
An Immersed Interface Method for Viscous

Incompressible Flows Involving Rigid and Flexible

Boundaries

D.V. Le1, B.C. Khoo1,2, and J. Peraire1,3

1Singapore-MIT Alliance

2National University of Singapore, Mechanical Engineering

Department

3Massachusetts Institute of Technology, Department of Aeronautics

and Astronautics

Abstract

We present an immersed interface method for the incompressible Navier-Stokes equa-

tions capable of handling rigid immersed boundaries. The immersed boundary is

represented by a set of Lagrangian control points. In order to guarantee that the

no-slip condition on the boundary is satisfied, singular forces are applied on the fluid.

The forces are related to the jumps in pressure and the jumps in the derivatives of

both pressure and velocity, and are interpolated using cubic splines. The strength

of the singular forces is determined by solving a small system of equations itera-

tively at each time step. The Navier-Stokes equations are discretized on a staggered

Cartesian grid by a second order accurate projection method for pressure and velocity.

Keywords : Immersed interface method, Navier-Stokes equations, Cartesian grid method,

finite difference, fast Poisson solvers, irregular domains.

1

1 Introduction

In this paper, we present a novel numerical method for solving viscous, incompressible

flow problems involving moving interfaces and rigid boundaries. One of the challenges

of these problems is that the fluid motion, the flexible interface motion and the

interaction with the immersed rigid boundaries must be computed simultaneously.

This is necessary to account for the complex interaction between the fluid and the

immersed boundaries. An example of interface problems that we consider is shown in

Fig. 1. Our algorithm solves the incompressible Navier-Stokes equations formulated

in primitive variables. In a 2-dimensional bounded domain Ω that contains a material

interface Γ(t), we consider the incompressible Navier-Stokes equations, written as

ut + (u · ∇)u +∇p = µ4u + F (1)

∇ · u = 0 (2)

where u is the fluid velocity, p the pressure, and µ the viscosity of the fluid. Here,

we assume that fluid density ρ ≡ 1 and the viscosity µ is constant over the whole

domain. The effect of the material interface Γ(t) immersed in the fluid results in a

singular force F which has the form

F (x, t) =

∫

Γ(t)

f(s, t)δ(x−X(s, t))ds , (3)

where X(s, t) is the arc-length parametrization of Γ(t), s is the arc-length, x = (x, y)

is spatial position, and f(s, t) is the force strength. Here, δ(x) is the two-dimensional

Dirac function. The force strength at the immersed rigid boundary is determined to

impose the no-slip condition at the rigid boundary. The force strength at the flexible

interface is computed based on the configuration of the interface, i.e., the interface is

assumed to be governed by either surface tension, or by an elastic membrane. The

motion of the interfaces satisfies

∂

∂t
X(s, t) = u (X, t) =

∫

Ω

u(x, t)δ(x−X(s, t))dx . (4)

In our algorithm, the Navier-Stokes equations are discretized using a standard finite

difference method on a staggered Cartesian grid.

Methods utilizing a Cartesian grid for solving interface problems or problems with

2

Figure 1: A typical domain in which the Navier-Stokes equations are solved. The

flexible interface and the rigid boundary are immersed in a uniform Cartesian grid.

complex geometry have become popular in recent years. Existing Cartesian grid

methods for interface problems can be categorized into two general groups: methods

that determine the jump conditions across the interface and incorporate them into

the finite difference scheme and methods that smooth out the singular force before it

is applied to the fluid. Our method which is based on the immersed interface method

originally proposed by LeVeque and Li [23, 24] falls into the first group. The immersed

boundary method introduced by Peskin [29] belongs to the second group. Peskin’s

immersed boundary method has proven to be a very useful method for modelling fluid-

structure interaction involving large geometry variations. This method was originally

developed to study the fluid dynamics of blood flow in the human heart [28]. The

original method has been developed further and has been applied to many biological

problems including platelet aggregation [12, 13, 36], the deformation of red blood cell

in a shear flow [10], the swimming of bacterial organisms and others [9, 11]. This

method has also been applied to handle problems with rigid boundaries [17, 34]. In

order to deal with rigid boundaries, Lai and Peskin [17] proposed to evaluate the force

density using an expression of the form,

f(s, t) = κ(Xe(s)−X(s, t)), (5)

where κ is a constant, κ À 1, and Xe is the arc-length parametrization of the

required boundary position. The forcing term in equation (5) is a particular case of

the feedback forcing formulation proposed by Goldstein et al. [15] with β = 0. In [15],

3

the force is expressed as

f(s, t) = α

∫ t

0

U (s, t′)dt′ + βU (s, t) (6)

where U is the velocity of the boundary, and α and β are chosen to be negative and

large enough so that U will stay close to zero. Lima E Silva et al. [34] proposed an

alternative model to compute the force density f based upon the evaluation of the

various terms in the momentum equation (1) at the control points. The force density

f is calculated by computing all the Navier-Stokes terms at the control points X as,

f(X) =
∂u(X)

∂t
+ (u · ∇)u(X) +∇p(X)− µ∇2u(X) . (7)

The immersed boundary method uses a set of control points to represent the inter-

face. The force densities are computed at these control points and are spread to

the Cartesian grid points by a discrete representation of the delta function. Once

the force densities are computed at the control points and spread to the grid, the

Navier-Stokes equations with the forcing terms are then solved for pressure and ve-

locity at Cartesian grid points. This velocity field is interpolated using the discrete

delta function to find the velocity at the control points. More details on the immersed

boundary method can be found in [29] and the references therein.

The immersed boundary method has several attractive features: the method is simple

to implement, it can handle complex geometries easily and it can use standard regular

Cartesian grid Navier-Stokes solvers. However, since the immersed boundary method

uses the discrete delta function approach, it smears out sharp interface to a thickness

of order of the meshwidth and it is only first-order accurate for general problems.

In contrast, the Immersed Interface Method (IIM) can avoid smearing sharp inter-

faces and maintains second-order accuracy by incorporating the known jumps into

the finite difference scheme near the interface. The singular force F along the im-

mersed boundaries results in solutions to the Navier-Stokes equations which may be

non-smooth across the interface, i.e., there may be jumps in pressure and in the deriv-

atives of both pressure and velocity at the interface. An essential ingredient of the

immersed interface method is the relation between the jumps in the solutions and

their derivatives, and the applied singular forces. The basic idea of our immersed

interface method is to discretize the Navier-Stokes equations on a uniform Cartesian

4

grid and to account for the singular forces by explicitly incorporating the jumps in

the solutions and their derivatives into the difference equations. The main advantage

of the IIM is that the solutions of the Navier-Stokes equations on a uniform mesh can

be done very efficiently with the use of fast solvers, and at the same time, complex

geometrical changes can be handled in a rather seamless manner. The drawback of

this method is that a special discretization for the Navier-Stokes equations near the

immersed boundaries needs to be performed to maintain both accuracy and stability.

The IIM was originally proposed by LeVeque and Li [23] for solving elliptic equations,

and later extended to Stokes flow with elastic boundaries or surface tension [24]. The

method was developed further for the Navier-Stokes equations in Li et al. [25], Lee [22]

and Le et al. [19] for problems with flexible boundaries. The method was also used by

Calhoun [6] and Li et al. [26] for solving the two-dimensional streamfunction-vorticity

equations on irregular domains. In [6], to obtain the jumps in the streamfunction and

vorticity, the method requires solving a small linear system of equations. For a sta-

tionary rigid boundary, the coefficient matrix is generated once and is factorized using

LU decomposition. At each timestep, only the right-hand side vector is formed and

the jumps are found via back substitution. For a moving rigid boundary, the linear

system of equations must be generated at every timestep. This approach is imprac-

tical for moving rigid boundary because forming the linear system of equations for

the jumps in the streamfunction and vorticity at each timestep is computationally

prohibitive. To avoid generating the coefficient matrix explicitly, Li et al. [26] sug-

gested to use the generalized minimal residual (GMRES) method [32] to solve the

Schur complement system. However, this approach has not been applied for moving

geometry. In [31], a Cartesian grid method for modelling multiple moving objects in

incompressible viscous flow is considered. Instead of using a linear system to couple

all the variables involved as in [6, 26], the authors compute the jumps in streamfunc-

tion and vorticity in separate steps. The jumps in streamfunction associated with

the no-penetration condition are computed using a superposed homogenous solution.

Boundary vorticity is calculated to impose the no-slip condition by interpolation.

This approach greatly reduces the computational cost for problems with moving rigid

boundaries.

In the present work, we focus on presenting an immersed interface method for solving

5

problems with immersed rigid boundaries. The method presented in this paper is

based on that presented in Le et al. [20] and is an extension of our earlier work for

problems with flexible boundaries [19]. Our approach uses the immersed interface

method to solve the incompressible Navier-Stokes equations formulated in primitive

variables. In [19], the singular force f is computed based on the configuration of

the interface, i.e., the interface is assumed to be governed by either surface tension,

or by an elastic membrane. In the present work, the singular force at the immersed

boundary is determined to impose the no-slip condition at the rigid boundary. At

each time step the singular force is computed implicitly by solving a small, dense

linear system of equations. Having computed the singular force, we then compute

the jump in pressure and jumps in the derivatives of both pressure and velocity. The

jumps in the solution and its derivatives are incorporated into the finite difference

discretization to obtain sharp interface resolution. Fast solvers from the FISHPACK

software library [1] are used to solve the resulting discrete systems of equations. A

contribution of this paper is the introduction of a novel numerical algorithm for the

incompressible Navier-Stokes equations in the presence of rigid boundaries. Another

contribution is that both flexible and rigid boundaries can be considered simultane-

ously. This contribution is significant because most of the current methods can only

handle flexible boundaries and the rigid boundary is required to be aligned with the

computational grid.

The remainder of the paper is organized as follows. In section 2, we present the rela-

tions that must be satisfied along the immersed boundary between the singular force

f and the jumps in the velocity and pressure and their derivatives. In section 3, we

describe the generalized finite difference approximations to the solution derivatives,

which incorporate solution jumps. In section 4, we present in detail the numerical

algorithm. In section 5, some numerical examples are presented and finally, some

conclusions and suggestions for future work are given in section 6.

2 Jump conditions across the interface

We have already mentioned that when singular forces are applied on a material inter-

face, the solutions of the Navier-Stokes equations may be non-smooth or discontinuous

6

across the interface. Let n and τ be the unit outward normal and tangential vectors

to the interface, respectively. The normal and tangential components of the force

density f1 = f(s, t) · n and f2 = f(s, t) · τ , respectively, can be related to the jump

conditions for pressure and velocity as follows

[u] = 0, [µuξ] = −f2τ , [uη] = 0 (8)

[p] = f1, [pξ] =
∂f2

∂s
, [pη] =

∂f1

∂s
. (9)

The jump, [·], denotes the difference between the value of its argument outside and

inside the interface, and (ξ, η) are the rectangular coordinates associated with the

directions of n and τ respectively. Figure 2 illustrates a typical domain with an

immersed flexible boundary and a local coordinate system. In order to construct

the appropriate finite difference formulas we will also require the jumps in the second

derivatives of velocity and pressure which can be obtained by differentiating the above

expressions as,

[µuηη] = κf2τ , [µuξη] = −∂f2

∂η
τ − κf2n,

[µuξξ] = − [µuηη] + [pξ]n + [pη]τ + [uξ]u · n
(10)

[pηη] =
∂2f1

∂η2
− κ[pξ], [pξη] =

∂2f2

∂η2
+ κ[pη],

[pξξ] = − [∇ · (u · ∇u)]− [pηη] .

(11)

Here, κ is the signed valued of the curvature of the interface (i.e. we assume that

n × τ = k ≡ constant, so that n can point either towards, or outwards from, the

center of curvature). The proof for expressions (8)-(11) can be found in detail in

[23, 24, 25, 21]. We note that from expressions (8)-(11) the values of the jumps of

the first and second derivatives of velocity and pressure with respect to the (x, y)

coordinates are easily obtained by a simple coordinate transformation. For instance

we have,

[ux] = [uξ]n1 + [uη]τ1

[uy] = [uξ]n2 + [uη]τ2

[uxx] = [uξξ]n
2
1 + 2[uξη]n1τ1 + [uξη]τ

2
1

[uyy] = [uξξ]n
2
2 + 2[uξη]n2τ2 + [uξη]τ

2
2 ,

7

Figure 2: A typical domain with an immersed flexible boundary. The local coordinate

system (ξ, η). The domain Ω+ and Ω− are divided by a closed curve Γ(t).

where n = (n1, n2) and τ = (τ1, τ2) are the Cartesian components of the normal and

tangential vectors to the interface at the point considered.

3 Generalized finite difference formulas

From Taylor series expansions, it is possible to show that if the interface cuts a grid

line between two grid points at x = α, xi ≤ α < xi+1, xi ∈ Ω−, xi+1 ∈ Ω+, then the

following approximations hold for a piecewise twice differentiable function v(x):

vx(xi) =
vi+1 − vi−1

2h
− 1

2h

2∑
m=0

(h+)m

m!
[v(m)] + O(h2) (12)

vx(xi+1) =
vi+2 − vi

2h
− 1

2h

2∑
m=0

(h−)m

m!
[v(m)] + O(h2) (13)

vxx(xi) =
vi+1 − 2vi + vi−1

h2
− 1

h2

2∑
m=0

(h+)m

m!
[v(m)] + O(h) (14)

vxx(xi+1) =
vi+2 − 2vi+1 + vi

h2
+

1

h2

2∑
m=0

(h−)m

m!
[v(m)] + O(h) (15)

where v(m) denotes the m-th derivative of v, vi = v(xi), h+ = xi+1 − α, h− = xi − α

and h is the mesh width in x direction. The jumps in v and its derivatives are defined

8

as

[v(m)]α = lim
x→α,x∈Ω+

v(m)(x)− lim
x→α,x∈Ω−

v(m)(x) (16)

in short, [·] = [·]α, and v(0) = v. See Weigmann and Bube [37] for more details on

the proof. Note that if the interface cuts a grid line between two grid points xi ∈ Ω+

and xi+1 ∈ Ω−, the above expressions need to be modified by changing the sign of

the second terms from the right-hand sides of (12)–(15).

Expressions involving two or more interface crossings could also be derived, see for

example [37]. Finally, we also require centered and backwards approximations for

v(tn+1/2). These approximations are required when the interface crosses a grid point

over the time interval considered. Thus assuming that the interface crosses a grid

point at time τ , tn−1 ≤ τ < tn+1, we have,

a) when tn ≤ τ < tn+1/2,

v(tn+1/2) =
1

2
(vn + vn+1) +

1

2
[v]τ + O(4t) (17)

b) when tn+1/2 ≤ τ < tn+1,

v(tn+1/2) =
1

2
(vn + vn+1)− 1

2
[v]τ + O(4t) (18)

and,

a) when tn−1 ≤ τ < tn

v(tn+1/2) =
3

2
vn − 1

2
vn−1 − 1

2
[v]τ + O(4t) (19)

b) when tn ≤ τ < tn+1/2

v(tn+1/2) =
3

2
vn − 1

2
vn−1 + [v]τ + O(4t) . (20)

Here, [v]τ denotes the jump in time of a function v(x, t) at a particular grid point

and is only non zero when the interface crosses the grid point at time τ . The jump

in time is defined as

[v(t)]τ = lim
t→τ+

v(t)− lim
t→τ−

v(t) . (21)

It is easy to see that [v]α = ±[v]τ , where [.]α denotes spatial jump as defined in (16)

and the sign depends on the motion of the interface. For example we use a plus

sign when the grid point moves from the inside of the interface to the outside of the

interface, i.e. from Ω− to Ω+, and a minus sign when the grid point moves from the

outside of the interface to the inside of the interface, i.e. from Ω+ to Ω−.

9

Figure 3: The MAC staggered grid in two dimensions.

4 Numerical algorithm

4.1 Projection method

We employ a pressure-increment projection algorithm for the discretization of the

Navier-Stokes equations. This projection algorithm is analogous to that presented in

Brown et al. [4]. It leads to a second order accuracy for both velocity and pressure

provided all the spatial derivatives are approximated to second order accuracy. The

spatial discretization is carried out on a standard marker-and-cell (MAC) staggered

grid analogous to that in Kim et al. [16]. The ENO third-order upwind scheme is

used for the advective terms (Shu and Osher [33]). Figure 3 illustrates the MAC

staggered grid. With the MAC mesh, the pressure field is defined at the cell center

where the continuity equation is enforced. The velocity fields u and v are defined

at the vertical edges and horizontal edges, respectively. The main advantage of the

MAC mesh is that boundary conditions for pressure are not required explicitly. The

main disadvantages of the MAC grid are that the implementation is more compli-

cated than that on the non-staggered grids and some of the velocity components are

not defined on the boundaries. The procedure of the pressure-increment projection

method for problems with immersed interfaces is the same as that for non-interface

10

problems. For problems with immersed interface, however, the discretizations for the

Navier-Stokes equations at all grid points near the interface need to be modified to

account for the jump conditions across the interface of the solutions. Here we renew

the pressure increment method for the case involving immersed interfaces. Given

the velocity un, and the pressure pn−1/2, we compute the velocity un+1 and pressure

pn+1/2 at the next time step in three steps:

Step 1: Compute an intermediate velocity field u∗ by solving

u∗ − un

4t
= −(u · ∇u)n+ 1

2 −∇pn+ 1
2 + µ∇2un+ 1

2 + C1 (22)

u∗|∂Ω = un+1
b

where the advective term is extrapolated using the formula,

(u.∇u)n+ 1
2 =

3

2
(u · ∇u)n − 1

2
(u · ∇u)n−1 + C2 + γ1[u · ∇u]τ , (23)

the diffusion term is approximated implicitly as,

∇2un+1/2 =
1

2
(∇2

hu
∗ +∇2

hu
n) + C3 + γ2[∇2

hu]τ , (24)

and the pressure gradient is approximated simply as,

∇pn+ 1
2 = GMACpn− 1

2 + C4 + γ3[∇p]τ . (25)

The MAC gradient operators are defined as

(GMAC
x p)i+ 1

2
,j =

pi+1,j − pi,j

4x
, (GMAC

y p)i,j+ 1
2

=
pi,j+1 − pi,j

4y

Step 2: Compute a pressure update φn+1 by solving the Poisson equation

∇2
hφ

n+1 =
DMACu∗

4t
+ C5 , (26)

with boundary condition

n · ∇φn+1|∂Ω = 0 . (27)

The MAC divergence operator is defined as

(DMACu)i,j =
ui+ 1

2
,j − ui− 1

2
,j

4x
+

vi,j+ 1
2
− vi,j− 1

2

4y
.

11

Step 3: Update pressure and velocity field

un+1 = u∗ −∆tGMACφn+1 + C6 (28)

pn+1/2 = pn−1/2 + φn+1 − µ

2

(
DMACu∗

)
+ C7 (29)

Here, [·]τ denotes a jump in time and is only non zero when the interface crosses

the grid point over the time interval considered. The coefficients γi, i = 1, 2, 3 cor-

respond to the first order corrections in time. The coefficient γ1 is determined from

expressions (19), (20) and the coefficient γ2 is determined from expressions (17), (18).

The coefficient γ3 is only nonzero when the interface crosses the grid point over the

time interval [tn−1/2, tn+1/2], and has the value of 1. Once again, at the interface

[·]τ = ±[·]α, where [·]α denotes spatial jump and the sign depends on the motion of

the interface. The operator ∇2
h is the standard five point central difference operator

and Ci, i = 2, . . . , 7, are the spatial correction terms which are only non-zero at the

points near the interface. The constant C1 is the correction term for the discretization

of ∂u/∂t and is only nonzero at a particular grid point which the interface crosses

over the time interval [tn, tn+1].

In our projection method, we need to solve two Helmholtz equations for u∗ in (22)

and one Poisson equation for φn+1 in (26). Since the correction terms in (22) and (26)

only affect the right-hand side of the discrete systems for the Helmholtz and Poisson

equations, we can take advantage of the fast solvers from FISHPACK [1] to solve

these equations. In fact, the FISHPACK software library provides two subroutines

HWSCRT() and HSTCRT() for solving the Helmholtz equations on the non-staggered

and staggered Cartesian grids, respectively. The unknowns in HWSCRT() are defined

at the corners of the cell and the unknowns in HSTCRT() are defined at the center of

the cell as in Figure 3. The velocity field that we define in the MAC grid does not ac-

tually satisfy exactly the requirement of these subroutines but a simple combination

of the two subroutines will be adequate for our purposes.

4.2 Correction terms

In this section, we will show how to evaluate the correction terms Ci, i = 1, . . . , 7

generated in section 4.1. Let’s define C{u} as a correction term for a quantity u. For

12

example, from (12) we can write

C{ux(xi)} = − 1

2h

(
[u] + h+[ux] +

(h+)2

2
[uxx]

)
(30)

Then the correction terms C1-C7 are evaluated as follows:

C1 = −C{ut} (31)

C2 =
3

2
C{(u · ∇u)n} − 1

2
C{(u · ∇u)n−1} (32)

C3 =
1

2

(
C{∇2u∗}+ C{∇2un}) (33)

C4 = C{∇pn− 1
2} (34)

C5 =
C{∇ · u∗}

4t
− C{∇2pn+ 1

2}+ C{∇2pn− 1
2}+ γ3[∇p]τ (35)

C6 = −4t
(
C{∇pn+ 1

2} − C{∇pn− 1
2}

)
(36)

C7 = −µ

2
C{∇ · u∗} (37)

All the correction terms are included at least to first order accuracy. As explained

in [23], the overall second order accuracy of the scheme is maintained provided only

the singular points are treated with a first order scheme. This can be intuitively

understood by noticing that when the mesh is refined, the area of the domain repre-

sented by these points is reduced.

We note that the correction term C{ut} in (31) is only nonzero at the grid points

crossed by the interface between time level n and time level n + 1. Assume that the

interface crosses a grid point (i, j) at time τ , tn ≤ τ ≤ tn+1, the correction term for

ut at this point is given by

C{ut} = − 1

4t
([u]τ + (tn − τ)[ut]τ) (38)

if tn ≤ τ ≤ tn+1/2 and

C{ut} = − 1

4t

(
[u]τ + (tn+1 − τ)[ut]τ

)
(39)

if tn+1/2 ≤ τ ≤ tn+1.

Since the velocity is continuous across the interface, we have [u]τ = 0. Also, by

differentiating [u] = 0 we obtain

[ut] = −[u · ∇u] = ±[ut]τ (40)

13

In (33), (35) and (37), we use the jump conditions for un+1 to approximate the jump

conditions for u∗ as we expect that u∗ is a good approximation for un+1. This is

one of the reasons why we choose to implement the pressure increment projection

method in which u∗ is computed to be a good approximation for un+1. To evaluate

the correction term C{∇2u∗} of (33) at a point (i, j) in Fig. 4 we need to compute

[u∗x], [u∗xx] at the intersection point α and [u∗y], [u∗yy] at β using the force strength at

time level n + 1. The correction term C{∇2u∗} is calculated as follows

C{∇2u∗}i,j = −
[u∗] + h+[u∗x]α +

(h+)2

2
[u∗xx]α

h2
−

[u∗] + k−[u∗y]β +
(k−)2

2
[u∗yy]β

h2
,

and ∇2u∗ is approximated at the point (i, j) as

∇2u∗(i, j) =
u∗i+1,j + u∗i−1,j + u∗i,j+1 + u∗i,j−1 − 4u∗i,j

h2
+ C{∇2u∗}i,j + O(h) .

Similarly, we can compute other correction terms in (33)–(37).

Figure 4: Interface and mesh geometry near the grid point (i, j).

14

4.3 Singular force evaluation

Assume that the singular force f is known at the rigid boundary. The velocity field

un+1 at all grid points can be computed via the projection method introduced in the

previous chapter. Equation (22) is first solved for the intermediate velocity u∗. The

pressure increment φn+1 is then determined by solving Eqn (26). Finally the velocity

field is updated using Eqn (28). Having solved for un+1 at the grid points, we now

compute the velocity at the rigid boundary. In our method, we use a set of control

points to represent the rigid boundary. The velocity at the control points, Uk, is

interpolated from the velocity at the grid points. Thus, we can write

Uk = U (Xk) = B(un+1) , (41)

where B is the bilinear interpolation operator which includes the appropriate correc-

tion terms which are required to guarantee second order accuracy when the derivatives

of the velocity are discontinuous. The explicit form of Uk can be found in Appendix A.

In summary, the equations that need to be solved in order to calculate un+1 and Uk,

can be written symbolically as,

Eqn (22) → Hu∗ = C + B1f

Eqn (26) → Lφn+1 = Du∗ + B2f

Eqn (28) → un+1 = u∗ −Gφn+1 + B3f

Eqn (41) → Uk = Mun+1 + B4f

Eliminating u∗, φn+1 and un+1 from the above equations, we can compute the velocity

Uk at the control points as follows,

Uk = M
(
H−1C −GL−1DH−1C

)

+
(
M

(
H−1B1 −GL−1DH−1B1 −GL−1B2 + B3

)
+ B4

)
f .

(42)

For convenience, we can write (42) as

Uk = U 0
k + Af , (43)

where U 0
k is simply the velocity at the control points obtained by solving Eqns (22),

(26), (28) and (41) with f = 0, given un and pn−1/2. A is a 2Nb× 2Nb matrix, where

15

Nb is the number of control points. The vector Af is the velocity at the control

points obtained by solving the following equations:

u∗f
4t

=
µ

2
∇2u∗f , u∗f |∂Ω = 0 (44)

∇2φn+1
f =

∇ · u∗f
4t

, n · ∇φn+1
f |∂Ω = 0 (45)

un+1
f = u∗f −∆t∇φn+1

f (46)

Af = B(un+1
f) (47)

with f being the singular force at the immersed boundary.

Equation (43) can be used to determine the singular force if we know the prescribed

velocity U p at the immersed boundary. Thus, the singular force at the control points

can be computed by solving

Af = U p −U 0
k (48)

In this way, the singular force is solved to impose exactly the no-slip boundary con-

dition at the interface. The coefficient matrix A can be computed explicitly at each

timestep from (44)–(47). We solve Eqns (44)–(47) 2Nb times, i.e., one for each col-

umn. Each time, the force strength f is set to zero except for the entry corresponding

to the column we want to calculate which is set to one. Note that the matrix A de-

pends on the location of the interface and the timestep ∆t.

For static geometry, we will have the same matrix A at every timestep if we use

the same ∆t at every timestep. Therefore the matrix A is computed once and is

factorized and stored. Once the matrix A has been calculated, only the right hand

side, U p−U 0
k, needs to be computed at each timestep. The resulting small system of

equations (48) is then solved at each timestep for the singular force f via back sub-

stitution. Finally, we solve Eqs (22)–(29) to obtain un+1 and pn+1/2. Note that the

same ∆t as that used in computing A is used at every timestep of the simulation. It

is important to note that the matrix A, for a closed immersed boundary, is singular.

This happens because the pressure inside the closed boundary is not uniquely deter-

mined. We can choose the pressure inside the interface such that there is no jump in

pressure at one of the control points, i.e., the normal force at that point is set to zero.

Therefore, we can eliminate one column and row of the matrix A corresponding to

16

that control point, thus making the problem solvable. Or we can use singular value

decomposition (SVD) method to solve the singular system of equations (48). The

solution obtained via SVD method is the least-square solution which has the shortest

length. We prefer the SVD method since the right-hand side of (48) may not lie in

the range of A and hence the exact solution cannot be obtained.

For moving geometry, the coefficient matrix must be regenerated for every timestep.

The computational cost associated with this is prohibitive. To avoid generating A, we

employ GMRES method to solve (48) iteratively. Each iteration of GMRES method

requires a matrix-vector product which can be found by solving (44)–(47). In each

matrix-vector product, we have to solve two Helhmoltz equations (44) and a Pois-

son equation (45). Therefore, our algorithm for solving the problems with moving

boundary is only effective if the GMRES method takes a few iterations to converge.

For a closed immersed boundary, the linear system of equations (48) is singular. A

version of GMRES method for singular linear system of equations is required. We

employed the GMRES method presented in [5] which used the incremental condition

estimation (ICE) [2] to monitor the conditioning of the upper Hessenberg matrix.

4.4 Implementation

In this section we describe a basic implementation of our algorithm for the Navier-

Stokes equations with immersed rigid boundary. One of the typical problems with

immersed rigid boundary is the flow over a stationary circular cylinder. To start

our computation we use a set of control points to represent the rigid boundary and

compute the coefficient matrix as mentioned in the previous section. For the cylinder

problem, this matrix is singular. We factorize the coefficient matrix using singular

value decomposition as,

A = UΣV T , (49)

where U = [u1, . . . , uN] and V = [v1, . . . , vN] are orthogonal matrices and Σ =

diag(σ1, . . . , σN) is a diagonal matrix whose elements are the singular values of the

original matrix such that

σ1 ≥ σ2 ≥ . . . ≥ σN ≥ 0 .

17

Since A is singular it has at least one singular value equals to zero. We store U , V

and Σ for solving the singular force at every timestep. Having A, at each timestep,

given the velocity field, un and pressure field pn−1/2, our algorithm of finding un+1,

pn+1/2 and the singular force to impose the no-slip condition at the rigid boundary

can be summarized as follows:

Step 1: Compute the right-hand side of (48) by computing U 0
k.

• Set f = 0. Solve (22), (26) and (28) for the velocity at all grid points.

• Interpolate the velocity at the control points U 0
k as in (41).

• Compute the right-hand side vector b = U p −U 0
k.

Step 2: Compute the singular force by solving (48) using SVD method.

• If A is nonsingular, then the force f can be written in terms of the SVD as

f =
N∑

i=1

uT
i b

σi

vi .

• If A is singular and has only one zero singular value, then the force f can be

computed as,

f =
N−1∑
i=1

uT
i b

σi

vi . (50)

Step 3: Compute un+1 and pn+1/2 using the projection method.

For moving geometry, we still have the same algorithm except that the GMRES solver

is applied to solve (48) iteratively at each time step. Thus we do not need to form

the coefficient matrix explicitly.

5 Numerical results

In this section we present the numerical results for some problems which involve

immersed rigid boundaries.

18

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

X

U field at t = 10

Y

Z

(a)

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Velocity field at t = 10

X

Y

(b)

Figure 5: Velocity field at time t = 10 with a 64×64 grid, µ = 0.02, 4t = 4x/4.

The immersed boundary rotates with angular velocity ω = 2. 5(a) Plot of the x

component of velocity field. 5(b) Plot of velocity field.

5.1 Rotational flow

In this problem, the interface is a circle with radius r = 0.3 embedded in a square

domain [−1, 1] × [−1, 1]. We prescribe the interface to rotate with angular velocity

ω = 2. We set µ = 0.02 and consider the solution when t = 10. The velocity field is

shown in Figure 5. We carried out a grid refinement analysis, using a reference grid

of 512× 512, to determine the order of convergence of the algorithm. The results in

Table 1 show that the velocity is second order accurate and the pressure is nearly

second order accurate.

5.2 Flow past a circular cylinder

In this example, we simulate an unsteady flow past a circular cylinder immersed in a

rectangular domain Ω = [0, 3]× [0, 1.5]. We use this problem as a benchmark test for

our algorithm. The cylinder has a diameter d = 0.1 and its center is located at (1.6,

0.75). The fluid density is ρ = 1.0 and the freestream velocity is set to unity, U∞ = 1.

The viscosity is determined by the Reynolds number, Re = U∞d
µ

. Simulations have

been performed at Re = 20, 40, 80, 100, 200 and 300 on a 512 × 256 computational

mesh. We use 40 points to represent the circular cylinder. At the inflow boundary

19

N Nb ‖E(u)‖∞ order ‖E(u)‖2 order

64 40 1.8001× 10−3 1.6528× 10−4

128 80 5.5145× 10−4 1.71 3.9239× 10−5 2.08

256 160 1.2755× 10−4 2.11 1.0021× 10−5 1.97

N Nb ‖E(p)‖∞ order ‖E(p)‖2 order

64 40 6.6995× 10−3 1.6014× 10−3

128 80 1.5951× 10−3 2.07 4.7510× 10−4 1.75

256 160 5.7996× 10−4 1.46 1.5854× 10−4 1.58

Table 1: The grid refinement analysis for the rotational flow problem with µ = 0.02,

4t = 4x/4, at t = 10.

we specify the velocity corresponding to the freestream velocity, and a homogeneous

Neumann boundary condition is applied at the top, bottom and exit boundaries. For

all these simulations we first use the free stream velocity as the initial velocity and

the initial pressure is set to zero over the computational domain. Then the force at

the cylinder interface is determined such that there is no flow inside the cylinder and

the pressure is a particular constant inside the cylinder. After the first timestep, the

flow evolves naturally and satisfies the no-slip boundary condition.

Once the velocity field and pressure field have been computed, the drag and lift

coefficients and the Strouhal number can be computed from the force at the control

points.

The drag coefficient is defined as

CD =
D

1
2
ρU2∞d

. (51)

The drag can be computed from the force along the cylinder interface as,

D = −
∫

Γ

fxds , (52)

where fx is the x component of the singular force.

The lift coefficient is defined as

CL =
L

1
2
ρU2∞d

. (53)

The lift can be computed from the force along the cylinder interface as,

L = −
∫

Γ

fyds , (54)

20

where fy is the y component of the singular force.

The Strouhal number is defined as,

St =
fd

U∞
, (55)

where f is the vortex shedding frequency, is one of the key quantities that charac-

terizes the vortex shedding process. This coefficient can be obtained using the Fast

Fourier Transform of the periodic variation of the lift coefficient [34]. Finally, the

dimensionless time is defined as

T =
U∞t

d
. (56)

Fig. 6 shows the streamlines for Re = 20 and Re = 40. For these low Reynolds

numbers, the wake formed behind the cylinder gradually attains a steady symmetric

state. Once the flow has reached the steady state the drag coefficients, the length of

the recirculation zone and the angle of separation are computed and are compared

with established results in Table 2. The results obtained by our method are compared

to the numerical simulations [6, 8, 14, 31] as well as experimental results [7, 35]. It

is found that our results are in good agreement with other numerical simulations

and experimental results. For Re = 20 our drag coefficient is very closed to other

numerical results but it is about 8% lower than the experimental measurement of

Tritton [35]. For Re = 40 our drag coefficient is about 5% higher than the experi-

mentally determined value [35]. Fig. 7 shows a plot of the pressure fields for Re = 20

and Re = 40. The pressure patterns are symmetric about the streamwise axis.

Between Re = 40 and Re = 50 we expect to see a transition to instability. Fig. 8

shows that our algorithm are able to detect the onset of an instability by Reynolds

number 50. It has been reported that the wake behind the cylinder first becomes un-

stable at a critical Reynolds number of about Re = 46± 1 [39]. Above this Reynolds

number the cylinder wake instability rises and grows in time and leads to Karman

vortex shedding. These behaviors are shown in the numerical simulations for Re =

80, 100, 200 and 300. Note that in all these simulations we do not need to artificially

perturb the flow field to initiate the unsteady behavior. Fig. 9 shows the pressure

fields at Re = 100, 200 and 300. The instabilities and vortex shedding can be vi-

sualized from this figure. In Table 3 and Table 4, the drag and lift coefficients at

Re = 100 and Re = 200 are compared to other numerical simulations. For Re =

21

1.5 1.6 1.7 1.8 1.9

0.65

0.7

0.75

0.8

0.85

Re = 20: Streamlines

1.5 1.6 1.7 1.8 1.9

0.65

0.7

0.75

0.8

0.85

Re = 40: Streamlines

Figure 6: Streamlines for Re = 20 and Re = 40.

1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 20: Pressure field

1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 40: Pressure field

Figure 7: Pressure fields for Re = 20 and Re = 40.

22

0 200 400 600 800 1000
−0.1

−0.05

0

0.05

0.1
Re = 50: Lift Coefficients

T

C
L

Figure 8: Lift Coefficients at Re = 50.

Re = 20 Re = 40

L/d θ CD L/d θ CD

Tritton [35] – – 2.22 – – 1.48

Coutanceau and Bouard [7] 0.73 42.3o – 1.89 52.8o –

Fornberg [14] 0.91 – 2.00 2.24 – 1.50

Dennis and Chang [8] 0.94 43.7o 2.05 2.35 53.8o 1.52

Calhoun [6] 0.91 45.5o 2.19 2.18 54.2o 1.62

Russell and Wang [31] 0.94 43.3o 2.13 2.29 53.1o 1.60

Ye et al. [39] 0.92 – 2.03 2.27 – 1.52

Present 0.93 43.9o 2.05 2.22 53.6o 1.56

Table 2: Length of the recirculation zone, Angle of Separation and Drag Coefficient

for Re = 20 and Re = 40

23

CD Re = 100 Re = 200

Braza et al. [3] 1.36± 0.015 1.40± 0.050

Liu at al. [27] 1.35± 0.012 1.31± 0.049

Calhoun [6] 1.33± 0.014 1.17± 0.058

Russell et al. [31] 1.38± 0.007 1.29± 0.022

Present 1.37± 0.009 1.34± 0.030

Table 3: Drag Coefficients for Re = 100 and Re = 200

100, the mean drag obtained by our algorithm is slightly greater than that computed

by other researchers [3, 6, 27]. Our drag coefficient differs from that reported by

them by 1%− 3%. For Re = 200, our drag coefficient lies within the range of results

reported in [3, 6, 27, 31]. Our value is about 15% higher than that in Calhoun [6]

and 4% lower than the value obtained by Braza et al. [3]. In Table 4 it can be seen

that the lift coefficient calculated by our method for Re = 100 is well within the

range of the values obtained by other researchers. However our lift coefficient for

Re = 200 is lower than their values. Fig. 10 and Fig. 11 show the variations in time

of the drag coefficients and the lift coefficients, respectively. They also show how

the vortex shedding develops to a periodic state in time at Re = 100 and Re = 200.

The vortex shedding Strouhal number is computed for Re = 80, 100, 200 and 300

and is compared with established results in Table 5. Our computed Strouhal number

obtained at Re = 80 comes out to be 0.15 which compares very well with the values

obtained from experiment [38] and from numerical simulation [39]. At Re = 100 and

Re = 200, our Strouhal numbers are in good agreement with those given in [6, 27, 31]

and differ from the experimental results [38] by 1.8% and 1%, respectively. At Re

= 300, our computed Strouhal number compares very well with the value obtained

from experiment [38].

5.3 Flow past several cylinders

In this example, we consider an unsteady flow past several cylinders immersed in

a rectangular domain Ω = [0, 3] × [0, 1.5]. This example shows the capability of

handling multiple rigid boundaries of our algorithm. Simulation has been performed

24

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0.6

0.8

1

Re = 100: Pressure field

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0.6

0.8

1

Re = 200: Pressure field

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

0.6

0.8

1

Re = 300: Pressure field

Figure 9: Pressure fields for Re = 100, Re = 200 and Re = 300.

25

CL Re = 100 Re = 200

Braza et al. [3] ±0.250 ±0.75

Liu at al. [27] ±0.339 ±0.69

Calhoun [6] ±0.298 ±0.67

Russell et al. [31] ±0.300 ±0.50

Present ±0.323 ±0.43

Table 4: Lift Coefficients for Re = 100 and Re = 200

St Re = 80 Re = 100 Re = 200 Re = 300

Ye et al. [39] 0.15 – – 0.210

Williamson [38] 0.15 0.163 0.185 0.203

Liu at al. [27] – 0.164 0.192 –

Calhoun [6] – 0.175 0.202 –

Russell et al. [31] – 0.169 0.195 –

Present 0.15 0.160 0.187 0.200

Table 5: Strouhal numbers for Re = 80, 100, 200 and 300

0 50 100 150 200 250 300
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6
Re = 100: Drag Coefficients

T

C
D

0 50 100 150 200 250 300
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
Re = 200: Drag Coefficients

T

C
D

Figure 10: Drag Coefficients for Re = 100 and Re = 200.

26

0 50 100 150 200 250 300
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Re = 100: Lift Coefficients

T

C
L

0 50 100 150 200 250 300
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Re = 200: Lift Coefficients

T

C
L

Figure 11: Lift Coefficients for Re = 100 and Re = 200.

for three cylinders immersed in the flow at Re = 100. All the cylinders have the same

diameter of 0.1. We use 20 control points to represent each of the circular cylinders.

The computational grid is 512× 256 and the same boundary conditions as those for

the flow past a single cylinder problem are applied. Fig. 12 and Fig. 13 show the

streamlines and pressure contours for Re = 100 at different time levels. The vortex

shedding is not vertically symmetric since the cylinders are not placed symmetrically.

5.4 Flow past a moving circular cylinder

In this example, we show the capability of modelling moving rigid boundaries for our

method. We simulate the flow past a moving cylinder which moves to the left at a

velocity U∞ = −1. The computational domain is [0, 6]× [−1.5, 1.5]. The cylinder has

a radius r = 0.1 and its center is initially located at (5.5, 0.0). At the left boundary we

set the velocity to zero, and a homogeneous Neumann boundary condition is applied

at the top, bottom and right boundaries. In the frame of reference that is attached

to the moving cylinder, these boundary conditions are the same as those used for the

stationary circular cylinder problem. Simulation has been performed for Re = 40.

In this example, to solve for the singular force at the moving boundary we do not

have to generate a system of equations explicitly. But instead we solve for the force

at the boundary iteratively via GMRES algorithm. Since the system of equations is

singular, the convergence rate of the GMRES algorithm is very slow. However, we

can use the incremental condition estimation (ICE) [2] to monitor the conditioning

of the upper Hessenberg matrix and stop the iteration when the conditioner number

27

1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 100: Streamlines at t = 12

1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 100: Streamlines at t = 12.6

1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 100: Streamlines at t = 13.2

Figure 12: Flow past three cylinders. Streamline plots for Re = 100 at different time.

28

0.5 1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 100: Pressure contours at t = 12

0.5 1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 100: Pressure contours at t = 12.6

0.5 1 1.5 2 2.5 3

0.4

0.6

0.8

1

1.2
Re = 100: Pressure contours at t = 13.2

Figure 13: Flow past three cylinders. Pressure contours for Re = 100 at different

time.

29

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−0.4

−0.2

0

0.2

0.4
Streamlines for Re = 40

Figure 14: Streamlines for moving cylinder at Re = 40 in the frame of reference

attached to the moving cylinder when the wake behind the cylinder is fully developed.

increases rapidly or when the residual does not change much. Numerical experiments

show that the residual is small and decreases very little after 2-5 iterations. Hence,

we can stop the GMRES iterative process after 2-5 iterations.

Figure 14 shows the streamlines plot for Re = 40 in the frame of reference attached to

the moving cylinder when the wake behind the cylinder is fully developed. Figure 15

shows the streamlines plot at the same time level. Table 6 shows the results of the

drag coefficient and the length of the recirculation zone at Re = 40. These results are

compared to those obtained for the stationary cylinder. We can see that the length

of the recirculation zone is in good agreement with that obtained for the stationary

cylinder. The drag coefficient is about 7% higher than that obtained for the stationary

cylinder. The error is a result of several reasons. Firstly, as the cylinder passing

through the underlying grid, the topology changes and this may cause the noise in

the force at the moving boundary. Secondly, as we terminate the GMRES algorithm

in a few iterations, the truncated error in the residual may cause the inaccuracy in

the singular force at the rigid boundary.

5.5 Motion of elastic membranes in irregular domains

In this section, we consider the immersed interface method for the incompressible

Navier-Stokes equations in general domains involving immersed flexible and rigid

30

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−0.4

−0.2

0

0.2

0.4
Re = 40: Streamlines

Figure 15: Streamlines for moving cylinder at Re = 40.

Re = 40 CD L/d

Moving Cylinder 1.67±0.01 2.15

Stationary Cylinder 1.56 2.20

Table 6: Summary results for moving cylinder at Re = 40, compared against station-

ary cylinder at steady state.

boundaries. The force strength exerted by the elastic membrane is given as,

f(s, t) =
∂

∂s
(T (s, t)τ (s, t)) + σ

∂2X

∂s2
, (57)

where T (s, t) is defined as

T (s, t) = T0

(∣∣∣∣
∂X(s, t)

∂s0

∣∣∣∣− 1

)
(58)

and τ (s, t) is the unit tangential vector to the interface,

τ (s, t) =
∂X

∂s

/ ∣∣∣∣
∂X

∂s

∣∣∣∣ . (59)

Here, X(s, t) is the arc-length parametrization of the elastic membrane, s and s0 are

the arc-lengths measured along the current and initial configuration of the membrane,

respectively. The scalar T0 is the stiffness constant which describes the elastic property

of the membrane. The scalar σ is the surface tension constant. The location of the

flexible boundaries is advanced in time in an implicit manner,

Xn+1 = Xn +
1

2
4t

(
un (Xn) + un+1

(
Xn+1

))
(60)

31

The BFGS method which is a quasi-Newton method is employed to solve the non-

linear system of equations (60) iteratively to calculate the location of the flexible

boundaries. For more details on the immersed interface method for flexible interfaces,

see, for example [19, 18].

5.5.1 Grooved channel flow with an immersed elastic membrane

This example considers a Poiseuille flow between two walls, one of which has a groove

perpendicular to the streamwise direction. An elastic membrane is immersed in the

fluid inside the groove. Under the fluid flow, the elastic membrane circulates inside

the groove or the flow moves it out of the groove depending on some parameters

such as the location of the elastic membrane, the flow rate, the size of the groove,

the stiffness of the membrane. In the numerical simulation, the gap between the

walls is 0.2, the depth and the width of the groove are D and W, respectively. The

velocity profile at the inflow boundary is parabolic with maximum velocity Umax and

the viscosity µ = 0.02. Figure 16 illustrates the geometry of the grooved channel and

the initial position of the membrane inside the groove. The boundary conditions are

inflow at the left boundary and outflow at the right boundary. The velocity is set

to zero at the top and bottom boundaries. The no-slip boundary condition at the

immersed rigid boundary is enforced by imposing an appropriate singular force at the

rigid boundary.

In all simulations presented in this example, a computational domain of [0, 1.5] ×

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1

D

W

Elastic membrane

Rigid boundaries

Figure 16: Initial position of an elastic membrane in the simulation of elastic mem-

brane in a groove.

[−0.4, 0.1], a 384 × 128 grid and a circular membrane with diameter of 0.15 have

32

been used. This membrane has initially been pre-stretched from the rest state with

a diameter of 0.12. We first consider the elastic membrane whose center is located at

(0.675,−0.18) inside the groove with D = 0.2 and W = 0.25. The stiffness constant

of the membrane (T0) of 1.5, the surface tension constant (σ) of 1.0 and the far-field

maximum velocity (Umax) of 1.0 were specified. Figure 17 shows the positions of the

elastic membrane and velocity fields at different time levels. Because of the high

relative location of the membrane inside the groove, the flow moves the membrane

out of the groove. However, if the membrane is located a bit lower inside the groove,

i.e. the center of the membrane is (0.675,−0.2), the membrane only circulates inside

the groove under the same flow condition. Figure 18 shows the positions of the

elastic membrane inside the groove and velocity fields at different time. A dot on the

interface indicates the rotation of the membrane. In these simulations, the timestep

∆t of h/7.5 has been used. The computational time is about 1.5 hours and 3 hours

for the first and the second simulations, respectively. Note that all the simulations

presented in this thesis are performed on an IBM Pentium IV 2.4 GHz.

We now keep the location of the membrane center at (0.675,−0.2) and increase the

flow rate by increasing the maximum far-field velocity, Umax = 5. Again, the fluid

flow brings the membrane out of the groove. Figure 19 shows the deformation of

the membrane under the high flow rate condition. Because of the high flow rate and

the low stiffness constant of the membrane, there is significant deformation of the

membrane when it tries to climb out of the groove. If one is interested in simulating

the interactions of non-deformable, ”solid” particles, a high stiffness constant and high

surface tension constant would be assigned to increase the stiffness of the membranes.

Under the same flow conditions and the same properties of the membrane, we may

keep the membrane inside the groove by reducing the width of the groove. Figure 20

shows the rotation of the membrane inside the smaller groove with the width W of

0.2.

5.5.2 Flow in a constriction with immersed elastic membranes

This problem considers the motion of one or more membranes in a domain with a

constriction. Figure 21 illustrates the geometry of the constriction and the initial

33

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 0.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 2.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 4.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 4.20

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 5.00

Figure 17: Positions of the elastic membrane and velocity fields at different time. The

fluid flow moves the membrane out of the groove.

34

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 0.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 2.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 5.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 8.20

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 10.00

Figure 18: Positions of the elastic membrane and velocity fields at different time. The

membrane circulates inside the groove.

35

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 0.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 1.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 2.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 3.50

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 5.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 6.20

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 6.50

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 6.55

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 6.59

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 6.70

Figure 19: Positions of the elastic membrane and velocity fields at different time. The

high flow rate moves the membrane out of the groove even though the membrane

initially lies deeply inside the groove.

36

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 0.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 1.50

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 3.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 5.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 6.50

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 8.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 9.00

0 0.5 1 1.5
−0.4

−0.3

−0.2

−0.1

0

0.1
Velocity field at t = 10.00

Figure 20: Positions of the elastic membrane and velocity fields at different time.

With a small groove, the membrane only circulates inside the groove even with the

high flow rate.

37

position of a single membrane in front of the constriction. In all the simulations

presented in this example, a computational domain [0, 1.5]× [−0.25, 0.25], a 384×128

grid, a fluid viscosity of 0.02 and a surface tension constant σ = 0 have been used.

The boundary conditions are inflow at the left boundary and outflow at the right

boundary. A parabolic velocity profile with Umax = 1 is specified for the velocity at

the inflow boundary. The velocity is set to zero at the top and bottom boundaries.

The no-slip boundary condition at the immersed rigid boundaries is enforced by

imposing appropriate singular forces at the rigid boundaries.

For simulations of a single membrane squeezing through a constriction, a diameter

of 0.26, a stiffness constant (T0) of 2.0 are specified to the circular membrane whose

center is located at (0.37, 0.0). The elastic membrane is pre-stretched from the rest

state with a diameter of 0.12. Two aspect ratios (ratio of the membrane size to the

constriction size) of 1.3 and 1.88 have been considered to investigate the motion of a

single membrane through the constriction. We use 60 control points to represent the

elastic membrane. We use 235 and 247 markers to represent the rigid boundaries of

the constriction with aspect ratios of 1.3 and 1.88, respectively. Figure 22 shows the

locations of the elastic membrane and the corresponding velocity fields at different

time with an aspect ratio of 1.3. The positions of the membrane squeezing through

the smaller constriction are shown in Fig. 23. Fig. 23 shows that it takes a longer

time for the membrane to squeeze through a smaller constriction.

For multiple membrane simulations, we performed simulation for the motion of three

membranes in the flow through a constriction with an aspect ratio of 0.72. Three

membranes have the same stiffness constant T0 of 4 and diameter of 0.1. The geometry

of the computational domain and the initial position of the membranes are illustrated

in Fig. 24. Simulations have been performed at Re = 5. The Reynolds number is

calculated based on the membrane diameter and the maximum far-field velocity Umax.

Fig. 25 shows the positions of the membranes and the corresponding velocity fields

at different time levels.

38

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Figure 21: Initial position of an elastic membrane in the simulation of elastic mem-

brane squeezing through a constriction.

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.04

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.10

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.16

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.20

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.26

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.32

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.40

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.60

Figure 22: A single elastic membrane with stiffness constant T0 = 2 squeezes through

a constriction with aspect ratio of 1.3.

39

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.04

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.10

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.16

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.20

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.26

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.32

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.40

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.60

Figure 23: A single elastic membrane with stiffness constant T0 = 2 squeezes through

a constriction with aspect ratio of 1.88.

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Figure 24: Computational domain for studying the interaction between elastic mem-

branes at the entrance to a constriction. Initial positions of elastic membranes in the

3-membrane simulations.

40

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.20

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.30

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.40

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.50

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.60

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.70

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 0.80

0 0.5 1 1.5

−0.2

−0.1

0

0.1

0.2

Velocity field at t = 1.00

Figure 25: The positions of the elastic membranes and velocity fields at different

time. Simulations have been performed for Re = 5, stiffness constant T0 = 4 and

∆t = ∆x/7.5.

41

6 Conclusions

In this paper, an immersed interface algorithm is developed for solving the Navier-

Stokes equations in complicated domains. It was shown that we can use the im-

mersed interface method to handle viscous, incompressible flow problems involving

rigid boundaries. In our algorithm, rigid boundaries are treated as immersed bound-

aries at which singular forces are imposed to enforce the no-slip conditions. This

immersed interface algorithm has also been developed further for solving the Navier-

Stokes equations with flexible interfaces and rigid boundaries. Numerical experiments

have shown that our algorithm can handle complex fluid-membrane interactions,

membrane-membrane interactions and the interactions between flexible boundaries

and rigid boundaries simultaneously. Numerical simulations have been performed to

reproduce some numerical results for the flow past a circular cylinder problem as a

benchmark test for our method when dealing with rigid boundaries. It was shown

that our numerical results are in good agreement with other numerical and experi-

mental results in both steady and unsteady regimes. Moving rigid boundary is also

considered to show different abilities of our algorithm. We also performed simulations

for problems involving motions of membranes in a grooved channel and a constriction.

These results are used to show the capability of handling flexible interfaces and rigid

boundaries simultaneously of our method. We would like to extend our code to three

dimensions to solve for more realistic problems such as biological flow problems. In

2D, the interface is discretized using a set of control points. In 3D, the interface is a

surface and hence is discretized using triangular mesh. Singular forces are computed

at the nodes of the triangulations and are used to compute the jump conditions of the

solutions and their derivatives. A projection method is then employed to update the

solutions in time and the extension to 3D of the projection method is straightforward.

Another issue that needs to be resolved is the computation of the interaction forces

realized when the two membranes approach each other or when a membrane comes

close to rigid boundaries. Since our interest is the motion of deformable particles

in biological flows, the colloidal interaction force between two particles or between

a particle with rigid boundaries is a combination of Van de Waals attractive force,

electrostatic repulsive force and short-ranged Born repulsive force [30].

42

Appendix

A Modified Bilinear Interpolation

In this section, we derive a bilinear interpolation formula to compute the velocity

at a control point. The velocity at the control points, Uk, is interpolated from the

velocity at the nearby Cartesian grid points. Thus, we can write

Uk = U (Xk) = B(u) , (61)

where B is the bilinear interpolation operator which includes the appropriate correc-

tion terms which are required to guarantee second order accuracy when the derivatives

of the velocity are discontinuous. In Figure 26, the velocity at the control point Xk

Figure 26: Velocity at a control point is interpolated from the velocity at the four

neighbor grid points using modified bilinear interpolation.

is interpolated from the velocity at four neighbor grid points as follows

U k = (1− ξ)(1− η)u1 + C1 + ξ(1− η)u2 + C2 + ξηu3 + C3 + (1− ξ)ηu4 + C4 (62)

where C1, . . . , C4 are correction terms, ξ = X−x1

h
, η = Y−y1

h
and h is the grid size.

Jump conditions [ux] and [uy] are required at the control point to compute the cor-

43

rection terms. The correction terms can be derived using Taylor series expansion and

have the following forms:

C1 =





h(1− ξ)(1− η)
(
ξ[ux] + η[uy]

)
, x1 ∈ Ω+

0, x1 ∈ Ω−,
(63)

C2 =




−hξ(1− η)

(
(1− ξ)[ux]− η[uy]

)
, x2 ∈ Ω+

0, x2 ∈ Ω−,
(64)

C3 =




−hξη

(
(1− ξ)[ux] + (1− η)[uy]

)
, x3 ∈ Ω+

0, x3 ∈ Ω−,
(65)

C4 =





h(1− ξ)η
(
ξ[ux]− (1− η)[uy]

)
, x4 ∈ Ω+

0, x4 ∈ Ω−.
(66)

References

[1] J. Adams, P. Swarztrauber, and R. Sweet. FISHPACK: Efficient FORTRAN

subprograms for the solution of separable eliptic partial differential equations,

1999. Available on the web at http://www.scd.ucar.edu/css/software/fishpack/.

[2] C. H. Bischof. Incremental condition estimation. SIAM J. Matrix Anal. Appl.,

11:312–322, 1990.

[3] M. Braza, P. Chassaing, and H. Ha Minh. Numerical study and physical analy-

sis of the pressure and velocity fields in the near wake of a circular cylinder.

J. Fluid. Mech., 165:79–130, 1986.

[4] D. L. Brown, R. Cortez, and M. L. Minion. Accurate projection methods for the

incompressible Navier-Stokes equations. J. Comput. Phys., 168:464–499, 2001.

[5] P. N. Brown and H. F. Walker. GMRES on (nearly) singular systems. SIAM

J. Matrix Anal. Appl., 18(1):37–51, 1997.

[6] D. Calhoun. A Cartesian grid method for solving the two-dimensional

streamfunction-vorticity equations in irregular regions. J. Comput. Phys.,

176:231–275, 2002.

44

[7] M. Coutanceau and R. Bouard. Experimental determination of the main features

of the viscous flow in the wake of a circular cylinder in uniform translation. Part

1. Steady flow. J. Fluid. Mech., 79(2):231–256, 1977.

[8] S. C. R. Dennis and G. Chang. Numerical solutions for steady flow past a circular

cylinder at Reynolds number up to 100. J. Fluid. Mech., 42(3):471–489, 1970.

[9] R. Dillon, L. J. Fauci, and D. Graver. A microscale model of bacterial swimming,

chemotaxis and substrate transport. J. Theor. Biol., 177:325–340, 1995.

[10] C. D. Eggleton and A. S. Popel. Large deformation of red blood cell ghosts in a

simple shear flow. Phys. Fluids, 10:1834–1845, 1998.

[11] L. Fauci and C. S. Peskin. A computational model of aquatic animal locomotion.

J. Comput. Phys, 77:85–108, 1988.

[12] A. L. Fogelson. A mathematical model and numerical method for studying

platelet adhesion and aggregation during blood clotting. J. Comput. Phys.,

56:111–134, 1984.

[13] A. L. Fogelson. Continuum models of platelet aggregation: Formulation and

mechanical properties. SIAM J. Applied Math., 52:1089–1110, 1992.

[14] B. Fornberg. A numerical study of steady viscous flow past a circular cylinder.

J. Fluid. Mech., 98(4):819–855, 1980.

[15] D. Goldstein, R. Handler, and L. Sirovich. Modeling a no-slip flow with an

external force field. J. Comput. Phys., 105:354–366, 1993.

[16] J. Kim and P. Moin. Application of a fractional step method to incompressible

Navier-Stokes equations. J. Comput. Phys., 59:308–323, 1985.

[17] M. C. Lai and C. S. Peskin. An immersed boundary method with formal second

order accuracy and reduced numerical viscosity. J. Comput. Phys., 160:707–719,

2000.

45

[18] D.V. Le. An immersed interface method for solving viscous incompressible flows

involving rigid and flexible boundaries. PhD thesis, Singapore-MIT Alliance,

June 2005.

[19] D.V. Le, B.C. Khoo, and J. Peraire. An immersed interface method for the incom-

pressible Navier-Stokes equations. Presented at the SMA Symposium, Singapore

2004.

[20] D.V. Le, B.C. Khoo, and J. Peraire. An immersed interface method for the

incompressible Navier-Stokes equations in irregular domains. In K. J. Bathe,

editor, Proceedings of the Third M.I.T. Conference on Computational Fluid and

Solid Mechanics, pages 710–716. Elsevier Science, June 2005.

[21] L. Lee. Immersed interface methods for incompressible flow with moving inter-

faces. PhD thesis, University of Washington, 2002.

[22] L. Lee. An immersed interface method for incompressible Navier-Stokes equa-

tions. SIAM J. Sci. Comput., 25(3):832–856, 2003.

[23] R. J. LeVeque and Z. Li. The immersed interface method for elliptic equations

with discontinuous coefficients and singular sources. SIAM J. Numer. Anal.,

31:1019–1044, 1994.

[24] R. J. LeVeque and Z. Li. Immersed interface method for Stokes flow with elastic

boundaries or surface tension. SIAM J. Sci. Comput., 18(3):709–735, 1997.

[25] Z. Li and M.C. Lai. The immersed interface method for the Navier-Stokes equa-

tions with singular forces. J. Comput. Phys., 171:822–842, 2001.

[26] Z. Li and C. Wang. A fast finite difference method for solving Navier-Stokes

equations on irregular domains. Comm. Math. Sci., 1(1):180–196, 2003.

[27] C. Liu, X. Sheng, and C. H. Sung. Preconditioned multigrid methods for un-

steady incompressible flows. J. Comput. Phys., 139:35–57, 1998.

[28] C. S. Peskin. Numerical analysis of blood flow in the heart. J. Comput. Phys.,

25:220–252, 1977.

46

[29] C. S. Peskin. The immersed boundary method. Acta Numerica, 11(2):479–517,

2002.

[30] V. Ramachandran, R. Venkaresan, G. Tryggvason, and H. S. Fogler. Low

Reynolds number interactions between colloidal particles near the entrance to

a cylindrical pore. J. Colloid and Interface Science, 229:311–322, 2000.

[31] D. Russell and Z. J. Wang. A Cartesian grid method for modeling multiple

moving objects in 2D incompressible viscous flow. J. Comput. Phys., 191:177–

205, 2003.

[32] Y. Sadd. GMRES: A generalized minimal residual algorithm for solving non-

symmetric linear systems. SIAM J. Sci. Stst. Comput., 7:856–869, 1986.

[33] C.W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory

shock capturing scheme, II. J. Comput. Phys., 83:32–78, 1989.

[34] A.L.F. Lima E. Silva, A. Silveira-Neto, and J.J.R Damasceno. Numerical sim-

ulation of two-dimensional flows over a circular cylinder using the immersed

boundary method. J. Comput. Phys., 189:351–370, 2003.

[35] D. J. Tritton. Experiments on the flow past a circular cylinder at low Reynolds

numbers. J. Fluid. Mech., 6(4):547–567, 1959.

[36] N. T. Wang and A. L. Fogelson. Computational methods for continuum models

of platelet aggregation. J. Comput. Phys, 151:649–675, 1999.

[37] A. Wiegmann and K.P. Bube. The explicit-jump immersed interface method:

Finite difference methods for PDEs with piecewise smooth solutions. SIAM

J. Numer. Anal., 37(3):827–862, 2000.

[38] C. H. K. Williamson. Vortex dynamics in the cylinder wake. Ann. Rev. Fluid

Mech., 28:477–539, 1996.

[39] T. Ye, R. Mittal, H.S. Udaykumar, and W. Shyy. An accurate Cartesian

grid method for viscous incompressible flows with complex immersed boundary.

J. Comput. Phys., 156:209–240, 1999.

47

