
AEROSPACE COMPUTATIONAL DESIGN LAB

Software Development Practices
in Project X

Todd A. Oliver

toliver@mit.edu

Aerospace Computational Design Lab

Massachusetts Institute of Technology

April 8, 2005

PX Development Stratagies 1/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Overview

� Project X (PX) research and software goals

� Introduction to extreme programming

� Continuous integration

� PX build tools
� PX testing tools

� Conclusions and future work

PX Development Stratagies 2/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Project X Introduction

� Team Goal:
◮ To improve the aerothermal design process for complex 3D

configurations by significantly reducing the time from geometry
to solution at engineering-required accuracy using high-order
adaptive methods

� Students
◮ Garrett Barter (shock capturing)
◮ Tan Bui (unsteady aero/structures)
◮ Shannon Cheng (plasma physics)
◮ Krzysztof Fidkowski (hp adaptation)
◮ James Lu (optimization and adaptation)
◮ Todd Oliver (turbulence)
◮ Mike Park (meshing/adaptation)
◮ Peter Whitney (aeroacoustics)

� Advisors
◮ David Darmofal
◮ Robert Haimes
◮ Jaime Peraire
◮ Karen Wilcox

PX Development Stratagies 3/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Goals for Software Development Practices

� Efficient code development
◮ Accomplish research goals as fast as possible

� Flexible and lightweight — Little up front design required
◮ Difficult to generate specific software design and long-term

plan in research setting

� Readable code
◮ Readable code serves as its own documentation
◮ Easier to maintain

� Test as much code as possible as often as possible
◮ Minimize debugging time

� Integrate as often as possible
◮ Avoid code integration nightmares

PX Development Stratagies 4/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Extreme Programming

� Extreme programming (XP) developed by Beck, Cunningham,
and Jeffries in mid-1990s
◮ Kent Beck, Extreme Programming Explained: Embrace

Change, 2000

� Agile software development methodology based on four values:
◮ Communication, simplicity, feedback, courage

� Consists of twelve core practices:
◮ Sustainable pace, metaphor, coding standards
◮ Collective ownership, continuous integration, small releases
◮ Test-driven development, refactoring, simple design
◮ Pair programming, on-site customer, planning game

PX Development Stratagies 5/23

AEROSPACE COMPUTATIONAL DESIGN LAB

XP in Scientific Computing

� Wood and Kleb applied XP to development of advection-diffusion
solver in Ruby
◮ Wood and Kleb, Extreme Programming in a Research

Environment, 2002

� FAAST program at NASA Langley has incorporated XP methods
into development approach
◮ Kleb et al., Collaborative Software Development in Support of

Fast Adaptive AeroSpace Tools (FAAST), 2003
◮ http://fun3d.larc.nasa.gov/

PX Development Stratagies 6/23

AEROSPACE COMPUTATIONAL DESIGN LAB

XP in PX

� Metaphor: High-order DGFEM, CFD jargon — p, q, ρ, ρu, etc.

� Coding standard: Virtually universal header comment conventions
and some standard notations, but still lacking

� Collective ownership: No restrictions on who can modify what, but
low truck number

� Test-driven development: Unit testing framework recently became
available, but use not widespread yet

� Refactoring: Performed, but typically only to improve speed or
when blatantly necessary

� Pair programming: Used infrequently

� Continuous Integration: All executables are built and entire test
suite run after every CVS commit

PX Development Stratagies 7/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Concurrent Versions System (CVS)

� Integration begins with software versioning system (in our case
CVS)

� All source files stored on CVS repository

� All differences between versions of file also stored ⇒ can always
revert to old version if necessary

� Developers checkout the code from the repository and commit
changes

� CVS merges changes into code

� Bottom line: CVS allows multiple developers to work on same
code with very little chance of overwriting each other’s changes or
making conflicting changes.

PX Development Stratagies 8/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Continuous Integration Overview

Developer
commits change

procedure
build and test
Run the PX

send email
website and
Log fail on

Pass

Fail
(reset clock)

No

Notify when

Yes When

finished

Pass

Fail

Wait 5 min
without new

commits already running?
Is the build

on website
Log success

Wait until current
build and test

finishes

notified

PX Development Stratagies 9/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Build and Test

� What happens inside the build and test?
◮ Executables built
◮ Unit tests run
◮ Acceptance tests run

� Tools required:
◮ Build utilities (Autoconf and Automake)
◮ Unit testing framework (CuTest and PXUnit)
◮ Acceptance testing framework (runTests)

PX Development Stratagies 10/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Autoconf

“Autoconf is a tool for producing shell scripts that
automatically configure software source code packages to
adapt to many kinds of UNIX-like systems.”

– GNU Autoconf Manual

� Developer supplies configure.ac file

� configure.ac contains sequence of calls to Autoconf macros,
for example,
◮ AC_PROG_CC determines a C compiler to use
◮ AC_PATH_X locates X header files and libraries

� Running autoconf produces configure

� Once created configure does not depend on Autoconf

PX Development Stratagies 11/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Configure

� configure determines features of build environment, including
◮ System type (linux, cygwin, etc)
◮ Selects compilers (gcc, g77, mpicc, etc)
◮ Probes for necessary system libraries (X11, mpich, etc)
◮ Probes for necessary system headers (stdlib.h, string.h, etc)

� configure sets variables based on environment it finds
◮ Allows creation of portable Makefiles

� Creates Makefile from Makefile.in
� Where does the Makefile.in come from?

◮ You or . . .

PX Development Stratagies 12/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Automake

“Automake is a tool for automatically generating Makefile.ins
from files called Makefile.am. Each Makefile.am is basically a
series of make variable definitions, with rules being thrown in
occasionally.”

– GNU Automake Manual

� Developer supplies Makefile.ams that are converted to
Makefile.ins by running automake or make dist

� What is make dist?
◮ Automake supplied target that creates tarball for distribution
◮ Tarball contains configure and machine independent

Makefile.ins
� Automake also supplies other “standard” targets

◮ install, clean, check, . . .

PX Development Stratagies 13/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Makefile.am Example

-*- Makefile -*-

if HAVE_MPI

bin_PROGRAMS = PXRunSolver2d PXRunParallel2d

else

bin_PROGRAMS = PXRunSolver2d

endif

PXRunSolver2d_CFLAGS = -DDIM=2 -I$(top_srcdir)/include

PXRunSolver2d_SOURCES = PXRunSolver.c

PXRunSolver2d_LDADD = libPX2d.a libPX.a -lm @FLIBS@

if HAVE_MPI

PXRunParallel2d_CFLAGS = -DDIM=2 -DPAR=1 -I$(top_srcdir)/include

PXRunParallel2d_SOURCES = PXRunSolver.c

PXRunParallel2d_LDADD = libPXPar2d.a libPX.a -lm @FLIBS@

endif

PX Development Stratagies 14/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Unit Testing

� Unit tests excercise small pieces of code in isolation from each
other and the application as a whole

� Most easily applied to low level functions
◮ Flux calculation, viscosity calculation

� Useful for medium level functions if low level functions adequately
tested
◮ Calculation of inviscid Galerkin residual

� Not applicable to highest level functions
◮ Line solver

� To make unit testing practical, need a unit testing framework

� For list of unit testing frameworks see
http://c2.com/cgi/wiki?TestingFramework

PX Development Stratagies 15/23

AEROSPACE COMPUTATIONAL DESIGN LAB

CuTest

� CuTest is a C unit testing framework written by Asim Jalis

� CuTest provides
◮ Assert functions (e.g. CuAssertDblEquals,

CuAssertStrEquals)
◮ Functions for aggregating tests into suites and running test

suites
◮ Functions for recording and reporting test failures
◮ Simplicity—only 2 files: CuTest.c and CuTest.h

� For PX purposes, CuTest drawbacks include
◮ Tests are not added to suites automatically
◮ CuTest defines structures that are required in testing code

PX Development Stratagies 16/23

AEROSPACE COMPUTATIONAL DESIGN LAB

PXUnit

� Set of C macros and 1 shell
script

� Eliminates CuTest
drawbacks for PX developers
◮ Automates process of

adding tests to suites and
producing a main
program

◮ Eliminates need for PX
developers to interact
with CuTest data
structures

� No knowledge of CuTest re-
quired to write unit tests in PX

unit test
Writes

PXUnit

Translates

CuTest

Runs test

pass/fail to
developer

and reports

to CuTest

Developer

PX Development Stratagies 17/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Unit Test Example

PX_TEST(TestStaticTemperatureTrivial){

int ierr;

PX_REAL params[6] = {1.4, 1.0, 1.0, 1.0, 1.0, 1.0};

PX_REAL T;

#if(SA_TURB == 1)

PX_REAL U[5], T_U[5];

#else

PX_REAL U[4], T_U[4];

#endif

U[0] = 1.0; U[1] = 0.0; U[2] = 0.0; U[3] = 2.5;

#if(SA_TURB == 1)

U[4] = 1.0;

#endif

ierr = PXError(PXStaticTemperature(U, params, &T, T_U));

PXAssertIntEquals(PX_NO_ERROR, ierr);

PXAssertDblEquals(1.0, T);

}

PX Development Stratagies 18/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Acceptance Testing

� Regression tests: Ensure code produces same answer as
yesterday

� Verification tests: Ensure code produces expected order of
accuracy

� Validation tests: Ensure code results match experimental data or
analytic exact solution

� Only automated acceptance tests currently in PX are regression
tests

� Regression tests controlled by two shell scripts
◮ jobTest.csh: Runs single test and reports pass/fail
◮ runTests.csh: Runs all tests and reports total number or errors

� Change in any output quantity (e.g. residual, force, adjoint
residual, etc) of greater than 1e-13 causes failure

PX Development Stratagies 19/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Build and Test

cvs co
projectx

runTests

Report
failure

Report
success

configure (build and
unit tests)

make install (acceptance
tests)

make checkPass Pass Pass Pass

Pass

Fail
Fail FailFail Fail

PX Development Stratagies 20/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Conclusions

� Shown that agile software development philosophy applicable in
scientific computing environment

� Developed continuous integration procedure for use in Project X

� Developed build and test procedure to check code after every
modification

� Features of the build and test procedure include:
◮ Build of all executables and libraries in Project X
◮ 214 unit tests
◮ 17 acceptance (regression) tests

PX Development Stratagies 21/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Possible Improvements

� Enforce more rigorous coding standard

� Expand unit test coverage and use of test-driven development

� Extend build and test to run automatically on multiple
architectures

PX Development Stratagies 22/23

AEROSPACE COMPUTATIONAL DESIGN LAB

Acknowledgments

� Prof. David Darmofal
� Garrett Barter
� Chris Fidkowski
� Mike Park
� PX Team

PX Development Stratagies 23/23

	Overview
	Project X Introduction
	Goals for Software Development Practices
	Extreme Programming
	XP in Scientific Computing
	XP in PX
	Concurrent Versions System (CVS)
	Continuous Integration Overview
	Build and Test
	Autoconf
	Configure
	Automake
	Makefile.am Example
	Unit Testing
	CuTest
	PXUnit
	Unit Test Example
	Acceptance Testing
	Build and Test
	Conclusions
	Possible Improvements
	Acknowledgments

