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ABSTRACT

A linear strength, Galerkin Boundary Element Meth-
od (BEM) for the solution of the three dimensional, di-
rect potential boundary integral equation is presented.
The method incorporates node based linear shape func-
tions of the single and double layers on °at triangular
elements. The BEM solution is accelerated using a pre-
corrected Fast Fourier Transform algorithm (pFFT) [1].
Due to the extended compact support of the linear ba-
sis, there exist several approaches for implementing a
linear strength pFFT. In this paper, two approaches are
discussed and results are presented for the simpler of the
two implementations.
The work presented in this paper is applied to po-

tential °ow problems. Results are presented for °ow
solutions around spheres and aircraft wings. The re-
sults of the sphere simulations are compared with an-
alytical solutions, while the solutions for the wings are
compared with 2-Dimensional results. The results in-
dicate accurate solutions of the potential °ow around
3-Dimensional bodies. The linear basis shows improved
accuracy when compared with the constant basis ap-
proach; however, the error of the linear BEM solution
converges at a similar rate to the constant panels. This
is due to the domination of the surface discretization er-
ror, which converges in the ¯rst order for planar element
representations of curved surfaces.
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1 Introduction

The rapid and accurate solution of Laplace's equa-
tion for arbitrary exterior 3-Dimensional domains is ben-
e¯cial in many diverse applications. With centuries of
theoretical analysis and decades of computational work,
there is still considerable interest in solving Laplace's
equation faster and more accurately.
In order to augment the solution accuracy, a linear

order basis function was explored in this work. Sev-
eral implementations of higher order boundary element
methods have been presented in the past[2][3]. More
recently there have been many other high order BEM
implementations, however, the majority of current im-
plementations of the BEM are still constant collocation

approaches. This is due to the simplicity of the constant
collocation method as well as the solution accuracy vs.
time tradeo®.

The precorrected Fast Fourier Transform(pFFT) is
used to minimize the solution time for the current linear
BEM solver. The pFFT uses a regular grid to approxi-
mately account for the far¯eld interactions. Grid based
computations of the far¯eld interactions derive their an-
cestry from research dating back to Hockney and East-
wood [4]. Phillips and White [1] originally proposed the
pFFT approach for potential solutions in electrostatics,
however its use is now widespread [5][6][7]. The pFFT
algorithm enables solution times proportional to nlog(n)
where n is the number of unknowns.

In section 2 a brief description of the governing bound-
ary integral equation for potential °ow is presented, fol-
lowed by an introduction to the linear basis Galerkin
approach used in this implementation. In section 3, two
possible linear pFFT implementations are described. Re-
sults and conclusions for the simpler of the two pFFT
implementations are presented in sections 4 and 5 re-
spectively.

2 The Boundary Integral Equation
Formulation For Potential Flow

The potential °ow equation approximates °ows with
large Reynolds Numbers, Re » O(106 !1), where Re
is a non-dimensional measure of inertia forces to viscous
forces. Potential °ows are ones in which the °uid can be
approximated as inviscid, incompressible, steady and ir-
rotational. The direct boundary integral equation form
of the potential °ow equation is used in this work:
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where the Green's function, is G(~x; ~x0) = 1
k~x¡~x0k . The

perturbation velocity denoted as Á, is such thatrÁ = ~v,
where ~v is the velocity of the perturbed °uid in the
domain. ~x is the position of the evaluation point, ~x0 is
a variable representing the position on the body, S0B is
the body surface area, and n is the normal vector of the
body surface at ~x0.
For any surface of a solid body we expect a no pen-



etration, zero °ux body boundary condition:

rÁ(~xb) ¢ n̂(~xb) = ¡~V1 ¢ n̂(~xb)! @Á

@n
= ¡~V1 ¢ ~n:

In limit as ~x tends to in¯nity, the far¯eld velocity tends
toward zero, or:

lim
~x!1

rÁ(~x)! 1

j~xj3 :

The pressure at any point in the °uid is related to the
velocity using Bernoulli's equation, which is a simpli¯ed
version of the Navier Stokes equations corresponding to
the potential °ow approximations:

½
k~v + ~V1k ¢ k~v + ~V1k

2
+ p = Constant = P1;

where ½ is the °uid density, p is the static pressure, and
P1 is the stagnation pressure in the °uid domain.

2.1 Linear Varying Element Strength

The linear strength BEM is implemented using a
node based, triangular element discretization of the sur-
face, with a Galerkin formulation to force the boundary
conditions on the surface. The result is an equation for
each target basis i on the surface:
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where Ãi is the target linear Galerkin tent basis, STi
is the target basis function area, and SBj is the j-th
linear source basis function, j 2 f1; :::; Nbg, and Nb is
the number of basis functions. In the integrals above,
the distributions of Á and @Á

@n are approximated using
node based, linear tent basis functions.
Due to the complexity of the above integration over

the source and target panels, only the inner integral
or the outer integral can be computed analytically. In
this work, the inner integral is computed using analytic
closed form expressions based on [8] while the outer in-
tegral is computed using Gauss Quadrature. If care is
taken, computing the integrals for all three linear shape
functions is slightly more expensive than a single con-
stant strength panel computation. There is however,
an increase in computation time due to the use of a
Galerkin approach. The Galerkin integral is computed
using Gaussian Quadrature which requires a panel inte-
gral evaluation for each of the quadrature points on the
target basis.

The boundary integral equation, when applied to a
discretized surface, becomes a linear algebraic equation
for the potential on the surface of the body as follows:

[An£n] ~Á = [Bn£n] ¢ (¡~V ¢ n̂) (1)

The resulting in°uence matrices, An£n (double layer
in°uence) and Bn£n (single layer in°uence) are fully
dense. The n£n corresponds to the interaction of the n
basis functions in the system. The cost of fully comput-
ing all of the elements in the direct matrices is O(n2),
while the cost of a full direct linear system solution is
O(n3). The costs set practical limits on discretization
¯neness. To reduce complexity, the pFFT is considered
to accelerate the system solution.

3 pFFT Acceleration

In this work we implemented a pFFT[1] approach
(via a modi¯cation of the pFFT++[7] code) to approx-
imately calculate the matrix vector products (MVP) in
a GMRES [9] iterative solution technique for solving
(1). The pFFT algorithm is summarized in the follow-
ing steps (more detail is available in [1],[7]):
1) The surface strengths (panel charges) are projected
onto a uniform FFT grid.
2) The convolution to determine the potential at the grid
points is computed as a multiplication after an FFT.
3) The resulting grid values (potential) are projected
back onto the surface of the discretized body.
4) The solution is corrected to account for the near-¯eld
panel interactions exactly via direct integration.
The following equation represents a matrix equation

of the pFFT solution process:

[A] ~Á =
h
IHP +

h
~D ¡ ~I ~H ~P

i
Local

i
~Á

Where, A, is the in°uence matrix acting on ~Á, I, is
the interpolation matrix, H, is the FFT matrix, P , is

the projection matrix. The term
h
~D ¡ ~I ~H ~P

i
Local

is the

local direct correction, or appropriately named, the pre-
correction.
The implementation of the pFFT for linear strength

basis functions is presented below. The ¯rst approach is
a panel-to-panel interaction. This is implemented in the
current linear pFFT algorithm. The second approach is
a full tent-basis-function-to-tent-basis-function approach.
The second approach is more memory e±cient, and po-
tentially more time e±cient than the panel-to-panel based
approach. The implementation of the second approach
has not been attempted to date.

3.1 Panel based linear shape function
pFFT

In the panel-to-panel approach, each linear tent ba-
sis is deconstructed into individual panels, each with



three linear shape functions. A pFFT is constructed us-
ing each of the three shape functions on a panel. Once
the panel based pFFT components are constructed, the
MVP can be computed by deconstructing the vector in
the MVP from a tent basis into a panel basis. Following
the deconstruction, the MVP is computed as a panel to
panel interaction via the individual panel based shape
functions. Once the MVP is complete for the panel to
panel interactions the linear tent basis representation
of the solution is constructed. A bene¯t of using this
approach, is the machinery of the constant collocation
pFFT is easily modi¯ed. As a result, a general method
incorporating both linear and constant panels can be
implemented with ease. The panel based linear pFFT
is represented in matrix form as:

[A] ~Á = JT
h
IPHPP +

h
~DP ¡ ~IP ~H ~PP

i
Local

i
J~Á

Where, J is the operator used to decompose the tent ba-
sis into a panel based representation. JT is the operator
to reconstruct the tent basis from the individual panels.
The subscript P represents a panel-to-panel interaction.
The main di®erences between the panel-to-panel ap-

proach and the constant collocation approach lie in:
a) The projection and interpolation involve three linear
shape functions per panel rather than one, as seen in
the constant case.
b) The direct interaction computation is a 3£3 interac-
tion of the linear shape functions, rather than a single
panel-to-collocation-point interaction.

3.2 Tent based linear shape function
pFFT

A more memory optimal high order pFFT algorithm
can be obtained by considering each complete tent func-
tion as an element basis. This causes the extended sup-
port to play a more signi¯cant role in the projection,
interpolation and direct computations. As a result of
considering full node based basis functions, the memory
usage will be lower than the method proposed in section
3.1, however, care must be taken during the construction
of the direct matrix in order to minimize the number of
panel integral computations.

4 Results

In ¯gure 1, we present the solution of the potential
°ow around a unit sphere. The potential, according to
the analytical solution, varies linearly in the °ow di-
rection, from Á = +0:5 at the leading edge point, to
Á = ¡0:5 at the trailing edge point. As can be seen
in ¯gure 1, solution by the linear BEM implementation
compares well with the analytic solution. In ¯gure 2 the
convergence of the error in the potential over the surface
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Figure 1: The solution of the potential °ow around a 192
panel and 768 panel sphere compared with the analytical
solution. Notice there is very good agreement between
the analytical solution and the computed solution even
with a relatively coarse distribution.

with increasing number of panels in the discretization
is shown. The error is computed in the L2-norm for
the linear and constant Galerkin formulations. Figure
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Figure 2: The error in Potential over the surface mea-
sured in an L2¡norm for both the constant and linear
Galerkin BEM, for increasingly re¯ned surface meshes
over the unit sphere. In addition, the convergence of the
surface area is shown.

2 shows that the linear basis BEM approach is consis-
tently more accurate than the constant case; however,
the convergence rate of the linear strength cases is sim-



ilar to that of the constant strength cases. The trend in
convergence, is due to the dominance of the discretiza-
tion error in the computation. In order to con¯rm this
result, further investigation of the convergence rate can
be performed through the use of a curved panel dis-
cretization. The convergence rate of the error shown in
¯gure 2 reaches a point where the error stays nearly con-
stant with increased ¯neness of discretization. This is
due to the accuracy of the pFFT far¯eld approximation.

In ¯gure 3, a complex geometry is presented for which
an analytic solution is not known. The pressure coe±-
cient is shown for a ¯nite 3-Dimensional rectangular air-
craft wing with a NACA 0012 airfoil and a high aspect
ratio. In the limit of in¯nite aspect ratio, the pressure
distribution at the centerline of the wing mimics two di-
mensional °ow. The results presented in ¯gure 3 show
that there is a good agreement with 2-Dimensional re-
sults[10].
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Figure 3: The plot of the surface pressure coe±cient
at the centerline of a NACA 0012 large aspect ratio
wing, compared with a 2-Dimensional airfoil solution
from XFOIL [10]

5 Conclusions

A linear strength implementation of a pFFT acceler-
ated BEM for the solution of potential problems which
scales with O(nlog(n)) (n is the number of panels) has
been presented. Two approaches for computing a pFFT
accelerated MVP are described, one simple, and the
other more complex and optimal from a memory stand-
point. Furthermore, we have shown results for the panel-
to-panel implementation of the linear pFFT. In sphere
test cases, the convergence rate of the linear pFFT was
not increased compared with the constant BEM, how-

ever, the linear strength panels do show increased so-
lution accuracy. The planar panel representation of
the surface dominates the convergence of the solution.
Should an increased convergence rate be desired, one
should investigate eliminating the discretization error
through the use of curved panels.
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