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Abstract

A new method for performing a balanced reduc-
tion of a high-order linear system is presented. The
technique combines the proper orthogonal decompo-
sition and concepts from balanced realization theory.
The method of snapshots is used to obtain low-rank,
reduced-range approximations to the system control-
lability and observability grammians in either the
time or frequency domain. The approximations are
then used to obtain a balanced reduced-order model.
The method is demonstrated for a linearized high-
order system which models unsteady motion of a two-
dimensional airfoil. Computation of the exact grammi-
ans would be impractical for such a large system. For
this problem, very accurate reduced-order models are
obtained which capture the required dynamics with
just three states. The new models exhibit far superior
performance than those derived using a conventional
proper orthogonal decomposition. Although further
development is necessary, the concept also extends to
nonlinear systems.

Introduction

Model reduction is a powerful tool which has been
applied throughout many di�erent disciplines, includ-
ing controls, uid dynamics and structural dynamics.
In many situations, high-order, complicated numeri-
cal models accurately represent the problem at hand,
but are unsuitable for the desired application, for in-
stance for optimization or for control design. Ideally,
we would like to develop a model with a low num-
ber of states, but which captures the system dynamics
accurately over a range of frequencies and forcing in-
puts. This can be achieved via reduced-order modeling
in which a high-order, high-�delity model is projected
onto a reduced-space basis. If the basis is chosen ap-
propriately, the relevant high-�delity system dynamics
can be captured with a greatly reduced number of
states. The range of validity of the reduced-order
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model is determined by the speci�cs of the reduction
procedure.

Many methods have been suggested for determin-
ing an appropriate basis. Much of the work has been
derived in a controls context. In particular, the idea
of a balanced truncation has been shown to provide
accurate low-order representations of state-space sys-
tems.1 In order to determine the balanced realization,
it is necessary to compute the grammians of the sys-
tem, which use information pertaining to both system
inputs and outputs. While it is relatively straightfor-
ward to compute these matrices in a controls setting
where the system order is moderate, the technique
does not extend easily to high-order systems, where
state orders exceed 104. For this reason, many of
the control-based reduction concepts have not been
transferred to other disciplines where model order is
typically much higher, such as computational uid
dynamics (CFD). Several methods have been devel-
oped for computing approximations to the grammians
for large systems, including the approximate subspace
iteration,2 least squares approximation3 and Krylov
subspace methods,4, 5 however these algorithms are
complicated, computationally intensive and restricted
to linear systems. As an alternative means of perform-
ing the reduction, Pad�e approximations have also been
used to approximate the system transfer function,6

however the resulting reduced-order models often suf-
fer from instability.

The challenge has therefore been to develop e�ec-
tive reduction procedures suitable for very high-order
systems. One possibility for a basis is to compute
the eigenmodes of the system.7{9 Along with the use
of static corrections,10 this approach can lead to ef-
�cient models and the eigenmodes themselves often
lend physical insight to the problem. However, for
these high-order systems, solution of such a large non-
symmetric eigen-problem is in itself a very diÆcult
task, and in many cases not a viable option. The
proper orthogonal decomposition technique (POD),
also known as Karhunen-Lo�eve expansions,11 has been
developed as an alternate method of deriving basis
vectors for high-order systems, and in particular has
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been widely applied to uid dynamic problems.12{14

Frequency domain POD methods have also been de-
veloped and applied to a variety of ow problems.15{17

However, in existing applications, only information
pertaining to system inputs has been considered.
Here a method will be presented which allows both

inputs and outputs to be taken into account to obtain
a balanced reduced-order model. Lall et al.18 noted
the connection between the system grammians and the
POD, and used a Kahunen-Lo�eve decomposition to ob-
tain an approximate balanced truncation. Here, we
make use of a similar concept which does not require
the construction of the approximate grammians, which
in our case would be computationally prohibitive. In-
stead, the POD method of snapshots will be used to
approximate the grammians of the system in a very ef-
�cient way which does not require large computations
or complicated algorithms. The method can also be
implemented in the frequency domain, making it even
more computationally eÆcient.
In this paper, the existing concepts of POD and bal-

anced realization will be outlined. The new method
which combines the two approaches will then be pre-
sented. Results will be shown for reduction of two
high-order systems. The �rst case analyzed is a ran-
domly generated state-space system whose exact bal-
anced realization can be computed, allowing some
insight to the performance of the method. The sec-
ond example is the reduction of a CFD model which
describes the unsteady linearized motion of a two-
dimensional airfoil. In this case, reduction results will
be compared to a full simulation of the CFD model and
also to a conventional POD reduction approach. We
then briey discuss extension of the methodology to
nonlinear problems, and �nally we present some con-
clusions.

Model Order Reduction

Consider an nth-order linear system

_x = Ax+Bu (1)

y = Cx; (2)

where x is the state vector, the vectors u and y con-
tain the system inputs and outputs respectively, and
the order of the system, n, is high. The objective of
the reduction procedure is to determine an nthr -order
reduced-space basis onto which the state vector can be
projected, that is x = V xr, and an orthonormal set
~V , so that ~V V = I . This basis is chosen appropriately
so that the reduced-order system

_xr = ~V AV xr + ~V Bu (3)

yr = CV xr (4)

accurately reproduces the desired dynamics of the orig-
inal system (1,2) with many fewer states (nr << n).

Balanced Truncation

The concept of a balanced truncation of a system
was �rst introduced by Moore.1 The underlying idea
is to take account of both the inputs and outputs of
the system when determining which states to retain
in the reduced-state representation, but to do so with
appropriate internal scaling. This scaling is important,
since a particular representation of the system is not
unique: any non-singular linear transformation can be
applied to the system (1,2). For example, if we choose
the transformation x = Txt, we obtain the scaled
system

_xt = T�1ATxt + T�1Bu (5)

y = CTxt; (6)

which is fully equivalent to (1,2). In a balanced trun-
cation, we therefore seek a reduction method which is
independent of the particular system scaling.
Reduction of the system will be achieved by retain-

ing only certain states in the representation. This is
equivalent to de�ning a certain subspace within the
state space. Two important subspaces are the con-
trollable and observable subspaces. The controllable
subspace is that set of states which can be obtained
with zero initial state and a given input u(t), while the
observable subspace comprises those states which as
initial conditions could produce a non-zero output y(t)
with no external input. The controllability and observ-
ability grammians are each an n � n matrix whose
eigenvectors span the controllable and observable sub-
spaces respectively. These matrices are de�ned for the
linear system (1,2) as

Wc =

Z
1

0

eAtBB�eA
�tdt (7)

and

Wo =

Z
1

0

eA
�tC�CeAtdt: (8)

By noting that for a single-input, single-output
(SISO) system the quantity xÆ(t) = eAtB is simply
the impulse response of the system (set u(t) = Æ(t) in
(1)), the controllability grammian can also be written

Wc =

Z
1

0

xÆ(t)x
�

Æ (t)dt: (9)

For the observability grammian, we need to consider
the dual system of (1,2):

_z = A�z+ C�ud (10)

yd = B�z: (11)

Here, z is the dual state vector. Analogously to (9),
we can write

Wo =

Z
1

0

zÆ(t)z
�

Æ(t)dt; (12)
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where zÆ(t) = eA
�tC� is the impulse response of the

dual SISO system.

To obtain a balanced realization of the system (1,2),
a state transformation T is chosen so that the con-
trollability and observability grammians are diago-
nal and equal. This so-called balancing transforma-
tion can be computed by �rst calculating the matrix
Wco = WcWo, and then determining its eigenmodes:

Wco = T�1�T: (13)

The eigenvectors of Wco, Ti, are the basis vectors
which describe the balancing transformation. The
eigenvalues, �i, contained in the diagonal matrix �,
are positive, real numbers,19 and �i =

p
�i are known

as the Hankel singular values of the system. The eigen-
modes of Wco correspond to states through which the
input is transmitted to the output. The magnitudes
of the Hankel singular values describe the relative im-
portance of these states, and are independent of the
particular realization of the system. In a balanced
truncation, only those states are retained which corre-
spond to large Hankel singular values.

Assuming the nth order system (1,2) has been trans-
formed to a balanced realization, an error criterion for
model reduction based on Hankel singular values can
be derived.19 A truncation of the balanced system is
performed in which the �rst nr states are retained,
resulting in a reduced-order model of the form (3,4).
The Hankel singular values of the neglected states give
an error bound on the output:

jjy(t) � yr(t)jj � 2
nX

i=nr+1

�i jju(t)jj; (14)

where jj:jj denotes the L2 norm.
For large systems, it is not practical to explicitly

compute the grammians using (7) and (8). It is more
convenient to note that Wc and Wo satisfy the Lya-
punov equations

AWc +WcA
� +BB� = 0 (15)

A�Wo +WoA+ C�C = 0: (16)

Methods have been suggested for solving (15) and (16)
when the systems are large using approximate sub-
space iteration,2 least squares approximation,3 and
Krylov subspace methods4, 5 to obtain low-rank ap-
proximations of the grammians. However, all of these
techniques are expensive for very high-order systems
and have only been demonstrated for much smaller
problems than those encountered in complicated uid
dynamic applications. In this paper we will introduce
an eÆcient method for calculating very low-rank ap-
proximations to the grammians using the concepts of
the POD which are outlined in the following section.

Proper Orthogonal Decomposition

The POD has been widely used to determine eÆ-
cient bases for dynamic systems. It was introduced
for the analysis of turbulence by Lumley,12 and is also
known as the Karhunen-Lo�eve decomposition11 and
principal component analysis.20 The basis vectors 	
are chosen so as to maximise the following cost:14

max
�

hj(x;�)j2i
(�;�)

=
hj(x;	)j2i
(	;	)

; (17)

where (x;	) denotes the scalar product of the basis
vector 	 with the �eld x(�; t) which depends on the
spatial coordinates � and time t, and h i represents
a time-averaging operation. It can be shown that a
necessary condition for (17) to hold is that 	 is an
eigenfunction of the kernel K de�ned by

K(�; �0) = hx(�; t) x�(�0; t)i: (18)

Sirovich introduced the method of snapshots as a
way of determining the eigenfunctions 	 without ex-
plicitly calculating the kernel K.13 The kernel can be
approximated as

K(�; �0) =
1

m

mX
i=1

xi(�)x
�

i (�
0); (19)

where xi(�) is the instantaneous system state or \snap-
shot" at a time ti and the number of snapshots m is
suÆciently large. The eigenvectors of K are of the
form

	 =
mX
i=1

�ixi; (20)

where the constants �i can be seen to satisfy the eigen-
vector equation

R� = �� (21)

and R is now the correlation matrix

Rik =
1

m
(xi;xk): (22)

Rather than performing a set of simulations to ob-
tain the snapshots xi, the POD basis vectors can be
obtained much more eÆciently by taking advantage of
linearity and the frequency domain. For a linear sys-
tem, any general forcing function can be considered
as a superposition of sinusoidally time-varying compo-
nents each at a frequency !:

u(t) = Re

�Z
1

�1

u(!)ej!td!

�
: (23)

Because the system is linear, the component of forc-
ing at frequency ! induces a response which is also
harmonic with frequency !, that is x(t) = xej!t and
y = yej!t. The response due to each harmonic com-
ponent could be computed separately and then recom-
bined appropriately to obtain the overall response to
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the general forcing function. Considering a single tem-
poral harmonic, !k, the state-space system (1,2) can
be written in the frequency domain as

xk = (j!kI �A)
�1

Buk (24)

yk = Cxk: (25)

The POD snapshots can be obtained by choosing a
set of sample frequencies f!kg based on the frequency
content of problems of interest.21 The frequency do-
main system (24) can then be solved to obtain the
responses fxkg. The real and imaginary parts of each
xk constitute the snapshots.

Balanced Truncation via the Method of Snapshots

Lall et al.18 describe the connection between the
POD and balanced truncation. Note the similarity
between the POD kernel function K de�ned by (18)
and the controllability grammian Wc de�ned by (9).
In fact, as noted by Lall, if the �elds x(�; t) in (18) are
obtained by exciting the system with impulsive inputs,
then the POD results in the construction of the con-
trollability grammian. Further insight can be gained
by thinking about the problem in the frequency do-
main. We begin with the frequency domain de�nition
of the controllability grammian written as:22

Wc =
1

2�

Z
1

�1

(j!I �A)
�1

BB� (�j!I �A�)
�1

d!:

(26)
We note from (24) that the term (j!I �A)�1B is the
response of the linear system to sinusoidal forcing at
a frequency !. Since an impulsive input contains an
equal amount of all frequencies (Æ(t) =

R
1

�1
ej!td!),

equation (26) is simply another way of thinking about
(9). Although the kernel is never explicitly computed
in the POD frequency domain analysis, by choosing a
�nite set of discrete frequencies for the snapshots, (19)
can be written

K =
1

m

mX
i=1

(j!iI �A)�1BB� (�j!iI �A�)�1 :

(27)
By comparing equations (26) and (27), we can see that
in the case of general inputs, the POD kernel is there-
fore an approximation to the controllability grammian
over a chosen, restricted frequency range. The sub-
space spanned by the POD basis vectors approximates
the controllability subspace.
It is a natural extension to consider a POD analysis

which approximates the observability subspace. Fur-
thermore, to obtain a balanced representation of the
system, we can then use concepts from a traditional
control balanced truncation. Lall et al. used the direct
POD method to obtain approximations to the system
grammians. For a system of order n, this results in the
construction of two n � n matrices. Clearly for very
large systems this approach will be computationally

infeasible, especially given that the matrices will not
be sparse. Here we present an alternative approach
which uses the POD method of snapshots to approxi-
mate the grammians, so that the large matrices need
never be explicitly computed.
By obtaining snapshots of the dual system (10,11),

and performing the PODmethod of snapshots analysis
described above, we can calculate p eigenmodes of the
observability kernel function. Let these eigenvectors
be contained in the columns of the matrix X , with cor-
responding eigenvalues on the diagonal entries of the
matrix �o. Similarly, let the eigenvectors of the con-
ventional (controllability) kernelK be contained in the
columns of the matrix Y , with corresponding eigenval-
ues on the diagonal entries of the matrix �c. Low-rank
approximations to the controllability and observability
grammians can then be made as follows:

W p
c = Y �cY

� (28)

W p
o = X�oX

�; (29)

where the superscript p denotes a pth order approxi-
mation.
Through use of an eÆcient eigenvalue solver, the

eigenmodes of the product W p
c W

p
o can then be calcu-

lated. In this work, ARPACK23 was used to determine
the eigenvalues. This package requires the user to sup-
ply only matrix-vector multiplications, hence the large
matrices W p

c and W p
o need never be explicitly formed.

The balancing algorithm can therefore be summa-
rized as:
1. Use method of snapshots to obtain p POD eigen-

modes (Y;�c) for the primal system.
2. Use method of snapshots to obtain p POD eigen-

modes (X;�o) for the dual system.
3. Formulate the low-rank approximations

W p
c = Y �cY

� and W p
o = X�oX

� (the n � n

matrices are never explicitly calculated).
4. Obtain the eigenvectors of the product W p

cW
p
o to

determine the balancing transformation T .
5. Retain only those eigenvectors in the reduced-

space basis which correspond to large Hankel singular
values.

Multiple Input/Output Case

The concept extends readily to the MIMO case,
however it is important to treat the system in the cor-
rect manner if the correlation with the grammians is
to be maintained.
Consider a system with q inputs

u = [u1 u2 : : : uq]
T
: (30)

The matrix B in equation (1) can be written

B = [b1 b2 : : :bq] : (31)

We now inspect the form of the controllability gram-
mian Wc de�ned by equation (7). Due to the nature
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of the outer product, the grammian of the multiple-
input system can be written as a sum of grammian
components which correspond to each of the inputs as
follows:

Wc =

Z
1

0

eAtb1b
�

1e
A�tdt+

Z
1

0

eAtb2b
�

2e
A�tdt

+ : : :+

Z
1

0

eAtbqb
�

qe
A�tdt: (32)

The kernel function (18) should therefore be written
as

K(�; �0) = hx1(�; t) x1�(�0; t) + x2(�; t) x2�(�0; t)
+ : : :xq(�; t) xq�(�0; t)i; (33)

where xj is the response of the system to forcing in
uj only. As described earlier, the eigenfunctions 	
of the kernel can be written as linear combinations of
snapshots

	 =

qX
j=1

mjX
i=1

�
j
i x

j
i ; (34)

where the number of snapshots mj can vary for dif-
ferent inputs j. Following the derivation in Sirovich,13

we obtain an eigenvalue problem for the coeÆcients
�
j
i . We �nd that the resulting system has an identical

form to (21), with the total number of snapshots now
being given by m =

Pq
j=1mj .

The POD can therefore be applied to a multiple-
input problem, and the approximation of the controlla-
bility grammian will be maintained provided snapshots
are obtained for each input in turn. The resulting col-
lection of snapshots, xji ; i = 1:::mj ; j = 1:::q, is then
treated in the same way as for the SISO case. Analo-
gous arguments can be applied to the dual problem.

Results and Discussion

In this section, the performance of the method will
be illustrated with two examples. The �rst is a ran-
domly generated, moderately sized problem for which
the exact balanced realization can be computed. The
second is a realistic high-order uid dynamic problem.

Randomly Generated State-Space System

In this example we analyze a randomly generated
single-input single-output system of size n = 100. The
matrix was chosen to be diagonal with eigenvalues
distributed uniformly over the interval [�1 0]. The
vectors B and C were also randomly generated. By
solving the Lyapunov equations, the exact balanced
realization of the system was determined. The Hankel
singular values were computed, and the �rst ten are
plotted in Figure 1. As the �gure shows, the mag-
nitudes of the Hankel singular values decrease very
rapidly. This indicates that a balanced truncation of
the system could provide a very accurate representa-
tion with just a few states.

The approximate balancing method was then ap-
plied to the system. POD snapshots were taken from
the primal and dual systems at frequency intervals of
�! = 0:05 from ! = 0 to ! = 1. Twenty POD basis
vectors were then calculated for each system and used
to form the approximations to the appropriate gram-
mian. The resulting square roots of the eigenvalues
of the grammian product are also plotted in Figure 1,
and we see that the method approximates the domi-
nant Hankel singular values very well.
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Fig. 1 Hankel singular values (o) and square roots
of eigenvalues of the approximate grammian prod-
uct (x), n = 100, p = 20, m = 40.

CFD Model

Results will now be presented for a two-dimensional
NACA 0012 airfoil operating in unsteady plunging mo-
tion with a steady-state Mach number of 0.755. The
ow is assumed to be inviscid, so the governing equa-
tions are the linearized Euler equations. The steady-
state pressure contours for this problem are shown in
Figure 2. The CFD mesh has 3482 grid points, which
corresponds to a total of n = 13928 unknowns in the
linear state-space system.

POD snapshots were obtained by causing the airfoil
to plunge in sinusoidal motion at selected frequen-
cies.21 Frequencies were selected at 0.1 increments
from ! = 0:1 to ! = 2:0. Snapshots were obtained
at each frequency by solving the frequency domain
equations (24) and the equivalent frequency domain
equations for the dual system with a preconditioned
complex GMRES algorithm. Thus, forty snapshots
were obtained for each problem (two per frequency).
The correlation matrices were calculated and the POD
process used to determine the kernel eigenfunctions.

The low-rank approximations to the grammians
were formed by taking �fteen eigenmodes for each
(p = 15). ARPACK was then used to calculate the
�rst ten eigenmodes of the grammian product. As
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Fig. 2 Steady-state pressure contours for NACA
0012 airfoil. 3482 nodes, M = 0:755, � = 0:016Æ.

mentioned previously, it is not necessary to explic-
itly form the grammians or the product. Instead, for
each problem, �fteen eigenvectors, each of size n, and
�fteen eigenvalues were stored and the matrix multi-
plications were computed as necessary. Because of the
extremely low-rank approximation of the matrix, the
eigenvalue solver converged very quickly. The result-
ing �rst ten eigenvalues of the grammian product are
plotted with crosses in Figure 3. These eigenvalues
approximate the squares of the Hankel singular values
of the system. In a balanced truncation, only those
states are retained which correspond to large Hankel
singular values. From Figure 3, we see that the mag-
nitudes of eigenvalues drop o� very sharply, indicating
that the reduced-order model will require only a few
states. In fact, the �rst state contains most of the
system \energy".
The accuracy of the reduced-order model obtained

from the balanced truncation can be assessed via simu-
lation results. Forced response of the airfoil to a pulse
input in plunge is considered and the results are com-
pared to those obtained both with the high-order CFD
code and with a reduced-order model derived via con-
ventional POD. Static corrections were also included
in the reduced-order models to aid in capturing high-
frequency dynamics.21 The plunge displacement of the
airfoil was prescribed to be

h(t) = e�g(t�t0)
2

; (35)

where g is a parameter which determines how sharp
the pulse is, and thus the value of the maximum signif-
icant frequency present. Figure 4 shows the results for
g = 0:01 which corresponds to !max = 0:48 based on a
1% level. The solid line represents the force generated
on the airfoil as a function of time as calculated with

0.0001

0.001

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10

ei
ge

nv
al

ue
 m

ag
ni

tu
de

mode number

p=10
p=15
p=20

Fig. 3 Eigenvalues of the approximate grammian
product (approximate the squares of the Hankel
singular values of the system). n = 13928, m = 40,
p = 10; 15; 20.

the high-order CFD model. The two dashed lines are
the results obtained using a conventional POD model
with eight states and the new balanced model with one
state. As the �gure shows, with just a single degree of
freedom, the balanced reduced-order model captures
the response almost exactly.

The same test was performed for a higher frequency
pulse with g = 0:1. In this case the highest signi�cant
frequency present at a 1% level is !max = 1:34. The
frequency content in this pulse input therefore spans
most of the range sampled by the snapshots. Figure 5
shows the results for the CFD model, along with the
reduced-order models with eight (conventional) and
three (balanced) degrees of freedom. While the bal-
anced model with three states captures the response
extremely accurately, even with eight states the con-
ventional model shows a signi�cant error. This was
the highest order model which could be obtained us-
ing conventional POD since including additional basis
vectors caused the reduced-order model to become
unstable. In order to more accurately capture the
response, it would be necessary to include more snap-
shots in the conventional POD analysis.

Discussion

The computation of reduced-order models via the
balancing method is slightly more than twice as ex-
pensive as conventional POD. The greatest cost occurs
in the system solves required to obtain the snap-
shots. Because we must solve the dual system, twice
as many snapshots are required for the balanced POD
approach. Additionally there is the small cost asso-
ciated with calculating the eigenmodes of the gram-
mian product. In many applications however, one is
less concerned with the cost of obtaining the reduced-
order model, and more so with the resulting size and
quality of the model. As the results above show, by
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Fig. 4 Response of NACA 0012 airfoil to a pulse
input in plunge. M = 0:755, � = 0:016Æ, g = 0:01.
Results from CFD model (13928 states, solid line),
conventional POD reduced-order model with eight
states (small dash) and balanced reduced-order
model with one state (larger dash). The results
for the balanced model agree almost exactly with
the CFD model.
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Fig. 5 Response of NACA 0012 airfoil to a
pulse input in plunge. M = 0:755, � = 0:016Æ,
g = 0:1. Results from CFD model (13928 states,
solid line), conventional POD reduced-order model
(eight states, small dash) and balanced reduced-
order model (three states, larger dash).

incorporating both input and output information very
accurate models can be obtained which have a min-
imal number of states. The method outlined here is
far more eÆcient than other attempts to calculate sys-
tem grammians, and accurately provides the required
level of information. Also, since the snapshots can
be obtained eÆciently in the frequency domain, this
method is appropriate for problems with spatial sym-
metry, such as turbomachinery ows.

Throughout the algorithm, there are several arbi-
trary decisions to be made. Firstly, the snapshots

must be selected. The range over which the sampling
is performed is determined by assessing the impor-
tant frequency range in the problems at hand. To
determine the speci�c snapshot locations within this
range, one uses a combination of experience and in-
tuition. Often the required density of snapshots will
be determined a posteriori from the performance of
the reduced-order model. If the desired dynamics can-
not be accurately captured, more snapshots must be
included in the POD process and the basis vectors re-
calculated. It is therefore important to validate the
models against known results (in this case against the
CFD model). Secondly, p, the number of POD eigen-
modes to be used in the low-rank approximation of the
grammians, must be chosen. Again this will depend
on the frequency range of interest, as well as on the
number of modes to be retained in the reduced-order
model. A fairly low number (�fteen) was chosen for
the results presented here, however the performance
of the models was found to be fairly robust with re-
spect to this parameter. In Figure 3 the eigenvalues of
the grammian product are also plotted for p = 10 and
p = 20. By increasing the number of POD vectors to
twenty, very little variation was seen in the eigenval-
ues. If only ten POD vectors were used, the �rst �ve
eigenvalues were virtually unchanged while the next
�ve showed some movement. This result is to be ex-
pected: in order to accurately resolve q eigenvalues of
the grammian product, we should choose p > q in the
approximation of the matrices.
The method is exible in that it can be applied as

described to any linearized system. The approach also
extends to nonlinear systems using concepts similar to
those discussed by Lall et al.18 It is relatively straight-
forward to obtain an approximation to the controlla-
billity subspace. For example, consider the nonlinear
system

_x = f (x(�; t);u(t)) (36)

y = g (x(�; t)) : (37)

The POD eigenfunctions would be calculated using
snapshots from simulation of the nonlinear system
(36,37). The diÆculty arises with the approximation
of the observability subspace. The concept of a dual
system does not exist in a nonlinear setting. Two
possibilities present themselves. The �rst is to lin-
earize the nonlinear system (36,37) and formulate the
dual linearized system (the adjoint). The snapshots
would then be obtained from a combination of nonlin-
ear (primal) and linearized (dual) systems. The second
approach is to follow the method outlined in18 which
de�nes an empirical observability grammian based on
system outputs for various initial conditions. For the
high-order systems encountered in CFD applications,
this second approach, although more accurate, would
be computationally very expensive. Work is under-
way to develop a better approach for handling large
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nonlinear systems.
Once the grammians have been suitably approxi-

mated, the balancing method can then be used to
calculate a linear transformation of the nonlinear state
to obtain the nonlinear reduced-order model

_xr = T�1f (Txr(�; t);u(t)) (38)

yr = g (Txr(�; t)) : (39)

Conclusions

A new method for computing an approximate bal-
anced truncation of a linear state-space system has
been presented. By using the method of snapshots
to perform a POD analysis of the primal and dual
systems, low-rank, reduced-range approximations to
the controllability and observability grammians are
obtained very eÆciently. This POD analysis can be
performed either in the time or frequency domain.
By incorporating information pertaining to both in-
puts and outputs, the resulting reduced-order models
capture the desired system dynamics with a very low
number of states. The required size of the models is
signi�cantly lower than for those developed using a
conventional POD approach. Results have been pre-
sented for a very high-order system, and the method
has been shown to work extremely e�ectively. The
concept is applicable to general linearized systems and
with some modi�cations can be extended to nonlinear
systems.
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