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Abstract— Current ACC vehicles do not provide the driver
with advance information of events occurring far ahead of
him/her. In this paper, we discuss the concept of a slowdown
warning system in automobiles, and analyze the same using
PDE models. If a driver on a highway progresses abnormally
slowly and/or generates large negative velocity gradients on the
highway (thereby posing a hazard to the vehicles behind him/her),
then, with such a system, the cars behind him/her are provided
advance information of this. This advance information gives the
drivers additional time to react, in anticipation of an impending
slow-down, and this helps to smoothen the velocity gradients.
Furthermore, and more importantly, it is seen that even if only
a fraction of the cars in a platoon are equipped with such an
advance warning system, this can still be sufficient to weaken
the velocity gradients even in the unequipped cars. In this
paper, we demonstrate this through simulations on PDE models
assuming finite communication wave propagation speeds through
the equipped cars.

I. INTRODUCTION

Rear end collisions are a major cause of multiple car
crashes, especially during bad weather conditions [1], [2],
[3], [4]. The cause for such crashes is that each driver gets
warned of an impending slowdown ahead, only when the
brake-lights of a car/group of cars immediately in front
of him/her, turn on. This is particularly true during poor
visibility conditions, and/or while driving behind a large
vehicle, when a driver is unable to look too far ahead, as
he/she otherwise normally would have. So, if we consider
a situation when there is a large negative velocity gradient
occurring at some point on the highway, then information
of the existence of such a gradient is propagated from car
to car in a staggered fashion (Figure 1(a)), as the brake-
lights of each car come on, one after the other. This mode
of information propagation is often too slow, and as a
consequence, these large velocity gradients travel along the
highway, mostly unattenuated. The stronger this velocity
gradient, the higher the discomfort experienced by a driver,
as this gradient passes through him/her - and the higher the
possibility of occurrence of a pileup crash.

There exists an important analogy between the occurrence
of car pile-up crashes and the shock waves occurring in
compressible flow dynamics. The earliest such discussion of
shock waves in traffic flow dynamics appeared in [5].

In this paper, we discuss a means to alleviate the possibil-
ity of car pile-up crashes. For this, we discuss a slowdown
warning concept, whereby cars are equipped with a slow-
down warning system. A car equipped with such a system has
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Fig. 1. Propagation of slowdown information in cases (a), (b) and (c).

the ability to (i) Automatically transmit a slowdown warning
signal whenever it anticipates the existence of a region
of large negative velocity gradient ahead, or its velocity
becomes dangerously low for highway driving conditions,
and (ii) Receive a slowdown warning signal, and alert the
driver accordingly, if it deems the signal to be relevant.
With such a system, one can achieve faster information
propagation speeds; so that cars further behind are warned of
the existence of a hazard ahead, earlier than they otherwise
would have. This advance information enables the drivers
to react appropriately and slow down in order to avoid the
crash. Figure 1(b) shows a schematic representation of the
existence of a network of equipped vehicles, that enable
faster information propagation amongst themselves.

In a real-life scenario, however, it would be unrealistic
to assume that all the cars in a platoon will indeed be
equipped with a slow-down warning system. It is pertinent
therefore, to examine the influence of such a system, when
only a (randomly selected) fraction of the total number of
cars in the platoon are equipped with the system. In this
case, information is propagated as in Figure 1(c). The figure
shows a schematic representation of networks of equipped
vehicles, scattered amongst the unequipped vehicles.

The use of inter-vehicle communication for enhancement
of vehicle safety has been discussed,e.g., in [9], [13], [10],
[11], [12] though not in the context of alleviating car pile-
up crashes with partial inter-vehicle communication. While
there has been recent research activity on mixed systems
(comprising of semi-automated and manual vehicles), [21],
[22], these systems do not assume inter-vehicle communica-
tion. We therefore believe that there is value in the analysis
of mixed systems with partial inter-vehicle communication,
involving information propagation as in Fig. 1(c). This paper



is a step in that direction, and addresses the specific issues
of car pile-up crashes, shock waves and their alleviation.
In [23], [24], [25], we discussed results of some simulation
studies using microscopic and cellular automaton models
incorporating the slowdown warning system and details of
road test results that were performed after equipping cars
with the slowdown warning system.

The use of macroscopic models for studying traffic flows
has a fairly long history. The Lighthill-Whitham-Richards
(LWR) model [6], [5] represents the earliest use of macro-
scopic models to represent traffic flow. The LWR model
is basically a first order model that is based on a gas
dynamic-like continuity equation (representing the conser-
vation of cars). Subsequently, second order models have
been developed, for example, the Payne-Whitham model [7].
Prigogine and Herman [18] developed traffic flow equations
based on the Boltzmann equation, which have been further
refined by Paveri-Fontana [19]. Based on Paveri Fontana’s
equations, Helbing then derived a (gas dynamic based) third
order macroscopic traffic model [15] (this model included
an equation for the velocity variance), and also a second
order traffic model [16], that is anisotropic in nature. Helbing
also derived a gas dynamic based two species traffic model
where the two species were cars and trucks [16], as also did
Hoogendoorn and Bovy [17]. There have also been papers
on analysis of stability in traffic flows[20]. In this paper, we
adapt the Helbing model [16] to a situation wherein the two
species comprise vehicles equipped with the ability to receive
advance far-ahead information, interspersed with unequipped
vehicles that are capable of sensing only local information.
We also adapt the Helbing model appropriately in order to
account for a finite speed of information propagation among
the equipped vehicles.

The goal of this paper is to examine how the slowdown
warning system can weaken a shock, even in a mixed sensing
environment wherein there is only a partial equipage of the
slowdown warning system. The presence of some equipped
vehicles (who, in some sense, receive advance information
of the possibility of a shock ahead before it actually reaches
them) can help in diminishing the strength of the shock
(even among the unequipped vehicles), thereby smoothening
the traffic flow. This paper is organized as follows. Section
II discusses the macroscopic model used and demonstrates
simulation results showing initial conditions under which
a shock propagates through the traffic. Section III then
discusses the macroscopic model used in a situation of partial
equipage, and with a finite speed of information propagation
among the equipped vehicles; and demonstrates simulation
results showing the strength of the shock wave in both -
the equipped and unequipped vehicles under the same initial
conditions, and for varying equipages. Section IV presents
the conclusions.

II. ALL VEHICLES UNEQUIPPED : MODEL AND
SIMULATIONS

We use the model derived by Helbing [16], which in turn,
has been inspired by the gas kinetic based models derived

by Prigogine and Herman [18], and Paveri Fontana [19].
Definingρ(x, t) as the average density,V (x, t) as the average
velocity andθ(x, t) as the velocity variance in the region
[x − dx/2, x + dx/2], the following macroscopic equations
are obtained :

∂ρ

∂t
+

∂(ρV )
∂x

= 0 (1)

∂(ρV )
∂t

+
∂(ρV 2 + ρθ)

∂x
= ρ

V eq − V

τ
(2)

The above hierarchy of equations is closed by assuming
that θ = A(ρ)V 2. Furthermore,Ve(x, t) represents the
average equilibrium velocity and is given by :

V eq(x, t) = V o − P (ρa)Bρτθ (3)
whereV o represents the average desired velocity,τ repre-

sents the average relaxation time,ρa represents the average
density computed at the interaction pointxa = x+γ(l+V T ),
with l = 1/ρmax representing the average vehicle length
(ρmax represents the maximum vehicle density),T denotes
the average time headway that vehicles try to maintain in
the limit of maximum density, andγ ∈ [1, 3] represents
an anticipation factor. The factorP (ρ) that takes into effect
both the probability of overtaking, as well as the existence
of a finite interaction-free space, is defined asP (ρ) =

V oρT 2

τA(ρmax)(1−(ρ/ρmax)2)
. The factorB that takes into account

the anisotropic interaction effects, is given as

B(δv) = δv
e−δ2

v/2√
2π

+ (1 + δ2
v)

∫ δv

−∞ dy e−y2/2√
2π

(4)
where δv = (V − Va)/

√
θ + θa with Va and θa repre-

senting the average velocity and velocity variance computed
at the interaction pointxa. The following values have been
assumed for the numerical data (when all vehicles are
unequipped) :
Average desired velocityV o = 110km/hour (This corre-
sponds to a highway speed limit that a driver would like to
maintain, if the road was empty)
Average relaxation timeτ = 15sec
Maximum vehicle densityρmax = 160vehicles/km/lane
Average time headwayT = 1sec
A(ρ) which is the density dependent pre-factor has the profile
given in Figure 2 [16]. Using these values, the following
curve representing the variation of average equilibrium ve-
locity with density, is obtained (Figure 3) [16].
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Fig. 2. Variance Pre-factor Profile

A good prototype of an initial condition used to test
the influence of the slowdown warning system in a mixed
equipage scenario, is the Reimann Problem. The Reimann
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Fig. 3. Equilibrium Average Velocity Profile

Problem represents an initial condition comprising of a left
state and a right state joined by a discontinuity, in each of
the dependent variables, with the discontinuity occurring at
the same spatial location for both variables. The left states
are denoted byρL andVL, while the right states are denoted
by ρR andVR respectively.

In the Reimann Problems that we will consider, we will
assume thatρL < ρR and VL > VR. It can be seen that a
large drop in average velocity, occurring over a short distance
(in other words, a large negative spatial velocity gradient) is
indicative of a potentially unsafe driving situation. We choose
ρL = 15 vehicles/km/lane andρR = 140 vehicles/km/lane.
We assume thatρ changes fromρL to ρR over a length of
200 meters, which appears as a shock over a length scale
of 10 km. Additionally, we will assume that the left and
right states are both in their respective equilibrium (when
all vehicles are unequipped). From Figure 3, it can be seen
that this implies thatVL = 105.67 kmph andVR = 3.17
kmph. We use boundary conditions as follows :ρ(0, t) =
ρ(0, 0); V (0, t) = V (0, 0).

Figure 4 then shows the average density and average
velocity profiles as a function of space and time, when all the
vehicles are unequipped. It can be seen that the initial large
negative velocity gradient propagates, almost unattenuated,
backwards along the highway. The wave speed at which it
propagates is found asρLVL−ρRVR

ρL−ρR
= −9.1kmph. Figure 5

shows the average driver trajectories on a space-time plane.
On this figure too, the shock-like behavior is clearly seen.

The presence of a large negative gradient on an initial
velocity condition can also be seen as a large negative
perturbation on∂V

∂x . As can be seen from Figure 14, with all
vehicles unequipped,∂V

∂x attenuates in magnitude initially for
a short while, only very slightly, and then propagates along
unattenuated. If we define||∂V

∂x ||∞ = maxx
∂V
∂x at a given

time t, then the time history of||∂V
∂x ||∞ is shown in Figure

15. In the next section, we will analyze how the same initial
condition evolves in a situation of partial equipage with the
slowdown warning system.

A second initial condition of interest is one that is initially
continous, but then propagates with time, in a manner such
as to eventually form a shock. In other words, the initial
(decreasing) average velocity profile steepens with time. It
is of interest to see how a partial equipage of the slowdown
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Fig. 4. Average Velocity and Density profiles (All vehicles unequipped)
for the Reimann Problem
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Fig. 5. Average Vehicle trajectories on the x-t plane (All vehicles
unequipped) for the Reimann Problem

warning system can help arrest the wave steepening scenario
that can exist (when all vehicles are unequipped), and to then
parametrize this effect as a function of varying equipage.

For this purpose, we invoke an initial condition with
identical left and right states as before, i.e.ρL = 15 vehi-
cles/km/lane,ρR = 140 vehicles/km/lane andVL = 105.67
kmph, VR = 3.17 kmph; but instead of joining them by a
discontinuity, we now joinρL to ρR by a gradual transition,
so that the average density increases fromρL to ρR over a
span of2 km. The average velocity varies fromVL to VR in
a manner so that the average velocity is in equilibrium with
the average density at eachx.

Figure 6 then shows the average density and average
velocity profiles as they evolve with time, from the above
initial condition. It is seen that the top portion of the velocity
wave (and the bottom portion of the density wave) move
forward relative to the highway, i.e. they have positive wave
velocity; while the bottom portion of the velocity wave
(as also the high density part of the density wave) move
backwards, with a negative wave velocity. This kind of
wave motion (wherein different parts of the wave have wave
velocities of opposite signs), leads to further and further
steepening of the wave, until eventually a shock is formed,
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Fig. 6. Average velocity and density profiles (all vehicles unequipped) for
a continous initial condition

that then moves backwards as a whole. The evolution of
||∂V

∂x ||∞ showing the gradual steepening of the wave is given
in Figure 19, while Figure 18 gives the magnitude of∆V ,
which represents the velocity change that occurs over the
region where the value of∂V

∂x is less than−100 kmph/km.
It is seen that over a span of approximately5 minutes,
∆V increases to almost100 kmph, which makes it almost
identical to the initial condition of the first case we explored.

III. PARTIAL EQUIPAGE OF THE SLOWDOWN
WARNING SYSTEM : MODEL AND SIMULATIONS

We now intend to test the above two initial conditions
in a scenario of mixed equipage, schematically depicted in
Figure 7. To this end, we assume that att = 0, the average
velocity of the equipped vehicles is identical to that of the
unequipped vehicles.ρU (x, t), VU (x, t) are used to represent
the average density and average velocity of the unequipped
vehicles, whileρE(x, t) and VE(x, t) represent the average
density and average velocity of the equipped vehicles. To
test the effect of varying equipage, we varyρU and ρE ,
so that ρE(x)

ρU (x)+ρE(x) represents the percentage of equipage
at eachx, and we keepρU (x, 0) + ρE(x, 0) = a constant
which is equal to the density of vehicles when they were
all unequipped. In other words,ρUL(x, 0) + ρEL(x, 0) =
ρL(x, 0); ρUR(x, 0) + ρER(x, 0) = ρR(x, 0); VUL(x, 0) =
VEL(x, 0); VUR(x, 0) = VER(x, 0), where the values forρL,
ρR, VL and VR correspond to the values when all vehicles
were unequipped (as discussed in the previous section).

The following macroscopic equations for the mixed
equipage scenario are used :

∂ρU

∂t
+

∂(ρUVU )
∂x

= 0 (5)

∂ρE

∂t
+

∂(ρEVE)
∂x

= 0 (6)

∂(ρUVU )
∂t

+
∂(ρUV 2

U + ρUθ2
U )

∂x
=

V eq
U − VU

τ
(7)

∂(ρEVE)
∂t

+
∂(ρEV 2

E + ρEθE)
∂x

=
V eq

E − VE

τ
(8)

whereV eq
E (x, t) represents the average equilibrium velocity

of the equipped vehicles and is given by :
V eq

E (x, t) = V o
E − PBEUρUτθU − PBEEρEτθE (9)

Fig. 7. Schematic multi-vehicle scenario comprising of unequipped and
equipped vehicles

and whereV eq
U (x, t) represents the average equilibrium ve-

locity of the unequipped vehicles and is given by :
V eq

U (x, t) = V o
U − PBUEρEτθE − PBUUρUτθU (10)

V o
U and V o

E denote the average desired velocities
of the unequipped and equipped vehicles respectively.

P = (ρU+ρE)T 2V o
avg

τAρmax (1−((ρU+ρE)/ρmax)2)
and V o

avg = (ρUVU +
ρEVE)/(ρU + ρE). θU and θE represent the velocity vari-
ances of the unequipped and equipped vehicles respec-
tively, and it is assumed thatθU = A(ρU + ρE)V 2

U and
θE = A(ρU + ρE)V 2

E . Also, Bue, Bee, Beu, Buu have the
same form asBin Equation (4) except for the fact that
we now haveBue = B(δvue); Buu = B(δvuu); Beu =
B(δveu); Bee = B(δvee);, whereδvue = (Vu−Vea)/

√
(θu+

θea); δveu = (Ve − Vua)/
√

(θe + θua); δvuu = (Vu −
Vua)/

√
(θu + θua); δvee = (Ve − Vea)/

√
(θe + θea).

The above equations are similar to the equations used in
[16] when the two species of vehicles assumed were cars and
trucks, and in that context, it was assumed that the desired
vehicles of the cars and trucks remained constant for all
time. In our context however, we assume that the equipped
vehicles change their desired velocities instantaneously on
receipt of the communication wave - we therefore define an
additional variableγ(x, t) and add in the following additional
equations:

V o
E = γ(x, t)V o

Efinal + (1− γ(x, t))V o
Einitial (11)

∂γ

∂t
+ a

∂γ

∂x
= 0, (12)

where γ(x, t) is a Heaviside step function defined such
that γ(x, t) = 0 for that x (part of the highway that has not
received the communication wave by timet), andγ(x, t) = 1
for all otherx. Equation (11) thus implies that the moment an
equipped vehicle atx receives the slowdown warning signal
at a timet, its desired velocity changes instantaneously from
its initial valueV o

Einitial (which is assumed to be the same
asV o

U - the desired velocity of the unequipped vehicles) to a
final value ofV o

Efinal (which is assumed to be approximately
equal to the average velocity occurring at the degraded point
far ahead, where a hazard has occurred). Equation (12) is
a PDE that postulates the evolution ofγ(x, t) and in which
a < 0 represents the communication speed. The boundary
conditionγ(10, t) = 1 is imposed.



We note that alternative formulations are also possible. For
instance, if we assume that information of the location of the
hazard is also broadcast to the equipped vehicles (along with
the warning signal), then it is reasonable to assume that the
driver of the equipped vehicle will adapt his desired velocity
(as a function of distance to the hazard) so that he attains
his final desired velocity by the time he reaches the location
of the hazard. In this case, we could rewrite Equation (11)
as

V o
E = γ(x, t)

[
(1− α(x, t))V o

Efinal + α(x, t)V o
Einitial

]
+

(1− γ(x, t))V o
Einitial (13)

whereα(x, t) is a function that evolves according to the
PDE

∂α

∂t
+ VE

∂α

∂x
= −VE

d0
, (14)

with d0 representing the average distance of an equipped
car to the location of the hazard, when it first received the
warning signal, and the initial condition onα is specified
such thatα(x, 0) = 1 for all x to the left of the hazard, and
α(x, 0) = 0 for all x to the right of the hazard. The boundary
condition onα would beα(0, t) = 1. For the purposes of
this paper, we assume that the change in the desired velocity
of the equipped vehicle occurs instantaneously, i.e. Equations
(11) and (12) are employed.

For the first initial condition, we assume an average
communication speed of25 kmph, relative to the highway,
and moving backwards. Such a communication speed can
be achieved from an initial velocity of about100 kmph, if
the velocity threshold is approximately25 kmph, coupled
with a transmission range of about500 meters. In other
words, everytime an equipped vehicle (that is travelling at
an initial velocity of around100 kmph) receives the warning
signal and begins to slow down (in anticipation of the hazard
ahead); and then throws the signal back by500 meters once
its velocity falls below a threshold of25 kmph; then this
will result in a communication wave travelling backwards at
around25 kmph (on an average), relative to the highway.
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Fig. 8. Average Velocity profiles of Equipped and Unequipped Vehicles
(5% equipage) for the Reimann Problem

Figure 8 shows the average velocity profiles of the
equipped and unequipped vehicles respectively (for a 5%
equipage scenario), while Figure 9 shows the average density
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Fig. 9. Average Density profiles of Equipped and Unequipped Vehicles
(5% equipage) for the Reimann Problem

profiles of the same. It can be seen that as the communication
wave propagates through the equipped vehicles, causing them
to slow down, the unequipped vehicles are also forced to
slow down earlier than they otherwise would have (they
thus receive indirect information of the hazard ahead). The
wave velocity of the top portion of the average velocity of
the unequipped vehicles has now become negative (it was
formerly positive when they had no equipped vehicles among
their midst); and this in turn has led to a lower magnitude of
the average velocity shock experienced by the unequipped
vehicles. Figure 10 shows the average vehicle trajectories of
the equipped and unequipped vehicles, on ax− t plane. The
propagation of the communication wave is also seen.
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Fig. 10. Average Vehicle trajectories of Equipped and Unequipped Vehicles
on the x-t plane (5% equipage) for the Reimann Problem

Figure 11 then demonstrates the average velocity profiles
of the unequipped vehicles, for varying degrees of equipage,
while Figure 12 demonstrates the magnitude of the velocity
shock as a function of time, for the different equipages. It is
seen from Figure 12 that the largest reduction in∆V that can
occur with a5% increase in equipage, occurs in the0− 5%
range. With10% equipage, the velocity shock magnitude in
the unequipped vehicles is reduced almost by a factor of
one-half, for equipages above15%, the magnitude of benefit



obtained (as measured from the reduction in shock strength
of the unequipped vehicles per unit increase in the density
of the equipped vehicles), is not significantly increased. This
behavior is also manifested in Figure 13 as also Figure 15,
which demonstrates||∂Vu

∂x ||∞, as a function of time.
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Fig. 11. Average Velocity profiles of unequipped vehicles with varying
equipages for the Reimann Problem
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After our discussion on the Reimann Problem, we now
direct our attention towards the second initial condition
studied earlier, i.e. a situation wherein an initially continuous
condition, evolved with time, to get progressively steeper
and eventually appear like a discontinuity. In this case, we
test two different scenarios : in the first, we assume that
information of the existence of a velocity gradient is made
available to the equipped vehicles residing to the left of the
point x = 6km, at t = 0; while in the second, we assume
that information of low velocity conditions ahead is made
available to the equipped vehicles residing to the left of the
point x = 8km. Again, in either case, the communication
wave is assumed to travel at a constant speed of25 kmph, in
the backward direction; this time originating fromx = 6km,
at t = 0 (in the first case) and originating fromx = 8km, at
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Fig. 13. Magnitude of∆Vu at steady state for different percentages of
equipage for the Reimann Problem
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for varying equipages for the Reimann Problem

t = 0 in the second. The reason that this case is interesting
is because it enables us to see if and how varying equipage
can arrest the formation of the discontinuity, before it has
developed.

Figure 17 shows the average velocity profiles of the
equipped and unequipped vehicles for the first scenario
(assuming a30% equipage). It is seen that the top portion of
the average velocity (which had positive wave velocity when
all vehicles were unequipped, i.e. it was moving forward
relative to the highway), now immediately begins to move
backwards as the communication wave passes through the
equipped vehicles. This arrests the wave steepening effect
that was present in the case of no equipage; and consequently
the equipped vehicles do not experience any abrupt velocity
gradient, while the unequipped vehicles experience a signifi-
cantly reduced magnitude of negative velocity gradient, than
they otherwise would have.

Figure 18 shows the time history of the magnitude of
∆V for the unequipped vehicles (for varying equipages),
with ∆V representing the average velocity change of the
unequipped vehicles over the region where∂Vunequip

∂x is
smaller than−100 kmph/km. It is seen that again a5%
equipage causes greatest reduction in∆V and that above
an equipage of15%, the benefit obtained per unit increase
in percentage equipage, is not significantly greater. The same
effect is manifested in Figure 19 that shows||∂Vu

∂x ||∞.
Figure 20 then shows the average velocity profile for the
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Fig. 17. Average velocity profiles of equipped and unequipped Vehicles
(30% equipage) for the continous initial condition (first information propa-
gation scenario)
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Fig. 18. Magnitude of∆Vu for varying equipages for the continous initial
condition(first information propagation scenario)
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Fig. 19. || ∂Vu
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||∞ for varying equipages for the continous initial
condition(first information propagation scenario)

same initial condition, but for the second scenario, i.e. we
now assume that information of the low velocity originates
from x = 8km, and this travels backwards at the communi-
cation speed of25kmph. In this case, it is seen that the wave
does steepen for a while - both the equipped and unequipped
vehicles experience increasingly sharper negative velocity
gradients for close to3 minutes, before the smoothening
effect of the slowdown warning system sets in. The reason
that they experience the wave steepening for a while can be
attributed to the fact that the top (high velocity) portion of
the velocity wave continues to move forward for a while,
before the communication wave comes upon it. This effect
is also seen in Figure 21. This thus demonstrates that for
this initial condition, a communication speed of25 kmph
is adequate if it originates from the left end of the velocity
gradient (as in the first scenario), but it is inadequate if it
originates from the right end of the velocity gradient (as in
the second scenario).

IV. CONCLUSIONS

In this paper, the effect of a slowdown warning system
on a macroscopic traffic model is analyzed. A slowdown
warning system warns vehicles of the existence of large
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Fig. 20. Average velocity profiles of equipped and unequipped Vehicles
(30% equipage) for the continous initial condition(second information
propagation scenario)
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Fig. 21. Magnitude of∆Vu for varying equipages for the continous initial
condition(second information propagation scenario)

negative velocity gradients/low velocities on the highway
ahead, so the drivers can take anticipative action accordingly.
Different types of initial conditions - those with initial large
negative velocity gradients at the very outset, and those with
initially mild velocity gradients that then propagate with time
to become sharper and sharper, are examined. The effect of
partial equipage of the slowdown warning system in these
scenarios is studied, and the effect of varying equipage on
the subsequent velocity gradients is analyzed.
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