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Abstract 

Multidisciplinary design optimization is considered in the context of designing a family of 

aircraft. A framework is developed in which multiple aircraft, each with different missions but 

sharing common parts, can be optimized simultaneously. The new framework is used to gain 

insight to the effect of design variable scaling on the optimization algorithm. Results are 

presented for a two-member family whose individual missions differ significantly. Both missions 

can be satisfied with common designs. Moreover, optimizing both planes simultaneously rather 

than following the traditional baseline plus derivative approach vastly improves the common 

solution. A cost modeling framework is outlined that allows the value of commonality to be 

quantified for design and manufacturing costs. A notional example is presented to show the cost 

benefit that may be achieved by designing a common family of aircraft. 
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Introduction 

In today’s competitive environment, the aerospace industry is faced with the challenge of 

designing aircraft not only with superior performance, but also at a lower cost. Multidisciplinary 

design optimization (MDO) is a tool that has been used successfully throughout the design 

process to enable improvements in aircraft performance. By simultaneously considering the 

effects of aerodynamics, structures, propulsion, flight mechanics and dynamics, and the 

complicated interaction between them, substantially improved performance can be achieved. 

Studies show that the aircraft industry has evolved to a “dominant design,” and that factors such 

as cost are becoming increasingly important1. In the “Better, Faster, Cheaper” era, the aerospace 

industry is searching for ways to lower costs without compromising aircraft performance. MDO 

provides a natural context in which to consider the tradeoffs between cost and performance. In 

the same way that MDO has been used to find “optimal” trades between aerodynamics and 

structural dynamics, one can conceive of expanding the optimization framework to consider the 

trades between, for example, aerodynamics, structural dynamics, cost, and revenue. While in the 

past, MDO for aircraft design has focused almost exclusively on engineering disciplines and 

performance-related issues, there is a clear need to expand its scope to include non-traditional 

disciplines such as cost. 

The question then arises regarding the definition of “optimal” in the expanded framework. In the 

past, “optimal” has been synonymous with “minimum weight”; however, this choice of objective 

function reflects the performance-driven design mentality. While weight is often used as a 

surrogate for cost, it is clear that the minimum-weight and minimum-cost aircraft designs are not 

the same. Designing exclusively for minimum cost is also not a practical approach, since the 

impact on revenue potential could be so adverse as to outweigh the cost savings. This leads us to 
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the concept of designing for maximum value, where value is defined relative to a particular 

stakeholder, and captures all relevant considerations (such as performance, cost, revenue, 

environmental impact, etc.). The definition of a value metric for aircraft design has been 

explored recently by several authors2,3. 

One way to reduce costs is to conceive of a family of aircraft that share common parts and 

characteristics, such as planform and systems, but each aircraft satisfies a different mission 

requirement. Traditionally this has been achieved through the use of derivatives. A baseline 

aircraft is designed and subsequently modified to produce a number of derivatives to satisfy 

different missions (e.g. longer range, more payload). By taking advantage of commonality with 

the existing base model, it is possible to achieve the new mission at a far lower cost than would 

be incurred if a completely new plane were designed. Often, the modifications can be substantial, 

resulting in an almost entirely new plane. For example, the 737 Next Generation has a 

completely new wing. 

In this work, the concept of commonality is taken a step further. We consider not just 

commonality between derivative aircraft whose missions are similar, but between two planes 

whose missions differ significantly. For example, if one could design a small capacity and a 

large capacity aircraft with common characteristics (for example a common wing), substantial 

savings could be realized in both recurring cost (manufacturing) and non-recurring cost (design 

effort and tooling cost). The savings from commonality come at a price: the weight of these 

common planes will be higher than if each were optimized separately for its own mission. The 

question then, is whether it is possible to design a family of common planes that satisfies all 

missions but whose cost saving outweighs the weight penalty. An example of this exists in 

practice: the Airbus A330 and A340 planes share common wings. 
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Fujita et al.4 discuss the simultaneous optimization of a family of products; however, they 

assume that a baseline has been designed, and then consider the design of derivatives from this 

baseline. The mission of these derivatives is fairly close to the original: in the example they 

present, the only change to the derivative mission is to extend the range. In all cases, the 

derivative carries the same payload and retains the original fuselage. 

In this paper, we will design a common family from a more fundamental approach. We consider 

the Blended-Wing-Body (BWB), a revolutionary concept for transport that integrates wing, 

fuselage, engines, and tail to achieve a substantial improvement in performance over a 

conventional transport5,6,7 (see Figure 1). The specifics of the MDO approach are described, and 

then the simultaneous optimization and commonality structure are outlined. An example is 

presented in which a family of two BWB aircraft is designed: a large, 475-passenger plane and a 

smaller, 272-passenger plane, both with 8550 nm range. The framework for value optimization is 

described, and an example of program cost analysis is presented. Finally, we present some 

conclusions and directions of ongoing and future work. 

 

Multidisciplinary Design Optimization Framework 

As described by Wakayama et al.8,9, WingMOD is an MDO code that optimizes aircraft wings 

and horizontal tails subject to a wide array of practical constraints. WingMOD was initially 

applied to the design of a composite wing for a stretched MD-9010 and then went through 

considerable modification for application to the BWB11,12. The BWB planform is modeled as a 

series of spanwise elements as shown in Figure 2. Optimization services for WingMOD are 

provided by the Genie framework11. 
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WingMOD uses intermediate fidelity analyses to quickly analyze an aircraft in over twenty 

design conditions that are needed to address issues from performance, aerodynamics, loads, 

weights, balance, stability and control. The low computational cost of the intermediate fidelity 

analyses allows the examination of all these issues in an optimization with over a hundred design 

variables while achieving reasonable computation time. 

The basic WingMOD method models an aircraft wing and tail with a simple vortex-lattice code 

and monocoque beam analysis, coupled to give static aeroelastic loads. The model is trimmed at 

several flight conditions to obtain load and induced drag data. Profile and compressibility drag 

are evaluated at stations across the span of the wing with empirical relations using the lift 

coefficients obtained from the vortex lattice code. Structural weight is calculated from the 

maximum elastic loads encountered through a range of flight conditions, including maneuver, 

vertical gust, and lateral gust. The structure is sized based on bending strength and buckling 

stability considerations. Maximum lift is evaluated using a critical section method that declares 

the wing to be at its maximum useable lift when any section reaches its maximum lift coefficient, 

which is calculated from empirical data. Balance is evaluated by distributing weight over the 

planform13. 

The optimization algorithm used is sequential quadratic programming (SQP). This algorithm has 

been shown to work effectively on the large, nonlinear problems encountered in engineering 

applications. In particular, several other unconstrained algorithms were found to have 

convergence difficulties with the large number of constraints in problems of interest. The 

nonlinear problem can be stated as 

 minimize F   )(x

 subject to ic 0 mxi ,,2,1,)( …=≥  (1) 

5 
American Institute of Aeronautics and Astronautics 



where the vector x contains the n design variables, F(x) is the objective function and ci are the m 

constraint functions. The Hessian matrix of F(x) contains the second order variations of the 

objective function with respect to each design variable, and is given by the n x n matrix H(x): 
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The SQP algorithm uses a sequence of line searches to determine the optimum solution to the 

nonlinear problem (1). The design space is modeled as a quadratic objective with linear 

constraints, using finite difference gradient calculations. An approximate Hessian matrix is 

constructed from information gathered over the sequence of iterations using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) update14. A quadratic programming problem is solved in the 

approximate design space to determine an estimated best direction for improvement. A line 

search is then executed in the actual design space, which seeks improvement in the solution. 

Amongst other things, convergence of the algorithm is critically dependent on the conditioning 

of the Hessian matrix. Given the computed optimal solution x and the actual optimum , the 

error in the computed solution is given approximately by

*x

14 

 pxHp
xx T

A

*)(
2

* 2 ε
≈− , (3) 

where εA is the absolute precision and p is any perturbation vector of unit length. Equation (3) 

shows that if H(x*) is ill-conditioned, then the error in the computed solution can be very large 
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along certain directions. As stated by Gill et al.14, since the objective function will vary much 

more rapidly in some directions than in others, an ill-conditioned Hessian is a form of bad 

scaling. This scaling problem may also have an adverse effect on the optimization algorithm 

itself, since the objective may vary extremely slowly along directions associated with a small 

eigenvalue. In this case, changes in the objective that are significant may be lost, and the 

algorithm will have trouble converging to the exact solution. 

The ill-conditioning of the Hessian matrix can be quantified by its condition number given by 

 1
)(
)(

)(
min

max ≥=
H
H

H
λ
λ

κ , (4) 

where λmax(H) and λmin(H) are respectively the maximum and minimum eigenvalues of H. (Note 

that because H is a symmetric matrix its eigenvalues and singular values are the same.) A matrix 

is said to be well-conditioned if its condition number is small (~1), and ill-conditioned if κ is 

large. 

We can therefore ensure that (1) is a well-scaled problem by choosing a linear transformation of 

the design variables that minimizes the condition number of the Hessian matrix at the solution. 

In practice this is done a posteriori: once the algorithm has converged to the calculated optimum, 

the Hessian matrix is inspected and the design variables are scaled if necessary. Experience has 

shown that the approach can be simplified: by considering only the diagonal elements of )(xH  

and scaling each of these to be O(1), the problem becomes sufficiently well scaled. 

Simultaneous Optimization with Commonality 

The MDO framework described in the previous section was altered to allow the simultaneous 

optimization of multiple aircraft with varying levels of commonality. Constraints arising from 

7 
American Institute of Aeronautics and Astronautics 



each of the disciplines were generated for each aircraft in the family. Commonality between 

family members was defined by dividing each plane into components. There were four main 

structural components: centerbody, inner wing, outer wing and winglet as shown in Figure 3. 

Each of these components can be specified to be either common or uncommon between family 

members. If just a particular component is allowed to vary, then the interface with a neighboring 

common component is kept common. An example might be allowing the centerbody to vary 

between family members, but keeping a common wing. In this case, the interface between the 

centerbody and the wing will be kept common. 

Since making parts common is a discrete decision, the effect of varying levels of commonality is 

assessed via trade studies rather than being determined through the optimizer. In the problem 

setup, parts can be made common by either enforcing explicit constraints on their dimensions or 

linking the dimensions so they always have the same value. The ability to link variables was 

added to the Genie framework that supports WingMOD. When a chord at a spanwise location on 

Plane 1 is linked to the corresponding chord on Plane 2, Genie causes changes on either chord to 

be immediately reflected on the other. The optimizer then views each set of linked variables as a 

single quantity. This approach is more efficient than having a design variable for each chord and 

an explicit commonality constraint to force the variables to be equal: it eliminates a design 

variable and constraint for each linked variable, thus reducing the overall size of the combined 

optimization problem. 

Fujita et al.4 state that when the difference between product characteristics is large, two 

independent products must be designed, since “commonalization of parts cannot meet with 

performance requirement, even though it is effective for cutting cost.” They do not attempt to 

quantify a “large difference,” although the examples they discuss (stretching a baseline design to 
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extend range/payload) suggest that the missions of each family member are only incrementally 

different. Using the methodology developed here, a solution can be determined that does satisfy 

all performance requirements, even when the product characteristics are significantly diverse. 

Subsequently, a cost analysis can be applied to determine whether such a design is a viable 

option. 

One approach to designing a common family might be to first optimize one family member and 

then force subsequent family members to share appropriate common features with the 

established planform. For example, in designing a small and a large plane with common 

planforms, one could first optimize the large aircraft, and then construct a smaller aircraft from 

the resulting planform. There are two problems with this approach. First, as pointed out by Fujita 

et al.4, there is no guarantee that the solution obtained from the first optimization will satisfy all 

constraints on other family members. In the two-plane example, it is likely, although not certain, 

that the planform arising from optimizing a large plane will satisfy all requirements on the 

smaller plane. Moreover, adding a third member reduces the likelihood of the optimal large 

plane planform satisfying requirements of all family members. The second issue is that this 

sequential design approach results in a sub-optimal family. For example, by trading some 

optimality on the larger plane, significant improvement could be obtained in the smaller plane, 

resulting in an overall “better” family solution. This raises the issue of what the objective should 

be in the family optimization: should the combined weight of the family be minimized, or should 

the objective be more heavily biased towards a certain family member? The results presented in 

the following section will demonstrate that simultaneous optimization of an aircraft family 

overcomes the limitations of sequential design. A discussion of the choice of appropriate 

objectives will also follow. 
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Family Optimization Examples 

Results will be presented for design of a two-member BWB family. The two aircraft satisfy the 

following mission requirements: 

Plane 1: 8550 nm range, 475 passengers 

Plane 2: 8550 nm range, 272 passengers 

These two planes represent what might be the smallest and largest aircraft of a family with more 

members, i.e. this would be the greatest mission difference of interest. In all cases, the objective 

is to minimize the maximum takeoff weight (MTOW). 

Example 1: Simultaneous Point Optimization of Two Aircraft 

In order to investigate the new multiple-aircraft optimization framework, a test problem was set 

up. The two planes were designed simultaneously, but with no commonality constraints. 

Obviously, the solution to this problem could be obtained by optimizing each plane separately. 

Since the actual solution of the problem can be determined using the conventional approach, 

validation of and insight to the new framework can be gained.  

This example highlights the importance of design variable scaling discussed above. Initially the 

simultaneous design problem was set up by simply concatenating the design variables and 

constraints for each plane, and attempting to minimize the sum of the takeoff weights. This 

combines the 139 design variables and 883 constraints of the small plane with the 150 design 

variables and 973 constraints of the large plane, to generate a system with 289 design variables 

and 1856 constraints. A detailed description of the design variables and constraints can be found 

in Wakayama13. Both single-aircraft problems were also optimized individually to determine the 

minimum-weight solution for each plane. In each individual case, the optimizer converged 
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without difficulty.  Despite identical systems being used in the simultaneous setting with no 

coupling between them, the optimizer could not converge to the correct optimal solution. The 

minimum-weight solution was obtained for Plane 1 (the larger plane); however, the solution for 

Plane 2 was significantly sub-optimal when the algorithm claimed to have converged. At the 

conclusion of optimization, the Genie optimization framework reports finite difference estimates 

for the diagonal entries of the Hessian matrix. This information showed that geometric variables 

associated to Plane 2 were badly scaled because the diagonal entries of the Hessian associated 

with these variables were O(10-2) and O(10-3). In particular, the thickness and incidence angle 

variables for the spanwise elements on the smaller aircraft showed poor scaling. 

These troublesome variables were rescaled, and the simultaneous optimization was performed 

again. Now the optimizer had no trouble converging to a solution that agreed with the 

individually obtained optimal designs. The calculated weights for the final 100 iterations are 

plotted in Figure 4. Shown are the calculated takeoff weights for each plane, normalized by the 

known point-optimum solution. The results are very similar for Plane 1 in both the scaled and 

unscaled cases. In the unscaled case, the solution has converged to a sub-optimum level for 

Plane 2. 

This result suggests that in the simultaneous framework, the optimization algorithm is much 

more sensitive to poor scaling of the design variables. This can be explained mathematically by 

comparing the Hessian matrices of the individual and combined systems. If the Hessian of the 

system for Plane 1 alone is H1 and for Plane 2 is H2, then the Hessian of the combined two-

aircraft system is given by 

  (5) 
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since there is no coupling between the planes. The condition numbers of the single-plane 

Hessians are 

 ( ) 1
min
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1 λ
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and for the combined system: 
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From equation (7) we can see that in the best case the condition number of the combined system 

will be equal to the worst of )( 1Hκ  or , and could in fact exceed both. Note that in 

practice, the full Hessian matrix is not computed, but rather the scaling is determined by 

considering only the diagonal elements of the Hessian; however, considering the eigenvalue 

structure and condition number of the matrix can lend insight to the numerical issues.  

)( 2Hκ

In particular, one can gain an understanding of how poor scaling might affect the convergence of 

the optimization algorithm by considering a simple geometric representation of the problem. 

Consider a system with two design variables. In the SQP algorithm, at each step the design space 

is modeled as a quadratic objective with linear constraints. If we were to plot the objective 

versus each of the design variables, we would obtain a paraboloid as shown in Figure 5. If the 

design variables are perfectly scaled so that the Hessian matrix has a condition number of unity, 

then the cross-sectional slices of the paraboloid are circles. If one (or both) of the variables is 

badly scaled, then the cross sections of the paraboloid are elliptical. In fact, the relative lengths 

of the major and minor axes of the ellipse are described by the minimum and maximum 

eigenvalues of the Hessian matrix.  
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Figure 6 demonstrates how the SQP algorithm might be adversely affected by poor scaling of the 

design variables. In both diagrams, the optimum is located at the origin. In the well scaled case 

(a), the objective contours are circles and the line search moves the solution in the correct 

direction. Now consider the case in Figure 6(b) where design variable x1 is well scaled, but x2 is 

badly scaled. The line search will choose a direction that captures the correct behavior for x1, but 

achieves very little improvement in x2. If the scaling of the problem is sufficiently poor, the 

optimizer will converge to a sub-optimal solution represented by the star in Figure 6(b) where 

the remaining improvement in x2 is difficult to identify. Figure 6(b) describes the BWB example 

very closely. One could consider x1 as representing all design variables for Plane 1 and x2 as 

representing all those for Plane 2. Because the set of variables in x2 was poorly scaled, the 

optimizer achieved the true minimum-weight solution for Plane 1, but converged to a sub-

optimal solution for Plane 2. 

The discussion above describes the effect for the SQP algorithm, which uses a quadratic 

approximation to the design space at each iteration. Other gradient-based optimization methods 

use a different approach to search the design space; however, in general they will also be 

affected by design variable scaling, since computational arithmetic is not exact. Achieving good 

scaling within a problem is an important aspect of applying optimization methods successfully, 

but is often overlooked. 

Example 2: Optimizing a Two-Aircraft Common Family 

We now present results for the two-aircraft family with commonality. The planes are constrained 

to have completely common wings (inner wing, outer wing and winglet in Figure 3), but 

different centerbodies. The interface between the inner wing and the centerbody is also common. 

This example is one family combination that was investigated in a larger study. Varying levels of 
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commonality were considered for the two-aircraft family, including the following: common 

wing, common centerbodies; common wing, distinct centerbodies; common inner wing, common 

centerbodies, distinct outer wing. The question of how to choose the level of commonality is 

very interesting in itself, but will not be addressed here. Instead, the results from the family 

optimization described above will be used to assess the value of the new, simultaneous design 

approach. 

The two-aircraft family was first designed using a conventional, sequential technique. The larger 

plane was optimized for minimum takeoff weight as if it were a point design. The smaller plane 

was then optimized to achieve its minimum takeoff weight, but constrained to have an identical 

wing to its pre-determined larger mate. This resulted in what we refer to as the sequential family 

design. The new optimization framework was used to design the two planes simultaneously by 

minimizing the sum of the takeoff weights, resulting in the simultaneous family design. Table 1 

summarizes the results for the simultaneous optimization. Weights are normalized by the weight 

of the point-design small aircraft (MTOW or OEW as appropriate). The total takeoff weight for 

the simultaneous family is 0.2% less than that of the sequential family. While the percentage is 

small, in actual pounds the reduction is significant. This weight reduction is achieved by a small 

increase in the takeoff weight of Plane 1, which allows a significant decrease in the takeoff 

weight of Plane 2, resulting in an overall better solution. It is interesting to note in Table 1 that 

the empty weight of both aircraft is decreased. 

Further interrogation of the solutions shows how the optimizer has made tradeoffs to achieve this 

weight reduction. The wing area (and hence structural weight) of Plane 1 has been slightly 

reduced at the expense of aerodynamic efficiency. A decrease in structural weight of 0.45% is 

traded for a reduction in average cruise lift to drag ratio of 0.35%. Therefore, the empty weight 
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Table 1: Optimization results for simultaneous family design. Changes in maximum 

takeoff weight (MTOW) and operating empty weight (OEW) are relative to the 

sequential design solution and are normalized by the point-design weight of Plane 2. 

 Total Family Plane 1 Plane 2 

MTOW -0.2% +0.1%  -0.3% 

OEW -0.9% -0.3% -0.6% 

of this aircraft decreases while the total takeoff weight increases. Although this means that the 

takeoff weight for Plane 1 is slightly greater than the point-optimum solution, the reduced wing 

area has very positive benefits for Plane 2. In the sequential design, the constrained wing area for 

Plane 2 is significantly larger than is actually required. Reduction of the area lowers the 

structural weight without compromising aerodynamic efficiency, which means that a further cut 

in weight is achieved via a lowered fuel requirement. 

 

Figure 7 and Figure 8 depict the two different planforms for Planes 1 and 2 respectively. 

Although very little difference can actually be observed, the comparison shows how the 

diminished wing area has been achieved: reduced chords and slightly increased sweep. There are 

a total of 195 constraints active on the two aircraft. A detailed description of which constraints 

are critical can be found in Wakayama13 for a single aircraft optimization. For the family 

optimization example presented in this paper, similar trends were observed. 

Choice of Objective  

When designing more than one aircraft, the objective should be chosen by careful consideration 

of the problem at hand. As mentioned previously, commonality between family members results 
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in a tradeoff between increased operating cost (weight) and reduced acquisition cost 

(manufacturing/development). Ultimately, cost and revenue models will be incorporated to the 

MDO framework and the family will be optimized by maximizing profit rather than by 

minimizing weight. In this expanded framework, the appropriate objective will be clear: 

maximize the overall profit associated to the family. In the current model where we consider 

takeoff weight, it is necessary to choose an appropriate objective that includes a weighted 

contribution from each family member. For a family with Nf members, the objective takes the 

form 

 min  (8) 







∑
=

fN

i
iiWs

1

where 0<si<1 is a weighting factor for the ith plane and Wi is its takeoff weight. In many cases, 

simply minimizing the sum of the family takeoff weights will be a suitable approach (si=1/Nf, i 

=1...Nf). If other factors are taken into consideration, such as relative market demands or 

competing aircraft, then an objective should be chosen which favors the most critical family 

members. The usual caveats apply to using a weighted sum objective function, and a better 

approach, which will be investigated in the future, is to formulate the problem as a multi-

objective system. 

Investigation into the effect of objective weighting factors was performed for the two-plane 

common-wing family. Three optimizations were carried out with varying weighting factors, si, 

on the takeoff weights of each plane. The results are summarized in Table 2.  

Table 2: Optimization results for different objectives. Changes are relative to the 

sequential design solution and are normalized by the point-design MTOW of Plane 2. 
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s1 s2 MTOW 
Plane 1 

MTOW 
Plane 2 

Total 
MTOW 

0.5 0.5 +0.1% -0.3% -0.2% 

0.1 0.9 +0.3% -0.4% -0.1% 

0.9 0.1 +0.05% -0.1% -0.05% 

 

While the first optimization provides the lowest total takeoff weight, the weight of the smaller 

plane can be further reduced by biasing the objective function in its favor. Again, a reduction of 

the aerodynamic efficiency of the large plane is traded for reduced wing area. With a large 

weighting placed on Plane 1, the simultaneous design begins to approach its point-optimal 

solution; however, we note that even with a smaller weight increase of 0.05% on the larger 

aircraft, larger savings can still be made on Plane 2. Note that it is not advised to try a case with 

any si set to zero. The sequential design solution can be approached in the above example by 

making s1 close to unity and s2 close to zero; however, if s2 is chosen to be identically zero, there 

will be a number of design variables with no influence on the objective function, which could 

lead to convergence problems. Within the simultaneous optimization framework, the objective 

choice can be used to rigorously balance the compromise between family members. It would be 

extremely difficult to identify these tradeoffs when working with a sequential design method. 

 

Value Optimization and Analysis 

The above methodology describes an effective way to design multiple aircraft sharing common 

characteristics. However, finding the best possible family design using simultaneous 

optimization does not answer the following question: is commonality desirable, and if so, at what 
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level? This question cannot be answered by considering performance alone. Instead, one must 

determine whether the cost benefits of commonality outweigh the performance penalty incurred. 

In order to achieve this, financial elements must be incorporated to the design framework. 

To date, MDO has been applied primarily in an engineering context, and objectives are typically 

a technical measure of performance such as takeoff weight. With the increasing focus on cost 

and affordability, it is a logical extension to consider lifecycle cost as yet another discipline to be 

incorporated to the multidisciplinary framework. However, this raises the question of what to 

choose as an objective function. Focusing on performance alone does not capture cost 

considerations; however, designing to minimum cost could easily result in an aircraft that is 

unappealing to airlines and thus has a low potential for revenue generation. It is important to 

balance performance and cost in a quantitative way. This can be achieved by introducing the 

concept of value.  

Several definitions of a value metric have been explored for aircraft design2,3. Many candidate 

metrics draw on financial concepts such as net present value. For the purposes of this paper, we 

emphasize that the specific definition of value is flexible. It will vary depending on the 

stakeholder considered and on the particular project at hand. While many value frameworks 

might include performance, cost, and revenue considerations, more general frameworks that 

include other factors, such as noise and emissions, could also be constructed. It should also be 

noted that the concept of value as a metric does not preclude the option to focus exclusively on 

performance, if so desired. 

Figure 9 depicts one possible value framework for design in an MDO context. The performance 

module contains the traditional engineering disciplines that are currently considered in MDO. 

The complete cost module contains all relevant pieces of the lifecycle cost ranging from design 
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and development through manufacture and operation to disposal. Finally, in order to 

quantitatively address the tradeoff between cost and performance, it is necessary to include a 

revenue module. This module relates the performance and cost characteristics of an aircraft 

family to the revenue that can be generated, and may also include factors such as market 

variation and competition. 

In this paper, we begin to assess the value of commonality by considering the development and 

manufacturing cost savings for the family design presented above. The cost model must be 

developed in such a way that the advantages of commonality can be captured and quantified. In 

order to effectively achieve this, a shift in thinking is required: rather than considering a fleet to 

be composed of various aircraft, it must be thought of as composed of various parts. (Here, a part 

is taken to be a sub-assembly, which can range in size and complexity.) For example, a fleet 

might be thought of as comprising 25 of Aircraft 1 and 50 of Aircraft 2, with details on the part 

breakdown and content captured at a secondary level for each of these aircraft.  Here we take a 

different approach--the fundamental constituents of the fleet are not aircraft, but rather parts.  For 

example, the fleet might be thought of as comprising 25 of Part A, 50 of Part B, 75 of Part C, and 

so on.  Part A would be unique to Aircraft 1, Part B unique to Aircraft 2, and Part C common to 

both.  In this way, one considers not the design and manufacture of aircraft, but rather the design 

and manufacture of the parts. A part can also range in size and level of detail. For example, a 

part could be an entire wing, or it could be a particular rivet on the wing. Moreover, it is not 

necessary that the level of detail be constant throughout the model.  

For the results presented here, a simple weights-based costing method was used. In the cost 

model, each part has certain properties associated with it, including its weight, geometric data, 

and cost information. For each part, costs per pound were defined in the categories shown in 
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Table 3. Within each category of recurring cost, the costs may be further broken down. For 

example, labor may be further divided into fabrication, major assembly, minor assembly, and 

assembly and integration. The level of detail can vary according to the information available. 

Calculating aircraft component cost as a linear function of weight is a simple approximation and 

more sophisticated cost estimating relationships will be investigated in the future. Although the 

baseline component costs vary linearly with weight, the total cost is built up as a summation of 

these baseline values modified by learning curve and commonality effects. The total 

development and manufacturing costs of the aircraft are thus not simple linear functions of total 

weight. 

Table 3: Categories for recurring and non-recurring cost. 

Recurring Cost Non-Recurring Cost 

Labor Engineering 

Support Tool Engineering 

Materials & Equipment Tool Fabrication 

 Other 

 

Cost Analysis of Two-Aircraft Family 
 
Representative development and manufacturing costs for the two-aircraft family designed in the 

previous section will be presented here. Two options are considered: the simultaneously 

optimized family with common wings and minimum combined takeoff weight, and the point-

design family in which each aircraft is designed for minimum takeoff weight. The takeoff weight 

penalties of the common family compared to the point designs are approximately 0.05% for 
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Plane 1 and 2% for Plane 2, where the percentages are relative to the combined takeoff weight of 

the point-design family. 

Figure 10 shows notional design and manufacturing program costs for the aircraft family. Design 

of the family begins in year Y0 and production begins in year Y1. Production rates are assumed 

constant at 50 units per year for Plane 1 and 100 units per year for Plane 2. In the beginning of 

the program, cost savings are realized for the common family, since design work and tooling 

requirements are reduced. During production, further benefit is obtained from commonality due 

to increased learning curve effects; however, the baseline unit cost of the common family is 

higher due to increased wing weight. For the notional example shown, the benefits outweigh the 

cost penalty. Note that this plot is a strictly hypothetical case to describe the kind of output the 

cost analysis might generate, and is not intended to represent actual BWB costs. 

As demonstrated, the cost tool enables the development and manufacturing cost of various 

design options to be assessed and compared; however, the question of what level of commonality 

is desirable has still not been answered. To completely close the loop between performance and 

finance, a revenue model is required to estimate the penalty associated with the lower 

performance common family. The value of commonality may then be assessed by comparing this 

penalty with the cost savings such as those depicted in Figure 10. This is the subject of ongoing 

research. Furthermore, the cost analysis shown here is performed a posteriori once the 

simultaneous optimization has been completed (based only on performance considerations), and 

thus the cost analysis has no direct impact on the simultaneous optimization framework. In an 

expanded framework, financial models will be a part of the optimization so that they can impact 

the optimal family solution directly. 

Conclusions 
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Simultaneous optimization of multiple aircraft offers considerable benefit to the design process. 

By designing family members with common parts, substantial savings can be realized in 

manufacturing and development costs. The simultaneous optimization methodology presented 

here not only ensures that a common design can be found which satisfies all constraints on each 

family member, but also determines the best overall family solution by applying appropriate 

tradeoffs between aircraft. The results presented demonstrate that a common solution can be 

found even when mission requirements differ significantly between family members. Substantial 

weight savings can be achieved by designing family members simultaneously and allowing the 

optimizer to make apt tradeoffs. 

In order to determine the most appropriate level of commonality between aircraft family 

members, financial models must be developed and applied to the problem. Much benefit can be 

gained through expanding the role of MDO in aircraft design and incorporating non-engineering 

disciplines, such as cost and revenue. A cost model has been developed that can be applied to a 

multiple aircraft family to determine the cost benefits of commonality. Preliminary cost analysis 

indicates that the weight penalties incurred by the common design are more than offset by 

savings in manufacturing and development cost. A revenue model is currently under 

development, which will enable the tradeoff between cost and performance to be quantified more 

accurately. It is also desirable to close the design loop and allow financial considerations to feed 

back and impact engineering design decisions. In future work, the cost and revenue models will 

be incorporated to the MDO framework in such a way that the optimizer can make decisions 

based on performance, cost, and revenue.  
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Figure 1: Blended-Wing-Body. 
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Figure 2: WingMOD BWB Model. 
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Figure 3: Modular structural breakdown of BWB. 
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Figure 4: Objective history for optimization algorithm. Shown are the calculated weights 

for each plane over the last 100 iterations, normalized by the appropriate point-optimum 

solution. 
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Figure 5 : Quadratic approximation to a two-dimensional design space. 
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Figure 6: Geometric interpretation of QP line search. (a) Well scaled and (b) badly scaled 

cases. 
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Figure 7: Planforms for Plane 1: wings common with Plane 2, centerbody optimized. 

Sequential (black line) and simultaneous (gray shade) designs. 

30 
American Institute of Aeronautics and Astronautics 



 

 

Figure 8: Planforms for Plane 2: wings common with Plane 1, centerbody optimized. 

Sequential (black line) and simultaneous (gray shade) designs. 

31 
American Institute of Aeronautics and Astronautics 



 

Cost 
Module 

 

Optimize 
for value  

Performance 
Module 

 

Revenue 
Module 

 

 

Figure 9: Expanded MDO framework integrates performance, cost and revenue 

considerations. 
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Figure 10: Notional recurring and non-recurring costs for two-plane family. 
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