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We present a practical approach for the numerical solution of the Reynolds averaged
Navier-Stokes (RANS) equations using high-order discontinuous Galerkin methods. Tur-
bulence is modeled by the Spalart-Allmaras (SA) one-equation model. We introduce an ar-
tificial viscosity model for SA equation which is aimed at accommodating high-order RANS
approximations on grids which would otherwise be too coarse. Generally, the model term
is only active at the edge of the boundary layer, where the grid resolution is insufficient to
capture the abrupt change in curvature required for the eddy viscosity profile to match its
free-stream value. Furthermore, the amount of viscosity required decreases with the grid
resolution and vanishes when the resolution is sufficiently high. For transonic computa-
tions, an additional shock-capturing artificial viscosity model term is required. Numerical
predictions for turbulent flows past a flat plate and a NACA 0012 airfoil are presented via
comparison with the experimental measurements. In the flat plate case, grid refinement
studies are performed in order to assess the convergence properties and demonstrate the
effectiveness of high-order approximations.

I. Introduction

A variety of real-life problems in computational fluid dynamics (CFD) requires accurate modeling and
simulation of complex turbulent flows. However, it is well known that the cost of simulating such flows even
for modest Reynolds numbers is extremely high. The direct numerical simulation of turbulent flows with
reasonably large Reynolds numbers simply exceeds the existing capabilities of today’s computers. A popular
approach to overcome this problem is to solve the Reynolds-averaged Navier-Stokes (RANS) supplemented
with a turbulence model. The numerical solution of the RANS equations with a turbulence closure model
has been a subject of extensive research.13 Although known as the least demanding of all turbulence
simulation methods, RANS solutions still demand significant computational resources especially for complex
flows involving boundary layers and separation. Systems of several million degrees of freedom are common;
unfortunately grid convergence, and hence reliable accuracy, is not always attained. In this paper, we
investigate the use of high-order approximations as a means of reducing the computational costs required to
obtain grid converged RANS solutions.

High-order methods applied to non-linear problems tend to become unstable when the approximating
space is inadequate to resolve the main features of the true solution. Unresolved boundary layers produce
Gibbs oscillations which, in the presence of non-linearly, often lead to solution blow-up. RANS solutions
contain a large range of scales which make it difficult to know a-priori the grid requirements, specially when
small length scale features occur away from the walls. In practice, it is often necessary to supplement the
turbulence model equations with some form of stabilization to prevent the eddy viscosity from becoming
negative at the unresolved layer. In this paper, we develop an artificial viscosity term for the turbulence
model equation which is aimed at stabilizing the RANS solutions in situations where the grid resolution is
insufficient. We consider the Spalart-Allmaras (SA) one-equation model11 but we expect that the approach
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described can be usefully applied to other turbulence models. In the SA model an additional equation for
a modified eddy viscosity variable is solved. A peculiarity of the SA model is the the abrupt change in
curvature that the profile of the eddy viscosity exhibits at the edge of the boundary layer. This is illustrated
in figure 1 which shows normalized values of the modified eddy viscosity variable versus the distance to the
wall. We note the abrupt curvature change at the edge of the boundary layer y/δ∗ ≈ 8.5 just before leveling
off to the free-stream value. Simple dimensional analysis reveals that the thickness of this transition region
scales like the laminar viscosity, and therefore, it numerical approximation requires an unrealistic level of
resolution.

The main purpose of the added artificial viscosity term is to smooth out this transition layer to a thickness
which can be resolved by the available grid. Consequently, the amount of artificial viscosity required decreases
when the resolution is increased and eventually vanishes when the grid resolution is sufficient. It is worth
noting that even thought the eddy viscosity profile is modified by the added artificial viscosity, its effect on
the flow solution is minimal since the values of the eddy viscosity in that region are very small.

The spatial discretization of the RANS equations with the addition of the SA model is accomplished using
high-order discontinuous Galerkin methods. Discontinuous Galerkin (DG) methods have gained increased
popularity over recent years for the solution of the Euler and Navier-Stokes equations of gas dynamics. The
ability to obtain very accurate spatial discretizations on arbitrary unstructured meshes renders DG methods
very attractive. Bassi et. al3 first used the DG methods for the numerical solution of compressible RANS
and k − ω turbulence model equations. The results reported therein have demonstrated the effectiveness of
the DG methods for obtaining accurate solutions, but with the consideration of spatial discretizations up to
order p = 2. Our goal here is to present RANS solutions using high-order polynomial approximations in the
range p = 3− 4.

For many applications of interest involving the RANS equations at high Reynolds numbers, the time and
length scales are such that implicit discretization turns out to be a requirement. Here, we use a Backward
Difference Formula (BDF) time integration method and solve a non-linear system of equations using Newton’s
method with a block-ILU/multigrid preconditioned GMRES solver for the each linear iteration (see [9]).

The discretization of second order derivatives is not straightforward with DG methods. A number of
methods have been proposed to extend DG methods to elliptic problems, each of them having some merits
and drawbacks. In this paper, we use the Compact Discontinuous Galerkin (CDG) method.7 The CDG
method is compact and produces a sparser connectivity matrix than the alternative methods such as the
Local Discontinuous Galerkin (LDG) method4 and BR2 method.2 This results in lower storage requirements
and higher computational performance. This is particularly advantageous when an implicit solution method
is required.

To demonstrate the soundness of the proposed approach, we present numerical predictions for transonic
turbulent flows past a flat plate and a NACA 0012 airfoil, and compare the results with experimental
measurements. In addition, for the flat plate case, we present some grid refinement studies in order to assess
the convergence properties of the method.

II. Governing Equations

A. RANS Formulation

We consider the compressible time-averaged Navier-Stokes equations
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= 0 (1)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) +

∂p

∂xi
− ∂τji
∂xj

= 0 (2)

∂

∂t
(ρE) +

∂

∂xj
(uj(ρE + p))− ∂

∂xj
(uiτji) +

∂qj
∂xj

= 0 (3)

p = (γ − 1)ρ(E − u2
k/2) (4)

qj = − (µ+ µt)
Pr

∂

∂xj
(E + p/ρ− u2

k/2) (5)

2 of 16

American Institute of Aeronautics and Astronautics



τij = (µ+ µt)
[
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∂xj

+
∂uj
∂xi

− 2
3
∂uk
∂xk

δij

]
(6)

where γ, Pr and µ are the ratio of gas specific heats, the molecular Prandtl number and molecular dynamic
viscosity. In the above equations, µt is the turbulent dynamic, or eddy, viscosity which is determined by the
SA one-equation turbulence model.

B. Spalart-Allmaras One-Equation Model

In the SA model,11 a working variable ν̃ is introduced to evaluate the turbulent dynamic viscosity and is
governed by the transport equation

Dν̃

Dt
= cb1S̃ν̃ +

1
σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)2

]
− cw1fw

[
ν̃

d

]2

. (7)

The above model equation is written without the trip terms since they are not used here. We therefore assume
that the Reynolds numbers are large enough so that the flow over the whole airfoil surface is turbulent. The
turbulent dynamic viscosity is then calculated as

µt = ρνt, νt = ν̃fv1, fv1 =
χ3

χ3 + c3v1
, χ =

ν̃

ν
. (8)

The production term is expressed as

S̃ = S +
ν̃

κ2d2
fv2 , (9)

S =
√

2ΩijΩij , fv2 = 1− χ

1 + χfv1
. (10)

Here Ωij = 1
2 (∂ui/∂xj − ∂uj/∂xi) is the rotation tensor and d is the distance from the closest wall. The

function fw is given by

fw = g

[
1 + c6w3

g6 + c6w3

]1/6

, (11)

g = r + cw2(r6 − r), r =
ν̃

S̃κ2d2
. (12)

The closure constants are recommended and use here are cb1 = 0.1355, cb2 = 0.622, cv1 = 7.1, σ = 2/3,
cw1 = (cb1/κ2) + ((1 + cb2)/σ), cw2 = 0.3, cw3 = 2, κ = 0.41.

An attractive feature of the SA model from the numerical standpoint is that the resolution required for
the new variable ν̃ near the wall is less than that required to resolve the velocity profile. This is in contrast
with other methods such k − ε where the turbulent variables near the wall may require higher resolution
than he velocity itself. Consequently, the SA model is numerically well behaved near the wall and allow for
reasonable solutions to be obtained on relatively coarse grids especially if higher-order approximations are
used ( i.e. y+ for the first node at a distance of O(10).)

At the edge of the boundary layer however, the situation is different. The profile of the eddy viscosity
transitions to its free-stream value over a very narrow layer in which the curvature changes sign. Unless
properly resolved, this may lead to non-smooth or even negative numerical values for the eddy viscosity
variable. This may easily result in sudden instability in the computations. As an illustration, the profiles of
ν̃ in a flat-plate boundary layer are shown in Figure 1(a) for a very fine grid and in Figure 1(b) for a coarser
grid. Note that at the edge of the boundary layer ((y/δ∗ ≈ 8.5)), ν̃ becomes negative for the coarse grid
but transitions smoothly to its free-stream value for the fine mesh. It turns out that the thickness of this
transition region is determined by the laminar viscosity and therefore, it is extremely narrow and impractical
to resolve in most cases.

Our proposal to treat the above issue is to introduce an artificial viscosity model to the diffusion term
of the SA equation (7). The artificial viscosity model aims to stabilize the discretization of the continuous
equation (7) in finite dimensional space, which then accommodates high-order approximations of RANS-
SA equations on relatively coarse grids. We point out that the regions where the eddy viscosity profile is
modified have a minor effect on the overall solution since they generally correspond to regions where the
eddy viscosity is very small.

3 of 16

American Institute of Aeronautics and Astronautics



0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

y/δ ∗

(a)

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

y/δ ∗

(b)

Figure 1. Profiles of the working variable ν̃ normalized with 0.025Uedgeδ
∗ in a flat-plate boundary layer for: (a)

a fine grid and (b) a coarse grid. Here Uedge is edge velocity of boundary layer and δ∗ is displacement thickness
of boundary layer.

III. Proposed Approach for RANS-SA Equations

A. Compact Discontinuous Galerkin Discretization

We write equations (1)-(3) and (7) as a system of partial differential equations in conservative form:

∂u

∂t
+∇ · F (u,∇u) = S(u,∇u). (13)

To handle the viscous terms, we use the Compact Discontinuous Galerkin method7 (CDG), where auxiliary
variables q = ∇u are introduced to obtain a system of first-order equations,

∂u

∂t
+∇ · F (u, q) = S(u, q) (14)

∇u = q. (15)

Together with appropriate boundary conditions, this system is discretized in a weak form using a Discon-
tinuous Galerkin technique. The inviscid part of the numerical fluxes is evaluated according to the scheme
or Roe10 and the viscous part is discretized using the CDG method.7 The resulting system is integrated in
time using a BDF method, where in each timestep the nonlinear system of equations is solved by a damped
Newton method with a block-ILU/multigrid preconditioned GMRES solver for the linear systems (see [9]).
To obtain steady-state solutions, we first use an adaptive time-stepping scheme that increases the timesteps
until the solution is sufficiently close to steady-state. Using this solution as initial condition, we then solve
for a true stationary solution with a few additional Newton iterations.

B. Stabilizing Model Terms

As discussed above, it is unrealistic to expect the mesh to be fine enough to resolve all the features of
the solution. For example, at the edge of the boundary layer very small elements are required to resolve
the eddy viscosity ν̃, but it is not practical to generate such meshes since the location of the boundary
layer is unknown a-priori. If such an under-resolved solution is computed using a high-order method, the
natural dissipation from the numerical scheme might be insufficient to prevent oscillations, and for nonlinear
problems this usually causes the solution to go unstable.

To resolve these issues, we need a stabilization procedure which will allow us to obtain solutions in a
reliable way even for coarse meshes. For this, we use the artificial viscosity technique that we proposed in [8]
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for the stabilization of shocks. Here, we consider two artificial viscosity model terms: one for the turbulence
equation and one for shocks. For each artificial viscosity model term, we identify a key scalar sensor variable.
Within in each element, an orthogonal Koornwinder basis6 for each sensor variable is constructed. The rate
of decay of the expansion coefficients is used to estimate deviations in the sensor variable from a smooth
function. If the sensor variable is determined to be under-resolved, the corresponding diffusion term is
activated with an element piecewise constant value of the viscosity parameter. We note that the artificial
viscosity terms are discretized in a manner which is consistent with the differential operator. That is,
including both volume as well as inter element fluxes.

Our stabilization consists of two viscous models of the form

Fstab(u, q) =
2∑
i=1

h

p
ε(ψ(si(u)))F i(u, q) (16)

which we add to the regular fluxes F (u, q) in (14). Here,

• h and p are element size and the polynomial order of the approximation

• si(u) are the sensor variables, that is, the variables in which we detect the non-smoothness

• ψ(s) is the indicator which, loosely speaking, represents the high frequency content in the sensor
variable s. Let ŝ represent the nodal variables corresponding to a the discretization of a variable s
within an element. We then define the total energy and the energy in the high modes by

E = ŝTMŝ (17)

EH = ŝTMH ŝ. (18)

Here, M is the usual mass matrix for the element, but MH is the mass matrix using only the high
Koornwinder coefficients. Let V be the Koornwinder Vandermonde matrix, with the columns sorted
from low to high degree. Define the first nL modes up to degree p− 1 as “low”, and the remaining nH
modes as “high”. Then MH is defined by the projection MH = FTHMFH using the filter matrix,

FH = V PHV
−1 with PH = diag(0, . . . , 0︸ ︷︷ ︸

nL

, 1, . . . , 1︸ ︷︷ ︸
nH

). (19)

The actual indicator is the log of the ratio of the high and total energies,

ψ(s) = log10EH/E. (20)

• ε(ψ) is the actual piecewise element constant viscosity parameter in the model terms. It varies smoothly
between 0 and ε0, centered at ψ0 with width ∆ψ:

ε(ψ; ε0, ψ0,∆ψ) =


0 if ψ ≤ ψ0 −∆ψ
ε0 if ψ ≥ ψ0 + ∆ψ
ε0

(
1
2 + 1

2 sin π(ψ−ψ0)
2∆ψ

)
if |ψ − ψ0| < ∆ψ

(21)

For a smooth function s, we expect the energy in the high modes to decay as (1/p)n for polynomial
order p (we have found that n ∼ 4 works well in practice). The corresponding value of the sensor is

ψ(s) = log10EH/E = log10(1/p)
n = −n log10 p. (22)

We use this value to automate the selection of the parameter ψ0 in (21), multiplied by a constant of
O(1).

• F i(u, q) are the fluxes for the model terms (viscous)

In the examples shown here, we use two different stabilization models:

• The eddy viscosity stabilization, with sensor s1(u) = ν̃ and a Laplacian model term in the turbulence
model equation (7).
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• The shock stabilization for transonic problems, with sensor s2(u) = ρ (density) and Laplacian model
terms for each of the equations (1)-(3). In [8], we showed that for strong shocks better results can be
obtained by, for example, physical viscosity models, but here we use Laplacian viscosity for simplicity.

We note that our stabilization approach smears the solution so that it can be adequately represented by the
grid. In addition, the whole stabilization term is linearized when solving implicitly. This is in contrast to
methods based on limiting or filtering (stabilization by reducing the polynomial order or limiting the high
frequency components), where the computation of implicit solutions requiring linearization is less straight-
forward. Furthermore, although our model terms will reduce the overall accuracy of the method, the error
introduced decreases with h/p.

C. High-Order Meshes

Generating unstructured meshes for high-order methods is a challenging task, since in general curved mesh
elements are required to accurately represent the geometry. For an isotropic mesh it is fairly straight-forward
to generate curved elements only adjacent to the curved boundaries, see Fig. 2, left. With a mechanism for
placing additional high-order nodes on the curved boundary, the remaining nodes within each element can
be relocated to create an accurate and well-conditioned polynomial representation of the element.

For anisotropic boundary layer meshes the situation is more complicated, see Fig. 2, right. Because of
the high aspect ratios close to the curved boundaries, several layers of elements have to be curved in order
for the elements not to overlap. Generating these meshes in an automatic, unstructured way is still an open
research area, in particular in three dimensions.

In this paper, we create meshes using structured grid techniques. By ensuring that the number of elements
in each direction is a multiple of the polynomial order p, we can identify the coarse elements from a subset
of the nodes and use the remaining nodes to define the high-order element. Note that with this technique all
the elements have to be treated as curved during the discretization (even the isotropic ones), but this does
not pose any problems in our implementation.

Figure 2. High-order meshes, isotropic (left) and highly anisotropic (right). In the anisotropic case, several
layers of elements must be curved in order for the elements not to overlap.

IV. Results

A. Turbulent Flow Past a Flat Plate

We consider the incompressible flow over a smooth flat plate studied experimentally by Wieghardt and
included in the 1968 AFOSR-IFP Stanford Conference as a validation case of CFD codes.5 The free-stream
Mach number is set to 0.2 to accelerate the convergence of the compressible flow codes.

For the convergence studies, we use three grids of different resolution. Grid B was obtained by removing
every second node in both coordinate directions from grid A, and grid C was similarly obtained from grid
B. This technique produces a sequence of grids suitable for convergence study. Grid lines are clustered
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around the leading edge of the plate to resolve flow gradients there and around the wall surface to resolve
the boundary layer. We note that grid C is extremely coarse. The DG meshes are created from these grids
and summarized in Table 1. The last DG mesh in the table is a very fine p = 4 mesh, which is used as a
reference grid to assess the convergence rates.

Grid Polynomial order Resolution Points on plate Off-wall spacing Leading-edge spacing

C 1 10× 16 13 1.02× 10−4 5.50× 10−3

2 19× 31 25 5.10× 10−5 2.75× 10−3

3 28× 46 37 3.40× 10−5 1.83× 10−3

4 37× 61 49 2.55× 10−5 1.38× 10−3

B 1 19× 31 25 3.96× 10−5 2.38× 10−3

2 37× 61 49 1.98× 10−5 1.19× 10−3

3 55× 91 73 1.32× 10−5 7.93× 10−4

4 73× 121 97 9.90× 10−6 5.95× 10−4

A 1 37× 61 49 1.76× 10−5 1.11× 10−3

2 73× 121 97 8.80× 10−6 5.55× 10−4

3 109× 181 145 5.87× 10−6 3.70× 10−4

4 145× 241 193 4.40× 10−6 2.78× 10−4

A0 4 289× 481 385 2.07× 10−6 1.34× 10−4

Table 1. Summary of DG meshes used for the computation.

In all cases, we start with a uniform flow field at free-stream conditions and integrate in time using
the implicit backward Euler method with adaptive step size control to find the steady-state solution. The
RANS-SA equations, as discretized by CDG, can then be linearized with respect to the previous solution
and solved by the Newton’s method. The full Jacobians are computed and stored as sparse matrices, and
the linear systems are solved using a GMRES solver.

We first present the computed turbulent quantities and compare with the experimental data obtained
by Wieghardt5 and with the law of the wall theory. The near wall behavior of the flow field in terms of the
non-dimensional velocity profile u+ = u/uτ versus y+ = yuτ/ν at Rex = 1.02× 107 is shown in Figure 3(a)
for several polynomial orders and meshes; here uτ =

√
ν∂u/∂y(y = 0) is the friction velocity. We see that,

the computed velocity profiles match well with the experimental data in the log layer and with the law of
the wall for the velocity in the viscous sublayer. Note that the law of the wall for velocity profile takes after
the Spalding’s formula14 which has been confirmed by experiment as an excellent fit to inner-law data in
the viscous sublayer. Figure 3(b) shows the skin friction distribution over the plate for the same polynomial
orders/meshes and for the experimental measurements. The skin friction predictions are in pretty good
agreement with the experimental data. We would like to point out that good results are obtained even for
pretty coarse DG meshes.

We next investigate the actual impact of our artificial viscosity model term made on the eddy viscosity
and the computed turbulent quantities. For this purpose, we present the eddy viscosity distribution in
Figure 4(a) and the elements where the applied artificial diffusion is non-zero Figure 4(b). (Recall that
the artificial viscosity model term is applied only to the SA equation, not to RANS equations.) Note that
for plotting purposes the vertical scale has been magnified. We observe that the eddy viscosity transitions
very smoothly to the free-stream value and that the applied artificial diffusion is added along the edge of
boundary layer without affecting the eddy viscosity in the viscous sublayer and log layer. We thus expect
that the introduction of the artificial viscosity model term into the SA equation will not cause deviations
from the original SA model without this term. As shown in Figure 5, the velocity profiles obtained with
and without introducing the artificial viscosity model term are indeed very similar. It is also important to
note that the SA equation without the stabilizing term produces a non-smooth transition along the edge of
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Figure 3. Comparison between the computed turbulent quantities and the experimental data in a flat-plate
boundary layer: (a) velocity profiles at Rex = 1.02× 107 and (b) skin friction coefficient as function of Rex.

boundary layer for the eddy viscosity. For reasonably fine meshes, computing solutions is still possible but
for coarse grids such as ones constructed from grid C we are unable to obtain converged solutions.

(a) (b)

Figure 4. The left plot show the eddy viscosity for a flat plate with interpolation of degree p = 4 on grid A. The
right plot shows the applied diffusion. Note how the artificial diffusion is added along the edge of boundary
layer so that the eddy viscosity transitions smoothly to free-stream value there.

Finally, we present grid refinement results. We show in Table 2 the error in drag and the spatial con-
vergence rates for several orders of approximations and DG meshes given in Table 1. Here, the total drag
coefficient obtained with the last DG mesh in Table 1 is used as the reference value. (Because of the flow
singularity at the leading edge, the value of total drag on the entire plate obtained on different meshes is not
a good to estimate the convergence rates. To eliminate this singularity error, the total drag was estimated
over a section of the flat plate only (0.0148 ≤ x ≤ 4.687).) The error in drag decreases rapidly with increas-
ing p and decreasing h. The order of accuracy O(p) for a derivative quantity such as drag is the expected
optimal order of convergence. The advantage of using high-order approximations is clearly observed: for
example, the p = 4 solution on grid C is more accurate than the p = 1 solution on grid A as shown in
Table 1 and in fact also considerably less expensive. The higher-order approximations thus produce far more
accurate solutions on relatively coarse grids and thereby lead to reduction in both storage requirements and
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Figure 5. Comparison of the velocity profiles obtained with the S-A one-equation model with and without the
artificial viscosity model term for p = 2 on the grid B. Note the velocity profiles are very similar.

computational time.

Grid A B C

p Error Rate Error Rate Error Rate

1 1.2919× 10−5 1.03 2.6325× 10−5 1.03 5.3899× 10−5 —

2 1.1136× 10−6 2.07 4.6556× 10−6 2.15 2.0639× 10−5 —

3 1.5429× 10−7 3.31 1.5347× 10−6 3.08 1.3002× 10−5 —

4 1.6431× 10−8 4.54 3.8321× 10−7 4.06 6.3715× 10−6 —

Table 2. Errors in drag and convergence rates for the turbulent flow past a flat plate.

B. Turbulent Flow Past a NACA 0012 Airfoil

We also present results for a turbulent flow past NACA 0012 airfoil at both subsonic and transonic speeds.
In both cases, we use a single-block, two-dimensional C-grid of 101 x 31 nodes. The grid is clustered around
the leading edge and the trailing edge and around the airfoil surface to resolve the boundary layer on the
airfoil. The first grid point off the wall is at a distance of 2.82 × 10−5 from the airfoil surface. Our DG
meshes constructed from this grid have the resolution scaled up with the polynomial order.

We first consider the subsonic case at free-stream Mach numberM∞ = 0.3, Reynolds number of 1.85×106,
and zero angle-of-attack for which the experimental data is available in [1]. We present in Figure 7 the
pressure coefficient distribution for polynomial orders of p = 2, p = 3 and p = 4. (Note the steady-state
solutions are obtained from time-marching uniform flow fields at free-stream conditions by using the implicit
backward Euler scheme and the Newton’s method.) We see that numerical predictions agree quite well
with the experimental measurements. The close-up near the leading edge shows oscillations in the pressure
associated with the low order (p = 2) solution. Figure 8 shows the contour plot of Mach number associated
with the p = 4 solution. Finally, we show in Figure 9 the eddy viscosity distribution and the elements where
the artificial viscosity model term is non-zero. Again, we observe a smooth transition of the eddy viscosity
to its free-stream value.
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past a NACA 0012 foil at Mach 0.3 and α = 0. The close-up near the leading edge (right) exhibits oscillations
in the pressure for p = 2 solution.
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Figure 8. Contour plot of Mach number for the p = 4 solution for the subsonic turbulent flow past a NACA
0012 foil at Mach 0.3 and α = 0.

Figure 9. Eddy viscosity (left) and diffusion applied to it (right) for the p = 4 solution for the subsonic
turbulent flow past a NACA 0012 foil at Mach 0.3 and α = 0. Note that diffusion is only applied at the edge
of the boundary layer with the gray color indicating that no diffusion is added.
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Next we consider a transonic turbulent flow on a NACA0012 airfoil at free-stream Mach number M∞ =
0.85, Reynolds number of 1.85 × 106, and zero angle-of-attack. Here, in addition to the artificial viscosity
model term for the eddy viscosity, we need to consider shock capturing artificial viscosity. We add a Laplacian
model terms to each of the RANS equations: the element-wise shock indicator is based on the components
of the Koornwinder decomposition of the density, and equal amounts of viscosity are added to all the RANS
equations. Figure 10 shows the steady-state p = 4 solution (Mach number) and artificial diffusion added
to the RANS equations. Our shock indicator identifies the elements around the shock, and no viscosity is
added to the elements further away. Hence, the shock is sharp and well-resolved within only one element.
In Figure 12, Mach number plots for both p = 3 and p = 4 solutions show that the shock is sharper with
higher-order approximations. We furthermore present in Figure 13 the pressure distribution and skin-friction
distribution over the upper airfoil surface. We note that that for p = 3 and p = 4 both the pressure and
skin friction coefficients are essentially grid independent, whereas for the p = 2 significant differences are
observed in skin friction.

Figure 10. Mach number (left) and shock diffusion applied to the RANS equations (right) for transonic
turbulent flows past a NACA airfoil at Mach 0.85 with polynomial order p = 4. Note that, the shock is well
resolved within one element and that artificial diffusion is added only in the shock region, with the gray color
representing no diffusion added.

C. Turbulent Flow Past a 2D Cylinder

Finally, we present unsteady RANS (URANS) and Detached Eddy Simulations (DES)12 solutions for tur-
bulent flow past a 2D cylinder of unity diameter. The DES computations are carried out essentially with
the same equations but with a modified wall distance function d in the destruction term of the turbulent
equations 7. We caution that 2D DES results are probably not justified form a physical standpoint, and only
shown a numerical experiment to indicate the direction in our future research. The flow is calculated with
turbulent separation at Reynolds number 3 × 106 and Mach number 0.2. The DG mesh is of O-type grid
with 18,432 p = 2 elements, 20 cylinder diameters long, and off-wall spacing 3.8×10−6. The time integration
is carried out implicitly with time step ∆t = 0.02 seconds.

We present the Mach number behind the cylinder for the URANS solution in Figure 14(a) and DES
solution in Figure 14(b). We notice that URANS and DES produce solutions with significantly different
structures: the vortex shedding is suppressed by the smoothing effect of the RANS model, while being
preserved by DES computations. The pressure distributions Cp and skin-friction distributions Cf are shown
in Figure 15(a) and 15(b), respectively. In the URANS case, the separation occurs at angle θsep = 111o

which is in excellent agreement with the computed value of 111o obtained with the TS7 case reported in [12].

V. Conclusions

We have presented a practical approach to RANS solutions using high-order DG approximations. We
believe that this is an important ingredient to making higher-order methods viable in important research
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a) p = 3

b) p = 4

Figure 11. Artificial diffusion applied to the turbulence equation for the flows past a NACA airfoil at Mach
0.85 with polynomial order p = 3 (top) and p = 4 (bottom). Note that viscosity is only added at the edge of
the boundary layer to smear out the eddy viscosity profile. Note also that the overall effect of this artificial
viscosity on the solution can not be observed from the Cp and Cf plots.

Figure 12. Mach number for p = 3 solution (left) and p = 4 solution (right) for transonic turbulent flows past
a NACA airfoil at Mach 0.85 and α = 0. Note how the shock is well-resolved with using higher polynomial
order.

13 of 16

American Institute of Aeronautics and Astronautics



0 0.2 0.4 0.6 0.8 1

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

x/c

Cp

p =4
p =3
p =2

0 0.2 0.4 0.6 0.8 1−1

0

1

2

3

4 x 10−3

x/c

Cf

p =4
p =3
p =2

Figure 13. The pressure coefficient (left) and skin-friction coefficient (right) over the upper airfoil surface for
the transonic turbulent flow past a NACA 0012 foil at Mach 0.85 and α = 0.

(a) (b)

Figure 14. Comparison between URANS and DES solutions for turbulent flow past a 2D cylinder at ReD =
3× 106: (a) Mach number for the RANS solution and (b) Mach number for DES solution. Note that URANS
smears out the solution, while DES creates the vortex shedding behind the cylinder.
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Figure 15. Comparison between URANS and DES results for turbulent flow past a 2D cylinder at ReD = 3×106:
(a) pressure coefficient and (b) skin-friction coefficient.

applications. In this paper, high-order DG solutions (in the range p = 2 − 4) of the RANS equations for
a number of turbulent flows have been obtained. Numerical results have been validated with the available
experimental measurements. A grid convergence study has been used to demonstrate that the higher-order
approximations produce far more accurate solutions on a given mesh resolution, thereby offering the potential
for substantial reductions in computational time. This result is a combination of the CDG method and the
artificial viscosity treatment of the eddy viscosity in the SA turbulence model. It has been shown that the
artificial viscosity model term is only active at the edge of boundary layer and shear layer, thus having a
very minor effect on the overall solution. Our current research effort is directed at the implementation of
this approach for Detached Eddy Simulation of complex turbulent flows in three dimensions. In this paper
we have only considered structured-like discretizations, but it is clear that one of the main advantages of
DG methods is the ability to handle complex geometries. This will be the focus of our future research.
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