ¤

5. Results. Results are presented for a steady problem that is linear in state,
but has nonlinear dependence on a set of parameters. We first compare the model-
constrained adaptive sampling methodology using the true error and an error indi-
cator. The model-constrained approach is then compared to the greedy sampling
method and to several statistically-based sampling methods.

5.1. Problem description. The example considered is thermal analysis and
design of a heat conduction fin, as shown in Figure 5.1. The vertical post has
eight sub-regions denoted as Ω9, . . . , Ω16 with corresponding thermal conductivities
κ9, . . . , κ16. Each of the four horizontal subfins has two different sub-regions, Ω2i−1

and Ω2i for the ith subfin, where i = 1, . . . , 4, and these sub-regions have different
thermal conductivities denoted as κ1, . . . , κ8. In addition, the geometries of the sub-
regions of the post and the subfins are considered to vary with parameters denoted
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as b1, . . . , b17, as shown in Figure 5.1. Another parameter of interest is the Biot num-
ber, Bi, which characterizes the convective heat loss to the air at the fin surfaces.
Therefore, we have in total 34 parameters, which are represented by the vector of
parametric inputs z = {z1, . . . , z34}, where zi = κi, i = 1, . . . , 16, z17 = Bi, and
z17+j = bj , j = 1, . . . , 17.

ȳ
x̄

b17

b 1Ω̄9

Ω̄10

b 4

b2

Ω̄1

b3

Ω̄2

Ω̄11

b 5

Ω̄12

Ω̄13

b 9

Ω̄14

Ω̄15

Ω̄16

b 1
3

b 8

b6

Ω̄3

b 1
2

b10

Ω̄5

b 1
6

b14

Ω̄7

b7

Ω̄4

b11

Ω̄6

b15

Ω̄8

Root

Fig. 5.1. The thermal fin geometry and subdomain definitions.

The steady-state temperature distribution within the fin, w(z), is governed by
the following elliptic PDE

−κi∇2wi = 0 in Ωi, i = 1, . . . , 16, (5.1)

where wi denotes the restriction of w to Ωi, ∇ = ∂
∂x̄ î + ∂

∂ȳ ĵ, and ∇2 = ∂2

∂x̄2 + ∂2

∂ȳ2 ,

where î and ĵ are unit vectors pointing in the x̄– and ȳ–directions. The continuity of
temperature and heat flux at the conductivity discontinuity interfaces Γint

ij = ∂Ωi∩∂Ωj

for two adjacent regions Ωi and Ωj , where ∂Ωi and ∂Ωj denote the boundary of Ωi

and Ωj respectively, are ensured by the following interface condition,

wi = wj

−κi(∇wi · n̂i) = −κj(∇wj · n̂j)

}
on Γint

ij , (5.2)

where n̂i and n̂j denote the outward unit normals of Ωi and Ωj on the interface Γint
ij ,

respectively. In order to model the convective heat losses on the external surface of a
region Ωi, i.e. Γext

i = ∂Ωi \ Γint
ij and Γext

i 6= ∅, we use the following Robin boundary
condition,

−κi(∇wi · n̂i) = Bi wi on Γext
i if Γext

i 6= ∅, i = 1, . . . , 16. (5.3)
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Finally, to model the heat source at the root, the Neumann flux boundary condition
is imposed as

−κ9(∇w9 · n̂9) = −1 on Γroot. (5.4)

The output of interest is chosen to be the average temperature over the entire thermal
fin,

y =

∑16
i=1

∫
Ωi

w dΩi∑16
i=1

∫
Ωi

1 dΩi

. (5.5)

The problem is discretized in space with linear triangular finite elements. This
yields a system of the form (2.4), where the vector x consists of the nodal temperature
values. The matrices A(z), b(z), and C(z) can be written as affine functions of the
parameters,

A(z) =
49∑

i=1

θi(z)Aqi
, (5.6)

b(z) = z34bq, (5.7)

C(z) =
16∑

i=1

ηi(z)Cqi , (5.8)

where Aqi , bq and Cqi are the appropriate finite element matrices that do not depend
on the parameters z, and the θi and ηi coefficients are known nonlinear functions of
the parameters z. The derivations of these quantities are given in full in [7]. This
affine decomposition together with the projection-based model reduction technique
enables us to obtain efficient reduced models, i.e. models for which online solution
cost is independent of the full model size, since the projection of the finite element
matrices can be done in the offline phase. The spatial grid employed in the results
presented here has 17,899 nodes; thus the full-scale system has dimension n = 17, 899.
A coarser grid is shown in Figure 5.2 to illustrate adaptation around the reentrant
corners.

5.2. Model-constrained adaptive sampling performance. Algorithm 3.1 is
applied to determine a reduced model that spans the parametric input space described
for the thermal fin problem. Note that although the equations for this example are
linear in state, the solution of the PDE, x, and thus the objective function, G, is a
highly nonlinear function of the parameters z since it depends on the inverse of the
matrix A.

We first compare the offline cost and the quality of the reduced model using the
model-constrained adaptive sampling approach in Algorithm 3.1 with an error indica-
tor and with the true output error. For both approaches, the same sequence of initial
guesses is used in each greedy optimization cycle, and Gram-Schmidt orthogonaliza-
tion is used to update the reduced basis with the solution at the optimal parameter
point z∗. For all problems considered in the following, since it is too computationally
expensive to cover the large parameter spaces with full factorial search, we define the
maximum output error to be the maximum error between the full and the reduced
model outputs over a random set of 105 parameters in the parameter space under
consideration. We choose ε in Step 2 of Algorithm 3.1 to be ε = 10−14.
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The examples considered here have 11 and 21 parameters, that is,

z = {κ1, . . . , κ5,Bi, b1, . . . , b5}, (5.9)

or

z = {κ1, . . . , κ10,Bi, b1, . . . , b10}. (5.10)

The baseline parameter values are chosen to be: κ1 = κ2 = 0.4; κ3 = κ4 = 0.6; κ5 =
κ6 = 0.8; κ7 = κ8 = 1.2; κi = 1.0, i = 9, . . . , 16; Bi = 1.0; b4i−3 = 0.75, i =
1, . . . , 4; b4i−2 = 2.5, i = 1, . . . , 4; b4i−1 = 2.5, i = 1, . . . , 4; b4i = 0.25, i =
1, . . . , 4; b17 = 1.0. If any parameter is not allowed to vary, it takes its corresponding
baseline value.

We use the number of full matrix factorizations as the measure for the offline
cost to compare the quality of the reduced models, since this is the dominant cost
of the model-constrained adaptive sampling algorithm. For the 11-parameter case,
Figure 5.3(a) shows that the required number of matrix factorizations to reach a
given error level is approximately an order of magnitude larger for the true-error
approach; however, for the same number of basis functions retained in the reduced
basis, Figure 5.3(b) shows that using the true error rather than the indicator leads to
more efficient (i.e. smaller for a given error level) reduced models. This result might
be intuitively expected, since the optimal parameter points based on the true output
error should better target reduction of the true output error than those points selected
using the error indicator. However, there is no guarantee that this will always be the
case, as shown in Figure 5.4 for the case of 21 parameters. Figure 5.4(a) shows that
the number of matrix factorizations is again about an order of magnitude larger for
the true-error approach. For smaller basis sizes, Figure 5.4(b) shows that the output
error is again smaller than for models obtained using the error indicator; however,
for larger basis sizes, the true-error and error-indicator approaches give equally good
reduced models.

Fig. 5.2. Typical mesh for discretization of the heat conduction problem. (Actual mesh used
for results in Section 5.2 has approximately double the resolution.)
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Figures 5.3 and 5.4 demonstrate a general tradeoff in the model-constrained adap-
tive sampling methodology: if one is willing to invest larger offline cost to compute
the reduced model, then using the true error to select the parameter sample points
can lead to more efficient models. For some problems, such as real-time applications,
minimizing the size of the reduced model may be critical; in that case, one might
choose to use the true-error approach. For very large-scale problems, however, the
cost of the true-error approach may be prohibitively high; in that case, the error
indicator is an attractive option. In many of the numerical experiments performed
for the thermal fin problem, and as demonstrated by the results in Figure 5.4, the
difference in quality between the true-error and error-indicator sample points tends
to be larger in early greedy cycles. Since the error function becomes more multimodal
as the number of greedy cycles increases, the chances of sampling at a local (versus
global) maximum are increased, and thus the difference between the error-indicator
and true-error approaches may not be as great. One could therefore also conceive of
using a combination of the two error metrics, i.e. using the true error for early greedy
cycles and the error indicator for later cycles, in an attempt to balance offline cost
with the quality of the reduced model.

When using the true error as the objective function, intermediate state and ad-
joint solutions are available, since solution of each greedy optimization problem re-
quires some number of full forward and adjoint solves. One could consider adding this
information to the basis on each greedy cycle, either using Gram-Schmidt orthogo-
nalization or a method such as POD to select a subset of important information. Our
numerical experiments showed that including this information improved the offline
efficiency of the method; that is, for the same number of full matrix factorizations,
one could achieve lower reduced model error. However, including the intermediate
information degraded the quality of the reduced models, so that more basis vectors
were required to achieve a given level of error. Again, this highlights the tradeoff
between offline cost and reduced model quality.
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Fig. 5.3. Error indicator versus true output error for the thermal fin with 11 parameters. The
same sequence of initial guesses is used for both true-error and error-indicator approaches, and the
Gram-Schmidt procedure is used to update the reduced basis.

5.3. Comparison with other sampling approaches. We first compare the
model-constrained adaptive sampling approach with the greedy sampling method de-
scribed in Section 3.1. The L2–norm of the residual is used as the error indicator for
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Fig. 5.4. Error indicator versus true output error for the thermal fin with 21 parameters. The
same sequence of initial guesses is used for both true-error and error-indicator approaches, and the
Gram-Schmidt procedure is used to update the reduced basis.

both model-constrained and greedy sampling; hence, only snapshots at the optimal
parameter points are computed. In both cases, a total of 100 greedy cycles is used;
thus, both methods will provide 100 sample points at which the full-scale model is
solved to compute the snapshots, which are then used to form the reduced basis. To
generate the trial set containing ntrial parameters for the greedy sampling approach,
we use two different methods, namely logarithmic random sampling and Latin hyper-
cube sampling (LHS). For the model-constrained adaptive sampling approach, we use
logarithmic random sampling to generate an initial guess for each greedy optimization
problem, which has the form (3.9)–(3.12).

Figures 5.5(a) and 5.5(b) show the comparison for the three methods for the case
of 11 and 21 parameters, respectively. It can be seen that the maximum output error
obtained using the model-constrained approach is, for the most part, comparable to
that of the greedy sampling method with logarithmic random trial points. For the
case with 21 parameters, the model-constrained adaptive sampling method is able to
achieve an order of magnitude smaller error than the greedy sampling approach for
larger reduced model sizes. Using the greedy sampling method with LHS trial points
led to larger errors than those obtained using the other two methods.

A key difference between the methods is that the greedy sampling approach finds
globally-optimal parameter points within the discrete trial set (via exhaustive search)
while the model-constrained approach finds locally-optimal parameter points in the
continuous parameter space (by solving an optimization problem with a gradient
method). As a result, unless ntrial is sufficiently large, the trial set may not adequately
cover important parameter regions, particularly as the dimension of the parametric
space becomes large. This difference is highlighted by the results in Figure 5.5(b),
where even 104 trial points were not sufficient for the greedy sampling method to find
near-optimal sample points for larger reduced model sizes.

Although the total number of reduced basis vectors, and hence full-scale matrix
factorizations, is 100 for both the model-constrained and the greedy sampling meth-
ods, the actual offline cost differs substantially between the two. Table 5.1 compares
the CPU time required to compute the reduced basis for the three approaches for
the case of 21 parameters. It can be seen that the model-constrained approach is
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Fig. 5.5. Model-constrained adaptive sampling approach versus greedy sampling approaches
(Greedy-LogRandom: greedy sampling with logarithmic random trial parameter set; Greedy-LHS:
greedy sampling with LHS trial parameter set) over 100 greedy cycles. A trial set with 104 parameter
points is used in the greedy sampling approaches.

approximately 16 times faster than the greedy sampling approaches. This difference
is due to the need for exhaustive search over 104 trial points on every greedy iteration
in the greedy sampling method, which for this case is a significant component of the
offline cost. This could be a particular concern as the number of parameters, d, and
hence the necessary number of trial points, ntrial, increases.

Table 5.1
The offline cost in CPU time of the model-constrained adaptive sampling approach and the

greedy sampling approaches for the case of 21 parameters. 100 greedy cycles are taken for all
methods and ntrial = 104 for the greedy sampling approaches. These computational results were
obtained on a dual core personal computer with 3.2GHz Pentium processor.

Model-constrained Greedy sampling Greedy sampling
adaptive sampling with logarithmic random with LHS

CPU time 0.58 hours 8.33 hours 8.33 hours

Next, we compare the model-constrained adaptive sampling method with statistically-
based sampling methods in the context of snapshot generation for model reduction.
In particular, we compare our model-constrained adaptive sampling with LHS sam-
pling, uniform random sampling, logarithmic random sampling, and CVT sampling.
For all methods, we take 100 sample points to generate 100 snapshots, which are then
used to form the reduced basis. As can be seen in Figures 5.6(a) and (b) for 11 and
21 parameters, respectively, the model-constrained sampling method outperforms the
other methods in the sense that, for a given basis size, the reduced model error is
several orders of magnitude smaller than that obtained using the other methods. Fur-
thermore, going from 11 to 21 parameters, the difference in accuracy of the reduced
model using model-constrained sample points and those of other methods is larger.
This reflects the fact that the model-constrained adaptive sampling is a model-based
sampling method; that is, the parameter is sampled where the indicator of the error
between the full and the reduced models is locally largest. The other methods, on the
other hand, use no knowledge of the underlying model when selecting their sample
points. As the dimension of the parametric space increases, it becomes more and more
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difficult to adequately cover the space with a reasonable number of samples using the
statistically-based sampling methods.

Generating the sample points using either logarithmic random sampling or uni-
form random sampling is very rapid. For the other methods, there is a small amount
of additional overhead in LHS (due to stratification and grouping processes), in CVT
sampling (due to its iterative nature), and in model-constrained adaptive sampling
(due to solving the optimization problem). We also note that while logarithmic ran-
dom sampling is slightly less expensive (in terms of overhead) than the CVT and
LHS sampling methods, it leads to more accurate reduced models in the case of the
thermal fin problem.

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

Number of reduced basis vectors

M
ax

im
um

 o
ut

pu
t e

rr
or

 

 

Model−constrained
LHS
LogRandom
CVT
URandom

(a) 11-parameter case

0 20 40 60 80 100 120
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Number of reduced basis vectors

M
ax

im
um

 o
ut

pu
t e

rr
or

 

 

Model−constrained
LHS
LogRandom
CVT
URandom

(b) 21-parameter case

Fig. 5.6. Model-constrained adaptive sampling versus LHS, uniform random sampling (URan-
dom), logarithmic random sampling (LogRandom) and CVT sampling. 100 sample points are used
for all methods.

Clearly, the performance of the model-constrained adaptive sampling method
relative to the statistically-based sampling methods will depend on the problem at
hand. For highly nonlinear problems, solution of the greedy optimization problem
could become expensive. However, in such cases it may be especially critical to take
account of the underlying model when selecting sample points. Methods such as LHS,
which aims to achieve some amount of uniformity and global coverage of the design
space, will likely require a very large number of sample points to accurately resolve
regions where the behavior is highly nonlinear.

6. Conclusions. This paper has demonstrated the effectiveness of the model-
constrained adaptive sampling methodology for steady problems that are linear in
state, but have nonlinear dependence on a set of parameters that describe geometry
and PDE coefficients. Even in this case, the objective function is still a highly nonlin-
ear function of the parameters, since it involves the inverse of the forward operator.
While the analysis of the method presented here applies to the linear-in-state PDE
problem class, the methodology is broadly applicable to unsteady problems and to
general systems that are nonlinear in state. In the general nonlinear case, however,
one must address the challenge of carrying out online reduced-order model computa-
tions in an efficient manner that does not depend on the large-scale system dimension.
This could be achieved, for example, by combining the adaptive sampling methodol-
ogy with the interpolation method of [3].
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