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Abstract. This paper presents a new approach to construct more efficient reduced-order models
for nonlinear partial differential equations with proper orthogonal decomposition (POD) and the discrete
empirical interpolation method (DEIM). Whereas DEIM projects the nonlinear term onto one global sub-
space, our localized discrete empirical interpolation method (LDEIM) computes several local subspaces,
each tailored to a particular region of characteristic system behavior. Then, depending on the current
state of the system, LDEIM selects an appropriate local subspace for the approximation of the nonlinear
term. In this way, the dimensions of the local DEIM subspaces, and thus the computational costs, remain
low even though the system might exhibit a wide range of behaviors as it passes through different regimes.
LDEIM uses machine learning methods in the offline computational phase to discover these regions via
clustering. Local DEIM approximations are then computed for each cluster. In the online computational
phase, machine-learning-based classification procedures select one of these local subspaces adaptively as
the computation proceeds. The classification can be achieved using either the system parameters or a
low-dimensional representation of the current state of the system obtained via feature extraction. The
LDEIM approach is demonstrated for a reacting flow example of an H2-Air flame. In this example, where
the system state has a strong nonlinear dependence on the parameters, the LDEIM provides speedups of
two orders of magnitude over standard DEIM.
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1. Introduction. A dramatic increase in the complexity of today’s models and sim-
ulations in computational science and engineering has outpaced advances in computing
power, particularly for applications where a large number of model evaluations is required,
such as uncertainty quantification, design and optimization, and inverse problems. In
many cases, reduced-order models can provide a similar accuracy to high-fidelity models
but with orders of magnitude reduction in computational complexity. They achieve this
by approximating the solution in a lower-dimensional, problem-dependent subspace. With
localization approaches, the dimension of the reduced model, and thus the computational
cost of solving it, can be further reduced by constructing not just one, but multiple local
subspaces, and then, depending on the current state of the system, selecting an appropri-
ate local subspace for the approximation. We present a localization approach based on
machine learning techniques to approximate nonlinear terms in reduced-order models of
nonlinear partial differential equations (PDEs) with the discrete empirical interpolation
method (DEIM). This paper proposes a localization approach tailored to the DEIM set-
ting and addresses the particular questions of how to construct the local subspaces and
how to select an appropriate approximation subspace with respect to the current state of
the system.

Projection-based model reduction methods reduce the complexity of solving PDEs
by employing Galerkin projection of the equations onto the subspace spanned by a set
of basis vectors. In addition to truncated balanced realization [28] and Krylov subspace
methods [19], one popular method to construct the basis vectors is proper orthogonal
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decomposition (POD) [33, 7, 30]. For many applications, the dynamics of the system
underlying the governing equations can often be represented by a small number of POD
modes, leading to significantly reduced computational complexity but maintaining a high
level of accuracy when compared to the original high-fidelity model.

With POD, efficient reduced-order models can be constructed for PDEs with affine pa-
rameter dependence or low-order polynomial nonlinearities [12]. However, POD-Galerkin
poses a challenge if applied to systems with a general nonlinear term, because the cost
to evaluate the projected nonlinear function still requires computations that scale with
the dimension of the original system. This can lead to reduced-order models with sim-
ilar computational costs as the original high-fidelity model. A number of solutions to
this problem have been proposed. In [31], the nonlinear function is linearized at specific
points of a trajectory in the state space and then approximated by threading linear mod-
els at those points along the trajectory. Another approach is based on sub-sampling the
nonlinear term in certain components and reconstructing all other components via gappy
POD [4]. The Gauss-Newton with approximated tensors (GNAT) method [11] and the
empirical interpolation method (EIM) [6, 21] are two other approaches to approximately
represent the nonlinear term with sparse sampling. Here, we use the discrete version of
EIM, the discrete empirical interpolation method (DEIM) [12]. EIM and DEIM construct
a separate subspace for the approximation of the nonlinear term of the PDE, select in-
terpolation points via a greedy strategy, and then combine interpolation and projection
to approximate the nonlinear function in the subspace.

If the system exhibits a wide range of behaviors, many DEIM basis vectors and in-
terpolation points are required to accurately approximate the nonlinear term. Therefore,
our localized discrete empirical interpolation method (LDEIM) constructs not just one
global DEIM interpolant, but rather multiple local DEIM interpolants, each tailored to
a particular system behavior. In the context of model reduction, similar concepts have
been proposed in different contexts. In [23, 32], reduced-order models based on adap-
tive reduced bases are discussed. In [22, 14], the parameter- and time-domain are split
recursively into subdomains and for each subdomain a separate reduced-order model is
built. In that approach, reduced-order models might be constructed multiple times if the
system exhibits similar state solutions at different points in time (which necessarily cor-
respond to different time-subdomains). Furthermore, the switch from one reduced model
to another requires a projection of the state solution onto the basis of the new reduced
model, which might introduce numerical instabilities [25]. A similar approach is followed
in [15, 16, 17]. These methods have in common that they recursively split the parameter
domain, which might in practice lead to a large number of subdomains because a poor
division in the beginning cannot be corrected later on. To avoid these drawbacks, in
[1, 35], similar snapshots are grouped into clusters with unsupervised learning methods
and for each cluster a local reduced-order model is built. A local reduced-order model is
then selected with respect to the current state of the system. This localization approach
in [1] is applied to the projection basis for the state (i.e., the POD basis) and also for
the approximation of the nonlinear term with the GNAT method [11]. One drawback
of this approach is that unsupervised learning methods can encounter difficulties such as
unstable clustering behavior for large numbers of clusters if parameters are not fine-tuned
[34, 18, 3]. Furthermore, the procedure in [1] to select a local reduced-order model scales
quadratically with the number of clusters.

This work develops a localization approach for the DEIM approximation of a nonlinear
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reduced model. For many applications, we have observed that it is the growth of the
DEIM basis dimension (and the associated growth in the number of interpolation points)
that counters the computational efficiency of the POD-DEIM reduced-order model (see
e.g., [37]). By applying localization to the DEIM representation of the nonlinear term,
we achieve substantial improvements in computational efficiency for applications that
otherwise require a large number of DEIM basis vectors. In [1], it has already been
observed that finding a local approximation subspace is an unsupervised learning task.
We carry this observation over to DEIM and additionally consider the selection of the
local subspaces as a supervised learning task. This allows us to develop our localized
DEIM with all the advantages of [1, 35], but with two additional benefits. First, our
method can handle large number of clusters because rather than directly clustering the
high-dimensional snapshots with respect to the Euclidean distance, we instead use a
DEIM-based distance measure or feature extraction to cluster in a lower-dimensional
representation. Thus, we cluster points in low-dimensional subspaces and not in high-
dimensional spaces where clustering with respect to general distance measures becomes
difficult [29, 26]. Second, the runtime of the online phase in LDEIM is independent of
the number of clusters because we employ nearest neighbor classifiers for the adaptive
selection of the local interpolants. In addition, because the DEIM approximation can
be fully decoupled from the POD basis, no basis transformation of the state vector is
required when we switch from one DEIM interpolant to another.

The remainder of this paper is organized as follows. In Section 2 we briefly review
POD-DEIM-Galerkin, define our notation, and discuss the limitations of DEIM. Then,
in Section 3, our localized DEIM is developed in a general setting where we highlight the
close relationship to machine learning. We continue with two variants — parameter-based
LDEIM and state-based LDEIM — in Sections 4 and 5, respectively. Finally, our LDEIM
method is applied to benchmark examples and a reacting flow simulation of an H2-Air
flame in Section 6 before conclusions are drawn in Section 7.

2. Problem formulation. Our starting point is the system of nonlinear equations

Ay(µ) + F (y(µ)) = 0 (2.1)

stemming from a discretization of a parametrized PDE, where the operators A ∈ RN×N
and F : RN → RN correspond to the linear and the nonlinear term of the PDE, respec-
tively. The solution or state vector y(µ) = [y1(µ), . . . , yN (µ)]T ∈ RN for a particular
parameter µ ∈ D ⊂ Rd is an N -dimensional vector. The components of the nonlinear
function F are constructed by the scalar function F : R→ R which is evaluated at each
component of y(µ), i.e., F (y(µ)) = [F (y1(µ)), . . . , F (yN (µ))]T . The Jacobian of the
system (2.1) is given by

J(y(µ)) = A+ JF (y(µ)) , (2.2)

where JF (y(µ)) = diag{F ′(y1(µ)), . . . , F ′(yN (µ))} ∈ RN×N because F is evaluated at
y(µ) component-wise.

2.1. Proper Orthogonal Decomposition. We use proper orthogonal decompo-
sition (POD) to compute a reduced basis of dimension N � N . We select the sampling
points P = {µ1, . . . ,µm} ⊂ D and build the state snapshot matrix Y = [y(µ1), . . . ,y(µm)] ∈
RN×m whose i-th column contains the solution y(µi) of (2.1) with parameter µi. We
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compute the singular value decomposition of Y and put the first N left singular vectors
corresponding to the N largest singular values as the POD basis vectors in the columns
of the matrix V N = [v1, . . . ,vN ] ∈ RN×N . With Galerkin projection, we obtain the
reduced-order system of (2.1)

V T
NAV N ỹ(µ) + V T

NF (V N ỹ(µ)) = 0, (2.3)

where V N ỹ(µ) replaces the state vector y(µ). We call ỹ(µ) ∈ RN the reduced state
vector. The reduced Jacobian is

JN = V T
NAV N + V T

NJF (V N ỹ(µ))V N . (2.4)

This POD-Galerkin method is usually split into a computationally expensive offline
and a rapid online phase. This splitting in offline and online phase works well for the
linear operator. In the offline phase, the snapshot matrix Y and the POD basis V N

are computed. The POD basis V N is then used to construct the reduced operator Ã =
V T

NAV N ∈ RN×N . In the online phase, only Ã is required to solve the reduced-order
system (2.3). However, this efficient offline/online splitting does not hold for the nonlinear
operator F , since we cannot pre-compute a reduced nonlinear operator as we have done
with A, but instead must evaluate the nonlinear function F at all N components of
V N ỹ(µ) in the online phase. If N is large and the evaluation of F expensive, the time to
evaluate the nonlinear term in the reduced system (2.3) will dominate the overall solution
time and supersede the savings obtained for the linear term through the POD-Galerkin
method.

2.2. Discrete empirical interpolation method (DEIM). One way to overcome
this weakness of the POD-Galerkin method is the discrete empirical interpolation method
(DEIM) [12]. It approximates the nonlinear function F on a linear subspace spanned by
basis vectors U = [u1, . . . ,uM ] ∈ RN×M that are obtained by applying POD to snapshots
S = {F (y(µ1)), . . . ,F (y(µm))} of the nonlinear term. The system F (y(µ)) ≈ Uα(µ) to
obtain the coefficients α(µ) ∈ RM is overdetermined. Thus, DEIM selects only M rows
of U to compute the coefficients α(µ). Formally, a matrix P = [ep1

, . . . , epM
] ∈ RN×M is

introduced, where ei is the i-th column of the identity matrix. The DEIM interpolation
points p1, . . . , pM are selected with a greedy algorithm. Assuming P TU is nonsingular,
the coefficients α(µ) can be determined from P TF (y(µ)) = (P TU)α(µ) and we obtain

F (y(µ)) ≈ U(P TU)−1P TF (y(µ)). (2.5)

In the following, we denote a DEIM approximation or DEIM interpolant with the tuple
(U ,P ). We obtain the POD-DEIM-Galerkin reduced-order system

V T
NAV N︸ ︷︷ ︸
N×N

ỹ(µ) + V T
NU(P TU)−1︸ ︷︷ ︸

N×M

P TF (V N ỹ(µ)) = 0, (2.6)

and the reduced Jacobian

J̃F (ỹ(µ)) = V T
NAV N︸ ︷︷ ︸
N×N

+V T
NU(P TU)−1︸ ︷︷ ︸

N×M

JF (P TV N ỹ(µ))︸ ︷︷ ︸
M×M

P TV N︸ ︷︷ ︸
M×N

. (2.7)

We see in (2.6) and (2.7) that with the POD-DEIM-Galerkin method we evaluate the
nonlinear term F only at M instead of at N points. Similarly to N � N for the POD
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(a) µ = (0.1, 0.1) (b) µ = (0.9, 0.9) (c) µ = (0.1, 0.9) (d) µ = (0.9, 0.1)

Fig. 2.1. Depending on the parameter µ, the function g4 has a sharp peak in one of the four corners
of the spatial domain.

basis, we assume M � N for DEIM and thus expect savings in computational costs. We
refer to [12] for more details on DEIM in general and the greedy algorithm to select the
interpolation points in particular.

2.3. Limitations of DEIM. Whether DEIM does indeed lead to savings in the
runtime depends on the number M of basis vectors and interpolation points. The DEIM
approximates the nonlinear term F in the subspace of dimension M spanned by U .
For some nonlinear systems, a large number M of DEIM basis vectors are required to
accurately represent F over the range of situations of interest. We demonstrate this on a
simple interpolation example as follows.

Consider the spatial domain Ω = [0, 1]2 and the parameter domain D = [0, 1]2. We
define the function g1 : Ω×D → R with

g1(x;µ) =
1√

((1− x1)− (0.99 · µ1 − 1))2 + ((1− x2)− (0.99 · µ2 − 1))2 + 0.12
. (2.8)

The parameter µ = (µ1, µ2) controls the gradient of the peak near the corner (1, 1) of the
spatial domain [0, 1]2. Based on g1, let us consider the function

g4(x;µ) = g1(x;µ) + g1(1− x1, 1− x2; 1− µ1, 1− µ2) (2.9)

+ g1(1− x1, x2; 1− µ1, µ2) + g1(x1, 1− x2;µ1, 1− µ2). (2.10)

Depending on the parameter µ, the function g4 has a sharp peak in one of the four corners
of Ω, see Figure 2.1. We discretize the functions g1 and g4 on a 20×20 equidistant grid in Ω
and randomly sample on a 25×25 equidistant grid in D. From the 625 snapshots, we build
the DEIM approximations. Figure 2.2 shows the averaged L2 error of the approximations
over a set of test samples {µ1, . . . ,µm′}. The results for g4 are worse than for g1. This is
reflected in the slower decay of the singular values of the snapshot matrix corresponding
to g4. Even though g4 is just a sum of g1 functions, and, depending on the parameter
µ, only one of the summands determines the behavior of g4, we still obtain worse results
than for g1. The reason is that the DEIM basis must represent all four peaks. It cannot
focus on only one (local) peak as is possible when we consider one g1 function only. This
also means that if we choose the parameter µ = (0.1, 0.9) which leads to only one sharp
peak of g4 near the corner (0.1, 0.9) of Ω, just a few of DEIM basis vectors are relevant
for the approximation and all others are ignored. This is a clear waste of resources and
motivates our development of the localized DEIM (LDEIM) method.
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Fig. 2.2. In (a) the averaged L2 error versus the number M of DEIM interpolation points corre-
sponding to the function with one (g1) and four (g4) peaks, respectively. The more peaks, the worse the
result. This is reflected in the decay of the singular values shown in (b).

3. Localized discrete empirical interpolation method. DEIM approximates
the nonlinear term F on a single linear subspace which must represent F (y(µ)) well for
all µ ∈ D. Instead, we propose to compute several local DEIM approximations, which
are each adapted to a small subset of parameters, or which are each fitted to a particular
region in state space. In the following, we refer to this approach as the localized discrete
empirical interpolation method (LDEIM). In this section, we first introduce the general
idea of LDEIM and then propose two specific LDEIM variants. We start by discussing
the computational procedure of LDEIM in more detail. LDEIM constructs several local
DEIM approximations (U1,P 1), . . . , (Uk,P k) offline and then selects one of them online.
We will see that the two building blocks of LDEIM are the corresponding construction
and selection procedures, for which machine learning methods play a crucial role. In this
section, we also discuss the error and the computational costs of LDEIM approximations.
Finally, two specific LDEIM variants — parameter-based LDEIM and state-based LDEIM
— are introduced and the differences between them are discussed.

3.1. LDEIM. Let S = {F (y(µ1)), . . . ,F (y(µm))} be the set of nonlinear snap-
shots. In the offline phase of LDEIM, we group similar snapshots together and obtain a
partition S1 ] · · · ] Sk of S with k subsets. Here, snapshots are considered to be similar
and should be grouped together if they can be approximated well with the same set of
DEIM basis vectors and interpolation points. For each of these subsets, we construct a
local DEIM approximation with the classical DEIM procedure. Thus, for each set Si,
we obtain a (U i,P i) where the basis and the interpolation points are adapted to the
snapshots in Si only. Furthermore, also in the offline phase, we compute the so-called
classifier c : Z → {1, . . . , k}. Its purpose is to select a good local DEIM approximation
(U i,P i) with respect to an indicator z ∈ Z. The classifier is trained on the indicators of
the nonlinear snapshots. The indicator z must describe F (y(µ)) well enough to decide
which local DEIM approximation should be used. Many different indicators are possi-
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Fig. 3.1. LDEIM workflow. Offline, a partitioning method splits the snapshots S into several groups
Si. For each group a separate DEIM approximation is computed and stored. A classifier c learns the
mapping between the indicators z and the particular group i to which it has been assigned. Online, the
classifier c selects a local DEIM approximation (U i,P i) with respect to the indicator z.

ble. For example, a simple indicator is the parameter µ. However, this is not the only
possibility and is not always a good choice. We defer the discussion of specific indicators
to Section 3.4. The output of the offline phase contains the local DEIM approximations
(U1,P 1), . . . , (Uk,P k) and the classifier c : Z → {1, . . . , k}. In the online phase, we
compute z, evaluate the classifier, and, depending on its value, switch between the local
DEIM approximations. This workflow is sketched in Figure 3.1.

With LDEIM, the Galerkin reduced-order system takes the shape

V T
NAV N ỹ(µ) + V T

NU c(·)(P
T
c(·)U c(·))

−1P T
c(·)F (V N ỹ(µ)) = 0 (3.1)

instead of (2.6), and the reduced Jacobian is

J̃F (ỹ(µ)) = V T
NAV N + V T

NU c(·)(P
T
c(·)U c(·))

−1JF (P T
c(·)V N ỹ(µ))P T

c(·)V N (3.2)

instead of (2.7). The DEIM basis U and the matrix P depend through the classifier c on
the indicator z and thus on the nonlinear term F (y(µ)) evaluated at y(µ). Instead of
one V T

NU(P TU)−1 for the nonlinear term F , we now pre-compute i = 1, . . . , k matrices

V T
NU i(P

T
i U i)

−1 (3.3)

from which one is picked according to c in the online phase. It is important to note that
DEIM can be fully decoupled from the POD projection of the state. Thus, when we
change the DEIM basis, we do not influence the POD basis V N .

3.2. Learning local bases. The offline phase of LDEIM consists of two steps.
First, it groups similar snapshots together to obtain a partition of the set S for which
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the local DEIM interpolants are constructed, and, second, it computes the classifier c :
Z → {1, . . . , k} to later select an appropriate local interpolant. These are both machine
learning tasks.

We first consider the partitioning of S. In terms of machine learning this means we
want to cluster the data points in S with respect to a certain clustering criterion [8]. The
input to the clustering method is the set S, and the output is a partition S1 ] · · · ] Sk
in k subsets or clusters. In the following, we use k-means clustering (Lloyd’s algorithm)
among other partitioning approaches. The k-means algorithm is a standard clustering
algorithm that has been applied successfully to many different applications. Usually, we
determine the number of clusters k in advance. There are many rules of thumb, as well
as sophisticated statistical methods available to estimate the number of clusters from the
data points. We refer to [20] for an overview and to [10] for an approach well-suited for
k-means.

Having obtained a partition of S, we compute the function c : Z → {1, . . . , k}. In ma-
chine learning, this task is called classification [8]. Inputs are the partition of S and the in-
dicators {z1, . . . ,zm} corresponding to the nonlinear snapshots {F (y(µ1)), . . . ,F (y(µm))}.
The result of the classification is the classifier c : Z → {1, . . . , k}. Classification is a ubiq-
uitous task in data mining with many classification methods available. Here we employ
nearest neighbor classifiers. They can track curved classification boundaries and are cheap
to evaluate if the number of neighbors is kept low. Low computational cost is crucial here,
since we evaluate the classifier during the online phase.

In principle, any clustering and classification methods can be employed for LDEIM.
Besides the advantages discussed above, we use k-means and nearest neighbor classifica-
tion because they are widely used and readily available in many software libraries. Note,
however, that even though k-means and nearest neighbor classification are the core of the
following clustering and classification methods, a thorough pre-processing of the data and
some modifications are necessary to achieve a stable clustering and a reliable selection
procedure. More details will follow in Sections 4 and 5.

3.3. Error and computational costs of LDEIM approximation. The error
estimates associated with DEIM (e.g., [12, 36, 13]) can be carried over to LDEIM. Even
though we choose between multiple local DEIM approximations, the eventual approxi-
mation itself is just a classical DEIM approximation where these error estimates hold.

In the offline phase of LDEIM, we incur additional computational costs to perform
the clustering of S and the classification to obtain c. In addition, we pre-compute several
matrices (3.3) instead of only one as in the case of DEIM. This leads to an overall increase
in the offline costs, although for large-scale problems this increase is small compared to the
dominating cost of simulation to obtain the snapshots (which remains the same between
DEIM and LDEIM). The online phase of LDEIM is very similar to that of DEIM. The
only additional cost incurred is that to evaluate the classifier c. As discussed previously,
we employ a nearest neighbor classifier, the cost of which is small (in particular, the cost
does not depend on the number m of nonlinear snapshots in S or on the number of clusters
k). Evaluation of the classifier also requires computing the indicator z for the current
F (y(µ)). We show in Sections 4 and 5 that for two specific indicators, the costs to obtain
z are negligible. For applications where there is an advantage in using a localized DEIM
basis, the small increase in offline and online costs will be outweighed by a large online
cost benefit due to the reduction in dimension of the DEIM basis. We also note that we
refrain from performing online basis updates as proposed in, e.g., [35], because this would
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greatly increase the costs of the online phase.

3.4. Parameter-based LDEIM and state-based LDEIM. So far, we have dis-
cussed LDEIM in a very general setting. In particular, we have not specified the indicator
z of F (y(µ)), i.e., we have not specified the domain Z of the classifier c : Z → {1, . . . , k}.
The indicator z must contain enough information to select a good local DEIM approx-
imation. In the following, we introduce two specific indicators leading to two LDEIM
variants — parameter-based and state-based LDEIM.

In the parameter-based LDEIM, the indicator z of F (y(µ)) is the parameter µ ∈ D.
The domain Z becomes the parameter domain D and we obtain the classifier c : D →
{1, . . . , k}. Thus, we decide with respect to the parameter µ which local DEIM approx-
imation is used. The parameter-based LDEIM is closely related to other localization
approaches in model order reduction [15, 16, 17, 14]. It will be discussed in detail in
the following Section 4. In contrast, the state-based LDEIM computes a low-dimensional
representation of F (y(µ)) with feature selection and feature extraction. Thus, the indi-
cator z is directly derived from F (y(µ)), i.e., from the nonlinear term F evaluated at
y(µ), and not from the parameter µ. The domain Z of the classifier c : Z → {1, . . . , k}
becomes a low-dimensional subspace of RN . The details follow in Section 5. Note that
we can distinguish between parameter-based and state-based LDEIM by considering the
domain Z of the classifier c.

We emphasize the difference between the parameter-based and state-based LDEIM by
considering the Newton method to solve our nonlinear system. In case of the parameter-
based LDEIM, we pick a local DEIM interpolant (U i,P i) depending on the parameter µ
before we start with the first Newton iteration. Since the indicator z = µ does not change
during the Newton iterations, we always keep (U i,P i) and never switch between the local
DEIM approximations. However, for the case of the state-based LDEIM, the indicator z is
directly derived from the nonlinear term independent from the parameter µ. Therefore,
if we evaluate the classifier c after each Newton iteration, we might get different local
DEIM approximations in each iteration because the (reduced) state vector ỹ(µ) and thus
the nonlinear term F (V N ỹ(µ)) changes. This means that the state-based LDEIM can
switch between different DEIM approximations even within the Newton method whereas
the parameter-based LDEIM keeps one local DEIM interpolant fixed until convergence.
In the following two sections, we present the parameter-based and state-based LDEIM in
detail.

4. Parameter-based LDEIM. In this section, we consider the parameter-based
LDEIM where the classifier is c : D → {1, . . . , k} with domain D. The parameter-based
LDEIM is motivated by the relationship µ → F (y(µ)) showing that the value of the
nonlinear function F is influenced by the parameter µ through the state vector y(µ).
Therefore, the parameter µ may be a good indicator for the behavior of the function F .
In the previous section, we introduced the partitioning of the set S and the selection of a
local DEIM approximation as two building blocks of LDEIM. As partitioning approaches,
we present now a splitting and a clustering method, which are especially well-suited for
the parameter-based LDEIM.

4.1. Splitting of the parameter domain. Each snapshot in S is associated to
one parameter µ in the parameter domain D. These parameters are collected in the set
P = {µ1, . . . ,µm} ⊂ D. If we split the parameter domain D into k subdomains, we can
derive the corresponding partition of P and thus of the set of snapshots S. Hence, we
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Algorithm 1 Splitting of the parameter domain D
1: procedure D-splitting(ε, M , D, S)
2: (U ,P )← DEIM(S, M)

3: r ← maxw∈S

{
‖U(P TU)−1P Tw −w‖∞

}
4: `← empty list
5: if r > ε and |S| > M then
6: partition D into 2d subdomains (squares) D1, . . . ,D2d

7: partition S into 2d subsets S1, . . . ,S2d

8: for (D̃, S̃) in {(Di,Si)|i = 1, . . . , 2d} do
9: `i ← D-splitting(ε, M , D̃, S̃)

10: `← concatenate lists ` and `i
11: end for
12: else
13: `← append (D,S,U ,P ) to list `
14: end if
15: return `
16: end procedure

have divided our snapshots into k groups (or clusters). Note that similar procedures have
previously been used in the context of model reduction, see, e.g., [22, 14].

Consider the parameter domain D = [a, b]d. Let ε > 0 be a tolerance value and M
the number of basis vectors and interpolation points of a local DEIM approximation. The
parameter domain D is split into subdomains D1, . . . ,Dk in a recursive fashion. We start
with D and split it into 2d subdomains D1, . . . ,D2d of equal size if the DEIM residual

max
w∈S

{
‖U(P TU)−1P Tw −w‖∞

}
(4.1)

is greater than ε. Then the corresponding subsets P = P1]· · ·]P2d and S = S1]· · ·]S2d

are constructed and a (U i,P i) is built for each Si. We continue this splitting process
in each subdomain Di as long as the DEIM residual (4.1) of Si with (U i,P i) is above
the tolerance and there are more than M snapshots left in the current set Si. The
result is the partition of S and D with the corresponding k local DEIM approximations
(U1,P 1), . . . , (Uk,P k). The algorithm is shown in Algorithm 1.

It is not necessary to choose the number of subdomains k in advance because the
number k is influenced by the tolerance ε. During the splitting process, we compute
O(k log(k)) local DEIM approximations in the offline phase. The classifier c : D →
{1, . . . , k} can be easily evaluated at µ by storing the centers of the subdomainsD1, . . . ,Dk

and comparing them to the parameter µ. One evaluation of c is in O(k). Since k < 100
in all of the following examples, the additional costs incurred by the classification of µ
are negligible.

4.2. Clustering of snapshots. The splitting-based partitioner constructs the groups
Si based on the DEIM residual (4.1) as a property of the entire group of snapshots. If
the group residual is below a certain threshold then the identified group (subdomain) is
accepted and no further splitting takes place.

Another way to construct groups is to freely group the snapshots S into clusters using
k-means. The assignment of a snapshot to a cluster i is based on the individual property
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Algorithm 2 construction procedure of parameter-based LDEIM

1: procedure D-Clustering(S, k)
2: {Pi,Si}ki=1 ← initial random partitioning of S and corresponding P
3: clustering ← zeros-filled array of size |S|
4: for maxIter do
5: {Ui,Pi}ki=1 ← {deim(Si)}ki=1

6: for j = 1 to |S| do
7: clustering[j]← arg min

i=1,...,k
‖Ui(P

T
i Ui)

−1PT
i F (y(µj))− F (y(µj))‖∞

8: end for
9: {Pi,Si}ki=1 ← new partitioning based on updated clustering

10: end for
11: c← train classifier on P1 × {1} ∪ · · · ∪ Pk × {k}
12: return (c,{Ui,Pi}ki=1)
13: end procedure

of a snapshot in S that its DEIM approximation within the i-th group is the best among
the rest of the clusters (groups). Whereas splitting can only put two snapshots into one
subset (cluster) if their parameters lie near together in D with respect to the Euclidean
norm, clustering with k-means can assign two snapshots to one cluster even though their
parameters might be very different. This is a more flexible way to derive a partition of S.

In addition to the number of clusters k, we must define three things before we cluster
with k-means. First, we define the data points that we want to cluster. In our case, these
are the snapshots in S. Second, we define the centroid of a cluster. Here, the centroid
of a cluster is its (local) DEIM approximation. Third, we need a clustering criterion.
In k-means, the clustering criterion is evaluated for each data point with each cluster
centroid, to decide to which cluster the data point should be assigned. By choosing the
local DEIM approximations as the centroids, we assign a data point to the cluster where
the corresponding DEIM residual is smallest. The motivation for this clustering criterion
is the greedy procedure where the DEIM residual is used to select the DEIM interpolation
points [12].

Initially, all snapshots are randomly assigned to a start cluster. This leads to a
partition of S into S1] · · ·]Sk and the associated partition of P into P1] · · ·]Pk. With
the local DEIM approximations computed from a given clustering, a k-means iteration
reassigns the snapshots to new clusters according to the DEIM residual. After several
iterations, the k-means algorithm is stopped if no swapping takes place or a maximum
number of iterations has been reached.

Though k-means is widely used in many applications, it has the drawback that it
only finds a local optimum to the minimization problem underlying its clustering idea
[24]. Thus, the solution (clustering) depends on the initial cluster assignment or seed
with which k-means is started. There exist many strategies for the seed of k-means but
either they scale poorly with the number of data points or they are mere rules of thumb
[3, 5, 2, 27]. For this reason we use a random initial cluster assignment. However, this
random initial guess might fit poorly with the data and thus the clustering result might
not group the snapshots in S as desired. To ensure a good clustering, we perform several
k-means replicates and select the cluster assignment with the minimal within-cluster sum.
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This is a standard way to cope with randomized initial guesses in k-means.
The result of the clustering method is a partition S = S1]· · ·]Sk and P = P1]· · ·]Pk.

This gives rise to the training data set

P1 × {1} ∪ · · · ∪ Pk × {k} ⊂ D × {1, . . . , k} (4.2)

for the classifier c : D → {1, . . . , k}. It is unreasonable to simply compare a parameter
µ with the centers of the clusters P1, . . . ,Pk as we have done in the previous section,
because the clusters most probably do not have a rectangular shape. Therefore, we
employ a nearest neighbor classifier.

5. State-based LDEIM. In the parameter-based LDEIM the indicator z is the
parameter µ and thus a local DEIM interpolant is selected with respect to the parameter
of the system. Here, we introduce state-based LDEIM where the indicator z is directly
derived from the nonlinear term F evaluated at y(µ), or more precisely, evaluated at the
state y(µ) of the previous iteration or time step. With this approach it is possible to
switch the local DEIM interpolant whenever a change in the system occurs even when
the parameter µ does not change (e.g., in every time step or in every Newton iteration
as discussed in Section 3). The state-based LDEIM is appropriate for time-dependent
problems and for nonlinear problems where several iterations are necessary to obtain the
output of interest (e.g., using a Newton method).

In the following, we first present an efficient way to compute the indicator z directly
from F (y(µ)), and then discuss a clustering and classification method that can deal with
such indicators. We develop the approach in the context of the Newton method, although
there are many other situations where state-based LDEIM is applicable. We denote with
ỹj(µ) the reduced state vector after the j-th Newton iteration.

5.1. Low-dimensional representations via feature extraction. In principle,
we could train a classifier c : RN → {1, . . . , k} with domain RN directly on the partition
S = S1 ] · · · ] Sk obtained in the offline phase and then evaluate c at F (V N ỹ

j(µ))
after the j-th Newton iteration to get the index of the local DEIM interpolant for the
j + 1-th iteration. However, this would require us to evaluate F at all N components
of V N ỹ

j(µ). We cannot afford this during the online phase. Therefore, to obtain a

more cost-efficient indicator, we construct a map F̃ : RN → RM̃ , with M̃ � N , that
will replace F in the evaluation of the indicator. The vector z = F̃ (ỹ(µ)) becomes the

indicator of F (V N ỹ(µ)). To construct the classifier c : RM̃ → {1, . . . , k}, we compute
the indicators S̃ = {z1, . . . ,zm} = {F̃ (V T

Ny(µ1)), . . . , F̃ (V T
Ny(µm))} of the snapshots

in S and then train c on the indicators S̃ with respect to the partition S = S1 ] · · · ] Sk.
We compute zj = F̃ (ỹj(µ)) in the j-th Newton iteration and evaluate the classifier at
zj to get the index of the local DEIM interpolant for the j + 1-th iteration.

In machine learning, this way of constructing the indicator z is called feature extrac-
tion or feature selection [8]. With F̃ (ỹj(µ)) we represent the high-dimensional vector

F (V N ỹ
j(µ)) in a low-dimensional space RM̃ where F̃ (ỹj(µ)) still contains the relevant

information to correctly classify the point F (V N ỹ
j(µ)). It is important to note that

the main purpose of the indicator zj = F̃ (ỹj(µ)) is not to be a good approximation of
F (V N ỹ

j(µ)) but only to decide with c(zj) which local DEIM approximation to use for
the approximation in the j+1-th iteration. Since we need the indicator zj = F̃ (ỹj(µ)) of
F (V N ỹ

j(µ)) whenever we want to switch the local DEIM approximation, the evaluation
of F̃ must be cheap to ensure a rapid online phase.
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We propose two different maps F̃ to compute the indicators. Let (Ug,P g) be the

(global) DEIM approximation with M̃ basis vectors and M̃ interpolation points con-
structed from the set of nonlinear snapshots S. We define the DEIM-based feature ex-
traction as

F̃D(ỹj(µ)) = (P T
gUg)−1P T

g F (V N ỹ
j(µ)), (5.1)

and the point-based feature extraction as

F̃ P (ỹj(µ)) = P T
g F (V N ỹ

j(µ)). (5.2)

Both F̃D and F̃ P require us to evaluate only M̃ components of F . The DEIM-based

feature extraction F̃D maps F (V N ỹ
j(µ)) onto the coefficients α(µ) ∈ RM̃ of the DEIM

linear combination Uα(µ). This is a good representation of the important information
contained in F (V N ỹ

j(µ)) because of the properties of the POD basis U underlying
DEIM. The motivation for (5.2) is the greedy algorithm of the DEIM [12], which can be
considered as feature extraction. It selects those components of F (V N ỹ

j(µ)) which are
used to compute the coefficients of the linear combination with the DEIM basis U . Thus,
the selected components play an essential role in capturing the behavior of the nonlinear
term [12]. The point-based feature extraction does not require the matrix-vector product

with (P T
gUg)−1 ∈ RM̃×M̃ and thus it is computationally cheaper than the DEIM-based

map F̃D.

5.2. Efficient computation of the indicator. In contrast to the parameter-based
LDEIM where z was simply the parameter µ, the computation of the indicator zj =
F̃ (ỹj(µ)) introduces additional costs. If we consider the two proposed representations
(5.1) and (5.2), we see that the nonlinear term is evaluated at M̃ components, and a

matrix-vector product with (P T
gUg)−1 ∈ RM̃×M̃ is required in the case of the DEIM-

based feature extraction. Whereas the computational costs of the matrix-vector product
with a matrix of size M̃ × M̃ are negligible, the costs of evaluating the nonlinear term
F at M̃ components for the feature extraction might be quite high even though M̃ is
usually much smaller than M . Note that the M̃ components required for the DEIM
approximation underlying the feature extraction are most probably different than the M
components used in the local DEIM approximations. Therefore, we do not evaluate F but
instead interpolate F with the local DEIM approximation at the M̃ components required
to get the indicator. Thus, for each local DEIM approximation (U i,P i), we store the
matrix

WD
i = (P T

gUg)−1P T
gU i(P

T
i U i)

−1 ∈ RM̃×M (5.3)

for the DEIM-based feature extraction (5.1), and the matrix

W P
i = P T

gU i(P
T
i U i)

−1 ∈ RM̃×M (5.4)

for the point-based feature extraction (5.2). Now, suppose the local DEIM interpolant
(U i,P i) has been selected for the approximation in the j-th Newton iteration. Then we
store the vector

f̃
j

= P iF (V N ỹ
j(µ)) .
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14 PEHERSTORFER, BUTNARU, WILLCOX, AND BUNGARTZ

This vector is used to compute the local DEIM approximation in the system (3.1) in the
j-th iteration, but it also used to compute the indicator zj of F (V N ỹ

j(µ)) with the
matrix (5.3) and (5.4), respectively.

We emphasize that this allows us to perform the feature extraction without any
additional evaluations of the nonlinear term F . Thus, just as in the parameter-based
LDEIM, we evaluate the nonlinear term only at the M components for the local DEIM
approximation. This interpolation introduces a small additional error that can lead to a
different selection of the local DEIM approximation than if we evaluated the nonlinear
term at the M̃ components. The numerical results in Section 6 show that this error has
a small effect on the overall accuracy of the state-based LDEIM.

5.3. Clustering and classification method for state-based LDEIM. In con-
trast to the clustering method used in the parameter-based LDEIM, the state-based
LDEIM does not directly cluster the high-dimensional snapshots in S but their indicators
in S̃ = {F̃ (V T

Ny(µ1)), . . . , F̃ (V T
Ny(µm))}. The data in S̃ are clustered with k-means

with respect to the Euclidean norm. The cluster centroids are now points in RM̃ and in
each iteration of k-means, a point z ∈ S̃ is assigned to the cluster

arg min
i∈{1,...,k}

‖si − z‖2

where si is the cluster centroid of cluster i. The Euclidean norm is a sufficient choice here
because the indicators in S̃ already contain only the most important information about

the snapshots. Note that it is cheaper to cluster S̃ ⊂ RM̃ instead of S ⊂ RN as in the
parameter-based LDEIM.

The result of the clustering method is a partition S̃1]· · ·]S̃k of S̃ and therefore also of
S into k subsets. For each of the subsets S1, . . . ,Sk, we compute a DEIM approximation

(U1,P 1), . . . , (Uk,P k). The classifier c : Z → {1, . . . , k} with Z = RM̃ is then trained
on the data

S̃1 × {1} ∪ · · · ∪ S̃k × {k} ⊂ RM̃ × {1, . . . , k}. (5.5)

As in the parameter-based LDEIM, we employ a nearest neighbor classifier.

5.4. Offline and online procedure. The computational procedure of the state-
based LDEIM follows the usual decomposition into an offline and an online phase. In
the offline phase, we cluster the set of snapshots S and construct the classifier c : Z →
{1, . . . , k}. In the online phase, we solve the nonlinear reduced model using the Newton
method, where we employ the local DEIM approximation chosen by the classifier.

5.4.1. Offline phase. The core of the offline phase is the construction procedure
summarized in Algorithm 3. Inputs are the number M of local DEIM basis vectors and
interpolation points, the dimensions M̃ of the indicator z, the number of clusters k,
the set of snapshots S, the map F̃ , and the POD basis V N . First, the indicators of
the snapshots in S are computed and stored in S̃. Then, they are clustered with the
k-means clustering method as discussed in Section 5.3. The result is the partition of S̃
and of S into k subsets. For each subset Si, the local DEIM approximation (U i,P i) is
built and the matrix W i is stored. The matrix W i is either (5.3) or (5.4). The global
DEIM approximation (Ug,P g) as well as the matrix W i are required for the efficient
construction of the indicator z in the online phase.
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Algorithm 3 Construction procedure of state-based LDEIM

1: procedure conSLDEIM(M , M̃ , k, S, F̃ , V N )
2: S̃ ← {F̃ (V T

Ny(µ1)), . . . , F̃ (V T
Ny(µm))}

3: (S̃1, . . . , S̃k)← k-means(S̃, k, ‖ · ‖2)
4: c← train classifier on S̃1 × {1} ∪ · · · ∪ S̃k × {k}
5: (Ug,P g)← DEIM(S, M̃)
6: `← empty list
7: for i = 1 : k do
8: Si = {F (y(µn)) | F̃ (V Ny(µn)) ∈ S̃i}
9: (U i,P i)← DEIM(Si, M)

10: W i ← depending on the feature extraction store either matrix (5.3) or (5.4)
11: `← append ((U i,P i),W i) to list `
12: end for
13: return (`, (Ug,P g))
14: end procedure

Algorithm 4 Selection procedure of state-based LDEIM

1: procedure selSLDEIM(V N , F , `, c, i, ỹj+1(µ), f̃
j
)

2: z ←W if̃
j

3: i← c(z)

4: f̃
j+1
← P iF (V N ỹ

j+1(µ))

5: return (i, f̃
j+1

)
6: end procedure

The k-means clustering method is initialized with a random cluster assignment. As
discussed in Section 5.3, the k-means clustering is repeated several times to ensure a
good clustering. Still, in certain situations, this might not be enough. Therefore, we
additionally split of a small test data set and repeat the whole construction procedure in
Algorithm 3 several times for S. We then select the result of the run where the DEIM
residual (4.1) for the test data set is smallest.

5.4.2. Online phase. In the online phase, our task is to select a local DEIM ap-
proximation (U i,P i) for the next Newton iteration. The selection procedure is shown in
Algorithm 4. The inputs are the list ` containing the local DEIM approximations and the
matrices W 1, . . . ,W k as computed in Algorithm 3, the index i ∈ {1, . . . , k} of the local
DEIM approximation employed in the j-th Newton iteration, the state vector ỹj+1(µ)

computed in the j-th iteration, and the vector f̃
j

= P iF (V N ỹ
j(µ)). With the matrix

W i the indicator zj is computed. Then the index i of the local DEIM approximation for
the j+ 1-th Newton iteration is updated by evaluating the classifier c at zj . We can then
evaluate the nonlinear term F (V N ỹ

j+1(µ)) at the indices given by the matrix P i and

store the values in f̃
j+1

. The outputs are the vector f̃
j+1

and the index i of the local
DEIM approximation for the j + 1-th Newton iteration.

We make two additional remarks on the online phase of the state-based LDEIM. First,
if the Newton method does not converge, we switch to a classical DEIM approximation
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with M basis vectors and M interpolation points. Note that this is not needed in the
parameter-based LDEIM because there we do not switch the local DEIM between Newton
iterations. The fall back to the classical DEIM is only necessary in exceptional cases, e.g.,
if the solution lies just between two clusters and we jump back and forth between them.
Second, in an iteration after a switch from one local DEIM approximation to another, we
employ the DEIM interpolation points corresponding to both clusters. This oversampling
has been shown to work well in other situations [37] and here it smooths the transition
from one local DEIM approximation to the next.

6. Numerical Results. In this section, we show that using LDEIM we achieve the
same level of accuracy as with DEIM but with fewer interpolation points. In Section 6.1,
parameter-based LDEIM is demonstrated on three benchmark problems. In Section 6.2,
we consider a reacting flow example of a two-dimensional premixed H2-Air flame where
we compare DEIM to parameter-based LDEIM and state-based LDEIM.

6.1. Parameter-based LDEIM. In Section 2.3 in (2.8), we introduced the func-
tion g1 : Ω × D → R with the parameter µ ∈ D controlling the gradient of the peak
in the corner (1, 1) of the domain Ω. Based on g1, we defined in (2.9) the function g4.
Depending on the parameter µ, the function g4 has a peak in one of the four corners of
Ω. Let us define g2 : Ω×D → R as

g2(x;µ) = g1(x;µ) + g1(1− x1, 1− x2; 1− µ1, 1− µ2)

where the parameters control a peak in the left bottom or the right top corner of Ω. We
discretize g1, g2, and g4 on a 20× 20 equidistant grid in Ω, sample on a 25× 25 grid in D
to compute 625 snapshots, and compute the DEIM interpolant and the parameter-based
LDEIM interpolant with splitting and clustering. For the splitting approach, we set the
tolerance ε in Algorithm 1 to 1e-07, 1e-06, and 1e-05 for g1, g2, and g4, respectively.
For the clustering approach, the number of clusters is k = 4. Note that we cannot
employ state-based LDEIM here because we have a pure interpolation task and no time
steps or Newton iterations, see Section 5. The interpolants are tested with the snapshots
corresponding to the 11× 11 equidistant grid in D. The results are shown in Figure 6.1.

The plots in the first row of Figure 6.1 indicate the subdomains of D obtained with
the splitting approach. For example, consider g2. The domain is split most near the left
bottom and right top corners, i.e., in locations where, depending on the parameter, a
peak can occur. We find a similar behavior for g1 and g4. In the second row, we plot the
parameters in D corresponding to the 25× 25 snapshots and color them according to the
cluster assignment obtained with the parameter-based LDEIM with clustering. Again,
the clusters divide D according to where the sharp peaks occur. We see that the clusters
allow a more flexible partition of D. In particular, this can bee seen for g1 where we
obtain clusters with curvilinear boundaries. In the third row of Figure 6.1, we plot the
averaged L2 error against the number of DEIM interpolation points. LDEIM achieves
an up to four orders of magnitude high accuracy than DEIM. In Section 2.3, we argued
that DEIM approximates the function g4 worse than g1 because the DEIM interpolant
has to capture all four peaks of g4 at once. If we now compare the result obtained with
LDEIM for g4 with the result of DEIM for g1, we see that we have a similarly good
performance with LDEIM for g4 as with DEIM for g1. This is expected because each
cluster corresponds to exactly one peak, i.e., one summand in (2.9), and thus the four
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Fig. 6.1. Parameter-based LDEIM applied to the three benchmark examples g1 (left), g2 (middle),
and g4 (right). Both splitting and clustering methods group the snapshots in a reasonable way. The
splitting and the clustering are shown for 20 DEIM basis vectors and interpolation points. Accuracy
compared to DEIM improves around two orders of magnitude and up to four orders in the case of g4.
The number of DEIM interpolation points on the x axis corresponds to the number of local DEIM points
in case of LDEIM.

local DEIM approximations together should be able to approximate g4 as well as one
global DEIM interpolant approximates g1.

Figure 6.2 shows the interpolation points picked by the DEIM. It can be seen that
DEIM concentrates on the right top corner in case of g1. For the functions g2 and g4,
however, DEIM distributes the points roughly equally among the four corners; thus, many
more interpolation points would be required to cover all corners sufficiently. In Figure 6.3,
we plot the LDEIM interpolation points of the four interpolants corresponding to the four
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Fig. 6.2. The DEIM interpolation points for the functions g1, g2, and g4. We set the number of
DEIM basis vectors and interpolation points to 20.

clusters of LDEIM shown in Figure 6.1. In case of the function g4, each cluster corresponds
to one corner of the spatial domain and thus each local DEIM interpolant can place its
interpolation points near its corner. We find a similar situation for function g2 where
cluster 2 and cluster 3 correspond to the peaks. For function g1 too, the localization
achieves an improvement by placing the interpolation points either near the top or the
right edge of the domain.

6.2. Reacting flow simulation. We consider a model of a steady premixed H2-Air
flame. We briefly introduce the problem, its governing equations, and the POD-DEIM
reduced-order model, but refer to [9] for a detailed discussion.

We simulate the two-dimensional premixed H2-Air flame underlying the one-step
reaction mechanism

2H2 + O2 → 2H2O ,

where H2 is the fuel, O2 is the oxidizer, and H2O is the product. The evolution of the
flame in the domain Ω is given by the nonlinear advection-diffusion-reaction equation

κ∆y − w∇y + f(y,µ) = 0 , (6.1)

where y = [yH2 , yO2 , yH2O, T ]T contains the mass fractions of species H2,O2, and H2O
and the temperature. The constants κ = 2.0cm2/sec and w = 50cm/sec are the molec-
ular diffusivity and the velocity of the velocity field in x1 direction, respectively. The
geometry of the problem is shown in Figure 6.4. With the notation of Figure 6.4, we have
homogeneous Dirichlet boundary conditions on the mass fractions on Γ1 and Γ3, and ho-
mogeneous Neumann conditions on temperature and mass fractions on Γ4,Γ5, and Γ6. We
have Dirichlet conditions on Γ2 with yH2 = 0.0282, yO2 = 0.2259, yH2O = 0, yT = 950K,
and on Γ1,Γ3 with yT = 300K.

The nonlinear reaction source term f(y,µ) = [fH2
(y,µ), fO2

(y,µ), fH2O(y,µ), fT (y,µ)]T

in (6.1) has the components

fi(y,µ) = − νi (ηH2
yH2

)
2

(ηO2
yO2

)µ1 exp
(
− µ2

RT

)
, i = H2,O2,H2O

fT (y,µ) = QfH2O(y,µ),
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Fig. 6.3. The interpolation points corresponding to the local DEIM approximations obtained with
parameter-based LDEIM with clustering for the functions g1, g2, and g4. We set the number of local
DEIM modes to 20. The clustering allows LDEIM to concentrate the interpolation points in only certain
parts of the spatial domain, i.e., near the corners.

Γ4

Γ5

Γ6

Γ1

Γ2

Γ3

Ω

3mm

3mm

3mm

Fuel

+

Oxidizer

x2

x1

18mm

9mm

Fig. 6.4. The spatial domain of the reacting flow simulation [9].
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Fig. 6.5. For the reacting flow example, in (a) the comparison between DEIM, parameter-based
LDEIM, and state-based LDEIM. In (b) the effect of F̃D and F̃P feature extraction with and without
interpolation. The results are shown for 40 POD and 20 DEIM modes.

where νi and ηi are constant parameters, R = 8.314472J/(mol K) is the universal gas
constant, and Q = 9800K is the heat of reaction. The parameters µ = (µ1, µ2) ∈ D
with D = [5.5e+11, 1.5e+03]× [1.5e+13, 9.5e+03] are the pre-exponential factor and the
activation energy, respectively. The equation (6.1) is discretized using the finite difference
method on a 73 × 37 grid leading to N = 10, 804 degrees of freedom. The result is a
nonlinear system of discrete algebraic equations

Ay + F (y,µ) = 0 , (6.2)

where now the vector y ∈ RN contains the mass fractions and temperature at the grid
points. The matrix A ∈ RN×N corresponds to the linear differential operators, and the
function F : RN → RN to the nonlinear source term. The nonlinear equations (6.2) are
solved with the Newton method. In [9], the POD-DEIM reduced-order system is derived
as

V T
NAy + V T

NAV N ỹ + V T
NU(P TU)−1F (P Ty + P TV N ỹ,µ) = 0 , (6.3)

with the arithmetic mean y of the set of snapshots {y1, . . . ,ym}, the POD basis V N ∈
RN×N computed from {yj − y}mj=1, and the DEIM interpolant (U ,P ) with M modes.
The snapshots are computed for the parameters on a 50× 50 equidistant grid in D.

Instead of DEIM, we employ parameter-based and state-based LDEIM, solve the
POD-LDEIM system for parameters on a 24 × 24 grid in D, and compute the average
relative error to the full model solutions. The results are shown in Figure 6.5. Figure 6.5a
compares DEIM, parameter-based LDEIM with splitting and clustering, and state-based
LDEIM. For splitting, we set the tolerance ε to 1e-08, which is about two orders below
what DEIM achieves. For the parameter-based LDEIM with clustering, the number of
clusters is set to 5. More clusters lead to an unstable behavior. For the state-based
LDEIM, however, we set the number of clusters to 15. The state-based LDEIM uses the
point-based feature extraction (5.2) with M̃ = 5 dimensions. In all cases, we have 40
POD modes. In Figure 6.5a, we see that the results of the parameter-based LDEIM with
clustering do not improve after about 10 DEIM modes. Again, the clustering becomes
unstable. However, this is not the case for state-based LDEIM which achieves an about
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Fig. 6.6. Interpolation points of standard DEIM for the reacting flow example. The points are
concentrated near the top, middle, and bottom of boundary Γ2 where the fuel and oxidizer are injected,
cf. Figure 6.4.
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Fig. 6.7. For the reacting flow example, the local DEIM interpolation points corresponding to
state-based LDEIM with four clusters are shown. The interpolation points for cluster 1 and 4 are
concentrated at the top corner of the inflow boundary Γ2, the points for cluster 2 at the bottom of Γ2,
and the interpolation points for cluster 3 are roughly equally distributed near Γ2 and in the region with
the highest temperature of the flame.

two orders of magnitude better accuracy than DEIM. The same holds for the splitting
approach.

In Figure 6.5b, we compare the feature extractions F̃D and F̃ P introduced (5.2)
and (5.1), respectively. We show the difference between evaluating the nonlinear term
F and interpolating the required values with the matrices defined in (5.3) and (5.4),
cf. Section 5.2. The figure shows that for this problem there is no large difference between
the two feature extraction methods and that there is no significant loss of accuracy if we
interpolate the values of F at the points required by the feature extraction instead of
directly evaluating F .

Figure 6.6 plots the temperature of the flame for parameters µ = (7.775e+12, 5.5e+03)
and the interpolation points selected by standard DEIM. We see that the points are con-
centrated near the inflow boundary Γ2, cf. Figure 6.4. In Figure 6.7 the interpolation
points of the local DEIM interpolants for state-based LDEIM with four clusters are shown.
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Fig. 6.8. For the reacting flow example, the number of POD/DEIM modes is fixed and the number of
clusters is increased. Increasing the number of clusters improves the accuracy of the DEIM approximation
but the POD basis that approximates the state limits improvement in the overall result. Results are shown
for state-based LDEIM with point-based feature extraction.

The points are either focused near the top (cluster 1 and 4) corner of the boundary Γ2,
the bottom (cluster 2) of Γ2, or are roughly equally distributed near Γ2 and in the region
with the highest temperature (cluster 3).

In Figure 6.8, we fix the number of POD and DEIM modes and increase the number
of clusters in state-based LDEIM. In Figure 6.8a, we see that if the number of POD
and DEIM modes is high, e.g., 40/40, then increasing the number of clusters does not
lead to improved accuracy. Even though the DEIM approximation gets more and more
accurate as we increase the number of clusters, the POD basis is fixed and thus limits
the accuracy of the overall result (although we note that the magnitude of the errors
is already very small). Note that although it might not help to increase the number of
clusters, it also does not deteriorate the results. Thus, in contrast to parameter-based
LDEIM with clustering, the clustering in state-based LDEIM does not become unstable
for the problems studied. For these examples, state-based LDEIM is not sensitive to the
number of clusters. These observations are confirmed in Figure 6.8b.

Finally, let us consider the runtimes in Table 6.1. We show the averaged relative
error and the runtimes of state-based LDEIM with 40 POD and 10 DEIM modes with
up to 100 clusters. We report the results for the two feature extraction methods F̃D

and F̃ P with and without interpolating the nonlinear term as discussed in Section 5.2.
The computations were repeated five times and reported are the averaged runtimes. All
runtimes are normalized with respect to the runtimes for only one cluster for the respective
feature extraction method without interpolation. The results show that if we increase the
number of clusters, the runtime increases only slightly. In Table 6.1, the worst case can be
found in the last column (F̃D with interpolation), where the runtime for 1 to 100 clusters
increases by a factor of 1.5 only. Furthermore, the errors in Table 6.1 confirm once again
that the clustering does not become unstable as we increase the number of clusters.

7. Conclusion. The localized discrete empirical interpolation method was presented.
Instead of only one DEIM interpolant, LDEIM computes several interpolants by partition-
ing the set of nonlinear snapshots into k subsets in the offline phase. In the online phase,
one of the local interpolants is selected for the actual approximation. In parameter-based
LDEIM, the local interpolant is selected with respect to the parameter of the system.
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Table 6.1
State-based LDEIM with 40 POD and 10 DEIM modes for our two feature extraction methods with

up to 100 clusters for the reacting flow example. The runtimes only slightly increase when we increase
the number of clusters. The reported errors confirm that the clustering does not get unstable as we
increase the number of clusters.

F̃ P w/out interp F̃D w/out interp F̃ P with interp F̃D with interp
k error time error time error time error time
1 9.26e-05 1.000 9.26e-05 1.000 9.26e-05 1.014 9.26e-05 1.037

10 2.90e-06 1.371 5.53e-06 1.289 2.20e-06 1.179 4.87e-06 1.231
20 9.19e-07 1.194 1.46e-06 1.071 9.96e-07 1.176 3.50e-06 1.102
30 4.92e-07 1.205 9.82e-07 1.343 5.21e-07 1.097 8.40e-07 1.257
40 2.87e-07 1.108 5.35e-07 1.125 3.32e-07 1.214 7.05e-07 1.189
50 2.33e-07 1.198 5.61e-07 1.290 2.06e-07 1.183 6.90e-07 1.161
60 2.04e-07 1.144 3.44e-07 1.143 2.01e-07 1.243 4.06e-07 1.164
70 2.15e-07 1.011 2.25e-07 1.148 1.98e-07 1.113 1.04e-06 1.325
80 4.02e-07 1.078 2.09e-07 1.303 1.58e-07 1.199 1.01e-06 1.384
90 2.03e-07 1.441 2.11e-07 1.238 2.41e-07 1.195 1.37e-06 1.419

100 1.39e-07 1.094 5.37e-07 1.144 1.18e-07 1.181 1.29e-06 1.524

In the state-based LDEIM, a low-dimensional representation of the nonlinear term eval-
uated at the state vector of the system is constructed to indicate which local DEIM
approximation to use.

Machine learning methods play a crucial role in all steps of LDEIM. In the offline
phase, the snapshots are clustered with k-means to construct the local interpolants, and
in the online phase, the selection procedure relies on classification where nearest neighbor
classifiers were employed here. Furthermore, the low-dimensional representation of the
nonlinear term in the state-based LDEIM is computed with feature extraction.

The only additional costs incurred by LDEIM over DEIM are the evaluation costs of
the selection procedure. Due to the properties of nearest neighbor classifiers, however,
these costs are negligible if compared to the computational costs of the rest of the proce-
dure. For three benchmark problems, LDEIM achieved improvements up to four orders
of magnitude with respect to DEIM. In the reacting flow example, the accuracy of the
reduced-order model with LDEIM was about two orders of magnitude better than the
DEIM.
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