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Abstract

We present a coupled Immersed Interface Method – Boundary El-
ement Method (IIM–BEM) numerical technique that allows the pre-
diction of the behavior of deformable cells under the effect of both
hydrodynamic and electrical effects. This technique is applied to the
study of a hybrid electrical-mechanical trap for single-cell trapping.
We report on the effect of different combinations of electrode positions
and mechanical properties of the trap on the maximum loading and
unloading Reynolds numbers. We also report on the effect that cells
moving with the flow have on cells which have been already trapped
in a cavity.

Key words : Immersed Interface Method, Boundary Element Method, Navier-
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1 Introduction

Individual cell trapping and manipulation is rapidly becoming one of the
most useful tools in biomedical research [9, 13]. Creating large arrays of
individual cell traps allows detailed statistical studies of cell responses to dif-
ferent treatments with a minimal consumption of reactants. The technology
currently used to create arrays of single cell traps is based on combinations
of surface patterning, microfluidic design, and electrical fields [12, 30].

Amongst the electrical techniques used to manipulate biological material
dielectrophoretic (DEP) traps show great promise, as they are highly sensi-
tive to the electrical properties of cells – allowing for accurate cell separation
[11, 22] and characterization [10, 14] – and have the ability to stably trap
cells suspended in a liquid while avoiding all contact with the container walls.

Dielectrophoretic traps work by creating a highly non-homogeneous elec-
trical field within the trap volume. As a cell enters the trap it is polarized
by the external field; then the interaction between the strong electrical field
gradient and the cell polarization produces a net force which is used to trap
the cell. Depending on the dielectric properties of the liquid buffer and the
cell, and on the frequency of the applied field, the DEP force can be positive
(cells move towards the highest field region in the trap) or negative (cells
move towards the electric field minimum in the trap) [15, 25]. Although pos-
itive dielectrophoresis tends to produce stronger trapping fields, it has the
severe disadvantage of moving the cells towards the electrode edges where
the heat dissipation is highest and the cells may contact the container walls
[29]. In most cases these are characteristics to be avoided with living mate-
rial, and for this reason we have chosen negative DEP cell traps to show the
capabilities of our technique.

Although the use of hybrid electrical–mechanical devices to trap single
cells has been demonstrated in experiments there are at present no systematic
studies of their loading and unloading characteristics. The use of numerical
methods is ideal for this purpose, as many different trap configurations can
be studied in a controlled manner and in a short period of time. It is the
purpose of this work to introduce the coupled IIM-BEM method as a flexible
tool for the study of the complex phenomena that takes places in single-cell
traps.

In our numerical studies, the Immersed Interface Method provides the
means of calculating hydrodynamic effects and fluid-structure interaction ef-
fects such as cell deformation, and the Boundary Element Method is used
to calculate the electric fields and their effects on the particle. The imple-
mentations of the Immersed Interfaced Method and the Boundary Element
Method used in this work have both been independently tested as reported
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in references [18] and [26].
The immersed interface method is employed to solve the Navier-Stokes

equations by using the finite different method on a staggered Cartesian grid.
Therefore, the immersed interface method is a Cartesian grid method. The
basic idea of the immersed interface method is to account for the singular
forces along the immersed boundaries by explicitly incorporating the jumps
in the solutions and their derivatives into the difference equations. By doing
that the IIM can avoid smearing sharp interfaces and maintains second-order
accuracy. The IIM was originally proposed by LeVeque and Li [20, 21] for
solving elliptic equations and Stokes flow with elastic boundaries or surface
tension. The method was developed further for the Navier-Stokes equations
in [19, 23] for problems with flexible boundaries and in [17] for problem
with rigid boundaries. The IIM was also used in [8, 24, 27] for solving
the two-dimensional streamfunction-vorticity equations on irregular domains.
Recently, the IIM has been developed to handle rigid and flexible boundaries
simultaneously in Le et al. [18].

In the present work, we introduce a coupled IIM-BEM approach for solv-
ing the viscous flow and electrostatic problems in the presence of rigid bound-
aries and deformable cell interfaces. Our IIM for solving viscous flow problem
is largely based on that described in [18]. The singular forces along the cell
interfaces are the elastic and dielectrophoretic forces, which are computed
based on the configuration of the interfaces. The DEP force is calculated by
solving an electrostatic problem using the BEM technique. BEM is a natural
choice for solving the electrostatic problem because the only quantity that
we are interested in is the DEP force acting along the cell boundary. The
singular force at the rigid boundary is determined by imposing the no-slip
condition. Once all the singular forces have been computed, the jump in
pressure and jumps in the derivatives of both pressure and velocity are cal-
culated and incorporated into the finite difference discretization to obtain a
sharp interface resolution.

By using both IIM and BEM techniques together, we can explore the
behavior of target cells in detail, and describe the cell deformation and motion
under the effects of both the electric and the flow fields. In addition, we can
also analyze how a trapped cell behaves when it interacts with a second cell
suspended in the fluid. This provides important information that is needed
in order to ensure that a single cell is trapped per trapping site in an array
instead of two or more.

This paper is divided into four main sections. Section two describes the
Immersed Interface Method and the Boundary Element Method techniques,
section three describes a study of a two-dimensional single-cell trap that uses
both mechanical and dielectrophoretic trapping for maximum effect, and
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finally, section four contains the discussion of our results.

2 Numerical method

2.1 Governing equations

The application we consider includes a viscous flow problem and an electro-
static problem as shown in Fig. 1. For the viscous flow problem, we consider
the incompressible Navier-Stokes equations formulated in primitive variables,
written as

ρ (ut + (u · ∇)u) +∇p = µ4u + F (1)

∇ · u = 0 (2)

with boundary conditions
u|∂Ω = ub , (3)

where u is the fluid velocity, p is the pressure, ρ is the density, and µ the
viscosity of the fluid. Throughout this paper, we assume that the fluid density
ρ and the viscosity µ are constant over the whole domain. The Navier-Stokes
equations are considered in a 2-dimensional bounded domain Ω that contains
rigid boundaries and deformable material interfaces Γ(t). The effect of the
material interface Γ(t) immersed in the fluid results in a singular force F
which has the form

F (x, t) =

∫

Γ(t)

f(s, t)δ(x−X(s, t))ds , (4)

where X(s, t) is the arc-length parametrization of Γ(t), s is the arc-length,
x = (x, y) is spatial position, and f(s, t) is the force strength. Here, δ(x) is
the two-dimensional Dirac function. The motion of the interfaces satisfies

∂

∂t
X(s, t) = u (X, t) =

∫

Ω

u(x, t)δ(x−X(s, t))dx . (5)

The strength of the singular forces at the rigid boundaries is determined
by solving a small system of equations at each timestep to impose the no-slip
conditions at the rigid boundaries. The forces that the deformable boundary
exerts on the fluid are the elastic force and the dielectrophoretic force, which
are applied to the fluid through the jump conditions,

f(s, t) = f elastic(s, t) + fDEP (s, t) . (6)
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The elastic force, f elastic(s, t), exerted by the immersed boundary on the
fluid is given as

f elastic(s, t) =
∂

∂s
(T (s, t)τ (s, t)) , (7)

where T (s, t) is defined as

T (s, t) = T0

(∣∣∣∣
∂X(s, t)

∂s0

∣∣∣∣− 1

)
(8)

and τ (s, t) is the unit tangential vector to the interface,

τ (s, t) =
∂X

∂s

/ ∣∣∣∣
∂X

∂s

∣∣∣∣ . (9)

Here, s and s0 are the arc-lengths measured along the current and un-
deformed configuration of the interface, respectively. The scalar T0 is the
stiffness constant which describes the elastic property of the flexible bound-
ary.

The DEP force, fDEP (s, t), is calculated by solving an electrostatic prob-
lem in a system with conductors (the electrodes) and piecewise homogeneous
dielectrics (the fluid, the particle and the substrate). Assuming neutrally
charged particles this problem is governed by Laplace’s equation for the po-
tential:

∇ (ε̃∇φ) = 0 . (10)

where ε̃ is the complex permittivity as described below. The boundary con-
ditions applied are given potential at the electrodes and continuity of the
potential and the normal electric displacement at material interfaces:

φ(x) = φ0 if x ∈ electrode surface (11)

φ1(x) = φ2(x)

ε̃1
∂φ1

∂n

∣∣
x

= ε̃2
∂φ2

∂n

∣∣
x

}
if x ∈ interface (12)

where ε̃i = εi − jσi/ω is the complex permittivity of material i; εi and σi

are the dielectric permittivity and the electric conductivity of medium i; j is√−1 and ω is the radial frequency of the external field.
The electric field is calculated as the negative of the gradient of the po-

tential:
E = −∇φ . (13)
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The total force acting on a suspended particle can be calculated using
the Maxwell stress tensor method, where the total force is calculated as the
integrated stress tensor TM over the surface Γ of the particle:

F (t)DEP =

∮
(TM · n) dΓ (14)

where n is the unit vector normal to the surface and t is time. In most
DEP studies the electric field has a frequency below 100 MHz and, therefore,
a wavelength that is at least a few meters long. This is several orders of
magnitude larger than the dimensions of typical electrode structures in DEP
devices and thus the near-field approximation can be used and effects due to
magnetic field components neglected [31]. In this approximation the Maxwell
stress tensor for a general, conductive dielectric medium, is given by:

TM = ε

(
EE − 1

2
E2I

)
. (15)

This is regarded as the most rigorous approach to derive field-induced
forces. For an applied harmonic electrical field the time-averaged net DEP
force on a particle using this method is given by reference [31] as:

〈F DEP(t)〉 =
εf

4

∮ {[
(EfE

∗
f + E∗

f Ef)− |Ef |2I
] · n}

dΓ . (16)

Here EfE
∗
f is the diadic product of the electric field and its complex

conjugate, and the subscript f indicates quantities corresponding to the fluid
medium where the particle is suspended. The dependence in time t is kept
because as the particle moves position the average DEP force will change due
to the different electric field distribution. Notice that this approximation will
only be valid as long as the frequency of the externally applied field is much
higher than the velocity at which changes in position of the particle occur.
Let the particle velocity divided by the particle size, fmove = up/dp, define a
frequency associated to the particle movement. Typical frequencies of DEP
traps belong in the MHz range, taking a typical cell of diameter of 10 µm
and a typical velocity of cell transport in microchannels of 1 mm/s we find
that:

ffield

fmove

≈ 106

(10−3/10−5)
= 104 À 1 (17)

which certainly allows us to use the average DEP force as described above.
To couple efficiently this force calculation to the Immersed Interface

Method we must provide the force density at the interface, as given by the
differential form of equation (16):

〈fDEP(s, t)〉 =
εf

4

[
(EfE

∗
f + E∗

f Ef)− |Ef |2I
] · n . (18)
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The Immersed Interface Method and the Boundary Element Method com-
plement each other because the BEM can provide the electrical force at any
point in the surface of a suspended cell, and the IIM requires this force to
predict the level of deformation and movement of the cell in each time step
of the simulation. On the other hand, the BEM solver takes as input the
new position and shape of the interface provided by the IIM and produces
new values of the force which are then fed back to the IIM solver. The cou-
pled system is solved using a semi-implicit time integration scheme and this
procedure is repeated continuously.

2.2 Electric field calculation

In this section the indirect formulation of the boundary element method for
Laplace’s equation is derived from the well-known direct formulation. We
shall show how to obtain the equations necessary for nodes in a dielectric
interface and provide details on the implementation.

2.2.1 Indirect Formulation of the Boundary Element Method

The indirect formulation of the Boundary Element Method with only sources
has been chosen because its implementation for systems with multiple ma-
terial interfaces is much simpler than the corresponding implementation for
the direct formulation.

There is abundant literature on the direct boundary element method
formulation (DBEM) [5, 33], but much less on the formulation of the indirect
boundary element method (IBEM) [6] . In this section we will briefly derive
the equations for the indirect boundary element method (IBEM) from the
well established equations for the DBEM.

We start with a bounded domain Ω− enclosed by a smooth boundary Γ,
and surrounded by its complementary domain Ω+ = R2 − Ω− as shown in
Figure 2.

The integral equation describing the potential φ at any point in the do-
main Ω− is given by:

c(r)φ(r) +

∫

Γ

φ(r′)H(r, r′)dΓ′ =
∫

Γ

q(r′)G(r, r′)dΓ′ (19)

where G(r, r′) is the Green’s function of the problem, and H(r, r′) its normal
derivative in the direction pointing outwards of the domain. q(r′) is defined as
the normal derivative of the potential ∂nφ with the normal pointing outwards
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of the domain Ω−. c(r) is given – for smooth surfaces – by:

c(r) =

{
1 if r ∈ Ω−

1/2 if r ∈ Γ
. (20)

The Green’s function for free space is defined as the solution to the prob-
lem:

∇2G(r, r′) = −δ(r − r′) (21)

which has the following forms in two dimensions:

G(r, r′) =
1

2π
ln

(
1

|r − r′|
)

. (22)

The normal derivative of the Green’s function is obtained from equation
(22) as:

H(r, r′) =
1

2π

(r − r′) · n̂
|r − r′|2 . (23)

Let φ denote the solution to the Laplace equation in the complementary
domain Ω+, and q be its derivative with respect to the normal pointing
direction outwards of the domain Ω+. The potential in the complementary
domain must obey the following expression:

c(r)φ(r) +

∫

Γ

φ(r′)H(r, r′)dΓ′ =
∫

Γ

q(r′)G(r, r′)dΓ′ (24)

where c(r) is:

c(r) =

{
1 if r ∈ Ω+

1/2 if r ∈ Γ
. (25)

For any point with position r on the boundary Γ, we have c(r) = c(r) =
1/2 and, equations (19) and (24) can be rewritten as:

1

2
φ(r) +

∫

Γ

φ(r′)H(r, r′)dΓ′ =
∫

Γ

q(r′)G(r, r′)dΓ′ (26)

1

2
φ(r) +

∫

Γ

φ(r′)H(r, r′)dΓ′ =
∫

Γ

q(r′)G(r, r′)dΓ′ . (27)

For points at the boundary G = G and H = −H due to the different
direction of the normals at the interface for the two domains. Using this
relationship and adding together the two equations above we obtain the fol-
lowing expression:

1

2

[
φ(r) + φ(r)

]
+

∫

Γ

[
φ(r′)− φ(r′)

]
H(r, r′)dΓ′ =

∫

Γ

[q(r′) + q(r′)] G(r, r′)dΓ′ .

(28)
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This is the general expression for the potential in the indirect boundary
element method, where the integral on the right hand side can be considered
as the contribution from a distribution of sources, and the integral on the
left hand side as a the contribution from a distribution of dipoles. Let us
define the following source and dipole densities:

Q(r′) = q(r′) + q(r′) , (29)

m(r′) = φ(r′)− φ(r′) . (30)

Substituting now these definitions into the previous expression (28) we
obtain a more familiar result:

1

2

[
φ(r) + φ(r)

]
=

∫

Γ

m(r′)H(r, r′)dΓ′ +
∫

Γ

Q(r′)G(r, r′)dΓ′ . (31)

Comparing expressions (19) and (31) we see that in the case of the IBEM
formulation we need to solve for twice as many unknowns. In principle, this
would leave us with an underspecified system, but we can get around this
problem by specifying an extra boundary condition on each node.

This additional boundary condition will depend on what physical quantity
we are calculating. When the condition specified is the continuity of the
potential we find that m(r′) = 0 and the problem is reduced to a source
formulation:

φ(r) =

∫

Γ

Q(r′)G(r, r′)dΓ′ . (32)

Since in this work we are interested in solving Laplace’s equation for
the electric potential, which is continuous at material interfaces, we will use
Equation (32) in our calculations.

In electrostatics the normal derivatives of the potential correspond to the
normal components of the electric field, so the source Q(r) can be written
as:

Q(r) = q(r′) + q(r′) = En(r
′)− En(r

′) (33)

and using Gauss’ Law jump condition this results in:

Q(r) = En(r
′)− En(r

′) =
ρs(r

′)
ε0

, (34)

where ε0 is the permittivity of free space and ρs is the total line charge density
in Γ. For convenience we will redefine G and H as:

G(r) = ln

(
1

|r − r′|
)

, (35)

H(r) =
(r − r′) · n̂
|r − r′|2 , (36)

9



so that, the final expression for the potential is:

φ(r) =
1

2πε0

∫

Γ

ρs(r
′)G(r, r′)dΓ′ . (37)

2.2.2 Imposing the boundary condition at material interfaces

The boundary conditions at the dielectric interfaces are given by:

φe|Γj
= φi|Γj

(38)

ε̃e
∂φe

∂n

∣∣∣∣
Γj

= ε̃i
∂φi

∂n

∣∣∣∣
Γj

(39)

for all dielectric interfaces j. Taking the derivative of (37) at a point not on
the surface gives:

∂φ(r)

∂n
=

1

2απε0

∫

Γ

ρs(r
′)H(r, r′)dΓ′ . (40)

When applying this expression to the boundary we must include the jump
in the integral due to the discontinuity of the normal derivative of the po-
tential:

∂φe(r)

∂n
= −ρs(r)

2ε0

+
1

2πε0

∫

Γ

ρs(r
′)H(r, r′)dΓ′ if r ∈ Γj (41)

∂φi(r)

∂n
=

ρs(r)

2ε0

+
1

2πε0

∫

Γ

ρs(r
′)H(r, r′)dΓ′ if r ∈ Γj . (42)

Using these expressions in the boundary condition (39) gives:

ε̃e

[
−ρs(r)

2ε0

+
1

2πε0

∫

Γ

ρs(r
′)H(r, r′)dΓ′

]
= (43)

= ε̃i

[
ρs(r)

2ε0

+
1

2πε0

∫

Γ

s(r′)H(r, r′)dΓ′
]

. (44)

Reorganizing terms to isolate the integrals to the right we get:

−(ε̃i + ε̃e)ρs(r)

2ε0

=
(ε̃i − ε̃e)

2πε0

∫

Γ

ρs(r
′)H(r, r′)dΓ′ . (45)

And finally, for any point in the boundary Γi we find:

ρs(r) =
ε̃e − ε̃i

2π(ε̃e + ε̃i)

∫

Γ

ρs(r
′)H(r, r′)dΓ′ . (46)

Using (37) evaluated on the electrodes, and (46) on each of the material
interfaces, we can solve for ρs, and then calculate the potential from (37) at
any point in the domain. Any derivative of the potential can be calculated
by taking the derivative in (37).
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2.2.3 Implementation of the IBEM

We used equations (37) and (46) and the collocation method to produce a
linear system of equations. The discretization of the boundary and interfaces
was done using isoparametric quadratic line elements. The corresponding
equations for a system with i = 1, · · · , Ne nodes in the electrodes, i =
Ne + 1, · · · , N nodes in the dielectric interfaces, and a total of NE elements
in the discretized surfaces are:

φi =
1

2πε0

NE∑
j

∑

k

ρs,jk

∫

Γj

Mjk(r
′)G(r, r′)dΓ′ i = 1, · · · , Ne (47)

ρs,i =
ε̃e − ε̃i

2π(ε̃e + ε̃i)

NE∑
j

∑

k

ρs,jk

∫

Γj

Mjk(r
′)H(r, r′)dΓ′ i = Ne+1, · · · , N .

(48)
In these two equations φi and ρs,i stand for the potential and the charge

density at node i, ρs,jk is the charge density at node k of element j, and Mjk

is the kth shape function in element j. This yields a dense matrix system
that must be solved for ρs,i.

The linear system is solved using the GMRES iterative method [4] with
a simple Jacobi preconditioner [3]. The first timestep is solved using a zero
guess for the solution vector. Subsequent solutions use the solution vector
from timestep t−1 as the initial guess for the solver; this greatly reduces the
solution time.

2.3 IIM for viscous flow calculation

2.3.1 Projection method

Our numerical algorithm is based on the pressure-increment projection algo-
rithm for the discretization of the Navier-Stokes equations with special treat-
ment at the grid points near the interface [18]. The spatial discretization is
carried out on a standard marker-and-cell (MAC) staggered grid similar to
that found in Kim and Moin [16]. Given the velocity un, the pressure pn−1/2,
and the singular forces fn,fn+1, we compute the velocity un+1 and pressure
pn+1/2 at the next time step as follows:
Step 1: Compute an intermediate velocity field u∗ by solving

u∗ − un

4t
= − (u · ∇u)n+ 1

2 − 1

ρ
∇pn+ 1

2 +
µ

2ρ
(∇2

hu
∗ +∇2

hu
n) + C1 (49)
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u∗|∂Ω = un+1
b

where the advective term is extrapolated using the formula,

(u.∇u)n+ 1
2 =

3

2
(u · ∇hu)n − 1

2
(u · ∇hu)n−1 + C2 + γ1[u · ∇u]τ , (50)

and the pressure gradient is approximated simply as,

∇pn+ 1
2 = GMACpn− 1

2 + C3 + γ2[∇p]τ . (51)

Step 2: Compute a pressure increment φn+1 and update pressure and veloc-
ity field

∇2
hφ

n+1 = ρ
DMACu∗

4t
+ C4, n · ∇φn+1|∂Ω = 0 , (52)

un+1 = u∗ − 1

ρ
∆tGMACφn+1 + C5 , (53)

pn+1/2 = pn−1/2 + φn+1 − µ

2ρ

(
DMACu∗

)
+ C6 . (54)

We note that the above projection method is analogous to the pressure-
increment projection method presented in [7] at most of the grid points
except at some grid points near the interface. The discretization of the
Navier-Stokes equations at those grid points near the interface needs to be
modified to account for the jump conditions across the interface due to the
presence of singular forces at the interface. The coefficients Ci, i = 1, . . . , 6,
are the spatial correction terms added to the finite different equations at the
points near the interface to improve the accuracy of the local finite different
approximations. These correction terms can be computed by using the gen-
eralized finite different formulas [18, 32] if we know the jumps in the solution
and their derivatives. We will review briefly the generalized finite different
formulas and how to compute the correction terms in the next section. In
addition to the spatial correction terms, we also need to perform correction
for the jump in time. The term [·]τ in equations (50) and (51) denotes a jump
in time and is only non zero when the interface crosses the grid point over
the time interval considered. The coefficients γ1 and γ2 correspond to the
first order corrections in time. We refer the reader to [18] for details about
the derivation of the time correction terms.

In the above expressions, ∇h and ∇2
h are the standard central difference

operators, GMAC and DMAC are the MAC gradient and divergence operators,
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respectively. Assume that the grid size is h which is the same in x and y
directions, thus,

∇hui,j =

(
ui+1,j − ui−1,j

2h
,
ui,j+1 − ui,j−1

2h

)
,

∇2
hui,j =

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui+1,j

h2
,

(GMACp)i,j =

(
pi+1/2,j − pi−1/2,j

h
,
pi,j+1/2 − pi,j−1/2

h

)
,

(DMACu)i,j =
ui+ 1

2
,j − ui− 1

2
,j

h
+

vi,j+ 1
2
− vi,j− 1

2

h
.

In our projection method, we need to solve, at each timestep, two Helmholtz
equations for u∗ in (49) and one Poisson equation for φn+1 in (52). Since
the correction terms in (49) and (52) only affect the right-hand sides of the
discrete systems for the Helmholtz and Poisson equations, we can take ad-
vantage of the fast solvers from FISHPACK [1] to solve these equations.

2.3.2 Correction terms calculation

In this section, we will illustrate how to evaluate the correction terms Ci, i =
1, . . . , 6 as generated in the previous section. One of the basic components for
determining the correction terms is the generalized finite difference formulas.
The generalized finite different formulas have been derived in details in [32]
using Taylor series expansions. Here, we show two particular generalized
finite different formulas for demonstration. Assume that the interface cuts a
grid line between two grid points at x = α, xi ≤ α < xi+1, xi ∈ Ω−, xi+1 ∈
Ω+, where Ω− and Ω+ denote the region inside and outside the interface,
respectively. Then, the following approximations hold for a piecewise twice
differentiable function v(x):

vx(xi) =
vi+1 − vi−1

2h
− 1

2h

2∑
m=0

(h+)m

m!
[v(m)] + O(h2) (55)

vxx(xi) =
vi+1 − 2vi + vi−1

h2
− 1

h2

2∑
m=0

(h+)m

m!
[v(m)] + O(h) (56)

where v(m) denotes the m-th derivative of v, vi = v(xi), h+ = xi+1 − α and
h is the mesh width in x direction. The jumps in v and its derivatives are
defined as

[v(m)] = lim
x→α,x∈Ω+

v(m)(x)− lim
x→α,x∈Ω−

v(m)(x) . (57)
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From equations (55) and (56), the correction terms for vx(xi) and vxx(xi) can
be defined as

C{vx(xi)} = − 1

2h

2∑
m=0

(h+)m

m!
[v(m)]

C{vxx(xi)} = − 1

h2

2∑
m=0

(h+)m

m!
[v(m)] .

Thus, the finite difference approximation near the interface, for the deriva-
tives of a function v, include the standard central difference terms plus the
additional correction terms. Accordingly, the correction terms C1-C6 in
equations (49) to (54) are evaluated as follows:

C1 = −C{ut}+
µ

2ρ

(
C{∇2u∗}+ C{∇2un}) + γ3

µ

ρ
[∇2u]τ (58)

C2 =
3

2
C{(u · ∇u)n} − 1

2
C{(u · ∇u)n−1} (59)

C3 = C{∇pn− 1
2} (60)

C4 = ρ
C{∇ · u∗}

4t
− C{∇2pn+ 1

2}+ C{∇2pn− 1
2} (61)

C5 = −4t

ρ

(
C{∇pn+ 1

2} − C{∇pn− 1
2}

)
(62)

C6 = − µ

2ρ
C{∇ · u∗} . (63)

We note that all the correction terms are evaluated at least to first order
accuracy. This is sufficient to guarantee second order accuracy globally since
our numerical scheme is second order away from the boundary and only the
points near the boundary are treated with a first order scheme. The first
and the last terms on the right-hand side of (58) are the correction terms in
time and are only nonzero at the grid points crossed by the interface between
time level n and time level n + 1. These terms can be computed as shown
in [18]. Here, we illustrate the form of the correction term C{∇2un} at a
grid point. The other correction terms are computed in a similar manner.
The correction term C{∇2un} at the point (i, j) as depicted in Fig. 3 is
calculated as follows:

C{∇2un}i,j = −
[un] + h+[un

x]α +
(h+)2

2
[un

xx]α

h2
−

[un] + k−[un
y ]β +

(k−)2

2
[un

yy]β

h2
.
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The jumps [un
x]α, [un

xx]α at the intersection point α and [un
y ]β, [un

yy]β at the
intersection point β can be calculated if we know the force strength at the
corresponding time level n and at the intersection points α, β, respectively.
The relationship between the singular forces applied on a material interface
and the jumps in the solutions can be found in [23]. Thus, we need to
calculate the singular forces at the intersection points between the grid lines
and the interface, e.g. α, β, in order to evaluate the required jumps, e.g.
[ux], [uxx], [uy], [uyy].

In our numerical scheme, we use a set of control points (Xk, Yk) for
k = 1, . . . , Nb to represent the immersed boundary. The singular forces
are evaluated at the control points. The intersection points and the singular
forces at these points are computed by cubic spline interpolation from the
control points and the forces at the control points [21]. The singular forces
along the flexible boundaries are the elastic force and the DEP force. The
elastic force is evaluated at the control points using equation (7). The DEP
force is computed at the control points by solving the electrostatic problem
as described in section 2.2. Along the rigid boundary, the singular force at
the control points is calculated to impose the no-slip boundary condition.
This requires a different procedure which is outlined below.

2.3.3 Imposing the rigid boundary condition

In the present work, the rigid boundary is immersed in a rectangular compu-
tational domain.The no-slip condition at the rigid boundary is imposed by
applying an appropriate singular force at the control points representing the
rigid boundaries. Since the relationships between the singular forces and the
jumps in the solution are linear and all the implicit equations solved at each
timestep of the projection method are linear, we can write the velocity at
the rigid boundary as,

Uk = U 0
k + Af . (64)

Here, U 0
k is simply the velocity at the control points obtained by solving the

Navier-Stokes equations (1) and (2) with f = 0, given un and pn−1/2; and
A is a 2Nb × 2Nb matrix, where Nb is the number of control points. Details
about the derivation of equation (64) are given in [18]. The vector Af is the
velocity at the control points obtained by solving the following equations:

u∗f
4t

=
µ

2ρ
∇2

hu
∗
f + C̄1, u∗f |∂Ω = 0 , (65)

∇2
hφ

n+1
f = ρ

DMACu∗f
4t

+ C̄2, n · ∇φn+1
f |∂Ω = 0 , (66)
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un+1
f = u∗f −

∆t

ρ
GMACφn+1

f + C̄3 , (67)

Af = B(un+1
f ) , (68)

with f being the singular force at the rigid boundary. Here, C̄1, C̄2 and C̄3

are the correction terms which take into account the effect of the singular
force at the rigid boundary, and B is the bilinear interpolation operator which
includes the appropriate correction terms required to guarantee second order
accuracy when the derivatives of the velocity are discontinuous [18].

In all the numerical examples presented, the rigid boundary is stationary,
i.e. U k = 0. Therefore, the singular force at the rigid boundary is determined
by solving

Af = −U 0
k . (69)

The coefficient matrix A can be computed and factorized once since the
matrix A will be the same at every timestep provided we use the same ∆t
throughout. In order to compute the coefficients of A, we solve Eqns (65)–
(68) for 2Nb times, i.e. once for each column. Each time, the force strength
f is set to zero except for the entry corresponding to the column we want
to calculate, which is set to one. Once the matrix A has been calculated,
only the right hand side, −U 0

k, needs to be computed at each timestep. The
resulting small system of equations (69) is then solved at each timestep for
the singular force f via back substitution.

2.3.4 Advancing flexible boundary

The flexible boundary moves with the fluid velocity and its position is up-
dated in an implicit manner, according to

Xn+1 = Xn +
1

2
4t

(
un (Xn) + un+1

(
Xn+1

))
. (70)

The new positions of the control points Xn+1 are determined by solving a
non-linear system of equations

g
(
Xn+1

)
= 0 (71)

where g (X) = X −Xn − 1
2
4t (un (Xn) + un+1 (X)).

The quasi-Newton BFGS method [28] is employed to solve the non-linear
system of equations (71) iteratively for the position of the flexible boundaries.
The algorithm for computing the location of the flexible boundary

(
Xn+1

)
,

the velocity field un+1 that satisfies the no-slip boundary conditions at the
rigid boundaries and pressure field pn+1/2 can be described as follows:
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Step 1: Set k = 0, make an initial guess for Xn+1, i.e. X(0) as X(0) =
2Xn − Xn−1 and set the inverse Jacobian Bn+1

0 = Bn. At the very first
timestep, the inverse Jacobian is initialized to the identity matrix I.
Step 2:

• Compute the elastic force at the flexible boundaries using expression (7).

• Compute the DEP force at the flexible boundaries as described in sec-
tion 2.2.

• Compute the force strength at the rigid boundaries to enforce the
no-slip conditions. This involves solving the small system of equa-
tions (69).

Step 3:

• Employ the projection method as described in Section 2.3.1 to up-
date the velocity un+1 and pressure field pn+1/2. This step involves
computing the appropriate correction terms for the spatial and tempo-
ral derivatives of the velocity and pressure fields as described in sec-
tion 2.3.2.

• Compute the velocity at the control points, un+1(X(k)), by interpolat-
ing from the velocity at the surrounding grid points.

Step 4:

• Evaluate g
(
X(k)

)

• If ‖g(k)‖ < ε then Xn+1 = X(k) and stop the iteration. Otherwise,
update X(k+1) and the inverse Jacobian matrix Bn+1

k+1 [28]. Set k = k+1
and go to step 2.

Our implementation does not allow for contact between flexible and rigid
boundaries. This is avoided by adding a repulsive force to the total sin-
gular force at the control point on the flexible boundary when this point
approaches the rigid boundaries [2]. The direction of this repulsive force is
along the outward normal from the rigid boundary. The repulsive force can
be understood as an electrostatic repulsion force between the particle and
the rigid boundary. In our algorithm, the expression for the repulsive force
at a control point is

|fR(r)| =
{

C
[
1−

( r

1.5h

)n]
, r ≤ 1.5h

0, otherwise,
(72)
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where r is a separation distance between the flexible boundary and rigid
boundaries, h is the grid size, and C and n are positive constants. In our
numerical experiments, a typical n is chosen within 2-4 and the constant C
is chosen so that the repulsive force has the same order of magnitude as the
current singular force applied to the control point under consideration.

3 Numerical Results

We studied three different electrode configurations for the fixed geometry
shown in Figure 1 and then studied the effect of changes in the geometry for
the most efficient of the three electrode configurations. After this study was
completed, we also run simulations to assess the effect of having more than
a single particle in the trapping area.

The particle studied had a diameter of 10 µm, stiffness constant T0 = 1
dyn/cm, and its conductivity and permittivity were σp = 2 · 10−3 S/m and
εp = 2.5, respectively. The fluid buffer was assumed to be water with σf =
10−4 S/m and εf = 80. The substrate was taken to be an insulating material
with σs = 0 S/m and εs = 2.0. The frequency of the applied potential is 1
MHz in all cases.

Due to the current limitations of the Immersed Interface Method it is
assumed that the cell and the fluid buffer have the same density ρ = 103

kg/m3 and viscosity µ = 10−3 kg/(m·s).

3.1 Optimization of the electrodes’ positions

Our first objective was to investigate the effect of adding a dielectrophoretic
trapping force to a simple mechanical trap for different Reynolds numbers.
The reference length for the Reynolds number is the height of the channel.
We chose a fixed trap geometry, in which the physical well had a depth
D = 20 µm and a width W = 30 µm, and the three different electrode
configurations shown in Figure 4.

The electric fields corresponding to the three electrode configurations
when the particle is outside the cavity are shown in Figure 5. From these
figures the minimum of the electric field is clearly observed. This electric
field minimum would correspond to the particle trapping location in the ab-
sence of hydrodynamics forces. For the electrode configuration 1 (EC-1) the
particle would be trapped inside the physical well, while for the electrode
configuration 2 (EC-2) the particle would be trapped in the center of the
channel, hovering over the physical well. For electrode configuration 3 (EC-
3) the situation is not as clear as for the previous two configurations. It
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appears however, that in this case the particle would be trapped near the
top of the channel.

Figure 6 shows the electric field for the electrode configuration 1 when
the particle is initially placed inside the cavity. In this case, although the
presence of the particle modifies the electrical field, the position of the electric
field minimum remains inside the cavity. Notice that the positions that
correspond to electric field minima will not correspond to trapping positions
in the presence of fluid flow, as the hydrodynamic forces on the particle will
need to be compensated by the electrical forces in that case.

Our first test was to assume that a particle was initially trapped in the
center of the physical well – as shown in Figure 4(a) – and then run several
simulations where the Reynolds number was progressively increased until the
particle moved out of the cavity. We found that while a purely mechanical
trap (with no electric force present) released the particle for Reynolds num-
bers above Re = 0.025 as shown in Figure 7, all three electrode designs kept
the particle trapped within the cavity beyond this said value, as shown in
Figures 9, 11 and 12, respectively. Figure 10 is for a higher Reynolds number
under EC-1, where the particle moved out of the cavity as discussed further
below. Figure 8 shows the velocity field in the purely mechanical trap at Re
= 0.025 and t = 0.08 s.

Our simulations indicate that both configurations EC-2 and EC-3 provide
much stronger trapping than EC-1, and that EC-3 is the strongest config-
uration of the three. At a sufficiently high Reynolds number (Re = 0.125)
electrode configuration 1 allows the particle to leave the cavity, as shown in
Fig. 10, while electrode configuration 2 keeps the particle trapped, as shown
in Fig. 11. Figure 12 shows that the electrode configuration 3 still keeps the
particle trapped with a higher Reynolds number (Re = 0.25).

Although EC-3 gives the best configuration to use once the particle has
been trapped, if the trap cannot capture passing particles, then its strength
once it has been loaded, is meaningless for a trapping device designed to work
in a continuous mode. In order to evaluate the effect of the three electrode
configurations on the loading characteristics of the trap, we released a particle
upstream of the trap – initial position as shown in Figure 4(b) – and tracked
its movement until it was stopped in an equilibrium position or moved beyond
the physical well region.

From the trajectories shown in figures 13, 14 and 16, it is clear that
only configuration 1 of the electrodes can possibly trap a particle originally
placed outside the cavity inside the physical well. For all the three cases the
particle stops at a minimum of the electrical field, which is expected of a
particle experiencing negative dielectrophoresis. However, neither electrode
configuration 2 nor configuration 3 cause the particle to traverse towards the
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physical well, and therefore are not suitable for loading hybrid DEP traps.
Figure 15 shows the velocity field around the particle which is trapped with
electrode configuration 2. Notice that to trap the particle in EC-2 (outside
the cavity, as shown in Figures 14 and 15) the Reynolds number must be
very low (Re = 0.005) compared to that in EC-1 (Figure 13).

In view of these results we next focus our studies on electrode configu-
ration 1 since, although it does not provide the strongest trapping once the
trap is loaded, it is the only configuration that enhances both the trapping
strength of a purely mechanical trap and its loading efficiency.

3.2 Trapping single cell

Using electrode configuration 1, we studied the effect of varying the height
and width of the physical well. In particular, we studied how the trap width
and depth affected the loading and strength characteristics of the trap. For
all the tests the initial position of the particle is outside the cavity as shown
in Figure 4(b).

3.2.1 Effect of the mechanical trap depth

Intuitively, the depth of the well should be important for trapping strength,
as it should be much easier to remove a particle from a shallow trap than
from a deep trap. But we expect that, eventually, the trap depth should reach
a value where increasing it further has no effect on the trapping strength,
as the particle will not have time to move downwards into the regions of
the well which are isolated from the bulk flow. In order to test this idea,
we fixed the trap width at W = 30 µm and changed the depth of the well
to study how the trapping strength was affected. For each depth, we then
run simulations with increasingly high Reynolds numbers and tracked the
particle movement through the complete process of loading/unloading. We
determined the critical Reynolds number Rec for each value of the depth
as that Re for which the particle could no longer be trapped inside the
mechanical well due to the hydrodynamic forces. This corresponds to the
critical Reynolds number for loading.

The results in Figure 17 show precisely this behavior. In this case, after
the well has reached a depth equal to 1.5 times the particle diameter increas-
ing it further has no effect on the critical Reynolds number and therefore, the
trapping strength. It is important to note that, even though this would be
the expected behavior of the particle, without an efficient numerical method
as presented in this work it would not be feasible to calculate quantitatively
the optimal depth for a DEP hybrid trap.
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3.2.2 Effect of the mechanical trap width

The width of a physical well has a very strong effect in the loading charac-
teristics of the trap. If the physical well is too narrow it will be very difficult
to trap the particle as the liquid velocity increases. On the other hand, if it
is too wide the particle will simply skim over the well and move off without
being trapped. In order to study this behavior we fixed the trap depth to
D = 15 µm, which lies in the region where trapping strength is not affected
by the trap depth, and changed the width of the well to see how it affected
the critical Reynolds number.

Figure 18 shows that narrow traps are weak and that the critical Reynolds
number increases until it reaches a maximum for a width value equal to
three times the particle size. After this maximum value is reached the criti-
cal Reynolds number decreases again, indicating that the trap becomes less
effective.

3.3 Trapping multiple cells

To show the flexibility of our technique, we present the results of the inter-
action between a trapped particle and a second particle moving downstream
for two different positions of the trapped particle. The study was done for a
fixed geometry with a physical well of depth 15 µm and width 30 µm with
electrode configuration 1 and a Reynolds number of 0.02. Both particles have
identical mechanical and electrical properties.

Figure 19 shows that when the trapped particle is at the center of the
physical well the second particle is not trapped, but rather rolls over the
already trapped particle and continues its downstream path. Notice how the
second particle initially pushes the trapped particle (t = 0.03), then rolls
over it as if it was going to move inside the physical well (t = 0.05), but
eventually collides with the edge of the well (t = 0.08 – 0.10) and continues
its downstream path (t = 0.14) without being trapped.

When the trapped particle is closer to the leading edge of the physical
well – Figure 20 – the second particle is trapped. The initial steps are similar
to those in the previous case, with the second particle pushing the trapped
particle forward (t = 0.03), but then the second particle rolls over the trapped
one (t = 0.06) and when it comes into contact with the edge of the physical
well (t = 0.10) it starts moving downwards (t = 0.20) and is eventually
trapped (t = 0.40).

Similar differences in behavior can also be obtained by keeping the trapped
particle at a constant initial position but changing the position of the elec-
trodes and the dimensions of the well. These simulations show that small
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differences in the traps can lead to single or multiple cell trapping. Numeri-
cal simulations are ideally suited to produce controlled studies of single cell
traps, as dynamical behavior of the trap can be studied for controlled changes
in all relevant parameters.

4 Conclusions

We have presented the coupled Immersed Interface Method–Boundary El-
ement Method numerical technique for the solution of problems involving
electrostatic and fluid forces on deformable bodies. We have shown the flex-
ibility of the technique by applying it to the realistic problem of single-cell
dielectrophoretic trap design.

We have found that, for the geometry used, there is an optimal width of
the mechanical trap that allows maximum loading and trapping efficiency,
and that beyond a certain value the depth of the well does not influence the
trapping strength.

The IIM–BEM technique was also applied to the analysis of multiple
particle interaction in dielectrophoretic traps. As shown in the text, what we
initially designed as a single-cell trap could turn into a multi-cell trap under
certain circumstances. This influence of minor changes in the performance
of single-cell dielectrophoretic traps indicates that detailed studies of the
loading and unloading of DEP traps are needed in order to guarantee the
desired mode of operation.

Numerical methods are the ideal tools to do these detailed studies, as all
relevant parameters can be changed in a controlled manner, and their effect
on the dynamic behavior of the trap analyzed. Amongst other numerical
methods the IIM–BEM is particularly well suited for this purpose, as it
contains the main physics – viscous flow, elastic deformation, electrostatics
– that are relevant in DEP traps and many other micro-electro-mechanical-
devices.

The authors are currently working on extensions of the method that will
consider different viscosity ratios between the cell and the fluid buffer, as
well as three-dimensional geometries.
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Figure 1: A typical domain in which the Navier-Stokes equations and elec-
trostatic problems are solved. The flexible interface and the rigid boundary
are immersed in a uniform Cartesian grid. The electrodes and immersed
boundaries are discretized in a Lagrangian manner.
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Figure 2: Domain used for the definition of the equations in the indirect
method.
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Figure 3: Interface and mesh geometry near the grid point (i, j).

29



−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−5

−2.5 V

+2.5 V −2.5 V

+2.5 V

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−5

−2.5 V

−2.5 V+2.5 V

+2.5 V

(b)

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
−5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−5

+2.5 V −2.5 V

(c)

Figure 4: Three different electrode configurations and different initial posi-
tions of the particles. Figure (a) corresponds to configuration EC-1, Figure
(b) to configuration EC-2 and Figure (c) to configuration EC-3.
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(a)
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(c)

Figure 5: Electric field for the three different electrode configurations. Notice
how the presence of the particle alters the field distribution within the traps.
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Figure 6: Electric field for electrode configuration 1 with particle trapped in
the cavity. Notice the symmetry of the electric field.
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Figure 7: Trajectory of the particle in the purely mechanical trap at Re =
0.025. The solid dots correspond to the same control point on the boundary
at different times. The purely mechanical trap released the particle.
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Figure 8: Velocity field in the purely mechanical trap at Re = 0.025 and t =
0.08 s.
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Figure 9: Trajectory of the particle in the trap with electrode configuration
1 (EC-1) at Re = 0.025. The solid dots correspond to the same control point
on the boundary at different times. The particle was trapped in the well.
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Figure 10: Trajectory of the particle in the trap with electrode configuration
1 (EC-1) at Re = 0.125. The solid dots correspond to the same control point
on the boundary at different times. The particle moved out of the cavity.
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Figure 11: Trajectory of the particle in the trap with electrode configuration
2 (EC-2) at Re = 0.125. The solid dots correspond to the same control point
on the boundary at different times. The particle was trapped in the well.
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Figure 12: Trajectory of the particle at different times in the trap with
electrode configuration 3 (EC-3) at Re = 0.250. The solid dots correspond
to the same control point on the boundary at different times. The particle
was trapped in the well.
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Figure 13: Trajectory of the particle in the trap with electrode configuration
1 (EC-1) at Re = 0.0125. The solid dots correspond to the same control
point on the boundary at different times. The particle was trapped in the
well.
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Figure 14: Trajectory of the particle in the trap with electrode configuration
2 (EC-2) at Re = 0.005. The particle was trapped at the center of the
channel.
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Figure 15: Velocity field in the trap with electrode configuration 2 (EC-2)
with Re = 0.005 at steady state.
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Figure 16: Trajectory of the particle in the trap with electrode configuration
3 (EC-3) at Re = 0.005. The particle was pushed to the top of the channel.
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Figure 17: Effect of cavity depth on the critical Reynolds number for a fixed
cavity width of 30 µm. The particle was initially situated outside of the
cavity as shown in Figure 4(b).
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Figure 18: Effect of cavity width on the critical Reynolds number for EC-1
for a fixed depth of 15 µm. The particle was initially situated outside of the
cavity as shown in Figure 4(b). Notice the existence of an optimal width for
the trap.
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Figure 19: Positions of the particles and velocity fields at different times.
The initial position of the trapped particle prevents the free particle from
being trapped. (Re = 0.02).
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Figure 20: Positions of the particles and velocity fields at different times. The
initial position of the trapped particle allows the free particle to be trapped.
(Re = 0.02).
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