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Overview

� Project X (PX) research and software goals

� Introduction to extreme programming

� Continuous integration

� PX build tools
� PX testing tools

� Conclusions and future work
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Project X Introduction

� Team Goal:
◮ To improve the aerothermal design process for complex 3D

configurations by significantly reducing the time from geometry
to solution at engineering-required accuracy using high-order
adaptive methods

� Students
◮ Garrett Barter (shock capturing)
◮ Tan Bui (unsteady aero/structures)
◮ Shannon Cheng (plasma physics)
◮ Krzysztof Fidkowski (hp adaptation)
◮ James Lu (optimization and adaptation)
◮ Todd Oliver (turbulence)
◮ Mike Park (meshing/adaptation)
◮ Peter Whitney (aeroacoustics)

� Advisors
◮ David Darmofal
◮ Robert Haimes
◮ Jaime Peraire
◮ Karen Wilcox

PX Development Stratagies 3/23



AEROSPACE COMPUTATIONAL DESIGN LAB

Goals for Software Development Practices

� Efficient code development
◮ Accomplish research goals as fast as possible

� Flexible and lightweight — Little up front design required
◮ Difficult to generate specific software design and long-term

plan in research setting

� Readable code
◮ Readable code serves as its own documentation
◮ Easier to maintain

� Test as much code as possible as often as possible
◮ Minimize debugging time

� Integrate as often as possible
◮ Avoid code integration nightmares
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Extreme Programming

� Extreme programming (XP) developed by Beck, Cunningham,
and Jeffries in mid-1990s
◮ Kent Beck, Extreme Programming Explained: Embrace

Change, 2000

� Agile software development methodology based on four values:
◮ Communication, simplicity, feedback, courage

� Consists of twelve core practices:
◮ Sustainable pace, metaphor, coding standards
◮ Collective ownership, continuous integration, small releases
◮ Test-driven development, refactoring, simple design
◮ Pair programming, on-site customer, planning game
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XP in Scientific Computing

� Wood and Kleb applied XP to development of advection-diffusion
solver in Ruby
◮ Wood and Kleb, Extreme Programming in a Research

Environment, 2002

� FAAST program at NASA Langley has incorporated XP methods
into development approach
◮ Kleb et al., Collaborative Software Development in Support of

Fast Adaptive AeroSpace Tools (FAAST), 2003
◮ http://fun3d.larc.nasa.gov/
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XP in PX

� Metaphor: High-order DGFEM, CFD jargon — p, q, ρ, ρu, etc.

� Coding standard: Virtually universal header comment conventions
and some standard notations, but still lacking

� Collective ownership: No restrictions on who can modify what, but
low truck number

� Test-driven development: Unit testing framework recently became
available, but use not widespread yet

� Refactoring: Performed, but typically only to improve speed or
when blatantly necessary

� Pair programming: Used infrequently

� Continuous Integration: All executables are built and entire test
suite run after every CVS commit
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Concurrent Versions System (CVS)

� Integration begins with software versioning system (in our case
CVS)

� All source files stored on CVS repository

� All differences between versions of file also stored ⇒ can always
revert to old version if necessary

� Developers checkout the code from the repository and commit
changes

� CVS merges changes into code

� Bottom line: CVS allows multiple developers to work on same
code with very little chance of overwriting each other’s changes or
making conflicting changes.
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Continuous Integration Overview
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Build and Test

� What happens inside the build and test?
◮ Executables built
◮ Unit tests run
◮ Acceptance tests run

� Tools required:
◮ Build utilities (Autoconf and Automake)
◮ Unit testing framework (CuTest and PXUnit)
◮ Acceptance testing framework (runTests)
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Autoconf

“Autoconf is a tool for producing shell scripts that
automatically configure software source code packages to
adapt to many kinds of UNIX-like systems.”

– GNU Autoconf Manual

� Developer supplies configure.ac file

� configure.ac contains sequence of calls to Autoconf macros,
for example,
◮ AC_PROG_CC determines a C compiler to use
◮ AC_PATH_X locates X header files and libraries

� Running autoconf produces configure

� Once created configure does not depend on Autoconf
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Configure

� configure determines features of build environment, including
◮ System type (linux, cygwin, etc)
◮ Selects compilers (gcc, g77, mpicc, etc)
◮ Probes for necessary system libraries (X11, mpich, etc)
◮ Probes for necessary system headers (stdlib.h, string.h, etc)

� configure sets variables based on environment it finds
◮ Allows creation of portable Makefiles

� Creates Makefile from Makefile.in
� Where does the Makefile.in come from?

◮ You or . . .
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Automake

“Automake is a tool for automatically generating Makefile.ins
from files called Makefile.am. Each Makefile.am is basically a
series of make variable definitions, with rules being thrown in
occasionally.”

– GNU Automake Manual

� Developer supplies Makefile.ams that are converted to
Makefile.ins by running automake or make dist

� What is make dist?
◮ Automake supplied target that creates tarball for distribution
◮ Tarball contains configure and machine independent

Makefile.ins
� Automake also supplies other “standard” targets

◮ install, clean, check, . . .
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Makefile.am Example

# -*- Makefile -*-

if HAVE_MPI

bin_PROGRAMS = PXRunSolver2d PXRunParallel2d

else

bin_PROGRAMS = PXRunSolver2d

endif

PXRunSolver2d_CFLAGS = -DDIM=2 -I$(top_srcdir)/include

PXRunSolver2d_SOURCES = PXRunSolver.c

PXRunSolver2d_LDADD = libPX2d.a libPX.a -lm @FLIBS@

if HAVE_MPI

PXRunParallel2d_CFLAGS = -DDIM=2 -DPAR=1 -I$(top_srcdir)/include

PXRunParallel2d_SOURCES = PXRunSolver.c

PXRunParallel2d_LDADD = libPXPar2d.a libPX.a -lm @FLIBS@

endif
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Unit Testing

� Unit tests excercise small pieces of code in isolation from each
other and the application as a whole

� Most easily applied to low level functions
◮ Flux calculation, viscosity calculation

� Useful for medium level functions if low level functions adequately
tested
◮ Calculation of inviscid Galerkin residual

� Not applicable to highest level functions
◮ Line solver

� To make unit testing practical, need a unit testing framework

� For list of unit testing frameworks see
http://c2.com/cgi/wiki?TestingFramework
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CuTest

� CuTest is a C unit testing framework written by Asim Jalis

� CuTest provides
◮ Assert functions (e.g. CuAssertDblEquals,

CuAssertStrEquals)
◮ Functions for aggregating tests into suites and running test

suites
◮ Functions for recording and reporting test failures
◮ Simplicity—only 2 files: CuTest.c and CuTest.h

� For PX purposes, CuTest drawbacks include
◮ Tests are not added to suites automatically
◮ CuTest defines structures that are required in testing code
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PXUnit

� Set of C macros and 1 shell
script

� Eliminates CuTest
drawbacks for PX developers
◮ Automates process of

adding tests to suites and
producing a main
program

◮ Eliminates need for PX
developers to interact
with CuTest data
structures

� No knowledge of CuTest re-
quired to write unit tests in PX

unit test
Writes

PXUnit

Translates

CuTest

Runs test

pass/fail to
developer

and reports

to CuTest

Developer
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Unit Test Example

PX_TEST( TestStaticTemperatureTrivial ){

int ierr;

PX_REAL params[6] = {1.4, 1.0, 1.0, 1.0, 1.0, 1.0};

PX_REAL T;

#if( SA_TURB == 1 )

PX_REAL U[5], T_U[5];

#else

PX_REAL U[4], T_U[4];

#endif

U[0] = 1.0; U[1] = 0.0; U[2] = 0.0; U[3] = 2.5;

#if( SA_TURB == 1 )

U[4] = 1.0;

#endif

ierr = PXError( PXStaticTemperature(U, params, &T, T_U) );

PXAssertIntEquals( PX_NO_ERROR, ierr );

PXAssertDblEquals( 1.0, T);

}
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Acceptance Testing

� Regression tests: Ensure code produces same answer as
yesterday

� Verification tests: Ensure code produces expected order of
accuracy

� Validation tests: Ensure code results match experimental data or
analytic exact solution

� Only automated acceptance tests currently in PX are regression
tests

� Regression tests controlled by two shell scripts
◮ jobTest.csh: Runs single test and reports pass/fail
◮ runTests.csh: Runs all tests and reports total number or errors

� Change in any output quantity (e.g. residual, force, adjoint
residual, etc) of greater than 1e-13 causes failure
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Build and Test

cvs co
projectx

runTests

Report
failure

Report
success

configure (build and
unit tests)

make install (acceptance
tests)

make checkPass Pass Pass Pass

Pass

Fail
Fail FailFail Fail
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Conclusions

� Shown that agile software development philosophy applicable in
scientific computing environment

� Developed continuous integration procedure for use in Project X

� Developed build and test procedure to check code after every
modification

� Features of the build and test procedure include:
◮ Build of all executables and libraries in Project X
◮ 214 unit tests
◮ 17 acceptance (regression) tests
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Possible Improvements

� Enforce more rigorous coding standard

� Expand unit test coverage and use of test-driven development

� Extend build and test to run automatically on multiple
architectures
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