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We describe a method for computing time-dependent solutions to the compressible
Navier-Stokes equations on variable geometries. We introduce a continuous mapping
between a fixed reference configuration and the time varying domain. By writing the
Navier-Stokes equations as a conservation law for the independent variables in the refer-
ence configuration, the complexity introduced by variable geometry is reduced to solving a
transformed conservation law in a fixed geometry. The spatial discretization is carried out
using the Discontinuous Galerkin method on unstructured meshes of triangles, while the
time integration is performed using an explicit Runge-Kutta method. For general domain
changes, the standard scheme fails to preserve exactly the free-stream solution which leads
to a significant accuracy degradation even for high order approximations. This situation
is remedied by adding an additional equation for the time evolution of the transformation
Jacobian to the original conservation law and correcting for the accumulated metric inte-
gration errors. A number of results are shown to illustrate the flexibility of the approach
to handle high order approximations on complex geometries.

I. Introduction

There is a growing interest in high-order methods for fluid problems, largely because of their ability to
produce highly accurate solutions with minimum numerical dispersion. The Discontinuous Galerkin (DG)
method produces stable discretizations of the convective operator for any order discretization. Moreover, it
can be used with unstructured meshes of simplices, which appears to be a requirement for real-world complex
geometries. In this paper, we presents a high order DG formulation for computing high order solutions to
problems with variable geometries.

Time varying geometries appear in a number of practical applications such us rotor-stator flows, flapping
flight or fluid-structure interactions. In such cases, it is necessary to properly account for the time variation
of the solution domain if accurate solutions are to be obtained. For the Navier-Stokes equations, there has
been a considerable effort in the development of Arbitrary Lagrangian Eulerian (ALE) methods to deal
with these situations.1–4 In all theses references, the satisfaction of the so-called Geometric Conservation
Law, first introduced in Ref. 5, turns out to be a requirement to obtain schemes which are both stable and
accurate. We also note that in these papers only second (or at most third) order accuracy for space and time
is demonstrated.6 A common feature to these efforts is that the discretization of the equations is carried out
on a deforming grid and thus the metric changes over time.

An alternative approach is that presented in Ref. 7 using a high order finite difference approach. There,
a time varying mapping is constructed between a fixed reference domain and the real time-varying domain
geometry.8 The original conservation law is first transformed to the reference configuration and then solved
using a high order compact difference scheme. In this method, the actual computation is carried out on a
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fixed mesh and the variable domain geometry is accounted for through a modification of the fluxes in the
conservation law. This approach is simple and allows for arbitrarily high order solutions to be obtained.
Unfortunately, the satisfaction of the Geometric Conservation Law is not guaranteed for general grid motions
and correction terms are required to ensure preservation of constant solutions. One of the disadvantages of
the correction terms proposed in Ref. 7 is that they are non-conservative and therefore their use for solutions
involving strong shocks is unclear.

In this paper, we follow a similar approach to that presented in Ref. 7. That is, the equations are always
discretized on a fixed reference domain. The spatial discretization is carried out using the Discontinuous
Galerkin method on a mesh of triangles, and the time integration is done with an explicit Runge-Kutta
scheme. In order to ensure that constant solutions in the physical domain are preserved exactly, we introduce
an additional scalar equation in which the Jacobian of the transformation is integrated numerically using
the same spatial and time discretization schemes. This numerically integrated Jacobian is used to correct for
integration errors in the conservation equations. It turns out that for continuous mappings, this additional
equation can be integrated locally within each element. Therefore, it can be segregated from the global
system and dealt with separately, thus incurring a very small computational overhead. Several examples are
presented and high orders of convergence are shown. Here, we consider polynomial approximations up to
p = 5 and fourth order time integration. Although the method presented can be used in 3D without changes,
in this paper, we only consider 2D examples. For the examples considered the mapping is given explicitly
in terms of the boundary motion. We use blending functions to propagate the boundary movement into the
domain. In most cases, the motion of the domain is prescribed beforehand, but we also show some examples
involving simple 2D aero-elastic sections in which the airfoil pitch angle, and hence the geometry, is part of
the solution.

II. ALE Formulation

When simulating problems involving time varying domains, the motion of the mesh must be accounted
for in the solution process. We use an Arbitrary Lagrangian Eulerian (ALE) formulation, which allows us
to move and deform the domains while preserving the high order accuracy. An important ingredient for
our formulation is a time dependent mapping between a fixed reference domain and the physical deformable
domain.

A. The Mapping

Let the physical domain of interest be denoted by v(t) and the fixed reference configuration be denoted by
V (see figure 1). Let G(X, t) denote a one-to-one time dependent mapping between V and v(t). Thus a
point X in V , is mapped to a point x(t) in v(t), which is given by x = G(X, t). In order to transform the
Navier-Stokes equations from the physical (x, t) domain to the reference (X, t) domain, we require some
differential properties of the mapping. To this end, we introduce the mapping deformation gradient G and
the mapping velocity vX as

G = ∇XG, vX =
∂G
∂t

∣∣∣∣
X

. (1)

In addition, we denote the Jacobian of the mapping by g = det(G). We note that corresponding infinitesimal
vectors dL in V and dl in v(t) are related by dl = GdL. Also, the elemental volumes are related by dv = gdV .
From this, we can derive an expression for the area change. Let dA = NdA denote an area element which
after deformation becomes da = nda. Here, N and n are the unit normals in V and v(t), respectively. We
then have that, dV = dL · dA and dv = dl · da. Therefore, we must have that

n da = gG−T NdA, and N dA = g−1GT n da . (2)

B. Transformed Equations

The Navier-Stokes equations in the physical domain (x, t) are written as a system of conservation laws

∂Ux

∂t

∣∣∣∣
x

+ ∇x · Fx(Ux,∇xUx) = 0, (3)
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Figure 1. Mapping between the physical and the reference domains.

where Ux is the vector of conserved variables and Fx are the corresponding fluxes. Here, we write Fx is a
function of Ux as well as ∇xUx to indicate that the fluxes can indeed include viscous effects.

In order to obtain the corresponding conservation law written in the reference configuration we re-write
the above equation in an integral form as∫

v(t)

∂Ux

∂t

∣∣∣∣
x

dv +
∫

∂v

Fx · n da = 0 (4)

Note that the above expression follows directly from 3 by integrating over v(t) and applying the divergence
theorem. It is now possible to transform this integrals to the reference configuration. Consider first the
second term: ∫

∂v

Fx · n da =
∫

∂V

Fx · (gG−T N) dA =
∫

∂V

(gG−1Fx) ·N dA (5)

Similarly, the first integral is transformed by means of Reynolds transport theorem to give:∫
v(t)

∂Ux

∂t

∣∣∣∣
x

dv =
d

dt

∫
v(t)

Ux dv −
∫

∂v

(UxvX) · n da (6)

=
d

dt

∫
V

g−1Ux dV −
∫

∂V

(UxvX) · (gG−T N) dA (7)

=
∫

V

∂(g−1Ux)
∂t

∣∣∣∣
X

dV −
∫

∂V

(gUxG−1vX) ·N dA (8)

using the divergence theorem once again enables an equivalent local conservation law in the reference domain
to be derived as:

∂UX

∂t

∣∣∣∣
X

+ ∇X · FX(UX ,∇XUX) = 0, (9)

where the transformed vector of conserved quantities and corresponding fluxes in the reference space are:

UX = gUx , FX = gG−1Fx −UXG−1vX , (10)

and by simple chain rule,

∇xUx = ∇X(g−1UX)G−T = (g−1∇XUX −UX∇X(g−1))G−T . (11)
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III. Numerical Methods

In order to develop a DG method, we rewrite the above problem (9) as a system of first order equations

∂UX

∂t
+ ∇X · FX(UX ,QX) = 0 (12)

Q−∇XUX = 0 (13)

Next, we introduce the ‘broken’ DG spaces Vh and Σh associated with the triangulation T h = {K} of V . In
particular, Vh and Σh denote the spaces of functions whose restriction to each element K are polynomials
of order p ≥ 1.

Following 9, we consider DG formulations of the form: find Uh
X ∈ Vh and Qh

X ∈ Σh such that for all
K ∈ T h, we have

∫
K

∂Uh
X

∂t
V dV −

∫
K

FX(Uh
X ,Qh −X) ·∇XV dV −

∫
∂K

V (F̂X ·N) dA = 0 ∀V ∈ Vh (14)∫
K

Qh
XP dV +

∫
K

Uh
X∇X · V dV −

∫
∂K

Ûh
X(P ·N) dA = 0 ∀P ∈ Σh (15)

Here, the numerical fluxes F̂X ·N and ÛX are approximations to FX ·N and to UX , respectively, on the
boundary of the element K. The DG formulation is complete once we specify the numerical fluxes F̂X ·N
and ÛX in terms of (Uh

X) and (Qh
X) and the boundary conditions. The flux term F̂X · N is decomposed

into its inviscid and viscous parts:

F̂X ·N = F̂ inv
N (Uh

X) + F̂ vis
N (Uh

X ,Qh
X) (16)

The numerical fluxes F̂ vis
N and ÛX are chosen according to the Compact Discontinuous Galerkin (CDG)

method.10 This is a variant of the Local Discontinuous Galerkin (LDG) method9 but has the advantage of
being compact on general unstructured meshes.

The inviscid numerical flux F̂ inv
N (Uh

X) is chosen according to the method proposed by Roe.11 Note that
this flux can be very easily derived from a standard eulerian Roe fluxes by noting that the flux FX given in
10 can be written as

FX = gG−1(Fx −UxvX) ,

where gG−T N (from 2) is always continuous across the interface (assuming that G is continuous), and the
eigenvalues and eigenvectors of the Jacobian matrix for Fx −UxvX are trivially obtained from the Jacobian
matrix for the standard eulerian flux Fx.

Time integration is performed explicitly using a fourth order Runge-Kutta scheme. For the simulations
coupled with simple structural models based on spring systems, the equations corresponding to the additional
variables are integrated simultaneously with the DG system.

A. Geometric Conservation Law

It turns out that, for arbitrary mappings, a constant solution in the physical domain is not necessarily a
solution of the discretized equations in the reference domain. Even though this error is typically very small
for high order discretizations, the situation is quite severe for lower order approximations since the free-
stream condition is not preserved identically. Satisfaction of the constant solution is often referred to as the
Geometric Conservation Law (GCL) and is was originally discussed in 5. The source of the problem is the
inexact integration of the Jacobian g of the transformation by the numerical scheme.

First, we note that using expressions 2, it is straightforward to prove the so-called Piola relationships,
which hold for arbitrary vectors W and w:

∇X ·W = g∇x · (g−1GW ) , ∇xw = g−1∇X · (gG−1w) .

When the solution Ux is constant, say Ūx, we have

∇X · FX = g∇x · (Fx − ŪxvX) = −gŪx∇x · vX = −[∇X · (gG−1vX)]Ūx .
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Therefore, for a constant solution Ūx, equation 9 becomes

∂UX

∂t

∣∣∣∣
X

+ ∇X · FX = g−1Ūx

(
∂g

∂t

∣∣∣∣
X

−∇X · (gG−1vX)
)

.

We see that the right hand side is only zero if the equation for the time evolution for the transformation
Jacobian g

∂g

∂t

∣∣∣∣
X

−∇X · (gG−1vX) = 0 ,

is integrated exactly by our numerical scheme. Since in general, this will not be the case, the constant
solution Ūx in the physical space will not be preserved exactly.

An analogous problem was brought up in the formulation presented in 7. The solution proposed there was
to add some corrections aimed at canceling the time integration errors. These terms are non-conservative
and probably not suitable in the presence of strong shocks in the solutions. Here, we use a different approach.
The system of conservation laws 9 is replaced by

∂(ḡg−1UX)
∂t

∣∣∣∣
X

−∇X · FX = 0 (17)

where ḡ is obtained by solving the following equation using the same numerical scheme

∂ḡ

∂t

∣∣∣∣
X

−∇X · (gG−1vX) = 0 . (18)

We note that even though ḡ is an approximation to g, when the above equation is solved numerically its value
will differ from that of g due to integration errors. It is straightforward to verify that 17 does indeed preserve
a constant solution as desired. Finally, we point out that since the fluxes in equation 18 are continuous, the
numerical flux is trivial to compute. Moreover, we note that equation 18 does not require information from
neighboring elements and therefore can be solved on each element independently.

B. Mappings for Deformable Domains

In order to solve problems on moving domains, we need a procedure to define a mapping x = G(X, t)
from the reference domain to the physical domain. One method that is commonly used in ALE simulations
is to force the motion of the mesh nodes on the boundary and apply a mesh smoothing scheme to make
reconstruct the mapping in the domain interior. Another technique is to solve additional equations (usually
elliptic) for x in the interior. For some of these algorithms, it may not obvious to obtain accurate values for
the mapping derivatives as required by our fluxes.

For the examples in this paper, we use a different approach which produces explicit expressions for the
mappings. The procedure is illustrated in figure 2, where a mesh of an HT13 foil inside a circle is deformed
in such a way that the foil is displaced and rotated but the circle is fixed. To do this, we use polynomial
blending functions rn(x) of odd degree n, with r(0) = 0, r(1) = 1, and with (n− 1)/2 vanishing derivatives
at x = 0 and x = 1. For degree n = 3 this blending polynomial equals r3(x) = 3x2 − 2x3, and for n = 5 it
equals r5(x) = 10x3 − 15x4 + 6x5.

Next, we define a circle that contains the moving boundary, and compute the signed distance di from
each mesh node Xi to this circle. We choose a distance D from the circle such that all points at this distance
are inside the domain, and compute a blending value for each mesh node:

bi =


0, if di < 0

1, if di > D

r(di/D), otherwise.

(19)

Finally, we create a new set of mesh nodes Y by deforming the entire mesh rigidly, according to the motion
of the moving boundary, and compute our blended mesh nodes by

xi = biXi + (1− bi)Yi. (20)
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This approach has clearly some limitations, but for many cases it is remarkably simple and effective. It has
the advantage that the mapping derivatives are easily obtainable since the mapping is given in explicit form.
It is clearly that the regularity of the mapping must play an important role in the overall accuracy of the
scheme. Here we use quintic r5(x) polynomials in all our simulations. We expect that in general continuous
piecewise polynomially defined mappings will not degrade the accuracy, provided any discontinuities in the
derivatives are concentrated at the element boundaries.

Original Mesh Rigidly Moved Mesh

Blended Mesh

Figure 2. Deformation of a domain by blending of two rigid displacements.

IV. Results

A. Euler Vortex with Variable Mapping

To validate our solver and show that the we retain the high-order accuracy after the domain mapping, we
solve an inviscid model problem consisting of a compressible vortex in a rectangular domain.12,13 The vortex
is initially centered at (x0, y0) and is moving with the free-stream at an angle θ with respect to the x-axis.
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The analytic solution at (x, y, t) is given by

u = u∞

(
cos θ − ε((y − y0)− v̄t)

2πrc
exp

(
f(x, y, t)

2

))
(21)

v = u∞

(
sin θ +

ε((x− x0)− ūt)
2πrc

exp
(

f(x, y, t)
2

))
(22)

ρ = ρ∞

(
1− ε2(γ − 1)M2

∞
8π2

exp (f(x, y, t))
) 1

γ−1

(23)

p = p∞

(
1− ε2(γ − 1)M2

∞
8π2

exp (f(x, y, t))
) γ

γ−1

(24)

where f(x, y, t) = (1 − ((x − x0) − ūt)2 − ((y − y0) − v̄t)2)/r2
c , M∞ is the Mach number, γ = cp/cv, and

u∞, p∞, ρ∞ are free-stream velocity, pressure, and density. The Cartesian components of the free-stream
velocity are ū = u∞ cos θ and v̄ = u∞ sin θ. The parameter ε measures the strength of the vortex and rc is
its size.

We use a domain of size 20-by-15, with the vortex initially centered at (x0, y0) = (5, 5) with respect
to the lower-left corner. The Mach number is M∞ = 0.5, the angle θ = arctan 1/2, and the vortex has
the parameters ε = 0.3 and rc = 1.5. We use periodic boundary conditions and integrate until time
t0 =

√
102 + 52, when the vortex has moved a relative distance of (10, 5).

We solve the Euler equations on a regular rectangular mesh. The domain is mapped according to the
following expressions:

x(ξ, η, t) = ξ + 2.0 sin(2πξ/20) sin(πη/7.5) sin(1.0 · 2πt/t0) (25)
y(ξ, η, t) = η + 1.5 sin(2πξ/20) sin(πη/7.5) sin(2.0 · 2πt/t0) (26)

We note that at times t = 0 and t = t0, the mapping is the identity mapping which makes it straightforward
to initialize and compare solutions. The solution and the deformed meshes at time t = 0 and t = (3/8)t0 are
shown in figure 3.

a) Deformed mesh and solution, t = 0 b) Deformed mesh and solution, t = (3/8)t0

Figure 3. Meshes and solutions for initial conditions (a) and at time t = (3/8)t0 (b). Note that the deformed
mesh is used only for visualization, the calculations are done in the reference space using mapped equations.

We solve for a variety of mesh sizes and polynomial orders, and measure the error in the L2-norm.
Figure 4 shows the convergence of the scheme, both with and without mapping of the domain. We note that
we obtain optimal convergence O(hp+1) in both cases, and that the mapped case has at most a factor of 8
larger error than the unmapped. The mapped scheme is of course expected to be less accurate, since this
particular mapping is fairly extreme and generates large variations in the resolution of the vortex.

B. Free-stream Preservation

The above test has been performed with the modified scheme described above that ensures exact conservation
of the free stream condition. To illustrate the effect of this modification, we solve using the same grid and
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Figure 4. The convergence of the mapped and the unmapped schemes for the Euler vortex problem. Three
mesh sizes are used and polynomial orders p = 1 to p = 5. The optimal convergence hp+1 is achieved in all
the cases, although the constant is larger for the mapped cases because of the non-uniform resolution of the
vortex.

time dependent mapping as in the previous example, but with uniform free-stream condition as the initial
condition. We integrate in time until t = 1.0 with and without the correction (17),(18), and plot the L2-errors
in figure 5.

Although the error without the correction converges to zero as h → 0, we note that it can be quite large,
especially if the solution is not well-resolved. With the correction the errors decrease by several orders of
magnitude.

C. Flow around Oscillating Cylinder

In the next example, we consider two dimensional viscous flow around an oscillating cylinder of radius 1.
The Reynolds number with respect to the diameter is 400 and the Mach number is 0.2. The y-displacement
of the cylinder is given by

yc(t) = A sin(2πft) (27)

where A = 4/3 and f = 0.1. Our unstructured triangular mesh consists of 1316 elements and we use
polynomials of degree p = 4 within each element.

We integrate for four periods (until t = 40) using two mappings – rigid vertical motion and a smooth
blending between a displacement of the circle and a fixed mapping. The meshes and the solutions using the
two techniques are shown in figure 6 at time t = 17.5, together with the time evolution of the lift and the
drag coefficients. Although a numerical quantification of the error is hard because of the large sensitivity of
the exact solution to small changes in the data, the results are very remarkably similar after a considerably
large time integration interval.

D. Heaving and Pitching Foil in Wake

As an example of a more complex mapping, we solve for the flow around a NACA 0012 foil of length c = 1
placed in the wake of a D-section cylinder of diameter d = 0.5, following the experimental study in Ref. 14.
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Figure 5. The convergence of a pure free-stream problem with and without the free-stream preservation
technique.

Depending on the distance s between the center of the cylinder and the leading edge of the foil several modes
of interaction can be identified. Here, we only present a preliminary computation for a particular value of
s = 4.25d = 2.125 for illustration purposes. The cylinder and the foil oscillate in the vertical direction:

y(t) = A sin(2πft) (28)

and the foil also rotates around the point p = c/3 from the leading edge:

θ = a sin(2πft + π/2) (29)

We choose the free-stream velocity U = 1 in the x-direction, the oscillation frequency f = 0.2U/d = 0.4,
amplitudes A = d/2 = 0.25 and a = π/6. The flow has Mach number 0.2 and Reynolds number 550.

The mapping is a smooth blending of three meshes – the original mesh, a translation for the cylinder, and
a translation and rotation for the foil. Figure 7 shows the reference mesh, a mapped mesh, Mach number
and entropy plots, and time evolution of the lift and the drag on the two bodies.

E. Flow around Pitching Airfoil

In this test, we consider an aero-elastic section. We calculate the flow around a heaving/pitching HT13
airfoil. The motion of the airfoil in the vertical direction is a prescribed harmonic function,

rz(t) = h0 sin(ωt). (30)

The rotation of the airfoil is restrained by a torsional spring but otherwise the foil is free to rotate about the
leading edge, see figure 8. This motion is determined by the angular momentum balance:

θ̈ + ω2
0θ = (M + Sr̈z)/I, (31)

Here, we use the following non-dimensional values ω0 = 1.5811, S = 10, and I = 3.333, ω = 0.2, airfoil chord
equal to 1, and free stream velocity also equal to 1. In the above expression M , is the pitching moment on
the foil about the leading edge. We write (31) as a system of first order equations and solve them together
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Rigid Mapping

a) Mapped mesh (rigid)

c) Entropy time t = 17.5 (rigid)
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e) Time evolution, drag and lift (rigid)

Blended Mapping

b) Mapped mesh (blended)

d) Entropy time t = 17.5 (blended)
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f) Time evolution, drag and lift (blended)

Figure 6. Meshes and plots of the entropies at time t = 17.5 for the the oscillating cylinder problem, and the
time evolution of the lift and the drag coefficients.
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a) Reference domain and mesh

c) Mach number, time t = 13.5
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e) Time evolution, lift coefficient CL

b) Mapped mesh (for visualization), time t = 13.5

d) Entropy, time t = 13.5
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f) Time evolution, drag coefficient CD

Figure 7. Two cylinders oscillating at equal amplitude and frequency, but with a phase difference.
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with the fluid equations. Note that the two are coupled by M in (31), and by θ in the geometry definition
for the fluid problem.

We use a relatively coarse mesh and calculate a p = 3 solution. The domain is mapped by a rigid
motion, corresponding to a rotation around the origin and a displacement. Note that in this case since the
mapping of the Jacobian g is always unity, the correction to ensure free-stream preservation is not required.
In figure 9, time evolutions of the quantities rz, θ, moment Cm, drag CD, and life CL, are plotted for a
typical set of parameters and two different amplitudes h0 = 0.75/4 and h0 = 0.75. The Reynolds number in
this simulation is 5, 000 and the Mach number is 0.2. We note that the for the low amplitude case, the lift
and the drag are fairly smooth functions of time during most of the period due to a fairly limited separation,
while for the high amplitude case the flow separates at the leading edge and the evolution is less predictable.
Note that both cases are highly non-linear and consequently well beyond the range of linear theory.

r
z
(t) θ

Figure 8. The pitching airfoil model.
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Figure 9. Time evolution of the pitching airfoil problem.
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