
An Immersed Interface Method for Solving

Viscous Incompressible Flows Involving Rigid and

Flexible Boundaries

by

Duc Vinh Le

B.Eng., Aeronautical Engineering, HCMC University of Technology (2001)

SUBMITTED TO THE SMA OFFICE IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
IN HIGH PERFORMANCE COMPUTATION FOR ENGINEERING SYSTEMS

(HPCES)

AT THE

SINGAPORE-MIT ALLIANCE

June 2005

c© Singapore-MIT Alliance 2005. All rights reserved.

Author .
HPCES Programme

June 03, 2005

Certified by. .
Prof. Khoo Boo Cheong

SMA Fellow, NUS
Thesis Advisor

Certified by. .
Prof. Jaime Peraire

SMA Fellow, MIT
Thesis Advisor

Accepted by .
Prof. Khoo Boo Cheong

Programme Co-Chair
HPCES Programme

Accepted by .
Prof. Jaime Peraire

Programme Co-Chair
HPCES Programme

2

An Immersed Interface Method for Solving Viscous

Incompressible Flows Involving Rigid and Flexible

Boundaries

by

Duc Vinh Le

Submitted to the SMA Office
on June 03, 2005, in Partial Fulfillment of the

Requirements for the degree of
Doctor of Philosophy in High Performance Computation for Engineering Systems

Abstract

We present an immersed interface method for the incompressible Navier-Stokes equa-
tions capable of handling rigid and flexible boundaries. The immersed boundaries are
represented by a number of Lagrangian control points. In order to guarantee that the
no-slip condition on the rigid boundary is satisfied, singular forces are applied on the
fluid. The forces are related to the jumps in pressure and the jumps in the derivatives
of both pressure and velocity, and are interpolated using cubic splines. The strength
of the singular forces at the rigid boundary is determined by solving a small system
of equations at each time step. For flexible boundary, the forces that the boundary
exerts on the fluid are computed from the constitutive relation of the flexible bound-
ary and are applied to the fluid through the jump conditions. The position of the
flexible boundary is updated implicitly using a quasi-Newton method (BFGS) within
each timestep. The Navier-Stokes equations are discretized on a staggered Cartesian
grid by a second order accurate projection method for pressure and velocity.

Keywords : Immersed interface method, Immersed boundary method, Navier-Stokes
equations, Cartesian grid method, finite difference, fast Poisson solvers, irregular do-
mains, fluid-membrane interaction, viscous flows, incompressible flows.

Thesis Advisors:

1. Assoc. Prof. Khoo Boo Cheong, SMA Fellow, NUS

2. Prof. Jaime Peraire, SMA Fellow, MIT

3

4

Acknowledgments

I would like to express my sincerest appreciation to my research advisors, Jaime

Peraire and Khoo Boo Cheong, for their patience, encouragement, and generous sup-

port. Jaime’s clarity and insight into many problems numerically and physically was

the key factor that helped me to start and finish my research project. Boo Cheong

gave me the freedom to explore my ideas while providing me with focus to make

progress towards a degree. With their financial support, I was able to spend the

second semester stay at MIT.

I would like to thank Li Zhilin of the North Carolina State University (NCSU) for

many useful discussions during his visit at NUS and during my visit at NCSU. I also

would like to thank Thay Tong at the HCMC University of Technology for encourag-

ing me to join the HPCES programme.

Finally, I would like to thank my family, especially my parents and Nhu Tram for

their wonderful support during my four years living abroad.

This work is supported by the Singapore-MIT Alliance programme. I would like to

thank the SMA office for their financial support for my first semester stay at MIT.

5

6

Contents

1 Introduction 17

1.1 Immersed Boundary Method and Immersed Interface Method 18

1.1.1 Immersed Boundary Method 18

1.1.2 Immersed Interface Method 21

1.2 Existing methods for solving the Navier-Stokes equations with im-

mersed interfaces . 22

1.2.1 Finite Element Method . 22

1.2.2 Boundary Integral Method . 23

1.2.3 Ghost Fluid Method . 23

1.3 Outline of this thesis . 24

2 An Immersed Interface Method for the Navier-Stokes equations with

deformable interfaces 27

2.1 Jump conditions across the interface 28

2.2 Generalized finite difference formulas 30

2.3 Projection methods . 34

2.3.1 Pressure-free projection method 36

2.3.2 Pressure-increment projection method 37

2.3.3 Projection method for the immersed interface method 39

2.3.4 Correction terms . 42

2.4 Implicit scheme for moving interface 44

2.5 Implementation . 47

2.6 Numerical results . 49

7

2.6.1 Forced flow . 49

2.6.2 Rotational flow . 50

2.6.3 Surface tension . 52

2.6.4 Elastic membrane . 53

3 An Immersed Interface Method for the Navier-Stokes equations with

rigid boundaries 65

3.1 Introduction . 65

3.2 Singular force evaluation . 68

3.3 Implementation . 71

3.4 Numerical results . 73

3.4.1 Rotational flow . 73

3.4.2 Flow past a circular cylinder 74

3.4.3 Flow past a flat plate . 79

3.4.4 Flow past several cylinders . 82

3.4.5 Grooved channel flow . 83

3.4.6 Flow past a moving circular cylinder 83

4 An Immersed Interface Method for solving viscous, incompressible

flows involving rigid and flexible boundaries 91

4.1 Introduction . 91

4.2 Implementation . 93

4.3 Numerical results . 96

4.3.1 Grooved channel flow with an immersed elastic membrane . . 96

4.3.2 Flow in a constriction with immersed elastic membranes . . . 98

5 Conclusions and future work 109

5.1 Conclusions . 109

5.2 Future work . 110

A Jump conditions across an immersed interface 113

8

B Modified Bilinear Interpolation 117

9

10

List of Figures

1-1 A typical domain in which the Navier-Stokes equations are solved. The

flexible interface and the rigid boundary are immersed in a uniform

Cartesian grid. 20

1-2 Spreading singular force at a control point to nearby grid points and

interpolating velocity at another control point. 20

1-3 Shock-induced collapse of a cylindrical air cavity in water. 1-3(a) Pres-

sure field at time t = 2.36 µs, 1-3(b) Pressure field at time t = 3.34

µs. 25

1-4 Interaction of a planar shock wave in air with a water column. Air

is treated as compressible fluid and water is treated as incompressible

fluid. Shock Mach speed M = 1.3. 1-4(a) Pressure field at time t =

6.42 µs, 1-4(b) Pressure field at time t = 20.2 µs. 25

2-1 A typical domain with an immersed flexible boundary. The local coor-

dinate system (ξ, η). The domain Ω+ and Ω− are divided by a closed

curve Γ(t). 29

2-2 The interface cuts a grid line between two grid points at x = α. 2-2(a)

xi ∈ Ω− and xi+1 ∈ Ω+. 2-2(b) xi ∈ Ω+ and xi+1 ∈ Ω−. 31

2-3 Two interfaces cut a grid line between two grid points xi−1 and xi+1.

2-3(a) xi−1 ∈ Ω+, xi ∈ Ω− and xi+1 ∈ Ω+. 2-3(b) xi−1 ∈ Ω−, xi ∈ Ω+

and xi+1 ∈ Ω−. 32

2-4 Two interfaces cut a grid line between two grid points xi and xi+1.

2-4(a) xi ∈ Ω+ and xi+1 ∈ Ω+. 2-4(b) xi ∈ Ω− and xi+1 ∈ Ω−. 32

11

2-5 The MAC staggered grid in two dimensions. 39

2-6 Interface and mesh geometry near the grid point (i, j). 44

2-7 Velocity field at time t = 10 with a 64×64 grid, µ = 0.02, f1 = 0,

f2 = 10µ. 2-7(a) The plot of the x component of velocity field at time

t = 10. 2-7(b) The plot of velocity field at time t = 10. 51

2-8 Pressure is smooth over the domain since the force is only along the

tangential direction of the interface. 51

2-9 The location of the interface at different times. 54

2-10 The evolution of rx and ry with µ = 0.1 and γ = 10. The interface

oscillates as it converges to the equilibrium state 55

2-11 The evolution of rx and ry with µ = 1 and γ = 1. The interface relaxes

gradually to the equilibrium state without oscillations. 55

2-12 The pressure distribution at different times. 56

2-13 The error in the location of the interface at t = 1 as measured in: 2-

13(a) L2 norm, 2-13(b) maximum norm. Viscosity, µ = 0.1 and surface

tension constant, γ = 10. 57

2-14 Initial, unstretched and equilibrium positions of the elastic membrane. 57

2-15 Number of BFGS iterations performed at each timestep to run the

simulations to t = 10. 2-15(a): ∆t = ∆x/5, 2-15(b): ∆t = 2∆x/5. . . 59

2-16 The evolution of rx and ry with µ = 0.1 and T0 = 10. The interface

oscillates as it converges to the equilibrium state. 59

2-17 The velocity fields at different times. Simulation is performed on a

64× 64 grid with 48 control points and ∆t = ∆x/5. 60

2-18 The pressure distribution at different times. Simulation is performed

on a 64× 64 grid with 48 control points and ∆t = ∆x/5. 61

2-19 Grid refinement analysis for studying the conservation of the area en-

closed by the membrane at t = 0.5. 62

2-20 The evolution of rx and ry with µ = 0.02 and T0 = 10. The interface

oscillates as it converges to the equilibrium state. 62

12

2-21 The evolution of rx and ry with µ = 1 and T0 = 10. The interface

relaxes gradually to the equilibrium state without oscillations. 63

2-22 A cross section of u, the x component of the velocity field at t = 0.2

and y = −0.207. It is continuous but non-smooth across the interface. 63

3-1 Velocity field at time t = 10 with a 64×64 grid, µ = 0.02, 4t = 4x/4.

The immersed boundary rotates with angular velocity ω = 2. 3-1(a)

Plot of the x component of velocity field. 3-1(b) Plot of velocity field. 74

3-2 Streamlines for Re = 20 and Re = 40. 76

3-3 Pressure fields for Re = 20 and Re = 40. 77

3-4 Lift Coefficients at Re = 50. 77

3-5 Pressure fields for Re = 100, Re = 200 and Re = 300. 80

3-6 Drag Coefficients for Re = 100 and Re = 200. 81

3-7 Lift Coefficients for Re = 100 and Re = 200. 81

3-8 Pressure field at t = 10, 4t = 4x/4. (a) Re = 20, (b) Re = 50, (c)

Re = 100, (d) Re = 1000, (e) Re = 5000. 82

3-9 Flow past three cylinders. Streamline plots for Re = 100 at different

times. 84

3-10 Flow past three cylinders. Pressure contours for Re = 100 at different

times. 85

3-11 Flow past seven cylinders. Streamlines and pressure contours at Re =

100. 86

3-12 Velocity fields for Re = 100, Re = 500 and Re = 3000. 87

3-13 Pressure fields for Re = 100, Re = 500 and Re = 3000. 88

3-14 Streamlines for moving cylinder at Re = 40 in the frame of reference

attached to the moving cylinder when the wake behind the cylinder is

fully developed. 90

3-15 Streamlines for moving cylinder at Re = 40. 90

4-1 Initial position of an elastic membrane in the simulation of elastic mem-

brane in a groove. 97

13

4-2 Positions of the elastic membrane and velocity fields at different times.

The fluid flow moves the membrane out of the groove. 99

4-3 Positions of the elastic membrane and velocity fields at different times.

The membrane rotates inside the groove. 100

4-4 Positions of the elastic membrane and velocity fields at different times.

The high flow rate moves the membrane out of the groove even though

the membrane initially lies deep inside the groove. 101

4-5 Positions of the elastic membrane and velocity fields at different times.

With a small groove, the membrane only rotates inside the groove even

with the high flow rate. 102

4-6 Initial position of an elastic membrane in the simulation of an elastic

membrane squeezing through a constriction. 103

4-7 A single elastic membrane with stiffness constant T0 = 2 squeezes

through a constriction with aspect ratio of 1.3. 104

4-8 A single elastic membrane with stiffness constant T0 = 2 squeezes

through a constriction with aspect ratio of 1.88. 105

4-9 Computational domain for studying the interaction between several

elastic membranes at the entrance to a constriction. Initial positions

of elastic membranes in the 3-membrane simulations. 105

4-10 The positions of the elastic membranes and velocity fields at different

times. Simulations have been performed for Re = 5, stiffness constant

T0 = 4 and ∆t = ∆x/7.5. 106

4-11 The positions of the elastic membranes and velocity fields at different

times. Simulations have been performed for Re = 5, stiffness constant

T0 = 8 and ∆t = ∆x/15. 107

B-1 Velocity at a control point is interpolated from the velocity at the four

neighbor grid points using modified bilinear interpolation. 118

14

List of Tables

2.1 Grid refinement analysis for the forced flow problem is performed at

time t = 10. Viscosity µ = 1 and 4t = 4x. 50

2.2 Grid refinement analysis for the rotational flow problem performed at

t = 10, 4t = 4x/4 and µ = 0.02. 52

3.1 The grid refinement analysis for the rotational flow problem with µ =

0.02, 4t = 4x/4, at t = 10. 73

3.2 Length of the recirculation zone, Angle of Separation and Drag Coef-

ficient for Re = 20 and Re = 40 . 78

3.3 Drag Coefficients for Re = 100 and Re = 200 79

3.4 Lift Coefficients for Re = 100 and Re = 200 79

3.5 Strouhal numbers for Re = 80, 100, 200 and 300 79

3.6 Summary results for moving cylinder at Re = 40, compared against

stationary cylinder at steady state. 89

15

16

Chapter 1

Introduction

In this thesis, we present a novel numerical method for solving viscous, incompressible

flow problems involving moving interfaces and rigid boundaries. One of the challenges

of these problems is that the fluid motion, the flexible interface motion and the

interaction with the immersed rigid boundaries must be computed simultaneously.

This is necessary to account for the complex interaction between the fluid and the

immersed boundaries. An example of interface problems that we consider is shown in

Fig. 1-1. Our algorithm solves the incompressible Navier-Stokes equations formulated

in primitive variables. In a 2-dimensional bounded domain Ω that contains a material

interface Γ(t), we consider the incompressible Navier-Stokes equations, written as

ut + (u · ∇)u +∇p = µ4u + F (1.1)

∇ · u = 0 (1.2)

where u is the fluid velocity, p the pressure, and µ the viscosity of the fluid. Here,

we assume that fluid density ρ ≡ 1 and the viscosity µ is constant over the whole

domain. The effect of the material interface Γ(t) immersed in the fluid results in a

singular force F which has the form

F (x, t) =

∫

Γ(t)

f(s, t)δ(x−X(s, t))ds , (1.3)

17

where X(s, t) is the arc-length parametrization of Γ(t), s is the arc-length, x =

(x, y) is the spatial position, and f(s, t) is the force strength. Here, δ(x) is the two-

dimensional Dirac function. The force strength at the immersed rigid boundary is

determined to impose the no-slip condition at the rigid boundary. The force strength

at the flexible interface is computed based on the configuration of the interface, i.e.,

the interface is assumed to be governed by either surface tension, or by an elastic

membrane. The motion of the interfaces satisfies

∂

∂t
X(s, t) = u (X, t) =

∫

Ω

u(x, t)δ(x−X(s, t))dx . (1.4)

In our algorithm, the Navier-Stokes equations are discretized using a standard finite

difference method on a staggered Cartesian grid.

1.1 Immersed Boundary Method and Immersed

Interface Method

Methods utilizing a Cartesian grid for solving interface problems or problems with

complex geometry have become popular in recent years. Existing Cartesian grid

methods for interface problems can be categorized into two general groups: methods

that determine the jump conditions across the interface and incorporate them into

the finite difference scheme and methods that smooth out the singular force before

it is applied to the fluid. Our method which is based on the immersed interface

method originally proposed by LeVeque and Li [35, 36] falls into the first group. The

immersed boundary method introduced by Peskin [45] belongs to the second group.

1.1.1 Immersed Boundary Method

Peskin’s immersed boundary method has proven to be a very useful method for mod-

elling fluid-structure interaction involving large geometry variations. This method

was originally developed to study the fluid dynamics of blood flow in the human

heart [44]. The original method has been developed further and has been applied

18

to many biological problems including platelet aggregation [22, 23, 58], the deforma-

tion of red blood cell in a shear flow [19], the swimming of bacterial organisms and

others [18, 20]. This method has also been applied to handle problems with rigid

boundaries [30, 51]. More details on the immersed boundary method can be found in

[45] and the references therein.

The immersed boundary method uses a set of control points to represent the inter-

face. The force densities are computed at these control points and are spread to the

Cartesian grid points by a discrete representation of the delta function,

F (x(i, j), t) =
N∑

k=1

fk(t)Dh(x(i, j)−Xk(t))4s , (1.5)

where fk(t) is the force density at the control point Xk, x(i, j) and F (x(i, j)) are

the coordinate of grid point (i, j) and the force at that point, respectively. Dh(x) is

a two-dimensional discrete delta function,

Dh(x) = δh(x)δh(y), (1.6)

where δh(r) is a one-dimensional discrete delta function. A typical example of δh(r)

is

δh(r) =

1

4h
[1 + cos(

πr

2h
)], |r| ≤ 2h

0, otherwise.
(1.7)

where h is the grid size.

Once the force densities are computed at the control points and spread to the grid,

the Navier-Stokes equations with the forcing terms are then solved for pressure and

velocity at Cartesian grid points. This velocity field is interpolated to find the velocity

at the control points, Un+1
k . Finally, the position of the interface is advanced as,

Xn+1
k = Xn

k +4tUn+1
k . (1.8)

Figure 1-2 illustrates the process of spreading the force density at a control point to

the nearby Cartesian grid points and the process of interpolating the velocity at the

19

Figure 1-1: A typical domain in which the Navier-Stokes equations are solved. The
flexible interface and the rigid boundary are immersed in a uniform Cartesian grid.

Figure 1-2: Spreading singular force at a control point to nearby grid points and
interpolating velocity at another control point.

20

control point from the underlying velocity field. The immersed boundary method

has several attractive features: the method is simple to implement, it can handle

complex geometries easily and it can use standard regular Cartesian grid Navier-

Stokes solvers. However, since the immersed boundary method uses the discrete

delta function approach, it smears out sharp interface to a thickness of order of the

meshwidth and it is only first-order accurate for general problems.

1.1.2 Immersed Interface Method

In contrast, the Immersed Interface Method (IIM) can avoid smearing sharp inter-

faces and maintains second-order accuracy by incorporating the known jumps into

the finite difference scheme near the interface. The singular force F along the im-

mersed boundaries results in solutions to the Navier-Stokes equations which may be

non-smooth across the interface, i.e., there may be jumps in pressure and in the

derivatives of both pressure and velocity at the interface. An essential ingredient of

the immersed interface method is the relation between the jumps in the solutions and

their derivatives, and the applied singular forces. The basic idea of our immersed

interface method is to discretize the Navier-Stokes equations on a uniform Cartesian

grid and to account for the singular forces by explicitly incorporating the jumps in

the solutions and their derivatives into the difference equations. The main advantage

of the IIM is that the solutions of the Navier-Stokes equations on a uniform mesh can

be done very efficiently with the use of fast solvers, and at the same time, complex

geometrical changes can be handled in a rather seamless manner. The drawback of

this method is that a special discretization of the Navier-Stokes equations near the

immersed boundaries needs to be performed to maintain both accuracy and stability.

The IIM was originally proposed by LeVeque and Li [35] for solving elliptic equations,

and later extended to Stokes flow with elastic boundaries or surface tension [36]. The

method was developed further for the Navier-Stokes equations in Li et al. [38], Lee [34]

and Le et al. [31] for problems with flexible boundaries. The method was also used

by Calhoun [13] and Li et al. [39] for solving the two-dimensional streamfunction-

vorticity equations on irregular domains. Other immersed interface methods have

21

been developed for solving different PDEs, see [37, 49, 60, 61] for examples.

A contribution of this thesis is the introduction of a novel numerical algorithm for the

incompressible Navier-Stokes equations in the presence of rigid boundaries. Another

contribution is that both flexible and rigid boundaries can be considered simultane-

ously. This contribution is significant because most of the current methods can only

handle flexible boundaries and the rigid boundary is required to be aligned with the

computational grid. The finite element method can handle both flexible and rigid

boundaries but a mesh generation which is computationally expensive needs to be

done many times to adapt to complex geometry changes.

In the next section, we briefly describe some other numerical methods for solving the

viscous incompressible Navier-Stokes equations with immersed interfaces.

1.2 Existing methods for solving the Navier-Stokes

equations with immersed interfaces

There are other methods for solving the Navier-Stokes equations with immersed

boundaries. Each method has its own advantages and drawbacks. Below, a brief

summary of the finite element methods, boundary integral methods and the ghost

fluid methods are given to compare with the fixed Cartesian grid methods.

1.2.1 Finite Element Method

Finite element methods (FEMs) have been used extensively by researchers for solv-

ing viscous flow problems in irregular regions and fluid-structure interactions. Recent

developments of the FEMs for general fluid flows with structure interactions can be

found in [5]. The main advantage of the FEM is the capability of handling very com-

plex geometries by using adaptive unstructured meshes. Adaptive unstructured mesh

procedures can be used to refine the elements near the immersed boundaries where

the solutions need to be resolved. However, time-dependent mesh generation, which

is computationally expensive, cannot be avoided for moving boundary problems. This

22

makes the fixed Cartesian grid methods attractive for problems with moving immersed

boundaries. Recently, the Extended Immersed Boundary Method (EIBM) using FEM

has been developed by Wang and Liu [59] to handle submerged elastic bodies. As

in Peskin’s IB method, in EIBM, fluid-structure interaction problems are solved by

using independent grids for the submerged solid and the surrounding fluid. Based on

this method, the Immersed Finite Element Method (IFEM) has been developed by

Zhang et al. [64]. In this method, the background fluid mesh does not have to follow

the motion of the flexible fluid-structure interfaces and thus it is possible to assign

sufficient elements within the region around which the immersed boundaries occupy

and move.

1.2.2 Boundary Integral Method

Although the boundary integral method cannot be applied to the Navier-Stokes equa-

tions directly, several researchers have attempted to use it to solve for the linearized

Navier-Stokes equations [1, 7, 26]. The results reported in these articles show that

boundary integral formulations can be used to couple the governing equations for the

fluid and immersed boundaries. Other advantages of the boundary integral method

include the capability of handling complex geometries and the use of fast solution

methods such as Fast Multipole Methods [27]. In [7, 42], in order to account for the

jumps in the solutions across the interface, the authors use Taylor series expansion

to express the jumps as source terms. This idea appears to be very similar to the

idea of the immersed interface method [35]. The main disadvantage of the boundary

integral methods is the inability to handle non-linear equations. From the numerical

perspective the resulting integrals often become nearly singular which makes them

difficult to evaluate accurately for points close to the boundary.

1.2.3 Ghost Fluid Method

The Ghost Fluid Method (GFM) was developed by Fedqiw and Aslam [21] to cap-

ture the boundary conditions at a contact discontinuity in the inviscid compressible

23

Euler equations. An extension of the GFM was also developed to solve multiphase

incompressible flows [28, 43]. The GFM used a level set function to implicitly rep-

resent the interface which separates domains for the two separate fluids. The GFM

captures the appropriate jump conditions at the interface by constructing ghost fluid

properties and nodes based on the level set function. The GFM defines a ghost cell

at every point in the computational domain. In this way, each grid point will contain

the mass, momentum, and energy for the real fluid that exists at that point and a

ghost mass, momentum and energy for the other fluid that does not really exist at

that point. Once the ghost cells are defined, standard methods can be used to update

the Euler equations at every grid point for both fluids without special concern for the

interface. Since both fluids are solved for at every grid point, only the solutions of the

appropriate fluid are chosen based on the sign of the level set function. In fact, the

entire method relies on the ability to produce ghost cells that satisfy the appropriate

boundary conditions for the governing equations. We have applied this method to

simulate the shock-induced collapse of a cylindrical air cavity in water and the inter-

action of a planar shock wave in air with a water column. The results in Fig. 1-3 and

Fig. 1-4 show that the GFM is a good method for solving multiphase compressible

and incompressible flows. However, this method is only first order accurate. The

level set representation of the contact discontinuity has the powerful advantage of

automatically handling topological changes, but it does not appear to be adequate to

represent certain types of material interfaces such as elastic membranes.

1.3 Outline of this thesis

This thesis is organized as follows. In Chapter 2, we describe an algorithm for solving

the Navier-Stokes equations with deformable interfaces. We present the relations that

must be satisfied along the immersed boundary between the singular force and the

jumps in the velocity and pressure and their derivatives. We describe the generalized

finite difference approximations to the solution derivatives, which incorporate solution

jumps. In our algorithm, a projection method is employed for the discretization of

24

0 0.005 0.01 0.015
−6

−4

−2

0

2

4

6
x 10

−3

(a)
0 0.005 0.01 0.015

−6

−4

−2

0

2

4

6
x 10

−3

(b)

Figure 1-3: Shock-induced collapse of a cylindrical air cavity in water. 1-3(a) Pressure
field at time t = 2.36 µs, 1-3(b) Pressure field at time t = 3.34 µs.

0 0.005 0.01 0.015
−6

−4

−2

0

2

4

6
x 10

−3

(a)
0 0.005 0.01 0.015

−6

−4

−2

0

2

4

6
x 10

−3

(b)

Figure 1-4: Interaction of a planar shock wave in air with a water column. Air is
treated as compressible fluid and water is treated as incompressible fluid. Shock Mach
speed M = 1.3. 1-4(a) Pressure field at time t = 6.42 µs, 1-4(b) Pressure field at

time t = 20.2 µs.

25

the Navier-Stokes equations. Several versions of the projection method are reviewed

in this chapter. In Chapter 3, we introduce an algorithm for solving the Navier-Stokes

equations with rigid boundaries. We describe in detail how to impose the boundary

conditions at the rigid boundaries immersed in the fluid flow. In Chapter 4, we

combine the algorithms described in Chapter 2 and Chapter 3 to present an algorithm

which is able to handle general viscous flow problems with deformable interfaces and

rigid boundaries. Several examples are shown in each chapter to demonstrate the

capability of our algorithms. Finally, some conclusions and suggestions for future

work, are given in Chapter 5.

26

Chapter 2

An Immersed Interface Method for

the Navier-Stokes equations with

deformable interfaces

In this chapter, we consider flexible interfaces which are governed by either surface

tension or elastic forces. The immersed interface method (IIM) that we present in this

chapter is similar to the immersed interface method for the Navier-Stokes equations

in [38] and [34], but also incorporates some differences. In [38], the level set method is

used to represent the interface. This has the advantage of simplifying the algorithm

but does not appear to be adequate to represent certain types of interfaces such as

elastic membranes. In [34], the interface is tracked explicitly in a Lagrangian manner,

the singular force F is split into components tangential and normal to the interface.

The normal component is then incorporated into jump conditions for pressure across

the interface. The tangential component is spread to the nearby Cartesian grid points

using the discrete delta function as in the immersed boundary method [45]. Spreading

the tangential force to the nearby Cartesian grid points has the effect of smoothing

out the jumps in the derivatives of pressure and the jumps in the derivatives of ve-

locity. These jumps are clearly not smooth in the case of elastic membrane problems.

Our implementation of the IIM uses a set of control points to represent the interface

and incorporates the entire singular force into jump conditions for pressure and the

27

derivatives of pressure and velocity. In this way, our algorithm can successfully cap-

ture all the jumps in the solutions and their derivatives. We also discuss the case

when the interface crosses a grid point. This is important because grid crossing hap-

pens repeatedly when considering deformable interfaces and because jump conditions

in time need to be taken into account to avoid errors which could accumulate in time.

Our approach also includes the jump conditions for the second derivatives of pressure

which are not used in [38] and [34] to improve the accuracy of the method.

2.1 Jump conditions across the interface

We have already mentioned that when singular forces are applied on a material inter-

face, the solutions of the Navier-Stokes equations may be non-smooth or discontinuous

across the interface. Let n and τ be the unit outward normal and tangential vectors

to the interface, respectively. The normal and tangential components of the force

density f1 = f(s, t) · n and f2 = f(s, t) · τ , respectively, can be related to the jump

conditions for pressure and velocity as follows

[u] = 0, [µuξ] = −f2τ , [uη] = 0 (2.1)

[p] = f1, [pξ] =
∂f2

∂s
, [pη] =

∂f1

∂s
. (2.2)

The jump, [·], denotes the difference between the value of its argument outside and

inside the interface, and (ξ, η) are the rectangular coordinates associated with the

directions of n and τ respectively. Figure 2-1 illustrates a typical domain with an

immersed flexible boundary and a local coordinate system. In order to construct

the appropriate finite difference formulas we will also require the jumps in the second

derivatives of velocity and pressure which can be obtained by differentiating the above

expressions as,

[µuηη] = κf2τ , [µuξη] = −∂f2

∂η
τ − κf2n,

[µuξξ] = − [µuηη] + [pξ]n + [pη]τ + [uξ]u · n
(2.3)

28

[pηη] =
∂2f1

∂η2
− κ[pξ], [pξη] =

∂2f2

∂η2
+ κ[pη],

[pξξ] = − [∇ · (u · ∇u)]− [pηη] .

(2.4)

Figure 2-1: A typical domain with an immersed flexible boundary. The local coordi-
nate system (ξ, η). The domain Ω+ and Ω− are divided by a closed curve Γ(t).

Here, κ is the signed valued of the curvature of the interface (i.e. we assume that

n × τ = k ≡ constant, so that n can point either towards, or outwards from, the

center of curvature). The detailed proof for expressions (2.1)-(2.4) can be found in

[35, 36, 38, 33] and a sketch of the proof can be found in Appendix A. We note that

from expressions (2.1)-(2.4) the values of the jumps of the first and second derivatives

of velocity and pressure with respect to the (x, y) coordinates are easily obtained by

29

a simple coordinate transformation. For instance we have,

[ux] = [uξ]n1 + [uη]τ1

[uy] = [uξ]n2 + [uη]τ2

[uxx] = [uξξ]n
2
1 + 2[uξη]n1τ1 + [uξη]τ

2
1

[uyy] = [uξξ]n
2
2 + 2[uξη]n2τ2 + [uξη]τ

2
2 ,

where n = (n1, n2) and τ = (τ1, τ2) are the Cartesian components of the normal and

tangential vectors to the interface at the point considered.

2.2 Generalized finite difference formulas

From Taylor series expansions, it is possible to show that if the interface cuts a grid

line between two grid points at x = α, xi ≤ α < xi+1, xi ∈ Ω−, xi+1 ∈ Ω+, then the

following approximations hold for a piecewise twice differentiable function v(x):

vx(xi) =
vi+1 − vi−1

2h
− 1

2h

2∑
m=0

(h+)m

m!
[v(m)] + O(h2) (2.5)

vx(xi+1) =
vi+2 − vi

2h
− 1

2h

2∑
m=0

(h−)m

m!
[v(m)] + O(h2) (2.6)

vxx(xi) =
vi+1 − 2vi + vi−1

h2
− 1

h2

2∑
m=0

(h+)m

m!
[v(m)] + O(h) (2.7)

vxx(xi+1) =
vi+2 − 2vi+1 + vi

h2
+

1

h2

2∑
m=0

(h−)m

m!
[v(m)] + O(h) (2.8)

where v(m) denotes the m-th derivative of v, vi = v(xi), h+ = xi+1 − α, h− = xi − α

and h is the mesh width in x direction. The jumps in v and its derivatives are defined

as

[v(m)]α = lim
x→α,x∈Ω+

v(m)(x)− lim
x→α,x∈Ω−

v(m)(x) (2.9)

30

(a) (b)

Figure 2-2: The interface cuts a grid line between two grid points at x = α. 2-2(a)
xi ∈ Ω− and xi+1 ∈ Ω+. 2-2(b) xi ∈ Ω+ and xi+1 ∈ Ω−.

in short, [·] = [·]α, and v(0) = v. See Weigmann and Bube [61] for more details on the

proof. Figure 2-2 shows the interface cutting a grid line between two grid points xi

and xi+1.

Note that if the interface cuts a grid line between two grid points xi ∈ Ω+ and

xi+1 ∈ Ω− as shown in Fig. 2-2(b), the above expressions need to be modified as,

vx(xi) =
vi+1 − vi−1

2h
+

1

2h

2∑
m=0

(h+)m

m!
[v(m)] + O(h2)

vx(xi+1) =
vi+2 − vi

2h
+

1

2h

2∑
m=0

(h−)m

m!
[v(m)] + O(h2)

vxx(xi) =
vi+1 − 2vi + vi−1

h2
+

1

h2

2∑
m=0

(h+)m

m!
[v(m)] + O(h)

vxx(xi+1) =
vi+2 − 2vi+1 + vi

h2
− 1

h2

2∑
m=0

(h−)m

m!
[v(m)] + O(h)

The above expressions can be generalized for the case in which we have two interfaces

cutting the grid line between xi−1 and xi+1. In such cases we need to consider two

possibilities:

a) when xi−1 ≤ α1 < xi ≤ α2 < xi+1, if xi−1 ∈ Ω+, xi ∈ Ω−, xi+1 ∈ Ω+ as shown in

Fig. 2-3(a), we have

vx(xi) =
vi+1 − vi−1

2h
+

1

2h

2∑
m=0

(h−1)m[v(m)]α1 − (h+
2)m[v(m)]α2

m!
+ O(h2) (2.10)

vxx(xi) =
vi+1 − 2vi + vi−1

h2
− 1

h2

2∑
m=0

(h−1)m[v(m)]α1 + (h+
2)m[v(m)]α2

m!
+ O(h) (2.11)

31

(a) (b)

Figure 2-3: Two interfaces cut a grid line between two grid points xi−1 and xi+1.
2-3(a) xi−1 ∈ Ω+, xi ∈ Ω− and xi+1 ∈ Ω+. 2-3(b) xi−1 ∈ Ω−, xi ∈ Ω+ and xi+1 ∈ Ω−.

(a) (b)

Figure 2-4: Two interfaces cut a grid line between two grid points xi and xi+1. 2-4(a)
xi ∈ Ω+ and xi+1 ∈ Ω+. 2-4(b) xi ∈ Ω− and xi+1 ∈ Ω−.

and if xi−1 ∈ Ω−, xi ∈ Ω+, xi+1 ∈ Ω− as shown in Fig. 2-3(b), we have

vx(xi) =
vi+1 − vi−1

2h
− 1

2h

2∑
m=0

(h−1)m[v(m)]α1 − (h+
2)m[v(m)]α2

m!
+ O(h2)

vxx(xi) =
vi+1 − 2vi + vi−1

h2
+

1

h2

2∑
m=0

(h−1)m[v(m)]α1 + (h+
2)m[v(m)]α2

m!
+ O(h)

where h+
1 = xi − α1, h−1 = xi−1 − α1, h+

2 = xi+1 − α2, h−2 = xi − α2.

b) when xi ≤ α1 < α2 < xi+1, if xi ∈ Ω+, xi+1 ∈ Ω+ as shown in Fig. 2-4(a), we

have

vx(xi) =
vi+1 − vi−1

2h
+

1

2h

2∑
m=0

(h+
1)m[v(m)]α1 − (h+

2)m[v(m)]α2

m!
+ O(h2) (2.12)

vx(xi+1) =
vi+2 − vi

2h
+

1

2h

2∑
m=0

(h−1)m[v(m)]α1 − (h−2)m[v(m)]α2

m!
+ O(h2) (2.13)

vxx(xi) =
vi+1 − 2vi + vi−1

h2
+

1

h2

2∑
m=0

(h+
1)m[v(m)]α1 − (h+

2)m[v(m)]α2

m!
+ O(h) (2.14)

vxx(xi+1) =
vi+2 − 2vi+1 + vi

h2
− 1

h2

2∑
m=0

(h−1)m[v(m)]α1 − (h−2)m[v(m)]α2

m!
+ O(h) (2.15)

32

and if xi ∈ Ω−, xi+1 ∈ Ω− as shown in Fig. 2-4(b), we have

vx(xi) =
vi+1 − vi−1

2h
− 1

2h

2∑
m=0

(h+
1)m[v(m)]α1 − (h+

2)m[v(m)]α2

m!
+ O(h2)

vx(xi+1) =
vi+2 − vi

2h
− 1

2h

2∑
m=0

(h−1)m[v(m)]α1 − (h−2)m[v(m)]α2

m!
+ O(h2)

vxx(xi) =
vi+1 − 2vi + vi−1

h2
− 1

h2

2∑
m=0

(h+
1)m[v(m)]α1 − (h+

2)m[v(m)]α2

m!
+ O(h)

vxx(xi+1) =
vi+2 − 2vi+1 + vi

h2
+

1

h2

2∑
m=0

(h−1)m[v(m)]α1 − (h−2)m[v(m)]α2

m!
+ O(h)

where h+
1 = xi+1 − α1, h−1 = xi − α1, h+

2 = xi+1 − α2, h−2 = xi − α2. Fig. 2-3 and

Fig.2-4 show the finite difference stencils from which the generalized finite difference

formulas are derived for the case in which two interfaces cut a grid line between two

grid points xi−1 and xi+1.

Expressions involving three or more interface crossings could also be derived but we

have not found it necessary for our applications. Finally, we also require centered and

backwards approximations for v(tn+1/2). These approximations are required when the

interface crosses a grid point over the time interval considered. Thus assuming that

the interface crosses a grid point at time τ , tn−1 ≤ τ < tn+1, we have,

a) when tn ≤ τ < tn+1/2,

v(tn+1/2) =
1

2
(vn + vn+1) +

1

2
[v]τ + O(4t) (2.16)

b) when tn+1/2 ≤ τ < tn+1,

v(tn+1/2) =
1

2
(vn + vn+1)− 1

2
[v]τ + O(4t) (2.17)

and,

33

a) when tn−1 ≤ τ < tn

v(tn+1/2) =
3

2
vn − 1

2
vn−1 − 1

2
[v]τ + O(4t) (2.18)

b) when tn ≤ τ < tn+1/2

v(tn+1/2) =
3

2
vn − 1

2
vn−1 + [v]τ + O(4t) . (2.19)

Here, [v]τ denotes the jump in time of a function v(x, t) at a particular grid point

and is only non zero when the interface crosses the grid point at time τ . The jump

in time is defined as

[v(t)]τ = lim
t→τ+

v(t)− lim
t→τ−

v(t) . (2.20)

It is easy to see that [v]α = ±[v]τ , where [.]α denotes spatial jump as defined in (2.9)

and the sign depends on the motion of the interface. In particular, we use a plus

sign when the grid point moves from the inside of the interface to the outside of the

interface, i.e. from Ω− to Ω+, and a minus sign when the grid point moves from the

outside of the interface to the inside of the interface, i.e. from Ω+ to Ω−.

2.3 Projection methods

In this section, we describe a second order projection method for the incompressible

Navier-Stokes equations with immersed interfaces. But first of all, we briefly describe

some traditional versions of the projection methods for non interface problems. Our

purpose is not to review the literature but to describe some features of these methods

from which our projection method is developed. In a 2-dimensional bounded domain

Ω, we consider the incompressible Navier-Stokes equations, written as

ut + (u · ∇)u +∇p = µ4u (2.21)

∇ · u = 0 (2.22)

34

with Dirichlet boundary conditions,

u|∂Ω = ub . (2.23)

The extension to incorporate Neumann boundary conditions can be done without

complications.

Projection methods have been used extensively for viscous incompressible flows since

the first projection method [14] appeared three and a half decades ago. Since then,

several versions of the projection methods have been proposed [4, 6, 10, 29, 41, 53].

In these methods, a semi-implicit time discretization of (2.21) and (2.22) is formed

as,
un+1 − un

4t
+ [(u · ∇)u]n+1/2 +∇pn+1/2 =

µ

2
(∇2un+1 +∇2un) (2.24)

∇ · un+1 = 0 (2.25)

with boundary condition

un+1|∂Ω = un+1
b . (2.26)

The notation un+1 is used to represent the approximation to u(tn+1). These equations

are solved numerically in three steps. In the first step, the momentum equation (2.24)

with an approximate pressure field is advanced to compute an intermediate velocity

u∗ which does not, in general, satisfy the continuity equation (2.25). In the second

step, a Poisson equation is then solved to enforce the divergence free constraint (2.25).

In the third step, the pressure field pn+1/2 and the velocity field un+1 are updated. Ex-

isting projection methods of this kind can be placed into two categories: pressure-free

projection methods and pressure-increment projection methods [10]. The pressure-

free projection methods set the pressure field in the momentum equations to zero and

compute the new pressure by solving a Poisson equation. The pressure-increment

projection methods use the pressure obtained at the previous time step as an approx-

imate pressure field in the momentum equations and then solve a Poisson equation to

obtain a pressure correction. Both of these projection methods are second order ac-

curacy for velocity and pressure provided all the spatial derivatives are approximated

35

to second order accuracy and appropriate intermediate velocity boundary conditions

are applied.

2.3.1 Pressure-free projection method

This method was originally proposed by Kim and Moin [29] and has since been exten-

sively used for solving viscous incompressible flows. In this method, the momentum

equations are first solved for the intermediate velocity without the pressure gradient

term,
u∗ − un

4t
= − (u · ∇u)n+ 1

2 + µ∇2un+ 1
2 , (2.27)

where the advective term is extrapolated using Adams-Bashforth formula,

(u.∇u)n+ 1
2 =

3

2
(u · ∇u)n − 1

2
(u · ∇u)n−1 , (2.28)

and the diffusion term is approximated implicitly using Crank-Nicolson formula,

∇2un+1/2 =
1

2
(∇2u∗ +∇2un) . (2.29)

A Poisson equation is then solved for a new variable φ which is used to enforce the

divergence-free constraint on the velocity and update the pressure field at the next

time step,

∇2φn+1 =
∇ · u∗
4t

, (2.30)

n · ∇φn+1|∂Ω =
n · (u∗ − un+1)|∂Ω

4t
. (2.31)

The velocity and pressure fields are then updated as,

un+1 = u∗ −∆t∇φn+1 , (2.32)

pn+1/2 = φn+1 − µ

2
(∇ · u∗) . (2.33)

The Poisson equation (2.30) is in fact obtained by substituting (2.32) into the mo-

mentum equation (2.27) and dropping the high order terms. The above scheme is

36

defined on the standard marker-and-cell (MAC) staggered grid using finite volume

technique with standard central differences for the viscous term and pressure gradient

term. A high order upwind scheme is used for the discretization of the nonlinear ad-

vective term. Kim and Moin noted that the boundary conditions for the intermediate

velocity fields in fractional step methods are generally a source of ambiguity. At each

time step, the boundary conditions for u∗ are unknown, only the boundary conditions

for un+1 are given. And hence, they suggested using (2.32) to define the boundary

conditions for the intermediate velocity u∗. Since ∇φn+1 is not known when solving

for u∗, ∇φn is suggested to replace ∇φn+1, i.e. u∗|∂Ω = un+1|∂Ω + ∆t∇φn|∂Ω. And

this appears to be adequate to obtain second order accuracy for velocities. Brown et

al. [10] comment that the absence of the pressure gradient term in (2.27) could be

considered appealing since it prohibits errors in pressure gradient from contributing

to errors in the momentum equations.

2.3.2 Pressure-increment projection method

One of the well-known pressure-increment projection methods is that of Bell et al. [6]

which has been applied for various types of physical problems such as incompressible

viscous flows and reacting flows. In this method, the momentum equations are solved

for the intermediate velocity u∗ with ∇pn− 1
2 as the approximation to the pressure

gradient term,

u∗ − un

4t
= − (u · ∇u)n+ 1

2 −∇pn− 1
2 + µ∇2un+ 1

2 (2.34)

u∗|∂Ω = un+1
b (2.35)

where the advective term and the diffusion term are approximated using the Adams-

Bashforth formula and the Crank-Nicolson formula as in (2.28) and (2.29), respec-

tively.

A pressure-increment is then computed to enforce the continuity equation (2.25) and

to correct the velocity fields at the next time step. In order to do that, one first solves

37

for a scalar variable φ satisfying

∇2φn+1 =
∇ · u∗
4t

, (2.36)

n · ∇φn+1|∂Ω = 0 , (2.37)

and then, the velocity and pressure fields are updated as,

un+1 = u∗ −∆t∇φn+1 , (2.38)

pn+1/2 = pn−1/2 + φn+1 − µ

2
(∇ · u∗) . (2.39)

In fact, in [6] the last term on the right-hand side of (2.39) is not included. This

omission results in lowering the accuracy of pressure and an inaccurate pressure gra-

dient at the boundary [10]. Therefore, Brown et al. [10] suggested using (2.39) for

updating the pressure to improve the order of accuracy of the pressure. The boundary

condition (2.37) for φn+1 is actually derived from (2.38) and the boundary condition

for the intermediate normal velocity. We note that the boundary condition (2.35) for

the intermediate tangential velocity is not consistent with (2.38). However, if u∗ is

a good approximation to un+1, then the boundary condition (2.35) should suffice to

get second order accuracy. More accurate boundary conditions for the intermediate

velocity are suggested in [10] as,

n · u∗|∂Ω = n · un+1
b (2.40)

τ · u∗|∂Ω = τ · (un+1
b + ∆t∇φn|∂Ω) (2.41)

In [10], the above scheme is defined on a uniform non-staggered grid. All the spa-

tial derivatives are approximated using standard central differences. The pressure-

increment projection method can achieve second order accuracy for both velocity and

pressure provided that appropriate boundary conditions for u∗ and the consistent

equation (2.39) for updating pn+ 1
2 are used.

38

Figure 2-5: The MAC staggered grid in two dimensions.

2.3.3 Projection method for the immersed interface method

For viscous flow problems with immersed interfaces, we employ a pressure-increment

projection algorithm for the discretization of the Navier-Stokes equations. This pro-

jection algorithm is analogous to that presented in Brown et al. [10]. It leads to a

second order accuracy for both velocity and pressure provided all the spatial deriva-

tives are approximated to second order accuracy. The spatial discretization is carried

out on a standard marker-and-cell (MAC) staggered grid analogous to that in Kim

et al. [29]. The ENO third-order upwind scheme is used for the advective terms (Shu

and Osher [50]). Figure 2-5 illustrates the MAC staggered grid. With the MAC

mesh, the pressure field is defined at the cell center where the continuity equation is

enforced. The velocity fields u and v are defined at the vertical edges and horizontal

edges, respectively. The main advantage of the MAC mesh is that boundary condi-

tions for pressure are not required explicitly. On the other hand, the implementation

of the MAC scheme on the non-staggered grids introduces some complications. For

39

instance, some of the velocity components are not defined on the boundaries of the

domain. The pressure-increment projection procedure described in section 2.3.2 is

essentially unchanged by the presence of the immersed interfaces. For problems with

immersed interface, however, the discretizations for the Navier-Stokes equations at all

grid points near the interface need to be modified to account for the jump conditions

across the interface of the solutions. Here we review the pressure increment method

for the case involving immersed interfaces. Given the velocity un, and the pressure

pn−1/2, we compute the velocity un+1 and pressure pn+1/2 at the next time step in

three steps:

Step 1: Compute an intermediate velocity field u∗ by solving

u∗ − un

4t
= −(u · ∇u)n+ 1

2 −∇pn+ 1
2 + µ∇2un+ 1

2 + C1 (2.42)

u∗|∂Ω = un+1
b

where the advective term is extrapolated using the formula,

(u.∇u)n+ 1
2 =

3

2
(u · ∇u)n − 1

2
(u · ∇u)n−1 + C2 + γ1[u · ∇u]τ , (2.43)

the diffusion term is approximated implicitly as,

∇2un+1/2 =
1

2
(∇2

hu
∗ +∇2

hu
n) + C3 + γ2[∇2

hu]τ , (2.44)

and the pressure gradient is approximated simply as,

∇pn+ 1
2 = GMACpn− 1

2 + C4 + γ3[∇p]τ . (2.45)

The MAC gradient operators are defined as

(GMAC
x p)i+ 1

2
,j =

pi+1,j − pi,j

4x
, (GMAC

y p)i,j+ 1
2

=
pi,j+1 − pi,j

4y

40

Step 2: Compute a pressure update φn+1 by solving the Poisson equation

∇2
hφ

n+1 =
DMACu∗

4t
+ C5 , (2.46)

with boundary condition

n · ∇φn+1|∂Ω = 0 . (2.47)

The MAC divergence operator is defined as

(DMACu)i,j =
ui+ 1

2
,j − ui− 1

2
,j

4x
+

vi,j+ 1
2
− vi,j− 1

2

4y
.

Step 3: Update pressure and velocity field

un+1 = u∗ −∆tGMACφn+1 + C6 (2.48)

pn+1/2 = pn−1/2 + φn+1 − µ

2

(
DMACu∗

)
+ C7 (2.49)

Here, [·]τ denotes a jump in time and is only non zero when the interface crosses the

grid point over the time interval considered. The coefficients γi, i = 1, 2, 3 correspond

to the first order corrections in time. The coefficient γ1 is determined from expres-

sions (2.18), (2.19) and the coefficient γ2 is determined from expressions (2.16), (2.17).

The coefficient γ3 is only nonzero when the interface crosses the grid point over the

time interval [tn−1/2, tn+1/2], and, in such cases, has the value of 1. Once again, at the

interface [·]τ = ±[·]α, where [·]α denotes spatial jump and the sign depends on the

motion of the interface. The operator ∇2
h is the standard five point central difference

operator and Ci, i = 2, . . . , 7, are the spatial correction terms which are only non-zero

at the points near the interface and are calculated using the generalized finite differ-

ence formulas of the type introduced in section 2.2. The constant C1 is the correction

term for the discretization of ∂u/∂t and is only nonzero at a particular grid point

which the interface crosses over the time interval [tn, tn+1].

In our projection method, we need to solve two Helmholtz equations for u∗ in (2.42)

and one Poisson equation for φn+1 in (2.46). Since the correction terms in (2.42) and

41

(2.46) only affect the right-hand side of the discrete systems for the Helmholtz and

Poisson equations, we can take advantage of the fast solvers from FISHPACK [2] to

solve these equations. In fact, the FISHPACK software library provides two subrou-

tines HWSCRT() and HSTCRT() for solving the Helmholtz equations on the non-

staggered and staggered Cartesian grids, respectively. The unknowns in HWSCRT()

are defined at the corners of the cell and the unknowns in HSTCRT() are defined

at the center of the cell as in Figure 2-5. The velocity field that we define in the

MAC grid does not actually satisfy exactly the requirement of these subroutines but

a simple combination of the two subroutines is adequate for our purposes.

2.3.4 Correction terms

In this section, we will show how to evaluate the correction terms Ci, i = 1, . . . , 7

generated in section 2.3.3. Let’s define C{u} as a correction term for a quantity u.

For example, from (2.5) we can write

C{ux(xi)} = − 1

2h

(
[u] + h+[ux] +

(h+)2

2
[uxx]

)
(2.50)

Then the correction terms C1-C7 are evaluated as follows:

C1 = −C{ut} (2.51)

C2 =
3

2
C{(u · ∇u)n} − 1

2
C{(u · ∇u)n−1} (2.52)

C3 =
1

2

(
C{∇2u∗}+ C{∇2un}) (2.53)

C4 = C{∇pn− 1
2} (2.54)

C5 =
C{∇ · u∗}

4t
− C{∇2pn+ 1

2}+ C{∇2pn− 1
2}+ γ3[∇p]τ (2.55)

C6 = −4t
(
C{∇pn+ 1

2} − C{∇pn− 1
2}

)
(2.56)

C7 = −µ

2
C{∇ · u∗} (2.57)

42

All the correction terms are included at least to first order accuracy. As explained

in [35], the overall second order accuracy of the scheme is maintained provided only

the singular points are treated with a first order scheme. This can be intuitively

understood by noticing that when the mesh is refined, the area of the domain repre-

sented by these points is reduced.

We note that the correction term C{ut} in (2.51) is only nonzero at the grid points

crossed by the interface between time level n and time level n + 1. Assume that the

interface crosses a grid point (i, j) at time τ , tn ≤ τ ≤ tn+1, the correction term for

ut at this point is given by

C{ut} = − 1

4t
([u]τ + (tn − τ)[ut]τ) (2.58)

if tn ≤ τ ≤ tn+1/2 and

C{ut} = − 1

4t

(
[u]τ + (tn+1 − τ)[ut]τ

)
(2.59)

if tn+1/2 ≤ τ ≤ tn+1.

Since the velocity is continuous across the interface, we have [u]τ = 0. Also, by

differentiating [u] = 0 we obtain

[ut] = −[u · ∇u] = ±[ut]τ (2.60)

In (2.53), (2.55) and (2.57), we use the jump conditions for un+1 to approximate the

jump conditions for u∗ as we expect that u∗ is a good approximation for un+1. This

is one of the reasons why we choose to implement the pressure increment projection

method in which u∗ is computed to be a good approximation for un+1. To evaluate

the correction term C{∇2u∗} of (2.53) at a point (i, j) in Fig. 2-6 we need to compute

[u∗x], [u∗xx] at the intersection point α and [u∗y], [u∗yy] at β using the force strength at

43

time level n + 1. The correction term C{∇2u∗} is calculated as follows

C{∇2u∗}i,j = −
[u∗] + h+[u∗x]α +

(h+)2

2
[u∗xx]α

h2
−

[u∗] + k−[u∗y]β +
(k−)2

2
[u∗yy]β

h2
,

and ∇2u∗ is approximated at the point (i, j) as

∇2u∗(i, j) =
u∗i+1,j + u∗i−1,j + u∗i,j+1 + u∗i,j−1 − 4u∗i,j

h2
+ C{∇2u∗}i,j + O(h) .

Note that [u∗] = 0 since the velocity is continuous across the interface. Similarly, we

can compute other correction terms in (2.53)–(2.57).

Figure 2-6: Interface and mesh geometry near the grid point (i, j).

2.4 Implicit scheme for moving interface

The location of the interface at time tn is represented by a set of N control points

Xn = (Xn
k , Y n

k) for k = 1, . . . , N . In [36], it was found that when the position of

44

the interface is advanced using an explicit method, the size of the timestep required

for stability is very small. For this reason LeVeque et al. [36] recommend the use

of an implicit scheme. Following [36], we update the position of the control points

according to

Xn+1 = Xn +
1

2
4t

(
un (Xn) + un+1

(
Xn+1

))
(2.61)

Note that the velocity of a control point u (X) is interpolated from the velocity at the

Cartesian grid points using a modified bilinear interpolation derived in Appendix B.

Equation (2.61) is implicit and couples the motion of the interface with the solution

at all grid points. Therefore at each timestep, we need to solve a non-linear system

of equations for the position of the control points of the form g
(
Xn+1

)
= 0, where

g (X) = X −Xn − 1

2
4t

(
un (Xn) + un+1 (X)

)
(2.62)

Normally this non-linear system of equations is solved by a Newton’s method in which

the inverse Jacobian matrix is required. However, the evaluation of the Jacobian

matrix

J (X) = g′ (X) = I − 1

2
4tu′ (X) (2.63)

and its inverse is computationally expensive. Therefore a quasi-Newton method has

been devised wherein the inverse Jacobian matrix J−1 is replaced by a suitable matrix

B, which is easy to compute. The matrix B at iteration (k + 1)th, Bk+1, is updated

from the matrix Bk at the previous iteration as follows

Bk+1 = γkBk +

(
1 + γkθk

qT
k Bkqk

pT
k qk

)
pkp

T
k

pT
k qk

− γk
(1− θk)

qT
k Bkqk

Bkqk · qT
k Bk

− γkθk

pT
k qk

(
pkq

T
k Bk + Bkqkp

T
k

)
,

(2.64)

where

pk := X(k+1) −X(k), qk := g(k+1) − g(k)

and the parameters γk ≥ 0, θk ≥ 0.

The following special cases are contained in (2.64):

45

1. γk ≡ 1, θk ≡ 0: the rank two method of Davidon, Fletcher and Powell (DFP

method);

2. γk ≡ 1, θk ≡ 1: the rank two method of Broyden, Fletcher, Goldfard and Shanno

(BFGS method, see, for example [12]);

3. γk = 1, θk = pT
k qk/(p

T
k qk−qT

k Bkqk): the symmetric, rank one method of Broyden.

Detailed discussions for these methods can be found in [52]. Practical experience in-

dicates that the choice γk ≡ 1, θk ≡ 1 (BFGS method) is good. It seems that, in our

implementation, the BFGS method is slightly superior than the other methods. In

practice, this approach requires only a few iterations as the solution at the previous

timestep provides a very good initial guess for the iteration.

The BFGS algorithm can be summarized as follows:

1. Set k := 0, select X(0) and a real positive definite matrix B0 .

2. If ‖g(k)‖ < ε, stop. Else d(k) = −Bkg
(k).

3. Compute

X(k+1) = X(k) + αkd
(k) , (2.65)

where in practice the constant αk is chosen to be 1 for simplicity.

4. Update the inverse Jacobian approximation Bk+1, set k := k+1 and go to step 2.

The inverse Jacobian approximation is updated as in(2.64) with γk ≡ 1, θk ≡ 1.

At each time step the initial guess for Xn+1 could be Xn or 2Xn − Xn−1. The

initial guess for the inverse Jacobian B0 is the final approximate B obtained from

the previous time step. At the very first time step, the initial guess for the inverse

Jacobian B0 is the identity matrix, which is a reasonable choice since J = g(X)′ =

I + O(∆t).

46

2.5 Implementation

In this section, we describe the various steps required for the implementation of the

immersed interface method for the Navier-Stokes equations. We consider the model

problem used in [36, 55]. This consists of an immersed elastic band in a fluid with

the same fluid properties on each side. The force strength exerted by the elastic band

at X(s, t) is given as,

f(s, t) =
∂

∂s
(T (s, t)τ (s, t)) , (2.66)

where T (s, t) is the tension of the band, defined by

T (s, t) = T0

(∣∣∣∣
∂X(s, t)

∂s0

∣∣∣∣− 1

)
(2.67)

and τ (s, t) is the unit tangential vector to the interface at this point,

τ (s, t) =
∂X

∂s

/ ∣∣∣∣
∂X

∂s

∣∣∣∣ . (2.68)

Again, X(s, t) is the arc-length parametrization of the band and s0 is the arc-length

measured along the unstretched band. The scalar T0 is the stiffness constant which

describes the elastic property of the band.

At each time step, we use a set of control points Xk, k = 1, . . . , Nb to represent the

interface. The control points are connected by a closed curve which is a cubic spline.

Based on this cubic spline, the intersections between the grid lines and the interface

are determined. The jump conditions at the intersection points are then computed

and used to evaluate the required correction terms. Before computing the jump

conditions, the force strength at the intersection points needs to be calculated. To do

so, we first compute the force strength at the control points using expression (2.66).

And then, based on the force strength at the control points, a new cubic spline

is determined to approximate the force strength along the interface. With this new

cubic spline, the force strength and its derivatives can be calculated at the intersection

points.

Having the jump conditions for pressure and velocity, we then apply the projection

47

method with the correction terms to advance for the velocity and pressure to the next

time step. The location of the interface is also updated based on the surrounding fluid

velocity. The implicit scheme for updating the location of the interface is used to

increase the timestep. Since the viscous term is treated implicitly and the convection

term is approximated explicitly, the time step is chosen to satisfy the CFL condition,

max
i,j

(∣∣∣∣
ui±1/2,j

∆x

∣∣∣∣,
∣∣∣∣
vi,j±1/2

∆y

∣∣∣∣
)

∆t ≤ 1 . (2.69)

In summary, given the location of the control points, Xn, the velocity field, un

and the pressure field pn−1/2, the process of computing the new velocity un+1, pressure

field pn+1/2 and the location of the control points Xn+1 can be summarized as follows:

Step 1: Set k := 0 and make an initial guess for Xn+1, i.e. X(0) as

X(0) = 2Xn −Xn−1

Step 2:

• Compute the intersection points between the interface and the grid lines.

• Compute the force strength at the control points using expression (2.66). In-

terpolate the force strength using cubic splines.

• Compute the jump conditions for pressure and velocity at the intersection

points.

Step 3:

• Compute the appropriate correction terms for spatial derivatives and temporal

derivatives as described in section 2.3.4.

• Compute the intermediate velocity u∗ by solving two Helmholtz equations,

∇2u∗ − 2

µ4t
u∗ = RHS (2.70)

48

using fast solvers from FISHPACK [2].

• Solve the Poisson equation (2.46) for the pressure increment φn+1 and update

the velocity and pressure field as in (2.48) and (2.49), respectively.

• Compute the velocity at the control points, un+1(X(k)) by interpolating from

the velocity at the surrounding grid points using the modified bilinear interpo-

lation (see appendix B).

Step 4:

• Evaluate

g
(
X(k)

)
= X(k) −Xn − 1

2
4t

(
un (Xn) + un+1(X(k))

)

• If ‖g(k)‖ < ε then Xn+1 = X(k) and stop the iteration. Otherwise, update

X(k+1) and the inverse Jacobian matrix Bk+1 using BFGS algorithm described

in section 2.4. Set k := k + 1 and go to step 2.

2.6 Numerical results

In this section, we present some numerical results for problems which involve im-

mersed boundaries.

2.6.1 Forced flow

We first test the order of convergence of our projection algorithm for a non interface

problem by considering a forced flow problem. In this problem, the source term is

added to the right hand side of the Navier-Stokes equations so that the exact solution

is

u = − cos(t) sin2(πx) sin(2πy)

v = cos(t) sin(2πx) sin2(πy)

p = −∂ψ

∂t
+ µ∆ψ ,

49

N ‖u− ue‖∞ Order ‖v − ve‖∞ Order ‖p− pe‖∞ Order
64 7.1102× 10−4 7.1102× 10−4 9.7405× 10−4

128 1.7735× 10−4 2.003 1.7735× 10−4 2.003 2.4480× 10−4 1.992
256 4.4283× 10−5 2.002 4.4283× 10−5 2.002 6.1800× 10−5 1.986

Table 2.1: Grid refinement analysis for the forced flow problem is performed at time
t = 10. Viscosity µ = 1 and 4t = 4x.

where the function ψ is defined as,

ψ =
[
(x− x2) sin(πx)(y − y2) sin(πy)− 16/π6

]
cos t .

This problem is taken from [38]. The computational domain is the unit square Ω =

[0, 1]× [0, 1]. Table 2.1 shows the grid refinement analysis performed at time t = 10

and viscosity µ = 1. The error in both pressure and velocity is determined in the

infinity norm. In this problem, the pressure is not uniquely defined and hence the

pressure has been adjusted by a constant to minimize the error in the infinity norm.

Table 2.1 shows that our projection method can achieve second order accuracy for

both the pressure and velocity. In [38], the order of convergence for pressure of this

problem is only nearly second order because the accuracy of the pressure might be

deteriorated due to the numerical boundary layer. Here, we use a consistent boundary

condition for the intermediate tangential velocity (2.41) and it helps to improve the

order of accuracy for the pressure.

2.6.2 Rotational flow

In this example, we consider a fixed interface problem with nonsmooth velocity. The

interface is a circle r = 1
2

located at the center of the computational domain [−1, 1]×
[−1, 1]. The normal and tangential stresses are f1 = 0 and f2 = 10µ, respectively,

and the viscosity is µ = 0.02. The initial velocity and pressure are taken to be zero on

the square domain. Since f1 = 0 and f2 are constant, the pressure and its derivatives

are continuous across the interface. On the other hand, the derivatives of the velocity

are discontinuous. This can be observed in Fig. 2-7(a) and Fig. 2-8. Figure 2-7(b)

shows the steady state solution which corresponds to a rigid body motion inside the

50

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X

U(x,y) at t = 10

Y

Z

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Velocity field at t = 10

X

Y

(b)

Figure 2-7: Velocity field at time t = 10 with a 64×64 grid, µ = 0.02, f1 = 0,
f2 = 10µ. 2-7(a) The plot of the x component of velocity field at time t = 10. 2-7(b)

The plot of velocity field at time t = 10.

interface. Table 2.2 shows the grid refinement analysis of our immersed interface

method for the rotational flow problem. The order of convergence for both velocity

and pressure is second order. Note that the error is measured up to the boundary,

i.e. the error at the boundary is also taken into account.

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−2.5

−2

−1.5

−1

−0.5

0

0.5

X

Pressure field at t = 10

Y

Z

Figure 2-8: Pressure is smooth over the domain since the force is only along the
tangential direction of the interface.

51

N ‖uN − u512‖∞ Order ‖vN − v512‖∞ Order ‖pN − p512‖∞ Order
64 2.4382× 10−3 2.1654× 10−3 3.1318× 10−3

128 5.6889× 10−4 2.0996 5.1120× 10−4 2.0818 8.0890× 10−4 1.9530
256 1.1539× 10−4 2.3016 1.1260× 10−4 2.1829 1.9039× 10−4 2.0870

Table 2.2: Grid refinement analysis for the rotational flow problem performed at
t = 10, 4t = 4x/4 and µ = 0.02.

2.6.3 Surface tension

In this example, we consider an unsteady deformable interface problem with surface

tension [36]. The initial interface is an ellipse with major and minor axes a = 0.75, b

= 0.5, respectively. The force strength is now given by

f(s, t) = γ
∂2

∂s2
X(s, t) , (2.71)

which can be seen to be at all points normal to the interface. The initial velocity and

pressure are set to zero. The computational domain is [−1.5, 1.5]×[−1.5, 1.5] with

ρ = 1 and µ = 0.1 throughout the domain. The center of the ellipse is located at

(0, 0). In our test, we take γ = 10 and u|∂Ω = 0. In Fig. 2-9, we plot the location

of the interface obtained at different times with a 64× 64 grid and 48 control points

to represent the interface. The evolution of the major and minor axes is shown in

Fig. 2-10. The interface oscillates as it settles down to the equilibrium state. Fig. 2-11

shows the evolution of the major and minor axes of the ellipse when µ = 1 and γ = 1.

In this case, the Reynolds number is smaller and the interface relaxes gradually to

the equilibrium state without oscillations. In the equilibrium state, the interface is

a circle, the velocity is zero everywhere and the pressure has two different constant

values inside and outside the interface as show in Fig. 2-12. We also perform a grid

refinement analysis to study the error in the location of the interface. The error in

the location of the interface is measured by the error in the position of the control

points. We compute the error in both L2 and maximum norms as

‖e‖2 =

√√√√ 1

Nb

Nb∑
i=1

(
X

(ref)
i −X

(N)
i

)2

+
(
Y

(ref)
i − Y

(N)
i

)2

, (2.72)

52

‖e‖∞ = max
1≤i≤Nb

√(
X

(ref)
i −X

(N)
i

)2

+
(
Y

(ref)
i − Y

(N)
i

)2

, (2.73)

respectively, where Nb is the number of control points, (X
(ref)
i , Y

(ref)
i) is the location

of a control point ith obtained on the finest grid and X
(N)
i , Y

(N)
i is the location of the

control point ith obtained on a coarser N × N grid. In Fig. 2-13, we plot the error

in both the L2 and the maximum norms at t = 1 for the problem with µ = 0.1 and

γ = 10. The finest grid is 480 × 480 and the coarser grids are 120 × 120, 160 × 160,

200×200, 240×240 and 320×320. We use the same (large) number of control points,

Nb = 120, in all grids to allow for an easy comparison of the results.

2.6.4 Elastic membrane

In this example, we consider a deformable interface problem which involves an elastic

membrane [36]. The initial interface is an ellipse with major and minor axes a =

0.75, b = 0.5, respectively. The ellipse is located at the center of the computational

domain. The force strength exerted by the elastic membrane at X(s, t) is given as,

f(s, t) =
∂

∂s
(T (s, t)τ (s, t)) ,

where T (s, t) is the tension of the membrane at this point, defined by

T (s, t) = T0

(∣∣∣∣
∂X(s, t)

∂s0

∣∣∣∣− 1

)

and τ (s, t) is the unit tangential vector to the interface at this point,

τ (s, t) =
∂X

∂s

/ ∣∣∣∣
∂X

∂s

∣∣∣∣ .

Here, s0 is the arc-length measured along the unstretched membrane which is the

dotted line in Fig. 2-14 with radius r0 = 0.5. Because of the incompressibility condi-

tion, we expect that the membrane will relax to the equilibrium state (the dash-dot

line in Fig. 2-14) with radius r =
√

ab ≈ 0.61237 . We start our simulation by set-

ting the initial velocity and pressure fields to zero. The computational domain is

53

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Location of the interface at t = 0.00

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Location of the interface at t = 0.08

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Location of the interface at t = 0.16

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Location of the interface at t = 0.32

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Location of the interface at t = 0.56

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Location of the interface at t = 6.00

Figure 2-9: The location of the interface at different times.

54

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

time

m
aj

or
 a

nd
 m

in
or

 a
xe

s

r
x

r
y

Figure 2-10: The evolution of rx and ry with µ = 0.1 and γ = 10. The interface
oscillates as it converges to the equilibrium state

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

time

m
aj

or
 a

nd
 m

in
or

 a
xe

s

r
x

r
y

Figure 2-11: The evolution of rx and ry with µ = 1 and γ = 1. The interface relaxes
gradually to the equilibrium state without oscillations.

55

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−5

0

5

10

15

20

Pressure field at t = 0.00

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−2

0

2

4

6

8

10

12

14

16

Pressure field at t = 0.08

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−2

0

2

4

6

8

10

12

14

Pressure field at t = 0.16

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−4

−2

0

2

4

6

8

10

12

14

16

Pressure field at t = 0.32

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−2

0

2

4

6

8

10

12

14

16

Pressure field at t = 0.56

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

0

5

10

15

Pressure field at t = 6.00

Figure 2-12: The pressure distribution at different times.

56

−2.1 −2 −1.9 −1.8 −1.7 −1.6 −1.5
−4.6

−4.4

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

log
10

h

lo
g 10

||e
|| 2

IIM
slope = 2
slope = 2.63

(a)

−2.1 −2 −1.9 −1.8 −1.7 −1.6 −1.5
−4.6

−4.4

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

log
10

h

lo
g 10

||e
|| m

ax

IIM
slope = 2
slope = 2.59

(b)

Figure 2-13: The error in the location of the interface at t = 1 as measured in: 2-13(a)
L2 norm, 2-13(b) maximum norm. Viscosity, µ = 0.1 and surface tension constant,

γ = 10.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Initial

Equilibrium

Unstretched

Figure 2-14: Initial, unstretched and equilibrium positions of the elastic membrane.

57

[−1.5, 1.5] × [−1.5, 1.5] with ρ = 1 and µ = 0.1 throughout the domain. In our

test, we take T0 = 10 and u|∂Ω = 0. The simulation is performed with a 64 × 64

grid and 48 control points to represent the interface. The timestep in all simulations

is ∆t = ∆x/5. We are actually able to increase the timestep further without loss

of stability. However, we found that the number of iterations in solving (2.62) per

timestep increases as the timestep increases. Therefore the total iterations, and hence

the computational cost, for running the simulation to a particular time level may in-

crease when using a larger timestep. For example, Fig. 2-15(a) and Fig. 2-15(b) show

the number of iterations required at each timestep to run the simulations to t = 10

using ∆t = ∆x/5 and ∆t = 2∆x/5, respectively. The tolerance that we use for the

stopping criteria is ε = 5× 10−8. It is easy to see that the total number of iterations

performed when using ∆t = 2∆x/5 is much greater than that performed when using

∆t = ∆x/5.

The evolution of the major and minor axes is shown in Fig. 2-16. The interface os-

cillates as it settles down to the equilibrium state. Figure 2-17 and Figure 2-18 show

the velocity fields and the pressure fields at different time levels. Since the fluid is

incompressible, the area inside the membrane should be conserved. In Fig. 2-19, we

perform a grid refinement analysis to study the conservation of the area enclosed by

the interface. It could be seen that the area is conserved with second order accuracy.

Note that we use the same number of control points, i.e. Nb = 96, for the different

grids used in the grid refinement analysis.

Figure 2-20 shows the evolution of the major and minor axes of the elastic membrane

when µ = 0.02 and T0 = 10. Since the Reynolds number is higher, the elastic mem-

brane takes a longer time to oscillate before settling down to the equilibrium state.

Fig. 2-21 shows the evolution of the major and minor axes of the ellipse when µ = 1

and T0 = 10. In this case, the interface relaxes gradually to the equilibrium state

without oscillations. In the equilibrium state, the interface is a circle, the velocity is

zero everywhere and the pressure has two different constant values inside and outside

the interface. We note that the behavior of the elastic membrane is almost the same

as the interface with surface tension considered in the previous example. However,

58

0 200 400 600 800 1000
0

2

4

6

8

10

12

number of time steps

nu
m

be
r

of
 it

er
at

io
ns

(a)

0 100 200 300 400 500
0

5

10

15

20

25

30

number of time steps

nu
m

be
r

of
 it

er
at

io
ns

(b)

Figure 2-15: Number of BFGS iterations performed at each timestep to run the
simulations to t = 10. 2-15(a): ∆t = ∆x/5, 2-15(b): ∆t = 2∆x/5.

the tangential force along the elastic membrane is different from zero. This tangential

force results in a jump in the derivatives of the velocity which does not appear at the

interface with surface tension. In Fig. 2-22, we plot a cross section of the u component

of the velocity field at t = 0.2 and y = −0.207. It is clear that the u component of

the velocity field at this position is continuous but not smooth across the interface.

0 2 4 6 8 10
0.5

0.55

0.6

0.65

0.7

0.75

time

r x a
nd

 r
y

r
x

r
y

Figure 2-16: The evolution of rx and ry with µ = 0.1 and T0 = 10. The interface
oscillates as it converges to the equilibrium state.

59

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Velocity field at the first time step

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Velocity field at t = 0.2

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Velocity field at t = 0.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Velocity field at t = 1.2

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Velocity field at t = 2

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Velocity field at t = 10

Figure 2-17: The velocity fields at different times. Simulation is performed on a
64× 64 grid with 48 control points and ∆t = ∆x/5.

60

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

−2

−1

0

1

2

3

4

5

6

Pressure field at the first time step

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

−1

0

1

2

3

4

Pressure field at t = 0.2

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

−1

0

1

2

3

4

Pressure field at t = 0.5

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Pressure field at t = 1.2

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Pressure field at t = 2.0

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Pressure field at t = 10

Figure 2-18: The pressure distribution at different times. Simulation is performed on
a 64× 64 grid with 48 control points and ∆t = ∆x/5.

61

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

grid size

ab
so

lu
te

 e
rr

or

Volume conservation at t = 0.5

error
slope = 2.2
slope = 2.0

Figure 2-19: Grid refinement analysis for studying the conservation of the area en-
closed by the membrane at t = 0.5.

0 5 10 15
0.5

0.55

0.6

0.65

0.7

0.75

time

r x a
nd

 r
y

r
x

r
y

Figure 2-20: The evolution of rx and ry with µ = 0.02 and T0 = 10. The interface
oscillates as it converges to the equilibrium state.

62

0 1 2 3 4 5 6 7 8
0.5

0.55

0.6

0.65

0.7

0.75

time

r x a
nd

 r
y

r
x

r
y

Figure 2-21: The evolution of rx and ry with µ = 1 and T0 = 10. The interface relaxes
gradually to the equilibrium state without oscillations.

−1.5 −1 −0.5 0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
The x component of the velocity field at y = −0.207 and t = 0.2

interface
location

Figure 2-22: A cross section of u, the x component of the velocity field at t = 0.2 and
y = −0.207. It is continuous but non-smooth across the interface.

63

64

Chapter 3

An Immersed Interface Method for

the Navier-Stokes equations with

rigid boundaries

3.1 Introduction

This chapter considers the immersed interface method for the incompressible Navier-

Stokes equations in general domains involving rigid boundaries. In a 2-dimensional

bounded domain Ω that contains a rigid boundary Γ(t), the incompressible Navier-

Stokes equations introduced in Chapter 1 are written as

ut + (u · ∇)u +∇p = µ4u + F (3.1)

∇ · u = 0 (3.2)

Conventional methods for the Navier-Stokes equations with rigid immersed bound-

aries include the body-fitted or structured grid approach. In this approach, the

Navier-Stokes equations are discretized on a curvilinear grid that conforms to the

immersed boundary and hence the boundary conditions can be imposed easily. The

main disadvantage of this method is that robust grid generation is required to account

65

for the complexity of the immersed boundary. Besides, this method is computation-

ally expensive for general motions of the rigid boundary. The finite element method

with unstructured meshes is also an effective approach for simulating flows with com-

plex stationary immersed boundaries. However, this method is also computationally

expensive for moving boundaries since the unstructured mesh must be regenerated

at each time step. Generating a mesh at each timestep can be partially avoided by

using a moving mesh finite element method [17].

An alternative approach for solving complex viscous flows is the Cartesian grid

method, which has become popular in recent years. This method solves the gov-

erning equations on a Cartesian grid and retains the simplicity of the Navier-Stokes

equations on the Cartesian coordinates. In addition, this method has the advantage

of enabling the use of fast solvers. The main disadvantage of the Cartesian grid

method is that no grid refinement is performed in the area near the immersed bound-

aries where the solutions need to be resolved. One of the most successful Cartesian

grid methods is Peskin’s immersed boundary (IB) method [30, 45, 51]. In order to

deal with rigid boundaries, Lai and Peskin [30] proposed to evaluate the force density

using an expression of the form,

f(s, t) = κ(Xe(s)−X(s, t)), (3.3)

where κ is a constant, κ À 1, and Xe is the arc-length parametrization of the

required boundary position. The forcing term in equation (3.3) is a particular case of

the feedback forcing formulation proposed by Goldstein et al. [25] with β = 0. In [25],

the force is expressed as

f(s, t) = α

∫ t

0

U (s, t′)dt′ + βU (s, t) (3.4)

where U is the velocity of the boundary, and α and β are chosen to be negative and

large enough so that U will stay close to zero. Lima E Silva et al. [51] proposed

an alternative model to compute the force density f based upon the evaluation of

the various terms in the momentum equation (3.1) at the control points. The force

66

density f is calculated by computing all the Navier-Stokes terms at the control points

X as,

f(X) =
∂u(X)

∂t
+ (u · ∇)u(X) +∇p(X)− µ∇2u(X) . (3.5)

Once the force density is obtained at the boundary, the immersed boundary method

uses a discrete delta function to spread the force density to the nearby Cartesian grid

points. As mentioned in Chapter 1, the immersed boundary method smears out sharp

interface to a thickness of order of the meshwidth and it is only first-order accurate

for problems with non-smooth but continuous solutions. In addition, using the feed

back forcing formulas (3.3), (3.4) or the expression (3.5) to compute the force at the

rigid boundary explicitly results in the restriction of the timestep.

Recently, the immersed interface method [35] has been employed to solve for viscous

flows with static rigid immersed boundaries [13, 32, 39, 47]. Again, the immersed

interface method can avoid smearing out sharp interfaces and maintains second-order

accuracy by incorporating the known jumps into the finite difference scheme near the

interface. In [13, 39] the no-slip boundary conditions are imposed directly by deter-

mining the correct jump conditions for streamfunction and vorticity. In [13], to obtain

the jumps in the streamfunction and vorticity, the method requires solving a small

linear system of equations. For a stationary rigid boundary, the coefficient matrix is

generated once and is factorized using LU decomposition. At each timestep, only the

right-hand side vector is formed and the jumps are found via back substitution. For

a moving rigid boundary, the linear system of equations must be generated at every

timestep. This approach is impractical for moving rigid boundaries because form-

ing the linear system of equations for the jumps in the streamfunction and vorticity

at each timestep is computationally prohibitive. To avoid generating the coefficient

matrix explicitly, Li et al. [39] suggested to use the generalized minimal residual (GM-

RES) method [48] to solve the Schur complement system. However, this approach

has not been applied for moving geometry. In [47], a Cartesian grid method for mod-

elling multiple moving objects in incompressible viscous flow is considered. Instead

of using a linear system to couple all the variables involved as in [13, 39], the authors

67

compute the jumps in streamfunction and vorticity in separate steps. The jumps

in streamfunction associated with the no-penetration condition are computed using

a superposed homogenous solution. Boundary vorticity is calculated to impose the

no-slip condition by interpolation. This approach greatly reduces the computational

cost for problems with moving rigid boundaries.

Another Cartesian grid approach has been presented by Ye et al. [63] and Udaykumar

et al. [56] using a finite volume technique. They reshaped the immersed boundary

cells and use a polynomial interpolating function to approximate the fluxes and gra-

dients on the faces of the boundary cells while preserving second-order accuracy.

In this chapter, we extend our earlier work, presented in the previous chapter for prob-

lems with deformable boundaries, to solve problems with rigid immersed boundaries.

The method presented in this chapter is based on that presented in Le et al. [32].

Our approach uses the immersed interface method to solve the incompressible Navier-

Stokes equations formulated in primitive variables. In the previous chapter, the sin-

gular force f was computed as a function of the configuration of the interface, i.e.,

the interface was moved with the fluid velocity and the singular force was computed

from the constitutive equation of the membrane. In the present chapter, the singular

force at the immersed boundary is determined to impose the no-slip condition at the

rigid boundary. At each time step the singular force is computed implicitly by solving

a small, dense linear system of equations. Having computed the singular force, we

then compute the jump in pressure and jumps in the derivatives of both pressure

and velocity. The jumps in the solution and its derivatives are incorporated in the

finite difference discretization to obtain sharp interface resolution. Fast solvers from

the FISHPACK software library [2] are used to solve the resulting discrete systems

of equations.

3.2 Singular force evaluation

Assume that the singular force f is known at the rigid boundary. The velocity field

un+1 at all grid points can be computed via the projection method introduced in

68

the previous chapter. Equation (2.42) is first solved for the intermediate velocity u∗.

The pressure increment φn+1 is then determined by solving Eqn (2.46). Finally the

velocity field is updated using Eqn (2.48). Having solved for un+1 at the grid points,

we now compute the velocity at the rigid boundary. In our method, we use a set of

control points to represent the rigid boundary. The velocity at the control points,

Uk, is interpolated from the velocity at the grid points. Thus, we can write

Uk = U (Xk) = B(un+1) , (3.6)

where B is the bilinear interpolation operator which includes the appropriate correc-

tion terms which are required to guarantee second order accuracy when the derivatives

of the velocity are discontinuous. The explicit form of Uk can be found in Appendix B.

In summary, the equations that need to be solved in order to calculate un+1 and

Uk, can be written symbolically as,

Eqn (2.42) → Hu∗ = C + B1f

Eqn (2.46) → Lφn+1 = Du∗ + B2f

Eqn (2.48) → un+1 = u∗ −Gφn+1 + B3f

Eqn (3.6) → Uk = Mun+1 + B4f

Eliminating u∗, φn+1 and un+1 from the above equations, we can compute the velocity

Uk at the control points as follows,

Uk = M
(
H−1C −GL−1DH−1C

)

+
(
M

(
H−1B1 −GL−1DH−1B1 −GL−1B2 + B3

)
+ B4

)
f .

(3.7)

For convenience, we can write (3.7) as

Uk = U 0
k + Af , (3.8)

where U 0
k is simply the velocity at the control points obtained by solving Eqns (2.42),

69

(2.46), (2.48) and (3.6) with f = 0, given un and pn−1/2. A is a 2Nb × 2Nb matrix,

where Nb is the number of control points. The vector Af is the velocity at the control

points obtained by solving the following equations:

u∗f
4t

=
µ

2
∇2u∗f , u∗f |∂Ω = 0 (3.9)

∇2φn+1
f =

∇ · u∗f
4t

, n · ∇φn+1
f |∂Ω = 0 (3.10)

un+1
f = u∗f −∆t∇φn+1

f (3.11)

Af = B(un+1
f) (3.12)

with f being the singular force at the immersed boundary.

Equation (3.8) can be used to determine the singular force if we know the prescribed

velocity U p at the immersed boundary. Thus, the singular force at the control points

can be computed by solving

Af = U p −U 0
k (3.13)

In this way, the singular force is solved to impose exactly the no-slip boundary con-

dition at the interface. The coefficient matrix A can be computed explicitly at each

timestep from (3.9)–(3.12). We solve Eqns (3.9)–(3.12) 2Nb times, i.e., one for each

column. Each time, the force strength f is set to zero except for the entry correspond-

ing to the column we want to calculate which is set to one. Note that the matrix A

depends on the location of the interface and the timestep ∆t.

For static geometry, we will have the same matrix A at every timestep if we use

the same ∆t at every timestep. Therefore the matrix A is computed once and is

factorized and stored. Once the matrix A has been calculated, only the right hand

side, U p − U 0
k, needs to be computed at each timestep. The resulting small system

of equations (3.13) is then solved at each timestep for the singular force f via back

substitution. Finally, we solve Eqs (2.42)–(2.49) to obtain un+1 and pn+1/2. Note that

the same ∆t as that used in computing A is used at every timestep of the simulation.

It is important to note that the matrix A, for a closed immersed boundary, is singular.

70

This happens because the pressure inside the closed boundary is not uniquely deter-

mined. We can choose the pressure inside the interface such that there is no jump

in pressure at one of the control points, i.e., the normal force at that point is set to

zero. Therefore, we can eliminate one column and row of the matrix A corresponding

to that control point, thus making the problem solvable. An alternative consists of

using a singular value decomposition (SVD) method to solve the singular system of

equations (3.13). The solution obtained via SVD method is the least-square solution

which has the shortest length. We prefer the SVD method since the right-hand side

of (3.13) may not lie exactly in the range of A and hence the exact solution cannot

be obtained.

For moving geometry, the coefficient matrix must be regenerated for every timestep.

The computational cost associated with this is prohibitive. To avoid generating A,

we employ GMRES method to solve (3.13) iteratively. Each iteration of GMRES

method requires a matrix-vector product which can be found by solving (3.9)–(3.12).

In each matrix-vector product, we have to solve two Helhmoltz equations (3.9) and

a Poisson equation (3.10). Therefore, our algorithm for solving the problems with

moving boundary is only effective if the GMRES method takes a few iterations to

converge. For a closed immersed boundary, a version of GMRES method for singular

linear systems of equations is required. We employed the GMRES method presented

in [11] which uses the incremental condition estimation (ICE) [8] to monitor the

conditioning of the upper Hessenberg matrix.

3.3 Implementation

In this section, we describe a basic implementation of our algorithm for the Navier-

Stokes equations with immersed rigid boundaries. We described our approach for the

problem of the flow past a circular cylinder. To start our procedure we use a set of

control points to represent the rigid boundary and compute the coefficient matrix as

mentioned in the previous section. For the cylinder problem, this matrix is singular.

71

We factorize the coefficient matrix using a singular value decomposition as,

A = UΣV T , (3.14)

where U = [u1, . . . , uN] and V = [v1, . . . , vN] are orthogonal matrices and Σ =

diag(σ1, . . . , σN) is a diagonal matrix whose elements are the singular values of the

original matrix such that

σ1 ≥ σ2 ≥ . . . ≥ σN ≥ 0 .

Since A is singular it has at least one singular value equals to zero. We store U , V

and Σ for solving the singular force at every timestep. Having A, at each timestep,

given the velocity field, un and pressure field pn−1/2, our algorithm of finding un+1,

pn+1/2 and the singular force to impose the no-slip condition at the rigid boundary

can be summarized as follows:

Step 1: Compute the right-hand side of (3.13) by computing U 0
k.

• Set f = 0. Solve (2.42), (2.46) and (2.48) for the velocity at all grid points.

• Interpolate the velocity at the control points U 0
k as in (3.6).

• Compute the right-hand side vector b = U p −U 0
k.

Step 2: Compute the singular force by solving (3.13) using SVD method.

• If A is nonsingular, then the force f can be written in terms of the SVD as

f =
N∑

i=1

uT
i b

σi

vi .

• If A is singular and has only one zero singular value, then the force f can be

computed as,

f =
N−1∑
i=1

uT
i b

σi

vi . (3.15)

72

N Nb ‖E(u)‖∞ order ‖E(u)‖2 order
64 40 1.8001× 10−3 1.6528× 10−4

128 80 5.5145× 10−4 1.71 3.9239× 10−5 2.08
256 160 1.2755× 10−4 2.11 1.0021× 10−5 1.97

N Nb ‖E(p)‖∞ order ‖E(p)‖2 order
64 40 6.6995× 10−3 1.6014× 10−3

128 80 1.5951× 10−3 2.07 4.7510× 10−4 1.75
256 160 5.7996× 10−4 1.46 1.5854× 10−4 1.58

Table 3.1: The grid refinement analysis for the rotational flow problem with µ = 0.02,
4t = 4x/4, at t = 10.

Step 3: Compute un+1 and pn+1/2 using the projection method. This step is similar

to step 3 in section 2.5.

For moving geometry, we still have the same algorithm except that the GMRES solver

is applied to solve (3.13) iteratively at each time step. Thus we do not need to form

the coefficient matrix explicitly.

3.4 Numerical results

In this section, we present the numerical results for some problems which involve

immersed rigid boundaries.

3.4.1 Rotational flow

In this problem, the interface is a circle with radius r = 0.3 embedded in a square

domain [−1, 1] × [−1, 1]. We prescribe the interface to rotate with angular velocity

ω = 2. We set µ = 0.02 and consider the solution when t = 10. The velocity field is

shown in Figure 3-1. We carried out a grid refinement analysis, using a reference grid

of 512× 512, to determine the order of convergence of the algorithm. The results in

Table 3.1 show that the velocity is second order accurate and the pressure is nearly

second order accurate.

73

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

X

U field at t = 10

Y

Z

(a)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Velocity field at t = 10

X

Y

(b)

Figure 3-1: Velocity field at time t = 10 with a 64×64 grid, µ = 0.02, 4t = 4x/4.
The immersed boundary rotates with angular velocity ω = 2. 3-1(a) Plot of the x

component of velocity field. 3-1(b) Plot of velocity field.

3.4.2 Flow past a circular cylinder

In this example, we simulate an unsteady flow past a circular cylinder immersed in a

rectangular domain Ω = [0, 3]× [0, 1.5]. We use this problem as a benchmark test for

our algorithm. The cylinder has a diameter d = 0.1 and its center is located at (1.6,

0.75). The fluid density is ρ = 1.0 and the freestream velocity is set to unity, U∞ = 1.

The viscosity is determined by the Reynolds number, Re = ρU∞d
µ

. Simulations have

been performed at Re = 20, 40, 80, 100, 200 and 300 on a 512 × 256 computational

mesh. We use 40 points to represent the circular cylinder. At the inflow boundary,

we specify the velocity corresponding to the freestream velocity and a homogeneous

Neumann boundary condition is applied at the top, bottom and exit boundaries. For

all these simulations, we use the free stream velocity as the initial velocity and the

initial pressure is set to zero. Then, the force at the cylinder interface is determined

such that there is no flow inside the cylinder and the pressure is an arbitrary constant

inside the cylinder. After the first timestep, the flow evolves naturally and satisfies

the no-slip boundary condition.

Once the velocity field and pressure field have been computed, the drag and lift

coefficients and the Strouhal number can be computed from the force at the control

74

points.

The drag coefficient is defined as

CD =
D

1
2
ρU2∞d

. (3.16)

The drag can be computed from the force along the cylinder interface as,

D = −
∫

Γ

fxds , (3.17)

where fx is the x component of the singular force.

The lift coefficient is defined as

CL =
L

1
2
ρU2∞d

. (3.18)

The lift can be computed from the force along the cylinder interface as,

L = −
∫

Γ

fyds , (3.19)

where fy is the y component of the singular force.

The Strouhal number is defined as,

St =
fd

U∞
, (3.20)

where f is the vortex shedding frequency, is one of the key quantities that charac-

terizes the vortex shedding process. This coefficient can be obtained using the Fast

Fourier Transform of the periodic variation of the lift coefficient [51]. Finally, the

dimensionless time is defined as

T =
U∞t

d
. (3.21)

Fig. 3-2 shows the streamlines for Re = 20 and Re = 40. For these low Reynolds

numbers, the wake formed behind the cylinder gradually attains a steady symmetric

state. Once the flow has reached the steady state, the drag coefficient, the length

75

1.5 1.6 1.7 1.8 1.9

0.65

0.7

0.75

0.8

0.85

Re = 20: Streamlines

1.5 1.6 1.7 1.8 1.9

0.65

0.7

0.75

0.8

0.85

Re = 40: Streamlines

Figure 3-2: Streamlines for Re = 20 and Re = 40.

of the recirculation zone and the angle of separation are computed and are com-

pared with established results in Table 3.2. The results obtained by our method are

compared to the numerical simulations [13, 16, 24, 47] as well as experimental re-

sults [15, 54]. It is found that our results are in good agreement with other numerical

simulations and experimental results. For Re = 20 our drag coefficient is very close

to other numerical results but it is about 8% lower than the experimental measure-

ment of Tritton [54]. For Re = 40 our drag coefficient is about 5% higher than the

experimentally determined value [54]. Fig. 3-3 shows a plot of the pressure fields for

Re = 20 and Re = 40. The pressure patterns are symmetric about the streamwise

axis.

Between Re = 40 and Re = 50 we expect to see a transition to instability. Fig. 3-4

76

1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 20: Pressure field

1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 40: Pressure field

Figure 3-3: Pressure fields for Re = 20 and Re = 40.

0 200 400 600 800 1000
−0.1

−0.05

0

0.05

0.1
Re = 50: Lift Coefficients

T

C
L

Figure 3-4: Lift Coefficients at Re = 50.

77

Re = 20 Re = 40
L/d θ CD L/d θ CD

Tritton [54] – – 2.22 – – 1.48
Coutanceau and Bouard [15] 0.73 42.3o – 1.89 52.8o –
Fornberg [24] 0.91 – 2.00 2.24 – 1.50
Dennis and Chang [16] 0.94 43.7o 2.05 2.35 53.8o 1.52
Calhoun [13] 0.91 45.5o 2.19 2.18 54.2o 1.62
Russell and Wang [47] 0.94 43.3o 2.13 2.29 53.1o 1.60
Ye et al. [63] 0.92 – 2.03 2.27 – 1.52
Present 0.93 43.9o 2.05 2.22 53.6o 1.56

Table 3.2: Length of the recirculation zone, Angle of Separation and Drag Coefficient
for Re = 20 and Re = 40

shows that our algorithm is able to detect the onset of an instability at a Reynolds

number of about 50. It has been reported that the wake behind the cylinder first

becomes unstable at a critical Reynolds number of about Re = 46 ± 1 [63]. Above

this Reynolds number the cylinder wake instability rises and grows in time and leads

to Karman vortex shedding. This behavior is shown in the numerical simulations for

Re = 80, 100, 200 and 300. Note that in all these simulations we do not need to

artificially perturb the flow field to initiate the unsteady behavior. Fig. 3-5 shows the

pressure fields at Re = 100, 200 and 300. The instabilities and vortex shedding can

be visualized from this figure. In Table 3.3 and Table 3.4, the drag and lift coefficients

at Re = 100 and Re = 200 are compared to other numerical simulations. For Re =

100, the mean drag obtained by our algorithm is slightly greater than that computed

by other researchers [9, 13, 40]. Our drag coefficient differs from that reported by

them by 1%− 3%. For Re = 200, our drag coefficient lies within the range of results

reported in [9, 13, 40, 47]. Our value is about 15% higher than that in Calhoun [13]

and 4% lower than the value obtained by Braza et al. [9]. In Table 3.4, it can be

seen that the lift coefficient calculated by our method for Re = 100 is well within

the range of the values obtained by other researchers. However, our lift coefficient for

Re = 200 is lower than their values. Fig. 3-6 and Fig. 3-7 show the variations in time

of the drag coefficients and the lift coefficients, respectively. They also show how the

vortex shedding develops to a periodic state in time at Re = 100 and Re = 200. The

vortex shedding Strouhal number is computed for Re = 80, 100, 200 and 300 and

78

CD Re = 100 Re = 200
Braza et al. [9] 1.36± 0.015 1.40± 0.050
Liu at al. [40] 1.35± 0.012 1.31± 0.049
Calhoun [13] 1.33± 0.014 1.17± 0.058
Russell et al. [47] 1.38± 0.007 1.29± 0.022
Present 1.37± 0.009 1.34± 0.030

Table 3.3: Drag Coefficients for Re = 100 and Re = 200

CL Re = 100 Re = 200
Braza et al. [9] ±0.250 ±0.75
Liu at al. [40] ±0.339 ±0.69
Calhoun [13] ±0.298 ±0.67
Russell et al. [47] ±0.300 ±0.50
Present ±0.323 ±0.43

Table 3.4: Lift Coefficients for Re = 100 and Re = 200

is compared with established results in Table 3.5. Our computed Strouhal number

obtained at Re = 80 comes out to be 0.15 which compares very well with the values

obtained from experiment [62] and from numerical simulation [63]. At Re = 100 and

Re = 200, our Strouhal numbers are in good agreement with those given in [13, 40, 47]

and differ from the experimental results [62] by 1.8% and 1%, respectively. At Re

= 300, our computed Strouhal number compares very well with the value obtained

from experiment [62].

3.4.3 Flow past a flat plate

In this example, we simulate an unsteady flow past a flat plate immersed in a rect-

angular domain Ω = [0, 3]× [−0.75, 0.75]. The flat plate, whose length is L = 0.1, is

St Re = 80 Re = 100 Re = 200 Re = 300
Ye et al. [63] 0.15 – – 0.210
Williamson [62] 0.15 0.163 0.185 0.203
Liu at al. [40] – 0.164 0.192 –
Calhoun [13] – 0.175 0.202 –
Russell et al. [47] – 0.169 0.195 –
Present 0.15 0.160 0.187 0.200

Table 3.5: Strouhal numbers for Re = 80, 100, 200 and 300

79

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0.6

0.8

1

Re = 100: Pressure field

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0.6

0.8

1

Re = 200: Pressure field

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0.6

0.8

1

Re = 300: Pressure field

Figure 3-5: Pressure fields for Re = 100, Re = 200 and Re = 300.

80

0 50 100 150 200 250 300
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6
Re = 100: Drag Coefficients

T

C
D

0 50 100 150 200 250 300
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
Re = 200: Drag Coefficients

T

C
D

Figure 3-6: Drag Coefficients for Re = 100 and Re = 200.

0 50 100 150 200 250 300
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Re = 100: Lift Coefficients

T

C
L

0 50 100 150 200 250 300
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Re = 200: Lift Coefficients

T

C
L

Figure 3-7: Lift Coefficients for Re = 100 and Re = 200.

81

(a) (b) (c) (d) (e)

−2 −1.5 −1 −0.5 0 0.5

Figure 3-8: Pressure field at t = 10, 4t = 4x/4. (a) Re = 20, (b) Re = 50, (c) Re
= 100, (d) Re = 1000, (e) Re = 5000.

oriented in the crossflow direction and is located at x = 1.40. Simulations have been

performed at Re = 20, 50, 100, 1000 and 5000 on a 256 × 128 computational mesh.

We use 8 points to represent the flat plate. The same boundary conditions as those

for the flow past a cylinder problem are applied in this problem. The pressure field

plots are shown in Fig. 3-8.

3.4.4 Flow past several cylinders

In this example, we consider an unsteady flow past several cylinders immersed in

a rectangular domain Ω = [0, 3] × [0, 1.5]. This example shows the ability of our

algorithm to handle multiple rigid boundaries. Simulations have been performed for

three cylinders and an array of seven cylinders immersed in the flow at Re = 100. All

the cylinders have the same diameter of 0.1. We use 20 control points to represent

each of the circular cylinders. The computational grid is 512 × 256 and the same

82

boundary conditions as those for the flow past a single cylinder problem are applied.

For the problem with three cylinders, Fig. 3-9 and Fig. 3-10 show the streamlines and

pressure contours for Re = 100 at different time levels. The vortex shedding is not

symmetric since the cylinders are not placed symmetrically. For the problem with

seven cylinders which are placed symmetrically with respect to the x axis, the vortex

shedding is symmetric. In Fig. 3-11, we plot the streamlines and pressure contours

for the flow past the array of seven cylinders at Re = 100 and t = 10.

3.4.5 Grooved channel flow

This example considers a Poiseuille flow between two walls, one of which has grooves

perpendicular to the streamwise direction. This example illustrates the ability of our

algorithm to handle non-smooth boundaries. The presence of the grooves complicates

the geometry and an analytical solution for this flow does not exist. The flow separates

and starts to recirculate in the grooves even for small Reynolds number flows. In the

numerical simulation, the gap between the walls is 0.2 and the depth of the grooves is

0.6. The velocity profile at the inflow boundary is parabolic with maximum velocity

Umax = 1. The viscosity is chosen to obtain a desired Reynolds number. The Reynolds

number is measured based on the depth of the grooves and Umax. Simulations are

performed at Re = 100, 500 and 3000. Fig. 3-12 shows the velocity fields for different

Reynolds numbers at t = 10. Pressure fields at t = 10 are shown in Fig. 3-13.

3.4.6 Flow past a moving circular cylinder

In this example, we simulate the flow past a moving cylinder which moves to the left

at a velocity U∞ = −1. The computational domain is [0, 6]× [−1.5, 1.5]. The cylinder

has a radius r = 0.1 and its center is initially located at (5.5, 0.0). At the left bound-

ary we set the velocity to zero, and a homogeneous Neumann boundary condition

is applied at the top, bottom and right boundaries. In the frame of reference that

is attached to the moving cylinder, these boundary conditions are the same as those

used for the stationary circular cylinder problem. The simulation has been performed

83

1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 100: Streamlines at t = 12

1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 100: Streamlines at t = 12.6

1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 100: Streamlines at t = 13.2

Figure 3-9: Flow past three cylinders. Streamline plots for Re = 100 at different
times.

84

0.5 1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 100: Pressure contours at t = 12

0.5 1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 100: Pressure contours at t = 12.6

0.5 1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 100: Pressure contours at t = 13.2

Figure 3-10: Flow past three cylinders. Pressure contours for Re = 100 at different
times.

85

0.5 1 1.5 2 2.5

0.4

0.6

0.8

1

1.2
Re = 100: Streamlines at t = 10

0.5 1 1.5 2 2.5

0.4

0.6

0.8

1

1.2
Re = 100: Pressure contours at t = 10

0

0.5

1

Figure 3-11: Flow past seven cylinders. Streamlines and pressure contours at Re =
100.

86

−0.5 0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

Re = 100: Velocity field at t = 10

−0.5 0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

Re = 500: Velocity field at t = 10

−0.5 0 0.5 1 1.5 2
−0.8

−0.6

−0.4

−0.2

0

Re = 3000: Velocity field at t = 10

Figure 3-12: Velocity fields for Re = 100, Re = 500 and Re = 3000.

87

−1 −0.5 0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

Re = 100: Pressure field

0 0.5 1 1.5 2 2.5 3 3.5

−1 −0.5 0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

Re = 500: Pressure field

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−1 −0.5 0 0.5 1 1.5 2 2.5
−0.8

−0.6

−0.4

−0.2

0

Re = 3000: Pressure field

0 0.02 0.04 0.06 0.08 0.1 0.12

Figure 3-13: Pressure fields for Re = 100, Re = 500 and Re = 3000.

88

Re = 40 CD L/d
Moving Cylinder 1.67±0.01 2.15
Stationary Cylinder 1.56 2.20

Table 3.6: Summary results for moving cylinder at Re = 40, compared against sta-
tionary cylinder at steady state.

for Re = 40.

In this example, to solve for the singular force at the moving boundary we do not gen-

erate a system of equations explicitly. Instead we solve for the force at the boundary

iteratively using the GMRES algorithm. Since the system of equations is singular,

the convergence rate of the GMRES algorithm is slow. However, we can use the

incremental condition estimation (ICE) [8] to monitor the conditioning of the up-

per Hessenberg matrix and stop the iteration when the condition number increases

rapidly or when the residual does not change much. Numerical experiments show

that the residual is small and decreases very little after 2-5 iterations. Hence, we can

typically stop the GMRES iterative process after 2-5 iterations.

Figure 3-14 shows the streamlines plot for Re = 40 in the frame of reference attached

to the moving cylinder when the wake behind the cylinder is fully developed. Fig-

ure 3-15 shows the streamlines plot at the same time level. Table 3.6 shows the results

of the drag coefficient and the length of the recirculation zone at Re = 40. These

results are compared to those obtained for the stationary cylinder. We can see that

the length of the recirculation zone is in good agreement with that obtained for the

stationary cylinder. The drag coefficient is about 7% higher than that obtained for

the stationary cylinder. The error is a result of several reasons. First, as the cylinder

passing through the underlying grid, the topology changes and this may cause the

noise in the force at the moving boundary. Second, as we terminate the GMRES algo-

rithm in a few iterations, the truncated error in the residual may cause the inaccuracy

in the singular force at the rigid boundary.

89

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−0.4

−0.2

0

0.2

0.4
Streamlines for Re = 40

Figure 3-14: Streamlines for moving cylinder at Re = 40 in the frame of reference
attached to the moving cylinder when the wake behind the cylinder is fully developed.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−0.4

−0.2

0

0.2

0.4
Re = 40: Streamlines

Figure 3-15: Streamlines for moving cylinder at Re = 40.

90

Chapter 4

An Immersed Interface Method for

solving viscous, incompressible

flows involving rigid and flexible

boundaries

4.1 Introduction

This chapter considers the immersed interface method for the incompressible Navier-

Stokes equations in general domains involving immersed flexible and rigid boundaries.

The algorithm presented in this chapter is a combination of the algorithms introduced

in the previous two chapters. This combination allows us to develop a robust algo-

rithm for simulating the motion of the flexible interfaces in complicated irregular

domains. Currently, most of the Cartesian grid methods can only handle flexible

boundaries and the rigid boundary is required to be aligned with the computational

grid [3, 46]. Agresar et al. [3] use a front-tracking method [57] and adaptive mesh re-

finement to perform simulation of a common cell-mechanics experiment (a cell-entry

micropipet assay). In [46], the front-tracking method was also used to study the in-

teractions between colloidal particles near the entrance to a cylindrical pore. In these

91

simulations, the micropipet and the cylindrical pore are represented by parallel walls

which must align with the Cartesian grid. Thus, only vertical and horizontal rigid

boundaries are allowed in [3, 46].

In our algorithm, arbitrary piecewise smooth rigid boundaries can be considered. The

main advantage of our method is its ability to simulate the motion of two or more

deformable boundaries in a domain with two or more immersed rigid boundaries.

This capability allows us to solve for many problems and applications with complex

geometry. In section 4.3, we show some numerical examples involving elastic mem-

branes immersed in a grooved channel flow and in a flow with a constriction. The

algorithm presented in this chapter can also be applied to the simulation of biological

flow problems such as the flows in mechanical filters for biomolecule separation and

the deformation of a cell in a single cell-trap. The process of cell separation involves

complex fluid-structure interaction and deformation of cells in the mechanical cell

filters which have complicated geometry. In our algorithm, a cell is modelled as a

two-dimensional fluid body enclosed by an infinitesimally thin elastic membrane and

surrounded by a fluid of identical properties. The force strength exerted by the elastic

membrane is given as,

f(s, t) =
∂

∂s
(T (s, t)τ (s, t)) + σ

∂2X

∂s2
, (4.1)

where T (s, t) is defined as

T (s, t) = T0

(∣∣∣∣
∂X(s, t)

∂s0

∣∣∣∣− 1

)
(4.2)

and τ (s, t) is the unit tangential vector to the interface,

τ (s, t) =
∂X

∂s

/ ∣∣∣∣
∂X

∂s

∣∣∣∣ . (4.3)

Here, X(s, t) is the arc-length parametrization of the elastic membrane, s and s0

are the arc-lengths measured along the current and undeformed configuration of the

membrane, respectively. The scalar T0 is the stiffness constant which describes the

92

elastic property of the membrane. The scalar σ is the surface tension constant.

Rigid boundaries are modelled as immersed interfaces whose motions are prescribed.

For static rigid boundaries, the prescribed velocity is set to zero. Singular forces need

to be imposed at the rigid boundaries to enforce the no-slip boundary conditions.

The singular forces at the rigid boundaries are obtained by solving the following

small system of equations

Af = U p −U 0
k (4.4)

where U p is the prescribed velocity. This system of equations has been derived in

section 3.2.

4.2 Implementation

The implementation for the algorithm presented in this chapter is a combination of

the basic implementation for the algorithms introduced in the previous two chapters.

Basically, flexible boundaries and rigid boundaries are represented by a number of

control points. We use two sets of control points. One set is used to represent the

flexible boundaries and the other represents the immersed rigid boundaries. The sin-

gular force at the flexible boundaries is computed based on the configuration of the

flexible boundaries. The location of the flexible boundaries is advanced in time in an

implicit manner. The BFGS method which is a quasi-Newton method is employed to

solve the non-linear system of equations (2.61) iteratively to calculate the location of

the flexible boundaries. In each iteration of the BFGS method, we need to solve the

system of equations (4.4) for the singular force at the rigid boundaries to enforce the

no-slip boundary conditions. This is necessary because the velocity field and pressure

field are updated at every iterations of the BFGS method.

In summary, given the location of the flexible boundaries, Xn, the singular force

at the rigid boundaries, fn, the velocity field, un and the pressure field pn−1/2, the

process of computing the new velocity field un+1 that satisfies the no-slip boundary

conditions at the rigid boundaries, pressure field pn+1/2 and the location of the flexible

boundaries Xn+1 can be summarized as follows:

93

Step 1: Set k := 0 and make an initial guess for Xn+1, i.e. X(0) as

X(0) = 2Xn −Xn−1

Step 2:

• Compute the force strength at the flexible boundaries using expression (4.1).

Interpolate the force strength using cubic splines.

• Compute the force strength at the rigid boundaries to enforce the no-slip bound-

ary conditions.

– Calculate the right-hand side vector U p −U 0
k of (4.4).

– Solve the small system of equations (4.4) to obtain the singular force at

the rigid boundaries.

• Compute the jump conditions for pressure and velocity.

Step 3:

• Compute the appropriate correction terms for spatial derivatives and temporal

derivatives as described in section 2.3.4.

• Employ the projection method described in section 2.3.3 to update the velocity

un+1 and pressure field pn+1/2.

• Compute the velocity at the control points, un+1(X(k)) by interpolating from

the velocity at the surrounding grid points.

Step 4:

• Evaluate

g
(
X(k)

)
= X(k) −Xn − 1

2
4t

(
un (Xn) + un+1(X(k))

)

94

• If ‖g(k)‖ < ε then Xn+1 = X(k) and stop the iteration. Otherwise, update

X(k+1) and the inverse Jacobian matrix Bk+1 using BFGS algorithm mentioned

in section 2.4. Set k := k + 1 and go to step 2.

Our implementation prohibits the intersection between two flexible boundaries or

between a flexible boundary and rigid boundaries. This is enforced by defining a

contact threshold to be a distance 1.5h, where h is the mesh size. If a control point

of a flexible boundary lies within a contact threshold of other flexible boundaries or

rigid boundaries, we start to include a repulsive force into the total singular force at

the flexible boundary. This repulsive force is applied in the outward normal direc-

tion to the rigid boundaries or other flexible boundaries. If the flexible membrane

represents a particle with surface potential, the repulsive force can be understood as

the electrostatic repulsion between two colloidal particles or between a particle and

rigid boundaries. In [3], the velocities of interfacial points that, at their new location,

lie within a contact threshold of other membranes or rigid boundaries are adjusted

using the following rules: (i) if a point gets within a contact threshold of a rigid

boundary, the component of its velocity normal to the boundary is set to zero; (ii) if

two points (on separate membranes) get within the contact threshold of each other,

the velocity of both points is set to the average of the two. In most problems, these

velocity adjustments are typically very small and the errors introduced decrease with

the size of the mesh and the size of the timestep. In cases in which many velocity

adjustments are performed, these adjustments might significantly alter the volume of

the bodies. A repulsive force was suggested to include into the total surface force to

replace the velocity adjustment. In our algorithm, the expression for the repulsive

force at a control point is

|fR(r)| =

C
[
1−

(r

1.5h

)n]
, r ≤ 1.5h

0, otherwise,
(4.5)

where r is a separation distance between a flexible membrane and other flexible mem-

branes or rigid boundaries, C is a positive constant and n is a power index. It is not

95

very clear how to choose effective values for C and n. It can be construed that C

and n are functions of the properties of the surface material but this topic is outside

the scope of the present study. In our numerical experiments, a typical n is chosen

within [2, 4] and the constant C is chosen to have the same order of magnitude as the

current force at the control point under consideration. In order to avoid a kink which

may occur when adding the repulsive force to the singular force at the membrane,

we distribute the repulsive force to the nearby control points of the same membrane

using a Gaussian normal representation of the discrete delta function. Typically, we

distribute the repulsive force to five control points including the control point under

consideration and its four closest neighbors on the same membrane.

4.3 Numerical results

This section presents some numerical examples involving elastic membranes immersed

in a grooved channel flow and in a flow through a constriction. These examples show

the ability of handling rigid boundaries and flexible interfaces simultaneously for our

algorithm. In addition, complex interactions between the fluid and flexible bound-

aries, interactions between flexible boundary and rigid boundary and interactions

between multiple flexible boundaries are naturally considered.

4.3.1 Grooved channel flow with an immersed elastic mem-

brane

This example considers a Poiseuille flow between two walls, one of which has a groove

perpendicular to the streamwise direction. An elastic membrane is immersed in the

fluid inside the groove. Depending on the flow, the elastic membrane rotates inside

the groove or the flow moves it out of the groove depending on some parameters such

as the initial location of the elastic membrane, the flow rate, the size of the groove,

the stiffness of the membrane. In the numerical simulation, the gap between the

walls is 0.2, the depth and the width of the groove are D and W, respectively. The

96

velocity profile at the inflow boundary is parabolic with maximum velocity Umax and

the viscosity µ = 0.02. Figure 4-1 illustrates the geometry of the grooved channel

and the initial position of the membrane inside the groove. The boundary conditions

are inflow at the left boundary and outflow at the right boundary. The velocity is

set to zero at the top and bottom boundaries. The no-slip boundary condition at the

immersed rigid boundary is enforced by imposing an appropriate singular force at the

rigid boundary.

In all simulations presented in this example, a computational domain of [0, 1.5] ×

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1

D

W

Elastic membrane

Rigid boundaries

Figure 4-1: Initial position of an elastic membrane in the simulation of elastic mem-
brane in a groove.

[−0.4, 0.1], a 384×128 grid and a circular membrane with diameter of 0.15 have been

used. This membrane has initially been pre-stretched from the undeformed state with

a diameter of 0.12. We first consider the elastic membrane whose center is located at

(0.675,−0.18) inside the groove with D = 0.2 and W = 0.25. The stiffness constant

of the membrane (T0) of 1.5, the surface tension constant (σ) of 1.0 and the far-field

maximum velocity (Umax) of 1.0 were specified. Figure 4-2 shows the positions of

the elastic membrane and velocity fields at different time levels. Because of the high

relative location of the membrane inside the groove, the flow moves the membrane

out of the groove. However, if the membrane is located a bit lower inside the groove,

i.e. the center of the membrane is (0.675,−0.2), the membrane only rotates inside the

groove under the same flow condition. Figure 4-3 shows the positions of the elastic

membrane inside the groove and velocity fields at different time. A solid circle on the

interface corresponds to a material point and shows the rotation of the membrane. In

97

these simulations, the timestep ∆t of h/7.5 has been used. The computational time is

about 1.5 hours and 3 hours for the first and the second simulations, respectively. Note

that all the simulations presented in this thesis are performed on an IBM Pentium

IV 2.4 GHz.

We now keep the location of the membrane center at (0.675,−0.2) and increase the

flow rate by increasing the maximum far-field velocity, Umax = 5. Again, the fluid

flow brings the membrane out of the groove. Figure 4-4 shows the deformation of

the membrane under the high flow rate condition. Because of the high flow rate and

the low stiffness constant of the membrane, there is significant deformation of the

membrane when it tries to climb out of the groove.

Under the same flow conditions and the same properties of the membrane, we may

keep the membrane inside the groove by reducing the width of the groove. Figure 4-5

shows the rotation of the membrane inside the smaller groove with the width W of

0.2.

4.3.2 Flow in a constriction with immersed elastic membranes

This problem considers the motion of one or more membranes in a domain with a

constriction. Figure 4-6 illustrates the geometry of the constriction and the initial

position of a single membrane in front of the constriction. In all the simulations pre-

sented in this example, the computational domain [0, 1.5]× [−0.25, 0.25], a 384× 128

grid, a fluid viscosity of 0.02 and a surface tension constant of σ = 0, have been used.

The boundary conditions are inflow at the left boundary and outflow at the right

boundary. A parabolic velocity profile with Umax = 1 is specified for the velocity at

the inflow boundary. The velocity is set to zero at the top and bottom boundaries.

The no-slip boundary condition at the immersed rigid boundaries is enforced by im-

posing appropriate singular forces at the rigid boundaries.

For simulations of a single membrane squeezing through a constriction, a diameter

of 0.26, a stiffness constant (T0) of 2.0 are specified for the circular membrane whose

center is located at (0.37, 0.0). The elastic membrane is pre-stretched from the un-

deformed state with a diameter of 0.12. Two aspect ratios (ratio of the membrane

98

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 0.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 2.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 4.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 4.20

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 5.00

Figure 4-2: Positions of the elastic membrane and velocity fields at different times.
The fluid flow moves the membrane out of the groove.

99

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 0.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 2.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 5.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 8.20

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 10.00

Figure 4-3: Positions of the elastic membrane and velocity fields at different times.
The membrane rotates inside the groove.

100

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 0.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 1.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 2.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 3.50

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 5.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 6.20

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 6.50

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 6.55

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 6.59

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 6.70

Figure 4-4: Positions of the elastic membrane and velocity fields at different times.
The high flow rate moves the membrane out of the groove even though the membrane

initially lies deep inside the groove.

101

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 0.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 1.50

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 3.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 5.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 6.50

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 8.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 9.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 10.00

Figure 4-5: Positions of the elastic membrane and velocity fields at different times.
With a small groove, the membrane only rotates inside the groove even with the high

flow rate.

102

size to the constriction size) of 1.3 and 1.88 have been considered to investigate the

motion of a single membrane through the constriction. We use 60 control points to

represent the elastic membrane. We use 235 and 247 markers to represent the rigid

boundaries of the constriction with aspect ratios of 1.3 and 1.88, respectively. Fig-

ure 4-7 shows the locations of the elastic membrane and the corresponding velocity

fields at different times with an aspect ratio of 1.3. The positions of the membrane

squeezing through the smaller constriction are shown in Fig. 4-8. Fig. 4-8 shows that

it takes a longer time for the membrane to squeeze through a smaller constriction.

We also performed a simulation for the motion of three membranes flowing through

a constriction with an aspect ratio of 0.72. The three membranes have the same

stiffness constant T0 and diameter of 0.1. The geometry of the computational domain

and the initial position of the membranes are illustrated in Fig. 4-9. Simulations

have been performed for T0 = 4 and T0 = 8 at Re = 5. The Reynolds number

is calculated based on the membrane diameter and the maximum far-field velocity

Umax. Figure 4-10 and Figure 4-11 show the positions of the membranes and the cor-

responding velocity fields at different time for T0 = 4 and T0 = 8, respectively. From

these figures, it can be seen that the membranes with smaller stiffness constants pass

through the constriction faster than the membranes with higher stiffness constants.

This happens because soft membranes can adapt to the change in geometry of the

rigid boundaries better than stiff membranes.

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Figure 4-6: Initial position of an elastic membrane in the simulation of an elastic
membrane squeezing through a constriction.

103

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.04

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.10

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.16

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.20

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.26

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.32

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.40

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.60

Figure 4-7: A single elastic membrane with stiffness constant T0 = 2 squeezes through
a constriction with aspect ratio of 1.3.

104

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.04

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.10

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.16

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.20

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.26

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.32

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.40

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.60

Figure 4-8: A single elastic membrane with stiffness constant T0 = 2 squeezes through
a constriction with aspect ratio of 1.88.

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Figure 4-9: Computational domain for studying the interaction between several elastic
membranes at the entrance to a constriction. Initial positions of elastic membranes

in the 3-membrane simulations.

105

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.20

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.30

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.40

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.50

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.60

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.70

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.80

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 1.00

Figure 4-10: The positions of the elastic membranes and velocity fields at different
times. Simulations have been performed for Re = 5, stiffness constant T0 = 4 and

∆t = ∆x/7.5.

106

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.20

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.30

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.40

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.50

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.60

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.70

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.80

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 1.00

Figure 4-11: The positions of the elastic membranes and velocity fields at different
times. Simulations have been performed for Re = 5, stiffness constant T0 = 8 and

∆t = ∆x/15.

107

108

Chapter 5

Conclusions and future work

5.1 Conclusions

In this thesis, an immersed interface method for solving viscous, incompressible flows

involving flexible interfaces and rigid boundaries has been described in detail. The

contributions of this thesis include the following:

• An immersed interface method is developed for solving viscous, incompress-

ible flows involving moving flexible interfaces. An entire singular force at the

interface is incorporated into the jump conditions of the solutions and their

derivatives. Our algorithm can capture not only the jump in pressure but also

the jumps in the derivatives of pressure and velocity. The jump in the time

derivative of the velocity is also taken into account to avoid errors which could

accumulate in time.

• An immersed interface algorithm is developed for solving the Navier-Stokes

equations in complicated domains. It was shown that we can use the immersed

interface method to handle viscous, incompressible flow problems involving rigid

boundaries. In our algorithm, rigid boundaries are treated as immersed bound-

aries at which singular forces are imposed to enforce the no-slip conditions.

• An immersed interface method has been developed for solving the Navier-Stokes

equations with flexible interfaces and rigid boundaries. Numerical experiments

109

have shown that our algorithm can handle complex fluid-membrane interac-

tions, membrane-membrane interactions and the interactions between flexible

boundaries and rigid boundaries simultaneously.

Numerical simulations have been performed for rotational flow and elastic band prob-

lems to validate our algorithm for flexible interfaces. Second order accuracy has been

demonstrated thorough several computational examples. We also reproduce some

numerical results for the flow past a circular cylinder problem as a benchmark test

for our method when dealing with rigid boundaries. It was shown that our numerical

results are in good agreement with other numerical and experimental results in both

steady and unsteady regimes. Moving rigid boundaries are also considered to show

the flexibility of our algorithm. Finally, some numerical results have been shown in

Chapter 4 for problems involving motions of membranes in a grooved channel and

through a constriction.

5.2 Future work

We would like to extend our code to three dimensions to solve for more realistic

problems such as biological flow problems. In 2D, the interface is discretized using a

set of control points. In 3D, the interface is a surface and hence is discretized using

triangular mesh. Singular forces are computed at the nodes of the triangulations and

are used to compute the jump conditions of the solutions and their derivatives. A

projection method is then employed to update the solutions in time and the extension

to 3D of the projection method is straightforward.

In biological systems, viscosity is normally different at both sides of the interface.

Therefore, we would like to extend our code to solve for problems with different

viscosities. In this case, the jumps in pressure and its derivatives are coupled with

the jumps in velocity derivatives. Hence a more careful study needs to be done to

decouple these jumps in order to compute the correction terms.

Another issue that needs to be resolved is the computation of the interaction forces

realized when the two membranes approach each other or when a membrane comes

110

close to rigid boundaries. Since one of the main motivations for carrying out the

work presented in this thesis is the motion of deformable particles in biological flows,

the colloidal interaction force between two particles or between a particle with rigid

boundaries is a combination of Van de Waals attractive force, electrostatic repulsive

force and short-ranged Born repulsive force [46].

111

112

Appendix A

Jump conditions across an

immersed interface

The incompressible Navier-Stokes equations in a 2-dimensional bounded domain Ω

that contains a material interface Γ(t) can be written as

Du

Dt
= ∇ · σ + F (A.1)

∇ · u = 0 (A.2)

where
D

Dt
=

∂

∂t
+ (u · ∇) (A.3)

is the material derivative and

σ = −pI + µ(∇u +∇uT) (A.4)

is the fluid stress tensor. The effect of the material interface Γ(t) immersed in the

fluid results in a singular force F which has the form

F (x, t) =

∫

Γ(t)

f(s, t)δ(x−X(s, t))ds , (A.5)

113

where X(s, t) is the arc-length parametrization of Γ(t), s is the arc-length and f(s, t)

is the force strength.

When the singular force is applied on a material interface, the solutions of the Navier-

Stokes equations may be non-smooth or discontinuous across the interface. Let n and

τ be the unit outward normal and tangential vectors to the interface, respectively.

And let (ξ, η) be the rectangular coordinates associated with the directions of n and

τ , respectively. Then in the neighborhood of (ξ, η) = (0, 0) the interface Γ can be

represented by ξ = χ(η) which satisfies χ(0) = 0, χ′(0) = 0 and χ′′(0) = κ, the

curvature of Γ at (0, 0). The normal and tangential components of the force density

f1 = f(s, t) ·n and f2 = f(s, t) ·τ , respectively, can be related to the jump conditions

for pressure and velocity as follows

[u] = 0, [µuξ] = −f2τ , [uη] = 0 , (A.6)

[p] = f1, [pξ] =
∂f2

∂s
, [pη] =

∂f1

∂s
, (A.7)

[µuηη] = κf2τ , [µuξη] = −∂f2

∂η
τ − κf2n,

[µuξξ] = − [µuηη] + [pξ]n + [pη]τ + [uξ]u · n ,

(A.8)

[pηη] =
∂2f1

∂η2
− κ[pξ], [pξη] =

∂2f2

∂η2
+ κ[pη],

[pξξ] = − [∇ · (u · ∇u)]− [pηη] .

(A.9)

The jump, [·], denotes the difference between the value of its argument from the

outside and that from the inside of the interface. The first equality of (A.6) means

that the velocity is continuous across the interface. Differentiating [u] = 0 along the

tangential direction of Γ, i.e.,

0 =
d[u]

dη
=

∂[u]

∂ξ
χ′(η) +

∂[u]

∂η
(A.10)

and using χ′(0) = 0, we get the third equality of the (A.6) which means that the

tangential derivatives of the velocity are continuous.

114

The second equality of (A.6) and the first equality of (A.7) can be derived by balancing

the force at the interface, i.e,

f + t+ + t− = 0 , (A.11)

where t+ = σ+ ·n+ and t− = σ− ·n− are the fluid traction. Since n+ = −n− = n,

equation (A.11) can be rewritten as

f + [σ] · n = 0 . (A.12)

Taking the normal and tangential components of (A.12) and using the jump conditions

[uη] = 0 and [∇ · u] = 0, we can easily derive [p] = f · n and [µuξ] = −(f · τ)τ .

The second equality of (A.7) can be derived by applying the divergence operator

to the momentum equation (A.1), see [36, 33]. Differentiating [p] = [f1] along the

tangential direction of Γ and using χ′(0) = 0, we get the third equality of (A.7).

Differentiating (A.10) along the tangential direction of Γ, i.e.,

[uξξ] (χ
′(η))

2
+ 2[uξη]χ

′(η) + [uξ]χ
′′(η) + [uηη] = 0

and using χ′(0) = 0 and χ′′(0) = κ, we get the first equality of (A.8). Taking the

derivative of the second equality of (A.6) with respect to the tangential direction and

using ∂τ
∂η

= κn, we obtain the second equality of (A.8). The last equality of (A.8) can

be found from the momentum equation (A.1) written in the local coordinate (ξ, η).

Similarly, by differentiating [p] = [f1] along the tangential direction of Γ twice, we get

the first equality of (A.9). The second equality of (A.9) is obtained by differentiating

[pn] = ∂f2

∂η
along the interface. The third equality of (A.9) is derived by applying the

divergence operator to the momentum equation (A.1) in the local coordinate (ξ, η).

More details on the proof of (A.6)–(A.9) can be found in [33, 35, 36].

115

116

Appendix B

Modified Bilinear Interpolation

In this section, we derive a bilinear interpolation formula to compute the velocity

at a control point. The velocity at the control points, Uk, is interpolated from the

velocity at the nearby Cartesian grid points. Thus, we can write

Uk = U (Xk) = B(u) , (B.1)

where B is the bilinear interpolation operator which includes the appropriate correc-

tion terms which are required to guarantee second order accuracy when the derivatives

of the velocity are discontinuous. In Figure B-1, the velocity at the control point Xk

is interpolated from the velocity at four neighbor grid points as follows

U k = (1− ξ)(1− η)u1 +C1 + ξ(1− η)u2 +C2 + ξηu3 +C3 +(1− ξ)ηu4 +C4 (B.2)

where C1, . . . , C4 are correction terms, ξ = X−x1

h
, η = Y−y1

h
and h is the grid size.

Jump conditions [ux] and [uy] are required at the control point to compute the cor-

rection terms. The correction terms can be derived using Taylor series expansion and

have the following forms:

C1 =

h(1− ξ)(1− η)
(
ξ[ux] + η[uy]

)
, x1 ∈ Ω+

0, x1 ∈ Ω−,
(B.3)

117

Figure B-1: Velocity at a control point is interpolated from the velocity at the four
neighbor grid points using modified bilinear interpolation.

C2 =

−hξ(1− η)

(
(1− ξ)[ux]− η[uy]

)
, x2 ∈ Ω+

0, x2 ∈ Ω−,
(B.4)

C3 =

−hξη

(
(1− ξ)[ux] + (1− η)[uy]

)
, x3 ∈ Ω+

0, x3 ∈ Ω−,
(B.5)

C4 =

h(1− ξ)η
(
ξ[ux]− (1− η)[uy]

)
, x4 ∈ Ω+

0, x4 ∈ Ω−.
(B.6)

118

Bibliography

[1] Y. Achdou and O. Pironneau. A fast solver for Navier-Stokes equations in

the laminar regime using mortar finite element and boundary element methods.

SIAM Journal on Numerical Analysis, 32(4):985–1016, 1995.

[2] J. Adams, P. Swarztrauber, and R. Sweet. FISHPACK: Efficient FORTRAN

subprograms for the solution of separable eliptic partial differential equations,

1999. Available on the web at http://www.scd.ucar.edu/css/software/fishpack/.

[3] G. Agresar, J. J. Linderman, G. Tryggvason, and K. G. Powell. An adaptive,

Cartesian, front-tracking method for the motion, deformation and adhesion of

circulating cells. J. Comput. Phys., 143:346–380, 1998.

[4] S. Armfield and R. Street. An analysis and comparison of the time accuracy of

fractional step methods for the Navier-Stokes equations on staggered grids. Int.

J. for Numerical Methods in Fluids, 38:255–282, 2002.

[5] K. J. Bathe and H. Zhang. Finite element developments for general fluid flows

with structural interactions. International Journal for Numerical Methods in

Engineering, 60:213–232, 2004.

[6] J. B. Bell, P. Collela, and H. M. Glaz. A second order projection method for the

incompressible Navier-Stokes equations. J. Comput. Phys., 85:257, 1989.

[7] G. Biros, L. Ying, and D. Zorin. The embedded boundary integral equation

solver for the incompressible Navier-Stokes equations. Technical report, Courant

Institute, New York University, 2002.

119

[8] C. H. Bischof. Incremental condition estimation. SIAM J. Matrix Anal. Appl.,

11:312–322, 1990.

[9] M. Braza, P. Chassaing, and H. Ha Minh. Numerical study and physical anal-

ysis of the pressure and velocity fields in the near wake of a circular cylinder.

J. Fluid. Mech., 165:79–130, 1986.

[10] D. L. Brown, R. Cortez, and M. L. Minion. Accurate projection methods for the

incompressible Navier-Stokes equations. J. Comput. Phys., 168:464–499, 2001.

[11] P. N. Brown and H. F. Walker. GMRES on (nearly) singular systems. SIAM

J. Matrix Anal. Appl., 18(1):37–51, 1997.

[12] C. G. Broyden. The convergence of a class of double rank minimization algo-

rithms. 1. General considerations, 2. The new algorithm. J. Inst. Math. Appl.,

6:76–90, 222–231, 1970.

[13] D. Calhoun. A Cartesian grid method for solving the two-dimensional

streamfunction-vorticity equations in irregular regions. J. Comput. Phys.,

176:231–275, 2002.

[14] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math. Comput.,

22:745, 1968.

[15] M. Coutanceau and R. Bouard. Experimental determination of the main features

of the viscous flow in the wake of a circular cylinder in uniform translation. Part

1. Steady flow. J. Fluid. Mech., 79(2):231–256, 1977.

[16] S. C. R. Dennis and G. Chang. Numerical solutions for steady flow past a circular

cylinder at Reynolds number up to 100. J. Fluid. Mech., 42(3):471–489, 1970.

[17] Y. Di, R. Li, T. Tang, and P. Zhang. Moving mesh finite element methods for

the incompressible Navier-Stokes equations. SIAM J. Sci. Comput., 26(3):1036–

1056, 2005.

120

[18] R. Dillon, L. J. Fauci, and D. Graver. A microscale model of bacterial swimming,

chemotaxis and substrate transport. J. Theor. Biol., 177:325–340, 1995.

[19] C. D. Eggleton and A. S. Popel. Large deformation of red blood cell ghosts in a

simple shear flow. Phys. Fluids, 10:1834–1845, 1998.

[20] L. Fauci and C. S. Peskin. A computational model of aquatic animal locomotion.

J. Comput. Phys, 77:85–108, 1988.

[21] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory Eulerian

approach to interfaces in multimaterial flows (the ghost fluid method). J. Com-

put. Phys., 152:457–492, 1999.

[22] A. L. Fogelson. A mathematical model and numerical method for studying

platelet adhesion and aggregation during blood clotting. J. Comput. Phys.,

56:111–134, 1984.

[23] A. L. Fogelson. Continuum models of platelet aggregation: Formulation and

mechanical properties. SIAM J. Applied Math., 52:1089–1110, 1992.

[24] B. Fornberg. A numerical study of steady viscous flow past a circular cylinder.

J. Fluid. Mech., 98(4):819–855, 1980.

[25] D. Goldstein, R. Handler, and L. Sirovich. Modeling a no-slip flow with an

external force field. J. Comput. Phys., 105:354–366, 1993.

[26] L. Greengard and M. C. Kropinski. An integral approach to the incompressible

Navier-Stokes equations in two dimensions. SIAM Journal on Scientific Com-

puting, 20(1):318–336, 1998.

[27] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J.

Comput. Phys., 73:325–348, 1987.

[28] M. Kang, R. Fedkiw, and X. D. Liu. A boundary condition capturing method

for multiphase incompressible flow. J. Sci. Comput., 15:323–360, 2000.

121

[29] J. Kim and P. Moin. Application of a fractional step method to incompressible

Navier-Stokes equations. J. Comput. Phys., 59:308–323, 1985.

[30] M. C. Lai and C. S. Peskin. An immersed boundary method with formal second

order accuracy and reduced numerical viscosity. J. Comput. Phys., 160:707–719,

2000.

[31] D.V. Le, B.C. Khoo, and J. Peraire. An immersed interface method for the incom-

pressible Navier-Stokes equations. Presented at the SMA Symposium, Singapore

2004.

[32] D.V. Le, B.C. Khoo, and J. Peraire. An immersed interface method for the

incompressible Navier-Stokes equations in irregular domains. In K. J. Bathe,

editor, Proceedings of the Third M.I.T. Conference on Computational Fluid and

Solid Mechanics, pages 710–716. Elsevier Science, June 2005.

[33] L. Lee. Immersed interface methods for incompressible flow with moving inter-

faces. PhD thesis, University of Washington, 2002.

[34] L. Lee. An immersed interface method for incompressible Navier-Stokes equa-

tions. SIAM J. Sci. Comput., 25(3):832–856, 2003.

[35] R. J. LeVeque and Z. Li. The immersed interface method for elliptic equations

with discontinuous coefficients and singular sources. SIAM J. Numer. Anal.,

31:1019–1044, 1994.

[36] R. J. LeVeque and Z. Li. Immersed interface method for Stokes flow with elastic

boundaries or surface tension. SIAM J. Sci. Comput., 18(3):709–735, 1997.

[37] Z. Li. Immersed interface method for moving interface problem. Numerical

Algorithms, 14:269–293, 1997.

[38] Z. Li and M.C. Lai. The immersed interface method for the Navier-Stokes equa-

tions with singular forces. J. Comput. Phys., 171:822–842, 2001.

122

[39] Z. Li and C. Wang. A fast finite difference method for solving Navier-Stokes

equations on irregular domains. Comm. Math. Sci., 1(1):180–196, 2003.

[40] C. Liu, X. Sheng, and C. H. Sung. Preconditioned multigrid methods for un-

steady incompressible flows. J. Comput. Phys., 139:35–57, 1998.

[41] M. Liu, Y. X. Ren, and H. Zhang. A class of fully second order accurate projection

methods for solving the incompressible Navier-Stokes equations. J. Comput.

Phys., 200:325–346, 2004.

[42] A. Mayo. The fast solution of Poisson’s and the biharmonic equations on irregular

regions. SIAM Journal on Numerical Analysis, 21(2):285–299, 1984.

[43] D. Nguyen, R. Fedkiw, and M. Kang. A boundary condition capturing method

for incompressible flame discontinuities. J. Comput. Phys., 172:71–98, 2001.

[44] C. S. Peskin. Numerical analysis of blood flow in the heart. J. Comput. Phys.,

25:220–252, 1977.

[45] C. S. Peskin. The immersed boundary method. Acta Numerica, 11(2):479–517,

2002.

[46] V. Ramachandran, R. Venkaresan, G. Tryggvason, and H. S. Fogler. Low

Reynolds number interactions between colloidal particles near the entrance to

a cylindrical pore. J. Colloid and Interface Science, 229:311–322, 2000.

[47] D. Russell and Z. J. Wang. A Cartesian grid method for modeling multiple

moving objects in 2D incompressible viscous flow. J. Comput. Phys., 191:177–

205, 2003.

[48] Y. Sadd. GMRES: A generalized minimal residual algorithm for solving non-

symmetric linear systems. SIAM J. Sci. Stst. Comput., 7:856–869, 1986.

[49] J. A. Sethian and A. Wiegmann. Structural boundary design via level set and

immersed interface methods. J. Comput. Phys., 163:489–528, 2000.

123

[50] C.W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory

shock capturing scheme, II. J. Comput. Phys., 83:32–78, 1989.

[51] A.L.F. Lima E. Silva, A. Silveira-Neto, and J.J.R Damasceno. Numerical sim-

ulation of two-dimensional flows over a circular cylinder using the immersed

boundary method. J. Comput. Phys., 189:351–370, 2003.

[52] J. Stoer and R. Bulirsch. Introduction to numerical analysis. Springer-Verlag,

third edition, 2002.

[53] E. Y. Tau. A second-order projection method for the incompressible

Navier-Stokes equations in arbitrary domains. J. Comput. Phys., 115:147–152,

1994.

[54] D. J. Tritton. Experiments on the flow past a circular cylinder at low Reynolds

numbers. J. Fluid. Mech., 6(4):547–567, 1959.

[55] C. Tu and C. S. Peskin. Stability and instability in the computation of flows

with moving immersed boundaries: a comparison of three methods. SIAM

J. Sci. Statist. Comput., 13:1361–1376, 1992.

[56] H. S. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna. A sharp interface

Cartesian grid method for simulating flows with complex moving boundaries.

J. Comput. Phys., (174):345–380, 2001.

[57] S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous, incom-

pressible flows. J. Comput. Phys., 100:25, 1992.

[58] N. T. Wang and A. L. Fogelson. Computational methods for continuum models

of platelet aggregation. J. Comput. Phys, 151:649–675, 1999.

[59] X. Wang and W. K. Liu. Extended immersed boundary method using FEM and

RKPM. Comput. Methods Appl.Mech. Engrg., 193:1305–1321, 2004.

124

[60] A. Wiegmann and K.P. Bube. The immersed interface method for nonlinear

differential equations with discontinuous coefficients and singular sources. SIAM

J. Numer. Anal., 35:177–200, 1998.

[61] A. Wiegmann and K.P. Bube. The explicit-jump immersed interface method:

Finite difference methods for PDEs with piecewise smooth solutions. SIAM

J. Numer. Anal., 37(3):827–862, 2000.

[62] C. H. K. Williamson. Vortex dynamics in the cylinder wake. Ann. Rev. Fluid

Mech., 28:477–539, 1996.

[63] T. Ye, R. Mittal, H.S. Udaykumar, and W. Shyy. An accurate Cartesian

grid method for viscous incompressible flows with complex immersed boundary.

J. Comput. Phys., 156:209–240, 1999.

[64] L. Zhang, A. Gerstenberger, X. Wang, and W. K. Liu. Immersed finite element

method. Comput. Methods Appl.Mech. Engrg., 193:2051–2067, 2004.

125

