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Overview

�

Next-generation CFD capabilities� Reliably achieve required accuracy� Reasonable time� Automation�

Critical ingredients� Error estimation & adaptation� Higher-order discretization� Direct interface to CAD
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CFD Today

�

Integral part of aerospace design with wind tunnel & flight testing�

Has decreased amount of testing through improved screening�

Flows with complex geometry and physics can be approximated�

Viewed by many as a mature technology
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Managing Risks with CFD Today

�

Risks largely managed by standards of practice involving:� Grid topology and density� Turbulence models and parameters� Iterative methods and parameters� Corrections based on testing� These standards are only reliable within scope� Off-design conditions and/or novel design concepts require
significant human intervention to attempt to manage risks

The next generation of CFD must provide simulations�

at engineering-required accuracy�

in a reasonable time�

in an automated manner
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Objective of Error Estimation & Adaptation

�

The goal of error estimation and adaptation is automated reliability�

When considering the relative costs of solution-based adaptive
methods, human costs must be included�

For simpler problems, solution-based adaptive methods are
unlikely to be competitive
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Error Estimation & Adaptive Indicators

�

Feature-based�

Interpolation error�

Residual-based� Output-based
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Output Error Estimation

�

Several efforts have investigated estimating errors in engineering
outputs:

� FEM: Rannacher, Patera & Peraire, Suli & Giles, Larson &
Barth� General discretizations: Giles & Pierce

�

Key concept:

adjoint � solution residual � output errors

�

Venditti & Darmofal have developed an adjoint-based, anisotropic
approach and successfully applied it to a wide variety of
aerodynamic flows
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Output-based Adaptation: High-lift
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Output-based Adaptation: High-lift
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Adaptation: Challenges

�

Time-dependent problems: Output-based = expensive� Requires backwards-in-time integration of adjoint� Must store primal iterates�

’Steady’-state problems: Output-based methods can fail� Often, CFD simulations do not fully converge� Nonlinearity keeps residual bounded� Adjoint (linear) solutions will be unstable (Campobasso &
Giles)� Perhaps a middle ground exists: weighted residual-based

indicators�

General challenge: 3-D anisotropic adaptation for complex
geometries�

Modeling error poses another challenge
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Motivation for higher order

�

Higher-order methods are critical for simulation of unsteady flows
with multiple scales, e.g.:� Applications of DNS, LES, or DES� Acoustics�

Even in aerodynamics, higher-order methods may offer benefits:� Existing ’industrial-strength’ methods largely based on
finite-volume with at best second order accuracy� Questions exist whether current discretizations are capable of
achieving desired accuracy levels in practical time
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First-order Accurate Finite Volume

2

0
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In each triangle, assume � is constant.

Apply conservation law on triangle:

� ����� 	 � 
 �
�� � � � ��� � ����� � �� ��� � �� ��� � �

� � � ��� � �� � �� �  �
is flux function that

determines inviscid flux in

�!� �  direction
from left and right states, � � and �� .

Example flux functions: Godunov, Roe,
Osher, Van Leer, Lax-Friedrichs, etc.

This discretization has a solution error
which is

" �# �

where

#

is mesh size.
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Second-order Accurate Finite Volume
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In each triangle, reconstruct a linear so-
lution,

$ �, using neighboring averages:

$ ��� % ��� 
 �'& ( & � �*) + ��� �+ ��� % + ��� � ���� � �� ��,�� � � �.-

Apply conservation law on triangle:

� �/��� 	 � 
 �
�� � � � �0� � $ ���1� $ � �� �!� � �� ��� � �

On smooth meshes and flows, solution
error is

" �# , �

.
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Pros/Cons of Higher-order Finite Volume
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 Increased accuracy on given mesh
without additional degrees of free-
dom

( Difficulty in achieving higher-order
on unstructured meshes and near
boundaries

( Single stage, local iterative methods
(e.g. Jacobi) are not stable for higher
order (Godunov’s theorem)

( Matrix fill-in increased resulting in
high-memory requirements
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Previous Work in DG

�

Extensive work on DG for hyperbolic equations� Bassi and Rebay (1997)� Cockburn and Shu (1998, 2001)� Karniadakis et al. (1998, 1999)�

More recently work begun on elliptic equations� Bassi and Rebay (1997,1998)� Cockburn and Shu (1998, 2001)� Baumann and Oden (1997)� Brezzi et al. (1997)�

Only Bassi and Rebay have published RANS results (1997, 2003)
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Discontinuous Polynomial Basis

�

Triangulate domain

2

into non-overlapping elements 3 4 576�

Define function space: Element-wise discontinuous polynomials
of degree 8

9 :6 � ;'< 4 = , � 2 �?> < @BA 4 C : � 3 �> D 3 4 56 E

Example of One-Dimensional Bases

8 � �

basis

1 DOF/element

8 � F

basis

2 DOF/element
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Relationship of DG to other methods

�

For 8 � �

discretization, DG is identical to first-order finite volume.

� For 8 G �

, DG can be intrepreted as a moment method.

� Moment methods for hyperbolic problems were first suggested by
Van Leer (1977) and then developed for the Euler equations by
Allmaras (1987, 1989) and later Holt (1992).
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Stability of Local Iterative Methods for DG

An elemental block Jacobi iterative method to solve this problem is,

� H I �J � � H J ( K �L M JNL � J�O � M J� � �-
where

L M JNL � Jis the diagonal block for the element

P

.

For 1-D hyperbolic systems, the eigenvalues of the higher-order
modes are all collocated � 8-independent convergence.

For multiple dimensions, elemental block Jacobi is stable independent
of 8 when

�RQ K Q F

.
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Matrix Fill for Higher-order DG
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Iterative Solution of Higher-order DG
(Fidkowski & Darmofal, 2004)

�

Use a preconditioned iterative scheme to drive

M � � H6 � T �
:

� H I �6 � � H6 ( UO � M � � H6 �

�

Elemental line preconditioner:

U � VXW � HY�

Motivation: Transport of information in Navier-Stokes equations
characterized by strong (anisotropic) coupling� Inviscid regions: Information follows characteristic directions

set by convection� Boundary layers/wakes: Diffusion effects can be as strong if
grid is well-resolved.�

Lines of elements from using an element-to-element coupling
measure.
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Connectivity Criteria

�

Measure of influence based on 8 � �

discretization of scalar
transport equation

+) �[Z \^] _ � ( +) �[` + _ � � �

� Z \^] and ` taken from current solution�

At each edge, compute off-diagonal
components of Jacobian for adjoining el-
ements

1
2

e      

�

Connectivity given by maximum absolute value

aY � b cd efege
L h �L _ ,
efege� efege
L h,L _ �
efege
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Example Lines and Performance
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i-Multigrid: Motivation

�

Observation: Smoothers are inefficient at eliminating low
frequency error modes on fine level� #

-Multigrid� Spatially coarse grid used to correct solution on fine grid� Grid coarsening is complex on unstructured meshes� 8-Multigrid (Ronquist & Patera, Helenbrook et al., Fidkowski &
Darmofal)� Low order ( 8 ( F

) approximation used to correct high order ( 8)
solution� Natural implementation in DG FEM discretization on
unstructured meshes
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NACA 0012 Test Case

j � �- k

,

hml � k � � �

, n � �
Grids are from Swanson at NASA Langley

2112 element mesh Mach contours
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Iterative Behavior: i and

o

dependence

8 � F

convergence
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Iterative rate for 8-multigrid with line smoothing:�
Nearly 8-independent�
Some

#

-dependence
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Comparison of Iterative Algorithms
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8-multigrid with line smoothing increasingly important with higher 8
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Drag Error Convergence
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Note: FUN2D is an unstructured finite volume algorithm developed at
NASA Langley by Anderson
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Higher-order Methods: Challenges

�

Turbulence modeling�

Shocks�

Higher-order geometry
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Direct Interface to CAD

�

Current interface commonly through static, one-way surfaces
(IGES)�

CAD is the efficient manner to specify design intent� CAD can provide a common geometry definition throughout
design process and to multiple disciplines�

One approach to provide a CAD interface is CAPRI (Haimes)�

CAPRI provides triangulated surfaces which remain associated
with underlying CAD model�

Several researchers have utilized CAPRI to provide direct CAD
access (Alonso et al, Nemec et al, Zingg et al)�

Cart3D (Aftosmis & Berger) is an example of the potential of
next-generation CFD
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