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Abstract

We present an implicit a-posteriori method for the
computation of upper and lower bounds for func-
tional outputs of first-order systems of conservation
laws approximated with the discontinuous Galerkin
finite element method. The computed bounds can
be shown to be strict with respect to the solution
obtained on a conservatively refined discretization,
whereas the cost and accuracy of these bounds is
mostly determined by the size of a coarse grid (work-
ing) discretization. The proposed method is illus-
trated for linear and non-linear scalar equations as
well as the two dimensional Euler equations of gas
dynamics.

Introduction

Over the past few years we have develop a method-
ology for the computation of upper and lower bounds
for functional outputs of partial differential equa-
tions.5 " 1115 OQur methodology is based on a refor-
mulation of the output of interest as a constrained
minimization problem in which the objective func-
tion is convex, and the governing equations enter the
problem as equality constraints. Computational ad-
vantage is obtained by decomposing, or hybridizing,
the domain and imposing inter-domain continuity
through additional constraints. Lower bounds for
the output of interest are obtained by exploiting
weak duality and relaxing the continuity and gov-
erning equation constraints. Approximate lagrange
multipliers are obtained using an inexpensive coarse
grid calculation. The final algorithm involves a
global grid computation to evaluate approximations
to the multipliers, and a series of local reduced size
computations for each sub-domain, that can be triv-
ially parallelized. The result is a strict lower bound
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for the solution that would be computed, at a much
higher cost, using an arbitrarily refined fine mesh.
Upper bounds can be computed by repeating the
process and computing lower bounds for the nega-
tive of the output of interest. The bound gap, i.e.
the difference between the upper and lower bounds,
can be decomposed into a sum of positive contribu-
tions from each subdomain, which naturally leads to
a mesh adaption indicator. Our strategy has been
applied successfully to linear coercive problems in-
cluding convection-diffusion, Stokes flows, linear sta-
bilized methods for hyperbolic problems, and more
recently, it has been extended to non-linear problems
in large deformation elasticity, where the equilibrium
equations are still derived from a variational princi-
ple.!?

In this paper, we extend beyond our existing ca-
pability in a number of ways. First, we extend
our methodology to discontinuous Galerkin approx-
imations (DG). It turns out that in the discontin-
uous Galerkin approximation the solution is natu-
rally discontinuous across boundaries, whereas the
flux is continuous. The hybridization process is
accomplished by introducing ghost nodes surround-
ing each sub-domain and constraining the fluxes in
neighboring elements to be continuous. Second, the
output of interest, is convexified using the natural
“energy” of discontinuous Galerkin approximations,
which involves the weighted squares of the inter-
element jumps. Finally, the proposed procedure is
applied to test problems involving the linear convec-
tion equation, a nonlinear scalar equation and the
Euler equations in two dimensions.

Problem Statement
In order to present our method, we start from a
general two dimensional non-linear scalar conserva-
tion law defined over domain Q with boundary I'
fl(u),1+f2(u),2+au:r in Q (1)
a u=a"g on T (2)

In the above expression, u(x, t) is the unknown func-
tion, f;(u) is the flux in the i** coordinate direc-
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tion, o is the source term coefficient and r(x), is
the non-homogeneous forcing function. The comma
notation is used to denote partial differentiation
(e.g. u; = Ou/Oz;, denotes the partial derivative
with respect to the j-th spatial coordinate). Also,
a” = i(a-n— | a-n|), where a = [a1,a2]7 =
[0f1/0u,0f2/0u)T, and n = [ny,n2]T, is the domain
outward unit normal. The boundary data, g, is im-
posed at inflow (i.e. a-n < 0). Note that to ensure

well-posedness of the problem we assume that ¢ > 0.

Discontinuous Galerkin Formulation
We consider a discretization, Ty, of the domain
consisting of Ny non-overlapping quadrilateral ele-
ments, Ty, with elemental boundaries vy such that
= [UTH. We also introduce, for later use, the
sets £(Ty) and £(TwH), denoting the set of bound-
ary edges of a typical element Ty, and the set of
all interior boundaries in the discretization 7g, re-
spectively. Associated with this discretization, we
introduce the space of discontinuous piecewise bi-
linear functions,

Xp = {vlv € (Lo(V)*, vlry € (Q1(Tw))*,¥Th € T} - (3)

For an individual element, Ty, in Ty, we can write,
after multiplying (1) by a test function v and inte-
grating by parts, the following expression

/ v (4, u7) ds + Z /
yr €e(TH) 7\l HﬂF

YrEE(
—/ (vafi +v,2f2)dA+/ ovdA= [ rvdd (4)
Ty Ty Ty

or, in shorthand notation,

B(v,u)ry = L(v)1y ()
Here, h,, is the numerical flux function
1 1
ha(v*,07) = S(F(0*sm) + F(075m)) = A, (6)

hé =| a(vt,v™;n) | )X,

f(v;n) = nifi +nafe, and a(v™,v™;n) denotes an
approximation to a-n evaluated at the interface be-
tween the two states v+ = v(xt) and v= = v(x7).
The precise form of this approximation will be given
below.

The discontinuous Galerkin method is defined by
summing equation (5) over all elements and seeking
a solution ug € Xpg, such that
= L(vg), Yvg € X . (7

2

B(UH,UH)

Here, B : Xg X Xg— IR, and L : Xg — IR, are
given as

Z B(’U,U)TH, (8)

Tu €T

Y L)y - 9)

Ta €T

L(v) =

Finally, note that no restriction on the space Xg
is imposed at inflow, and that the appropriate
boundary conditions are treated weakly through the
boundary flux.

Energy Stability of DG Discretization

The Discontinuous Galerkin finite element dis-
cretization for first-order hyperbolic conservation
laws derives its stability from the upwinded nature
of the numerical flux, through which numerical dis-
sipation is applied. The symmetric part of B(v,u),
B?(v,v), be can be expressed as’

(11)

B(v,v) = B?®(v,v)
= ZB vv7H+Z/av dA
Ya€e(TH) TaeT T
where,
1 1
Blohy = [ [ =20 ale@smpl ass
YH
+1/ WEhds |
2 )y
and,

0(8) = v(x ) + O[v]xL
It is well known that for finite volume schemes,
the interface fluxes need to be properly upwinded
through the selection of a suitable Riemann solver
in order to have a stable algorithm. The same is true
for the DG discretization and it was shown in' that,
for all v, B(v,v) needs to satisfy
B(v,v) > B(v,v)smv , (12)
for the numerical solution to possess the appropriate
stability properties. Here, B(v,v)spy is the oper-
ator (8) obtained by setting hd in (6) equal to the
Symmetric Mean Value flux, hz sy, Which is given
as,

W gary = / (1-6) |a@®);n) | pEdo . (13)

American Institute of Aeronautics and Astronautics



Bounds Formulation

Function Spaces

In addition to the working discretization, Tz, al-
ready introduced, we consider an additional refer-
ence discretization, 7, which is obtained by uni-
formly subdividing the elements of Ty. A typical
element of 7, is denoted by T}, and the set of
interior element boundaries, vy, in 7y, is denoted
by (7). The discontinuos Galerkin approximation
space associated with 7y, is given as

Xn = {vlv € (L2(V)), 0|z, € (Q(Th)*,¥Th € Ta} , (14)
We also introduce the spaces, Qg and @, consisting
of piecewise linear functions defined over the bound-
aries of the elements of Ty as

Qu = {qlu € Pr(vr),Yvm € €(Th)} (15)
Qn = {dly. € Pr(w),Yn € e(Th) Ne(Ta)}- (16)

Finally, we introduce the “broken” spaces Xy and
X, by augmenting the spaces Xy and X, with
edge functions from Qg and @, respectively,

- €Qu} (17)

XH—{ﬁ—(v v*"’,v* v € Xg,v*,v*
X o € Xp,v*t,v*" € Qn} . (18)

={o=(v,0*",v

That is, for each interior boundary in Tz, we en-
rich the spaces X g and X}, by adding two functions
which will be referred to as the “dummy” functions.
Each of the two functions is associated to one of the
two elements sharing that boundary. These func-
tional spaces are illustrated in figure 1. It is clear
from the above definitions that Xz C Xy, Xu C Xy
and Qg C Qp.

We also extend the forms B(:,-) and B*(-,-), to
operate on functions from the broken spaces; B :
XH/h X XH/h — IR, and B?® : XH/h X XH/h — IR.
In this case, we shall employ different fluxes for the
two elements sharing a coarse mesh interior bound-
ary. That is, assuming that we have two elements
denoted by left (L) and right (R), and that the unit
normal for this edge points from left to right, the
numerical flux to be used for the left element is
hL(v=,v*t), and the numerical flux to be used for
the right element is hZ(v*~,vt) (here the asterisk,
*denotes the “dummy” nodes surrounding each el-
ement in the broken mesh).

It is clear that the effect of introducing the “bro-
ken” spaces is that of decoupling the problem at the
expense of making the solution indeterminate. In or-
der remedy this situation, we introduce an operator
which restores weak elemental coupling.

o o o o
0O0—00 O0—00
X
o o o o
o o 0 o
0000 0000

D6 es 0
ceess

O OO0 O O OO0 O

Fig. 1 Illustration of the functional spaces used
in the bounds formulation. The figure shows
two macro-elements (Tx), which have been sub-
divided into four elements each to produce the
elements (7}) of the reference discretization. The
“broken” spaces are obtained by adding addi-
tional functions along the interior boundaries of
the coarse coarse mesh elements. The black cir-
cles show the interpolation nodes for the func-
tions in Xy and X}, whereas the hollow circles
show the interpolation nodes for the “dummy”
edge functions.

Flux Continuity

Let the “jump” operator b : X'H/h X Qm/p = R,
be defined as

b(o,q) = Y

yu€s(Tu) " TH

j’Yth ql’YH ds (19)

where J,, hn, = hE(v=,v*t) — hL(v*~,vT), is the
jump in h,, across vg. Given ¥ € Xpg (resp. Xp), if,

Yq € Qu (resp. Qn) , (20)

American Institute of Aeronautics and Astronautics



then, the numerical flux jumps at the macro-element
interfaces will be zero, and as a consequence, we will
have hE(v=,v**) = AL (v*~,vt) = h,(v™,0vt).
Energy Equality

The reference solution uy, € X}, satisfies

B(vh,uh) = L(’Uh) Yo, € Xy, . (21)
Setting vy = up, we obtain
Bs(uh,uh) — L(uh) =0. (22)

The symmetric form B*(-,-) is now decomposed into
contributions corresponding to each of the elements
in Tg. Thus, one has,

B(’U,’U)Z Z BS(U’U)TH7

Tu€Ta

(23)

where
1
Br,, (v,0) = / ov? dA + / ZBhiw)El ds
T vy \I' 2

+ / - (ohalv,gim) — F(wim) ds (24)

with F'(v;n), any function satisfying 0F (v;n)/0v =
f(v;n). Note that the role of the parameter §, is
to assign the stabilizing contribution corresponding
to the dissipative flux to the downstream element.
Thus, B is chosen as,

=1, a-n <0,
=0, a-n >0.

Lagrangian Formulation

We can now proceed with the bounding algorithm.
Let us consider an output of interest S € IR which
can be computed as a linear function of the solution,
u,as S = LO(u). For the reference mesh solution uy,
we will have Sy, = LO(uy). Our goal is to compute
inexpensive upper and lower bounds for S; which
do not require the computation of the reference so-
lution up. We start by writing the following “trivial”
identity,

(25)

Sp = inf sup L™ (O, th, qn) »

E€Xh up€Xn,qnEQn

where the Lagrangian £~ : X’h X Xp X Qp— IR, is
defined as
L (0n, ph,qn) = B*(0n,0n) — L(0n)

+LO(9n) + B(pn, 9n) — L(pn) + b0, qn) - (26)
We note that sup,,, c x, 4. con £(On, tth, qn) Will be co
whenever 05, # up,. This is so because the lagrangian

4

is linear in pp and qp. Therefore the infimization
over Uy, will result in 9, = up, and as a result Sy, =
LO(up). A lower bound, S, , for S,, may now be
obtained if the space @}, is replaced by Qg (a subset
of Qp). Thus, we can write

(27)

S; = inf sup L (On, ko, qH) -

W EXn ph€Xn,quEQH

Note that this is a globally coupled problem, but
due to the much weaker coupling between macro-
elements it can be potentially solved at a much lower
cost than problem (25). We shall see that, under
certain circumstances, further reduction in compu-
tational cost may be achieved by freezing the mul-
tipliers and setting, g, = @ for any g, € Qp, thus
obtaining

S, = inf  sup L (0n, pn,qn) - (28)

I €EXn pn€EXn

In this way, one achieves complete decoupling
and therefore the constrained minimization problem
can be performed independently over each macro-
element. For given multipliers g, the resulting
algorithm has a cost that is linear on the size of
Tr. Although the above inequality holds for any gp,
the accuracy of the lower bound will depend on how
close g, is to the exact value of the multiplier ¢y, pp,
at the saddle point. In practice one would perform a
coarse grid computation to obtain pg, and then set
Gnh = PH-

Finally, we note that an upper bound for Sy, S,J[,
can be obtained following an analogous procedure as

Sf—l_ = lnf: sup ‘C+(1A}h7/~‘h7qH) ) (29)
Op €EXn ph€Xn,qu EQH
where, £+ : X; x Xj, x Qp — IR, is given as
LY (0, ph, qn) = B (0, 0n) — L(0n)  (30)

—LO(on) + B(pn, 0n) — L(en) + b(0n, qn) -

Solution Procedure

Except for some particular situations, problems
(25, 29) result in a globally coupled set of equations.
This set of nonlinear equations must be solved itera-
tively. Therefore, having a good initial guess for vy,
pp, and g, greatly simplifies the iterative process.
In order to obtain good initial values, we solve a
problem in the working mesh, 7z, and obtain a solu-
tion ug € Xg. Then, we can determine multipliers
1/1§ € Xy and p,i{ € Qg by enforcing stationarity of
the Lagrangian with respect to vy and the dummy
variables v} and v}, respectively. This process is
quite straightforward, but the details are quite te-
dious and are given elsewhere.!*
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The general bounding procedure can be summa-
rized as follows:

1. Solve (1) on the coarse working discretization
and obtain ug € Xg.

2. Calculate ¥y € Xpg. This is an inexpensive
computation that can be carried out indepen-
dently on each element of Tg.

3. Calculate pg € Qg. This is also a local calcula-
tion that can be carried our independently over
each edge vg € e(Th)-

4. Solve (25) for S—.

5. Repeat steps 2, and 3, and solve (29) for ST.

The solution of problems (25, 29) is accomplished
using a Newton-Raphson iteration. This requires
the solution of a sequence of linear equations, the
size of which is dim{Xp} + dim{Xy} + dim{Q=}.
In principle, this is a very large system and there-
fore it would seem that there is no computational
advantage in solving this problem over solving for
up, € Xp, directly on the reference mesh. However,
the special structure of the linear system of equa-
tions to be solved, means that this system can often
be solved at a much lower cost than the, in princi-
ple, smaller system required to calculate uy directly.
For a coarse mesh consisting of Ny macro-elements,
the problem unknowns can be organized so that the
Hessian matrix corresponding to the linear system of
equations to be solved, has the following structure,

Ay 0 .- B
0 A 0 . By
0o . : . (31)
. ANHNH BNH
BT BF BL 0

In 2D and for quadrilateral piecewise bi-linear ele-
ments, and assuming that the mesh 7} is obtained
by subdividing each macro-element, T, into m =
N /Ng elements, the square matrices Ay have di-
mension 8m + 8y/m, reflecting 4m + 8y/m unknowns
associated with vj, and v} =, and 4m unknowns as-
sociated with pp. The matrices By are of size
(8m + 8/m) x 4Ng. Note that the matrices By
are very sparse. Systems of equations having this
structure can be solved efficiently by transforming
them to a much smaller system; the Schur comple-
ment, which in this case has size 4Ny x 4Ng (the
same size of the coarse grid problem in Tg).

Applications

The first example considered is the linear convec-
tion equation. Equation (1) is solved with f; = w,
fo = 0,0 =1 and r = 0. The computational
domain is given by 0 < z < 1, —0.5 < y < 0.5.
Boundary conditions are imposed such that the ex-
act solution is given by u(z,y) = e (1 — y?).
The output of interest S = LP(u) is the average
of the solution over the computational domain, i.e.
L°(v) = [yvdA. Figure 2, shows an intermediate
H = Hy/4 working mesh, Ty, used in the computa-
tion. The reference mesh is obtained by subdividing
each element of an original coarse mesh Tg, into
8 x 8 = 64 elements. Figure 3 shows the contours
for the solution computed on the Tg, /4 mesh with
our DG algorithm using the symmetric mean value
flux (13). The value of the output on the reference
mesh is Sp = 0.57944399. Keeping the reference
mesh, 7, fixed, we have computed the bounds us-
ing a sequence of coarse mesh discretizations which
were obtained by successively subdividing the initial
discretization Tg,. For this problem, it is possi-
ble to “freeze” the multiplier g, in (28), and still
obtain a bounded minimum when performing the
minimizations in (29, 25). This results in a much
lower computational effort. In our computations we
have set q, = pm, where py is the exact multiplier
that would result from solving problem (1) on the
mesh 7. The table below shows the upper and
lower bounds computed for the output of interest
using different coarse meshes. As expected, when
the coarse mesh is refined, pg becomes a better ap-
proximation to the exact value of the multiplier, py,
and as a result the bound gap decreases.

Sy Sy
H = H, 0.57943741 0.57945057
H = H0/2 0.57944346 0.57944451
H = H0/4 0.57944395 0.57944402
H=h= H0/8 0.57944399 0.57944399

Finally, figure 4 shows the convergence of the com-
puted bounds for the reference mesh solution, as the
coarse mesh discretization is refined. A higher than
second order convergence is observed.

The second example considered is a scalar non-
linear conservation law. Equation (1) is solved with
fi = %u2, fo = u, 0 = 0 and the boundary con-
ditions and r(z,y), are chosen so that the exact
solution to the problem is u(z,y) = (1 +z)(1 —y)2.
We use the same computational domain, output of
interest, and discretizations, as in the previous ex-
ample. Figure 5 shows contours of the solution
computed on the working mesh 7Tg, /4. The sym-
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Fig. 2 Coarse Computational Mesh 7Ty,,/4 used
for the scalar computations.

0.5

0.25

i

\!

0.75 1

-0.25

-0.5
0 0.25 0.5

Fig. 3 Solution uwy for the linear convection
problem computed on the discretization 7, /4.

metric mean value flux (13) was also selected as the
interface flux for this problem. The problem was
solved by Newton-Raphson iteration, exploiting the
block diagonal structure of the Hessian matrix. As
a result, each Newton-Raphson did require the so-
lution of a linear system of equation whose size was
determined by the coarse grid discretization. The
bounds computed for the different working meshes
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Fig. 4 Convergence of the upper and lower
bounds to the reference mesh solution S;, when
the working mesh is refined. Plot shows Log(|S:,—
S*|) vs. Log(H/Hy)

considered are given in the table below.

Sy Sy
H = H, 1.372918 1.375463
H = H0/2 1.374719 1.375111
H = H0/4 1.374986 1.375007
H=h= HO/S 1.375000 1.375000

Figure 6 shows the convergence of the computed
bounds for the reference mesh solution, as the work-
ing discretization is refined. A higher than second
order convergence is also observed for this problem.

The third numerical example involves preliminary
results obtained for the Euler equations. In this ex-
ample the reference mesh is obtained by enriching
the polynomial approximation (p refinement) space
rather than subdividing the elements. We have used
piecewise bi-linear polynomials in the coarse work-
ing mesh and piecewise bi-cubic approximations for
the reference solution. The extension of the ap-
proach presented above to deal with p refinement
is quite straightforward and is described in detail
elsewhere.'* The Euler equations were written in
terms of entropy variables!® and a DG formulation
using the HLL interface flux? was used. The problem
considered is that of a diverging nozzle with an in-
flow Mach number of 0.5. The nozzle stretches from
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Fig. 5 Solution uy for the non-linear problem
computed on the discretization Ty, /4.
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Fig. 6 Convergence of the upper and lower
bounds to the reference mesh solution S5, when
the working mesh is refined. Plot shows Log(|S,—
S*|) vs. Log(H/Ho)

£ = 0 to z = 1. The upper and lower walls of the
nozzle vary according to y = 14-0.05 sin’ (7(x—0.25))
and y = —0.05sin’(7(z — 0.25)) respectively, be-
tween z = 0.25 and =z = 0.75. All boundary condi-
tions were enforced weakly. The output of interest is

taken to be the integrated horizontal pressure force
on the wall. i.e. S = [ nipds, where T, denotes
the wall boundary and p is the static pressure. The
coarsest computational mesh employed is shown in
figure 7 and the contours of the Mach number solu-
tion computed on the reference mesh are shown in
figure 8. For this problem, the straightforward use
of Newton-Raphson iteration, to carry out the con-
strained minimization of problems (25) and (29), did
not converge. This can be understood by looking at
the structure of the Hessian matrix for a constrained
minimization problem, which can be written as

(5 5)

Here, the sub-matrix A is the Hessian associated
with the unconstrained minimization problem, and
the sub-matrices B and BT enforce the constrains
through the multipliers. It turns out that, the ma-
trix A need only be positive definite in the null space
of B at the constrained minimum for the problem to
be well posed. For the Newton method to exhibit ro-
bust converge behavior, however, we require that the
matrix A be positive definite in all directions. For
the Euler equations this is not the case and there-
fore the convergence of the Newton method is not
assured. A standard remedy is to use an augmented
Lagrangian approach by which we multiply the con-
straint equations by ¢B, for some positive ¢, and add
them to the primal equations so that one obtains a
modified Hessian of the form

A+¢BBT B
BT 0 ’

If the right hand side is modified accordingly, the
solution of the equation system is unaltered, and,
the matrix A + ¢BBT is positive definite for a suf-
ficiently large ¢ near the minimum. This approach
was followed for the Euler test case, as it was found
that this allowed for the constrained minimization
iteration to converge. Unfortunately, this modifica-
tion destroys the special structure of the Hessian and
this, in turn, results in a much more costly solution
procedure. A steepest descent algorithm coupled
with first-order updates of the constraint variables
was employed for the solution of this problem. The
numerical results for the upper an lower bounds are
shown in the table below

H=H, H = Hy/2
Sh —0.291359 —0.291487
S —0.292874 ~0.292136
S+ —0.275970 —0.287646

7
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Note that in this case, because the reference mesh
is a function of H, the actual reference solution
changes slightly as a function of the coarse mesh.
Finally, figure 9 shows the convergence of the com-
puted bounds as the coarse mesh is refined.

Fig. 7 Computational Mesh Tx,

Fig. 8 Contours of the Mach solution on the
reference mesh

Conclusions

We have presented a discontinuous Galerkin a-
posteriori algorithm for the computation of bounds
for functional outputs of solutions of systems of
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Fig. 9 Convergence of the upper and lower

bounds to the reference solution S, when the
working mesh is refined

conservation laws. For certain classes of problems,
including linear convection, the method is very ef-
ficient, and allows for the computation of bounds
with a cost which is essentially linear in the num-
ber of elements in the fine reference mesh. For the
non-linear scalar equations tested, fully decoupling
is not possible and the algorithm requires the addi-
tional solution of a series of coarse mesh problems.
For the Euler equations, fully decoupling is again
not possible and, in addition, the resulting saddle
point problem is not well conditioned and can not
be solved directly using a Newton-Raphson method.
In order to obtain a solution, in this case, it was
necessary to modify the equation system, thereby
destroying the matrix structure. The result is a con-
siderably less efficient algorithm, but potentially still
cheaper than computing the solution of the very re-
fined reference mesh. More work is clearly needed
to devise more effective and robust strategies in this
case.
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