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ABSTRACT 

A quantitative tool is presented to perform program-level valuation of commercial aircraft 

designs. The algorithm used expands upon traditional net present value methods through the 

explicit consideration of market uncertainty and the ability of the firm to react to such 

uncertainty through real-time decision-making throughout the course of the aircraft program. 

The algorithm links three separate models—performance, cost, and revenue—into a system-level 

analysis by viewing the firm as a decision-making agent facing continuous choices between 

several different “operating modes.” An optimization problem is set up and solved using a 

dynamic programming approach to find a set of operating mode decisions that maximizes the 

firm’s expected value from the aircraft project. The result is a quantification of value that can be 

used to make program-level design trades and to gain insight into the effects of uncertainty on a 

particular aircraft design. Examples are drawn from the Blended-Wing-Body aircraft concept to 

demonstrate the operation of the program valuation tool. 
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INTRODUCTION 

Traditional methods for creating a commercial aircraft program typically consist of at least two 

distinct design efforts—the engineering development of the airframe itself, and the strategic 

development of the aircraft program. The latter addresses questions like which aircraft designs to 

invest in (product mix), how much production to plan for (sales volume), what prices and costs 

to expect (profitability), and how to plan for unforeseen market developments (flexibility). 

In the past, the above two elements of program design—engineering development and 

strategic development—have often been executed entirely separately from each other. 

Engineering and finance are often handled by different groups and at different times. By 

uncoupling engineering and finance, a firm runs the risk of overlooking important interactions 

between the two. A design system that performs engineering and financial analysis 

simultaneously may improve upon the efficiency and effectiveness of the traditional methods.  

Numerous advances have been made in the application of multidisciplinary techniques to the 

engineering facet of aircraft development. The field of multidisciplinary design optimization 

(MDO) combines engineering disciplines, such as aerodynamics, structural dynamics and 

controls, to provide a design framework that “coherently exploits the synergism of mutually 

interacting phenomena”1. MDO has been implemented across a wide range of applications for 

aircraft design1,2. While multidisciplinary analysis and optimization has seen extensive use for 

technical design problems in aerospace, there has been less emphasis on applying these 

techniques to larger scope system design. Frameworks have been developed that include both 

engineering and cost elements for aircraft design3,4 and aircraft engine design5,6. A common 

feature of those frameworks is that they use Monte Carlo simulation (MCS) to explore the 

impact of uncertainty on system design. While MCS provides a means to perform probabilistic 
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analysis of a series of designs, it does not rigorously address the issue of real-time managerial 

decision-making. Tools such as real options and game theory have been suggested as a means to 

incorporate decision making (see, for example, Ref. 5), but do not appear to have been 

implemented as such. 

The objective of this paper is to couple engineering and financial design—or, phrased 

differently, product and program design—to extract maximum value from the commercial 

aircraft design process. A multidisciplinary analysis is synthesized by creating three freestanding 

quantitative models - performance, cost and revenue - and linking them to compute a measure of 

program value. While the models are not high fidelity, their purpose is to establish a useful 

foundation for further study and to gain insight into the interactions between technical and 

program design. 

In order to link the above three models into an integrated multidisciplinary analysis tool, 

consideration must be given to the program structure—i.e., the decision structure affecting 

product mix, design and production plans, and pricing strategy. With this element in place, the 

stage is set for a quantitative valuation of the program, which enables both technical and 

program-based trade studies to search for an optimal system design. This conceptual process is 

illustrated in Figure 1. In this work, the valuation will be performed using a dynamic 

programming (DP) framework. The DP approach provides a quantitative measure of the 

program’s net present value (NPV), while explicitly accounting for the effects of uncertainty and 

program flexibility by modeling the program as a series of decisions.  This approach has been 

explored in finance literature as Real Options (for example, see Ref. 7 and 8). The algorithm 

results in a series of decision rules, which define the optimal decision strategy as a function of 
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evolving and uncertain market conditions. This information could not be obtained using a MCS 

approach. 

The next section summarizes the multidisciplinary approach taken to accomplish the above 

objective by describing the three distinct models used to solve the problem: performance, cost, 

and revenue estimation. The following section describes the DP approach to link these models 

into one program value analysis tool, and two examples are given to demonstrate the operation 

of the valuation tool for analysis of a Blended-Wing-Body (BWB) family of aircraft9. Finally, 

the results are discussed, and conclusions are drawn. 

PERFORMANCE MODEL 

The performance estimator is based on the WingMOD aircraft design tool. WingMOD is an 

MDO code that optimizes aircraft wings and horizontal tails subject to a wide array of practical 

constraints10,11. WingMOD uses low fidelity analyses to quickly analyze an aircraft in over 

twenty design conditions that are needed to address issues from performance, aerodynamics, 

loads, weights, balance, stability and control. The low computational cost of the simple analyses 

allows the examination of all these issues in an optimization with over one hundred design 

variables while achieving reasonable computation time. 

As detailed in Ref. 10, the WingMOD optimization framework takes a set of constraints 

representing mission requirements (range, payload capacity, cruise speed, approach speed, 

balance, etc.) and finds an optimal aerodynamic and structural configuration such that the 

resulting aircraft satisfies the constraints. In the valuation framework described here, the 

performance characteristics of the aircraft were assumed to be fixed – that is, WingMOD was 

run a priori to determine the minimum take-off weight aircraft. Certain properties of the resulting 
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design were then used as input to the value framework. These WingMOD outputs are 

summarized in Table 1. 

Table 1: WingMOD outputs used as an input to the value framework. 

Output Description 

MTOW (maximum takeoff weight) Gross vehicle weight at start of max. range mission.  

DLW (design landing weight) Gross vehicle weight at end of max. range mission.  

Design range Maximum range. Specified as a constraint. 

Seats Number of passenger seats. Specified as a constraint. 

Weight breakdown Estimates of weight for each primary component of the 

aircraft, summing to Operating Empty Weight (OEW). 

• Structure 

o Fuselage bays 

o Inner wing 

o Outer wing 

o Etc… 

Structural elements (spars, ribs, skin, etc.).  

The structural weight is broken down into a set of large 

“parts” which together comprise the airframe. 

• Propulsion Engines, nacelles, and supporting equipment. 

• Systems Onboard systems, e.g. avionics, fuel, hydraulics.. 

• Payloads Seats, bag racks, cargo equipment, etc. 
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COST MODEL 

The cost model has two components: manufacturing cost and development cost. While detailed 

cost models are available publicly, such as the Aircraft Life Cycle Cost Analysis (ALCCA) 

code12, for this research, a simple cost model was developed. An important attribute of the cost 

model is that it should capture the effect of commonality between several different airframes – in 

general, both the development cost and manufacturing cost of a new aircraft will depend upon 

the aircraft’s technical parameters and the technical parameters of other aircraft types that have 

already been designed or built.  

The cost models used for this research are based upon the decomposition of the aircraft into a 

set of components. A simple cost per pound estimation is applied at a component level and 

further modified with learning curve effects. The cost model parameters were derived from 

publicly available data and are published in detail in Refs. 13 and 14. A more detailed cost 

model could be linked to the valuation framework, provided commonality effects are captured. 

REVENUE MODEL 

Given an aircraft design, a production rate, and a time horizon, the revenue model must provide 

the following three outputs: potential revenue cashflow for the current time period, the expected 

value of future revenue cashflows, and a measure of the uncertainty of the future cashflows. 

Further, the model must demonstrate realistic sensitivities to changes in aircraft performance 

(e.g., reduction in fuel burn), changes in the aircraft target market (e.g. 100 v. 250 passengers), 

and changes in aircraft price charged (i.e., demand price elasticity). To achieve this functionality, 

the model development is broken up into a static analysis and a dynamic analysis.  



Static Demand Analysis 

The static analysis estimates a baseline price and corresponding quantity demanded, along 

with an expected demand growth rate over the specified time horizon. Price is modeled as a 

function of several variables representing an aircraft’s value to its operator, an airline. Several 

sets of variables and several functional forms were tested by applying the price model to 23 

existing aircraft: 11 narrowbodies and 12 widebodies. The outputs generated by the price model 

were compared to best estimates for the actual sale prices for each of the aircraft, compiled from 

two sources15,16. For each functional form tested, the function parameters were adjusted to 

minimize the mean squared error of estimated price.  

The selected functions for narrow-body (NB) and wide-body (WB) aircraft are shown below. 

Note that speed (or Mach number) is not one of the variables. No significant statistical 

relationship between price and speed was found in the range of available data. 
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where Seats is the passenger capacity, Range is the design range, and Seats_ref, Range_ref and 

Price_ref are reference values of 419 seats, 8810 nm and $148.7M respectively. ∆(LC) is an 

increment in lifecycle cost due to off-nominal Cash Airplane Related Operating Costs (CAROC), 

which are equal to total operating costs less ownership costs. This term refers to the additional 

cost the operator incurs if the aircraft’s CAROC is greater than the industry average CAROC for 

an aircraft of its size. It is a function of the difference between the aircraft’s CAROC and the 

7 



8 

least squares estimate for the CAROC of an aircraft with the same capacity. The prices generated 

by the above functions are compared to the best estimates of the actual aircraft prices in Figure 2. 

While the aircraft seat count and range are provided by the outputs of the performance model, 

its CAROC must be estimated separately. For the example used in this paper, the assumption is 

made that fuel costs for a reference mission (3,000 nm) represent 20% of CAROC. The figure of 

20% is based on empirical data for several existing aircraft. Fuel burn is calculated using the 

Breguet range equation, and a fuel price of $.65 per gallon is used.  

Quantity data is based on three distinct forecasts of quantities of aircraft to be delivered from 

2000 through 2019 as released by Boeing,17 Airbus,18 and the Airline Monitor.19 Each forecast 

has a different set of aircraft categories which comprise the global airline fleet. All three 

forecasts were recast into a single, consistent set of aircraft categories based on aircraft class 

(narrowbody or widebody) and seat count. Forecasted deliveries are assumed equivalent with 

quantities demanded at current market prices. The results are shown in Figure 3. Depending on 

seat category, there is considerable variance between the three forecasts. This reflects differences 

in the forecasters’ assumptions, methodology, and to some extent, corporate strategy. Further, 

the high variance reflects the high degree of uncertainty regarding future revenue cashflows. 

For a given aircraft design, the quantity model proceeds as follows. Assign a given aircraft to 

a seat category; compute a 20-year gross demand for that category as the mean of the three 

forecasts; assume a market share in that category; compute the 20-year quantity demanded as the 

market share multiplied by the 20-year gross demand; compute the current annual quantity 

demanded by applying the expected annual demand growth rate. If several designs are 

considered for production simultaneously, fractions of seat category demands are assigned to 
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each design, such that total quantity demanded will not exceed the product of market share and 

20-year gross demand. 

Dynamic Demand Analysis 

The dynamic analysis aims to quantify the stochastic behavior of the market for commercial 

aircraft. It is observed that quantities of aircraft purchased fluctuate significantly from year to 

year, and exhibit some cyclical properties. Thus, given a forecast for year 0, it is impossible to 

predict with certainty what the quantity of aircraft demanded will be in year 10. However, based 

on historical data, some representative characteristics were found to describe historical aircraft 

demand levels as geometric Brownian motions, not unlike stock prices. Therefore, the dynamic 

analysis uses an average annual growth rate of 4.43% and an average annual volatility of 45.57% 

for typical demand evolution patterns for widebody aircraft.  

DYNAMIC PROGRAMMING FORMULATION 

The basic problem to be solved may be broken up into three parts: endogenous variables—those 

that are internal to the aircraft development process and may be controlled, exogenous 

variables—those that are external to the aircraft development process and may not be controlled, 

and a statement of the problem objective.  

The endogenous variables constitute a set (or “portfolio”) of aircraft designs, any of which the 

producing firm may choose to develop and bring to market. To bring a concept to market, the 

firm must go through several phases: detail design, tooling and capital investment, testing, 

certification, and finally production. Each phase entails some required expenditure of time and 

money, and the firm may decide when to execute each phase. Each of the aircraft designs is 

defined by a set of component parts (e.g., inner wing, outer wing, fuselage bay, etc.), some of 

which may be common across several aircraft.  
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Given that an aircraft design is in production, the evolutions of sale price and quantity 

demanded are unaffected by any decisions made by the firm and are thus exogenous variables. 

Sale price evolves according to a steady growth rate, while quantity demanded evolves as a 

stochastic process, characterized by parameters such as drift rate and volatility. Each period that 

an aircraft design is in production, as many units are built and sold as are demanded, up to the 

maximum capacity of the plant. 

Given the above endogenous and exogenous variables, the objective is to find a set of optimal 

decision rules governing which aircraft to design, which aircraft to produce, and when; as a 

function of the demand level and the aircraft built to date at any given time. Achieving this goal 

will necessarily yield the overall program value, because program value is the objective function 

used to find the optimal decision rules. 

General Theory 

A stochastic DP problem may, in general, be framed in five parts: 

1. State variables continuously evolve and completely define the problem at any point in time.  

2. Control variables are set at any point in time by the decision-maker, and generally impact the 

evolution of the state variables.  

3. Randomness. One or more of the state variables is subject to random movements, and as 

such, involves a stochastic process.  

4. Profit function. The goal of the DP method is to maximize some objective function, in this 

case the program value. The value is, in general, a function of certain “profits” incurred 

every period. These profits are functions of the state variables. 

5. Dynamics represent the set of rules that govern the evolution of the state variables, including 

the effects of randomness, the effects of control variables, and any other relationships. 



The problem is further defined by a time horizon (which may generally be finite or infinite), 

and a sequence of time periods of length ∆t, which together comprise the time horizon. The 

objective, then, is to find the optimal vector of control variables as a function of time and state, 

such that the total value at the initial time is maximized. Equivalently, the objective may be 

stated recursively, as an expression for the value at any time, t, as: 
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







+
+= ++ )(

1
1),(max)( 11 ttttttutt sFE

r
ussF

t

π ]  (3) 

where Ft(st) is the value (objective function) at time t and state vector st, πt is the profit in time 

period t as a function of the state vector st and the control vector ut, r is some appropriate 

discount rate, and Et is the expectation operator, providing in this case the expected value of F at 

time t+1, given the state st and control ut at time t. Note that the expectation operation for next 

period is affected by the control decision and the state in this period. 

The above is known as the Bellman equation, and is based on Bellman’s Principle of 

Optimality: “An optimal policy has the property that, whatever the initial action, the remaining 

choices constitute an optimal policy with respect to the subproblem starting at the state that 

results from the initial actions”7. In other words, given that the optimal value problem is solved 

for time t+1 and onward, the action (choice of u) maximizing the sum of this period’s profit 

flows and the expected future value is also the optimal action maximizing value for the entire 

problem for time t and onward.  

The Bellman equation can therefore be solved recursively or, for a finite time horizon, 

iteratively. For a time horizon of T, this is done by first considering the end of the horizon, at 

time tT. At this point, there are no future states, and no future expected value of F. Therefore, the 

optimal control decisions, uT, given the final state, sT, are readily found. This process is repeated 

11 
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for all possible final values of the state vector, sT. Next, it is possible to take one step backwards 

in time, to t = T - 1. Now, equation (3) may be applied to find the optimal control decisions, uT-1, 

because the expectation term, E[…], is easily calculated as the probability-weighted average of 

the possible future values of FT. Again, the optimal control values, uT-1, are found for each 

possible value of sT-1. At this point, the procedure is repeated by taking another backward 

timestep to T – 2, and continuing to iterate until the initial time, t = 0, is reached. Now, F0 is 

known for all possible initial values of the state, s0, and it is the optimal solution value.  

Specific Application: Operating Modes 

It is possible to extend the general DP framework presented above to a specific application 

useful for the valuation of projects. The application is centered on the concept of “operating 

modes,” and has been demonstrated by several authors to be useful in modeling flexible 

manufacturing systems8,20. Much of this description is based upon their work. 

Consider a hypothetical factory, which at the beginning of any time period may choose to 

produce output A or output B. Let the prices for which it can sell each of the outputs be different 

functions of a single random variable, x, so it may be more profitable in some situations to 

produce one output than the other. However, each time the factory switches production from A 

to B, or vice versa, a switching cost is incurred. Thus, it may not always be optimal to simply 

produce whichever output yields the higher profit flow in the current period. If there is a high 

probability of a switch back to the other output in the future, it may be preferable to choose the 

output with the lower profit this period. 

This example lends itself well to the DP formulation. In this case, the control variable ut is the 

choice of output, or “operating mode,” for the period beginning at time t: A or B. The state 

vector, st, consists of two elements: the random variable, x, and the operating mode from last 



period, mt. The operating mode m will have one of two possible values, say 0 or 1, representing 

output A and B. Depending on the value of mt, the control variable choice ut may result in 

payment of a switching cost. Specifically, the Bellman equation may be re-written for this 

example as: 

 1 1
1( , ) max ( , ) ( , ) ( , )

1t
t t t t t t t t t t t tu

F x m x u I m u E F x u
r
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Note that the state vector s has been separated into its two components—the random variable x 

and last period’s operating mode m. Here, the profit function term from (3) has been replaced by 

the difference between a profit flow and I(mt, ut)—the switching cost from mode m to mode u. 

This will equal zero if mt = ut and there is in fact no switch made, and will be nonzero otherwise. 

Note also that the future value, Ft+1 (for which the expectation is found), is a function of the 

future random variable, xt+1, and of the current control decision, ut, because ut will become the 

“operating mode from last period,” mt+1, at time t+1. In other words, mt+1 = ut, because as soon as 

the control decision (ut) is made, the mode in which next period will be entered (mt+1) is set. As 

before, this equation can be solved iteratively by starting at the final time period and working 

backwards. 

One additional point regarding equation (4) bears discussion: the selection of an appropriate 

discount rate, r. This is a nontrivial task; in fact, the selection of a discount rate is traditionally 

one of the most difficult and sensitive steps in capital budgeting. For an in-depth discussion of 

discounting as it applies to this valuation technique, refer to Ref. 13.  

13 
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APPLYING DYNAMIC PROGRAMMING TO THE AIRCRAFT DESIGN PROBLEM  

The DP approach described above is adapted here to solve the problem of optimal decision-

making in managing an aircraft program. The aircraft program valuation algorithm is briefly 

overviewed here in the context of the five parts that frame a DP problem. 

1. State variables. For each new aircraft design being simultaneously considered, two state 

variables exist: quantity demanded, which evolves stochastically, and the “operating mode 

from last period” (as introduced above) for that aircraft.  

2. Control variables. For each aircraft design, one control variable exists: the choice of 

operating mode for the current period. 

3. Randomness. For each aircraft design, one state variable exists with random characteristics: 

the quantity demanded. It evolves from a given initial value as a stochastic process. 

4. Profit function. The profit function during each period is the sum of profits associated with 

the operating modes for each aircraft, less any switching costs incurred during that period. 

For production operating modes, the profits are simply revenues less recurring costs; 

however, other modes exist for which the profit functions represent non-recurring costs.  

5. Dynamics. There are two types of state variables in this formulation: quantity demanded, 

which evolves as a stochastic process; and operating mode, which evolves as dictated by the 

control variables (operating mode decisions).  

Given the above framework, it is useful to consider the impact of various parameters on 

computation time. To iteratively solve the problem as described above, the algorithm must 

evaluate each possible combination of control variables for each possible state vector; and it 

must repeat this process for each timestep in the problem’s time horizon, starting at the final time 

t = T and ending at t = 0. Therefore, at the most general level, computation time scales linearly 
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with the time horizon and exponentially with the number of state variables. The time horizon, as 

defined in this application, is 30 years, which is a typical valuation timeframe for an aircraft 

program. For purposes of simplicity and computation time constraints, the time period length, ∆t, 

was selected to be one year. For the same purposes, the maximum number of aircraft designs to 

be simultaneously considered by the algorithm was set to two.  

Connection to Operating Modes 

Whereas the operating modes introduced earlier were simply modes of production, this 

formulation extends the operating mode framework to represent each phase of the lifecycle of an 

aircraft program. The purpose of this extension is to model the significant time and investment 

required to develop an aircraft, before any sales are made. Therefore, the non-recurring 

development process, which may last as many as six years, is represented as a chain of 

“operating modes.” Clearly, none of these modes entails a positive profit flow. Rather, each has 

some negative “profit” associated with the non-recurring investment for that particular phase of 

the aircraft development cycle. The only incentive for the firm, and the optimizer, to enter one of 

these modes is the opportunity it creates to switch to the following development mode in the 

following period, and so on until the production mode is reached. A graphical representation of 

the operating modes for a single aircraft design is shown in Figure 4. The diagram is similar in 

concept to a Markov chain, where the arrows represent possible transitions between modes. In 

fact, the arrows connecting the modes represent switching costs that are finite—if two modes are 

not connected by an arrow, the associated switching cost is infinite. 

Mode 0 represents the initial conditions: the firm is waiting to invest. Modes 1 through 3 

represent roughly the first half of the development effort, primarily detailed design. Note that 

several operating modes are shaded. The shading indicates an infinite cost not to switch to a 
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different mode. In other words, it is impossible to remain in a shaded mode for more than one 

period. Thus, once the firm commits to a detail design effort, it is assumed impractical to stop 

halfway through. However, it is possible to stop before the second half of development—here, 

mostly tooling and capital investment—begins. Once this development stage is initiated, a 

capacity choice must be made: a low, medium or high capacity production line. This determines 

the maximum demand level that may be satisfied with sales every period. Once the capacity 

choice is made, the firm must continue to switch modes annually until it reaches mode 6, 9, or 

12, at which point it is ready to enter production. Recall that each time period has a duration of 

one year—therefore, if the firm does not wait midway through the development process, an 

aircraft design takes six years to bring to market. (The six-year baseline duration may be altered, 

as discussed below.) The production modes are 13, 14, and 15, corresponding to a low-, 

medium-, and high-capacity line. Note that each mode will produce exactly as many units as 

demanded each period, up to a maximum that depends upon the mode. The actual values for 

maximum capacity are parameters and easily changed. While in production (or waiting to enter 

production), it is possible to invest in additional tooling and expand the capacity of the 

production line. However, it is assumed impossible to reduce capacity—that is, the scrapping of 

tools has little to no salvage value, due to the high specificity of the tools to their product. 

Finally, an abandonment mode exists to model any salvage value associated with permanently 

shutting down the program. If the salvage value is positive, the switching costs to enter mode 16 

will be negative. The determination of switching costs is based upon the adaptation of the 

development cost and manufacturing cost models to the operating mode framework. 

The development cost model generates a time profile of the non-recurring expenses 

associated with the development of a given new aircraft design. Because of the inclusion of two 
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aircraft designs in the valuation algorithm, the switching cost calculation proceeds as follows for 

each of the two aircraft designs. The sequential switching costs from mode 0 through mode 9 

(medium production rate) are calculated by discretizing the non-recurring cost time profile into 

1-year segments. This discretization is done as a step function of the operating mode of the other 

aircraft design: if the other aircraft has not yet been fully developed, the baseline non-recurring 

cost profile is used. However, if the other aircraft has already been fully developed, the non-

recurring cost profile is calculated with any commonality effects included. Specifically, if the 

aircraft share any common components, the development cost and time are both reduced to 

reflect the savings resulting from a pre-existing design. If the commonality effects are significant 

enough to result in a cost profile shorter than six years, one or more development modes are 

skipped. Finally, once medium capacity development process switching costs have been defined, 

the switching costs corresponding to the tooling/capital investment part of the development 

process are scaled by a “low capacity” and a “high capacity” scaling factor to find the switching 

costs corresponding to the low and high capacity decisions.  

As with development cost, to account for two aircraft designs present in the valuation, the 

switching costs associated with manufacturing are found for each aircraft as functions of the 

operating mode of the other aircraft. Switching costs associated with manufacturing have two 

components. The first component is switching from a “ready to produce” mode (6, 9, or 12) into 

the corresponding production mode (13, 14, or 15, respectively). The second component is 

switching from one production line capacity to another. Both of these components are sometimes 

involved in a single switch (e.g., 6 to 14, or 6 to 15); however, they are calculated separately and 

simply added together as necessary.  
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The costs of switching production line capacity are calculated as the product of a scaling 

factor (which is greater than one and represents the additional costs incurred due to disruption of 

a pre-existing production line) and the cumulative difference in cash outflows between the two 

development processes associated with the production capacities in question. For example, the 

cost to switch from low to medium capacity (involved in either a “6 to 14” switch or a “13 to 14” 

switch) equals the difference in total development cost between low capacity development 

(3,4,5,6) and medium capacity development (3,7,8,9).  

The other component of manufacturing-related switching costs is the initial switch into one of 

the three production modes (13, 14, or 15). For any given aircraft, the unit cost will generally fall 

as production starts and continues to fall due to the learning curve effect. Eventually, it is 

reasonable to assume that unit cost approaches an asymptote and stabilizes at the long-run 

marginal cost. To exactly model the effect of the learning curve with DP would be impossible, 

because knowledge of unit cost requires a knowledge of how many units have been built to date. 

This information is not part of the state vector - one possibility would be to include units built to 

date as an additional state variable, but because computation time grows exponentially with the 

number of state variables as noted above, the exercise would be impractical for even two aircraft. 

Therefore, once in a production mode, all aircraft are assumed to be produced at their long-run 

marginal cost.  

To account for this discrepancy, the switching cost to enter production is set equal to the total 

extra cost expected to be incurred during the production run of the aircraft over and above the 

long-run marginal cost. Because this extra cost will be incurred gradually and with certainty over 

time, the risk-free rate is used to find the expected present value of these cash flows, assuming a 

production rate equal to baseline demand.  
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The entire above process, for both development cost and manufacturing cost, is conducted for 

both aircraft designs, resulting in a set of switching costs for each that is a function of the 

operating mode of the other. To use the symbology introduced earlier, the process finds the 

switching costs I(mi, ui | mj) for each aircraft i, where the “other” aircraft is j, for each prior 

operating mode mi and control variable decision ui. Then, the switching cost from any operating 

mode vector [m1, m2] to [u1, u2] is simply equal to the sum of I(m1, u1 | m2) and I(m2, u2 | m1). 

This set of data is stored in the switching cost matrix. 

Stochastic Process Dynamics 

A crucial component of the algorithm is the model describing the nature of the unpredictable 

behavior of the stochastic process representing the development of the market for commercial 

aircraft. The annual quantity demanded is represented as a stochastic variable that evolves 

according to a random walk, modeled as a binomial tree process. Each time period, the variable 

may either increase or decrease by a specified amount with a certain associated probability. 

Thus, if there are two such variables, representing the evolution of the market for two distinct 

aircraft, there are four possible outcomes each time period. A transition probability matrix is 

constructed linking possible initial states to final states in this framework. These transition 

probabilities are used to find the expected future value of the project as a probability-weighted 

average, expressed as the expectation term E[…] in equation (4). 

EXAMPLES 

The examples presented here illustrate the mechanics of the algorithm and highlight its 

distinguishing features. The first considers design of a single aircraft and presents two 

illustrations: a simulation run to demonstrate the decision rules arrived at by the optimizer and a 

connection to the NPV technique. The second example considers the design of a family of two 
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aircraft sharing common components and demonstrates how the tool can be used to determine 

the value of commonality.  

Three different aircraft designs are used, all based upon the BWB concept. Table 2 

summarizes the key characteristics of the designs. The example designs are purely hypothetical 

and significantly simplified. They do not represent actual current Blended-Wing-Body 

configurations. Three different airframes are possible: one large, 747-class vehicle (BWB-450), 

and two smaller, 250-passenger class designs. One of the smaller designs, the BWB-250C shares 

39.7% of its parts, by weight, with the BWB-450. The other has no commonality with the BWB-

450, being a point design, optimized without consideration for commonality. Note that the point 

design results in a lighter airframe, because the commonality constraint placed upon the BWB-

250C results in a weight penalty. Specifically, the BWB-250C uses the same wing as the BWB-

450 to save on development cost, but an individually optimized design for the BWB-250 would 

not need as much wing area. 

Table 2. BWB example key characteristics. 

Design Seat Count Range (nm) GTOW (normalized) Commonality (by weight) 

BWB-450 475 8550 1 N/A 

BWB-250C 272 8550 0.756 39.7% 

BWB-250P 272 8550 0.624 0% 

 

Single Aircraft Valuation 

The DP algorithm was applied for valuation of the BWB-250C, resulting in a set of decision 

rules, which are shown in Figure 5. These decision rules represent the optimal decision strategy 

identified by the algorithm. For each control variable (in this case, there is only one—the next 
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period operating mode decision), the decision rules specify the optimal value to which the 

variable should be set, as a function of time and of all the state variables. In other words, given 

how long the program has been ongoing, the operating mode from last period, and the current 

market conditions (quantity demanded), the decision rule specifies what the operating mode 

should be for the next period. Figure 5 shows, as a function of time, the minimum value of the 

demand index for which it is optimal to make certain program-related decisions—namely:  wait; 

design (enter mode 1 from mode 0); build (enter mode 13, 14, or 15 from mode 6, 9, or 12); 

switch from low- to medium-capacity production (enter 14 from 13); and switch from low- to 

high-capacity production (enter 15 from 13). 

Figure 6 shows a simulation run, which represents a sample path of demand through time—a 

scenario constructed using a random number generator to approximate the stochastic behavior of 

demand. The upper half of the figure plots the random evolution of annual quantity demanded 

over time: this is a sample path of the underlying stochastic process. On the same plot is the 

optimizer’s real-time strategy in response to the evolution of demand using the decision rules 

shown in Figure 5. Thus, at the beginning of the simulation, demand is at its baseline static 

forecast quantity, as calculated by the revenue model. This demand level, which happens to be 

28 units per year, is insufficient for the firm to commit to developing the BWB (according to the 

optimal strategy). However, in year 3, demand increases as the result of a random fluctuation, 

and the choice is made to invest in non-recurring development for the aircraft. The investment 

choice is made because the new level of demand is greater than the threshold level 

corresponding to the “design” decision at time t=3 in the optimizer’s solution. Recall that once 

the initial “design” operating mode is entered, the firm is committed to the first phase of the 

development process, until halfway through development, immediately before tooling. In this 



22 

simulation run, demand falls immediately after design is started, but increases again when the 

halfway point is reached. Development is therefore continued, until time t=9, when the operating 

mode is 6 (end of development). At this point in time, demand is low, and the production 

decision is deferred. 

However, one year later, at time t=10, demand increases past the threshold value for the 

“build” decision, and production is entered. The bottom half of the figure shows the cashflows 

associated with the decisions made each year. Years 2 through 8 demonstrate the familiar bell-

curve shape of a typical development effort. Year 10 shows why the optimizer chooses to wait at 

all before going into production: the switching cost to enter production is on the order of $4B. 

This switching cost is the algorithm’s way of handling the learning curve effect: the $4B 

switching cost here is the present value of all the projected future costs in excess of long-run 

marginal cost for BWB production. 

Once production is entered, after year 10, all units are produced at their long-run marginal 

cost. (In reality, the $4B would be distributed over the entire production run, with more weight 

on the early years.) The cash flows from production, in years 11 through 30, continue to 

fluctuate as a function of demand, and gradually creep upward with inflation. Returning to the 

upper half of the figure, the optimizer can be observed to respond to demand spikes in year 13 

and then 17 by making incremental investments in tooling to expand the capacity of the 

production line, first to a medium and then to a high level. In this simulation run, the high 

production capacity was put to good use only in year 17, as demand never reached that level 

again. However, the decision to enter high capacity production was optimal at that time, because 

the demand spike indicated a higher expected future demand. The CPU time for this simulation 

run was approximately 0.01 seconds on a 700 MHz AMD Athlon processor. In comparison, the 



23 

stochastic optimization to determine the decision rules took approximately 690 seconds of CPU 

time. 

The above simulation run is just one of millions of possible paths that can be taken by 

demand through time, but it effectively illustrates the decision-making element of the solution to 

the program valuation problem. The actual expected program value corresponding to the DP 

solution is computed as $2.26B. However, the magnitude of this value depends strongly upon the 

assumptions used in the underlying models, and is not as important as the dynamics and 

approach illustrated by the valuation process. In order to further interrogate the value behavior of 

the system, one could conceive of using MCS to run a series of simulations using the optimal 

decision rules, such as the simulation shown in Figure 6. If an appropriate discount rate is 

chosen, the mean NPV calculated by MCS should be equal to the expected program value 

computed by the DP algorithm. The choice of discount rate along with the possible estimation 

and interpretation of variance results are important issues that are the subject of ongoing 

research. 

Connection to Net Present Value 

There is one primary conceptual difference between the DP approach used in this work and 

traditional project valuation approach of NPV: DP takes into account managerial flexibility, i.e. 

decision-making in real time. NPV analysis assumes a fixed schedule of actions and cash flows, 

and uncertainty regarding the magnitude of those cash flows is accounted for by appropriate 

selection of a discount rate. However, there is no uncertainty regarding which “operating mode” 

the firm is using at any time—these decisions are made ex ante. Therefore, if the ability to make 

decisions is removed from the DP tool, it should reduce to a traditional NPV analysis. In other 

words, the switching costs between operating modes must be adjusted such that the optimizer 
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has only one choice with a finite switching cost for any given operating mode. Referring to 

Figure 4, the only finite-cost path through the modes is now set as 0-1-2-3-10-11-12-15. This 

assumes an irreversible commitment, as of time 0, to design, tooling, and high capacity 

production. Now, as the optimizer “solves” the problem, it is forced to make the same decisions 

regardless of the demand level. As a result, it is possible to generate negative program values, 

just as is it routine to find that a project has a negative NPV.  

Figure 7 is a plot showing program value for the single aircraft case as a function of the initial 

annual demand forecast. This demand level is a strong function of the characteristics of the 

aircraft—specifically, the range and seat count—but is also dependent upon the current condition 

of the market, and the resulting expectations and needs of the airlines. The plot thus considers 

the sensitivity of the program’s success to the current condition of the market. Demand is 

expressed as the number of aircraft per year that are demanded in year 1 of the analysis. This 

initial quantity is the starting point for the evolution of demand according to a stochastic process 

over the time horizon of the problem. 

Figure 7 shows two plots of value on the same set of axes: “dynamic programming” and “Net 

Present Value”. The former shows the output of the algorithm as it finds the value of the 

program using DP to account for managerial flexibility. The latter is the NPV case described 

above, where flexibility is removed from the program. As the initial demand forecast increases, 

expected program value increases. If the forecast is very small, the value of the program with no 

flexibility is negative—that is, the aircraft is developed, the non-recurring cost is incurred, but 

few if any units are sold. However, the value with flexibility for low demand indices is zero—if 

no sales are expected, no investment is made in developing the aircraft. 
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As the demand index increases, the no-flexibility program value quickly approaches value 

with flexibility. However, for small or marginal demand index numbers, there is a significant 

difference between the two valuations—one that may mean the difference between keeping a 

program and scrapping it. At the baseline initial demand of 28 aircraft per year, the value with 

flexibility, $2.26B, is almost seven times the value without flexibility, $325M. 

Aircraft Family Valuation 

Using the DP method, the three aircraft designs listed in Table 2 are evaluated in several 

different combinations to find program value. First, each of the designs is evaluated on an 

individual basis, as though it is the only design option available to the firm. Then, the BWB-450 

and BWB-250C are evaluated simultaneously, to investigate any synergies that may exist as a 

result of commonality. Finally, the BWB-450 and BWB-250P are also evaluated simultaneously. 

The key input parameters used for all test cases are listed in Table 3.  

Table 3. Key input parameters for all test cases. 

Number of periods 30 

Timestep per period 1 year 

Risk-free rate, rf 5.5% 

Annual aircraft price inflation 1.2% 

Annual aircraft demand volatility 19.6% 

 

The intermediate results of the test runs described above are summarized in Table 4. These 

represent the primary outputs of the models described in this paper: cost characteristics and 

demand characteristics based upon a particular airframe and its performance. It can be seen that 

there is greater annual demand for the smaller capacity aircraft than for the larger BWB-450. 



26 

Note that quantity demanded is modeled as independent of operating characteristics—rather, the 

quantity estimator considers only the size class of the aircraft. However, the price estimator 

distinguishes between all three vehicles. The baseline price is expectedly high for the BWB-450, 

as it is a much larger aircraft. However, while the two smaller aircraft have identical seat counts, 

the BWB-250P is significantly higher priced. This effect is due to its lighter weight, which 

results in significantly reduced fuel burn, and therefore a lower operating cost.  

Table 4. Intermediate results: cost and demand characteristics for BWB family. 

Design 
Baseline quantity 

demanded (units/yr) 

Long-run marginal 

cost ($M) 
Baseline price ($M) 

BWB-450 16.7 139.0 195.0 

BWB-250C 27.6 93.8 116.1 

BWB-250P 27.6 84.9 142.2 

 

Predictably, LRMC scales with the vehicles’ weight. For this example, the LRMC is defined 

as the marginal cost of unit 100, produced without any commonality effects. Thus, because the 

point-designed BWB-250P is lighter than the derivative BWB-250C, its long-run cost of 

production is smaller. However, commonality should result in a reduced development cost and a 

reduced learning effort for the BWB-250C. That is, the marginal cost should reach LRMC faster.  

Table 5 shows the final results of this example: the program values resulting from the several 

different combinations of designs evaluated. The first result to consider is the extremely high 

program value found for the BWB-250P. While it is probably too high to be realistic, it 

highlights the key design issues in this example: a considerable sacrifice was made in the 250-

passenger class aircraft design to accommodate commonality. A modest increase in empty 
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weight translated to a medium increase in takeoff weight, which translated to a significant 

difference in fuel burn and operating cost, and an even greater difference in market price. The 

sensitivity of price to operating cost is difficult to observe in practice, and these results suggest 

that it is overestimated by this pricing model. However, this snowballing phenomenon 

underscores the importance of considering the downstream effects of a design change on 

program value.  

Table 5. Final results: program value ($B) for BWB family. 

(1) BWB-450 value 5.95 

(2) BWB-250C value 2.26 

(3) BWB-250P value 14.62 

 (1) + (2) 8.21 

 BWB-450 & BWB-250C 8.95 

 Commonality premium 9% 

 

The other side of the coin is the value benefit gained by commonality: a savings in 

development and manufacturing costs. This is reflected in the existence of a commonality 

premium, albeit a modest one in this example. The value of the program with both designs 

(BWB-450 and BWB-250C) considered simultaneously is greater than the sum of the values of 

their individual programs. The program value of the BWB-450 and BWB-250P considered 

simultaneously is not shown, as it would be identical to the sum of their individual values, 

because there is no interaction between those two aircraft. It would, however, be interesting to 

consider interactions in program value arising not from physical commonality but from market 

effects (e.g., complements or substitutes). 
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Within the framework of flexibility and decision-making used by the dynamic programming 

algorithm, the choice to use commonality may be framed using Real Options. When the firm 

develops the BWB-450, it acquires an option to develop the BWB-250C for a reduced cost and 

at a time of its choosing. The penalty paid—i.e., the price of the option—is the present value of 

additional profits the firm would receive had it instead developed the BWB-250P as a point 

design to maximize its performance. From a program flexibility standpoint, the firm still has an 

option to develop a second aircraft even if there is no commonality—in such a case, the exercise 

price of the option is simply higher by the amount of cost savings from commonality.  

The conclusion of this example, therefore, is not that commonality isn’t justifiable. Rather, for 

commonality to be justifiable, the benefits must outweigh the costs. The benefits include the 

development and manufacturing cost savings gained if the derivative aircraft is in fact built. The 

costs include any additional design or manufacturing costs as a result of commonality, but most 

importantly, any resulting performance penalty on the aircraft. This performance penalty must be 

translated into an opportunity cost: the revenues foregone by not selling a higher-performance 

aircraft. The set of aircraft designs used in this example, with the baseline parameters specified, 

did not indicate a higher program value for commonality, because the opportunity cost of lost 

revenues was very high. 

CONCLUSIONS 

This paper presents an aircraft program valuation tool, which combines performance, cost and  

revenue models, and a DP algorithm to measure the value of a set of aircraft designs to a firm. 

The value measurement is not based upon any technical characteristics per se, or any static 

forecast of cost and revenue, but on an analysis of an uncertain future, assuming that value-

maximizing decisions are made by management as time goes on and uncertainty is resolved. The 
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approach, which parallels Real Options analysis, provides additional insight over traditional 

valuation techniques by its attempt to quantify the value created by flexibility. Flexibility is 

modeled and addressed by the DP “operating modes” formulation, which is an explicit method of 

formalizing and discretizing the decision-making process that is continuously ongoing for any 

project at any firm. Two of the method’s distinguishing features are the combination of 

economic analysis with engineering analysis and explicit consideration of management’s ability 

to make and defer decisions in “real time” in response to unfolding market conditions.  

One important question that has not been addressed here is the impact on the results of 

uncertainty in the cost and performance estimates. While it is possible to think of adding cost or 

one performance metric as an additional stochastic variable, the computational demands of the 

DP algorithm make this approach very challenging, if not impossible. One could conceive of a 

two-step process, where the DP approach is used to first determine a set of decision rules and 

then a more traditional MCS is subsequently applied to determine the effect of additional 

uncertainty on the valuation results. These extensions are the subject of ongoing research. 
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Figure 1: Value-based design process. 
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Figure 2: Price model results. Top: narrowbodies; bottom: widebodies. 
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Figure 3: 20-year gross demand—forecasted deliveries through 2019. 
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Figure 4: Operating mode framework for a single aircraft. 
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Figure 5: Decision rules for BWB-250C. 
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Figure 6: Simulation run for BWB-250C. Top: quantity demanded per year and 

resulting choice of operating mode. Bottom: associated cashflows.
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Figure 7: BWB-250C program value as a function of baseline demand.  
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