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Abstract

A linear reduced-order aerodynamic model is developed for aeroelastic analysis of turbomachines.

The basis vectors are constructed using a block Arnoldi method. Although the model is cast in

the time domain in state-space form, the spatial periodicity of the problem is exploited in the

frequency domain to obtain these vectors eÆciently. The frequency domain proper orthogonal

decomposition is identi�ed as a special case of the Arnoldi method. We show an application where

the aerodynamic model is coupled with a simple structural model that has two degrees of freedom

for each blade. The technique is applicable to viscous and three-dimensional problems as well as

multi-stage problems with inlet and exit disturbance ows, although here results are presented for

two-dimensional, inviscid ow through a twenty-blade single-stage rotor. In this case, the number

of states of the model is on the order of ten per blade passage, making it appropriate for control

applications.
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1 Introduction

With the current trend towards increased operating speeds and more exible blading, aeroelasticity

has become a critical consideration in the design of compressors. Understanding and predicting

aeroelastic phenomena are crucial to ensuring that a compressor will operate within stability bound-

aries, and thus has a large impact on the design process. Appropriate blade design, together with

strategies for controlling the onset of instabilities, can signi�cantly impact the stable operating

range, potentially leading to better compressor performance. In addition, understanding high cycle

fatigue is important to prolong engine lifetimes.

Aeroelastic phenomena involve a complicated interaction between the aerodynamics and the

structural dynamics of the blades. Typically, very simple aerodynamic models have been used for

aeroelastic analyses of turbomachinery. The ow is usually assumed to be two-dimensional and

potential [1]. These methods are useful near design conditions but inadequately predict the ow

o�-design, as blade loading e�ects become important [2]. The simple models are also inapplicable

to transonic ows where shock dynamics play a signi�cant role in determining the aerodynamic

response. Transonic ow in a blade passage can be determined by numerically solving the unsteady

Euler or Navier-Stokes equations using computational uid dynamics (CFD) methods, however such

techniques are generally too computationally expensive to use for unsteady analyses, especially if

the full rotor and more than one blade row need to be considered. More eÆcient methods for

time-varying ow can be obtained if the disturbances are small, and the unsteady solution can

be considered to be a small perturbation about a steady-state ow [3]. In this case, a set of

linearized equations is obtained which can be time-marched to obtain the ow solution at each

instant. However for control applications, any of the CFD based techniques will generate models

with a prohibitively high number of states.
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Reduced-order modelling for linear ow problems is now a well-developed technique and is

reviewed in [4]. The basic idea is to project the high-�delity CFD solutions onto a set of basis

functions which span the ow solution space eÆciently. Models are obtained which retain the high-

�delity aerodynamics of the CFD analysis, but which have a greatly reduced number of states. One

possibility for a basis is to compute the eigenmodes of the system. This can lead to eÆcient models

and the eigenmodes themselves often lend physical insight to the problem. However, typical problem

sizes are on the order of tens of thousands of degrees of freedom per blade passage even in two

dimensions, and solution of such a large unsymmetric eigen-problem is in itself a very diÆcult task.

The proper orthogonal decomposition technique (POD) has been developed as an alternate method

of deriving the basis functions [5] [6] and has been widely applied to many di�erent problems. An

eÆcient frequency domain use of the POD has been developed for solution of turbomachinery

ows [7]. Since the basis vectors are obtained from solutions of the system, the reduced-order

model produced by the POD is only applicable to ows very similar to those considered in the

construction of the model. This raises an issue if the model is to be applied in a control framework,

as we expect the dynamics to di�er between the controlled and uncontrolled systems, even if the

linearization assumption still applies [8].

In this paper an Arnoldi-based method is developed which provides an alternative to both the

eigenmode and the POD approaches. The Arnoldi algorithm can be used to generate basis vectors

which form an orthonormal basis for the Krylov subspace [9]. The full set of Arnoldi vectors spans

the same solution space as the system eigenvectors, however the Arnoldi vectors are much easier

to compute since each vector requires only a single system solve, while the eigenvectors must be

obtained via an iterative process. An eÆcient reduced set of basis vectors can be constructed

by considering both inputs and outputs of interest. Pad�e-based reduced-order models have been

developed for linear circuit analysis using the Lanczos process [10]. This approach matches as many
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moments of the system transfer function as there are degrees of freedom in the reduced system.

While the Arnoldi vectors match only half the number of moments as the Pad�e approximation,

they preserve system de�niteness and therefore often preserve stability [11].

Generation of reduced-order models from the two-dimensional linearized Euler equations will

be considered here, however the approach is extendable to three-dimensional and viscous models

if the underlying CFD model were available. Spatial periodicity of the problem is exploited in the

frequency domain to obtain the reduced-space basis eÆciently. However the model itself will be

developed in the time domain and cast in state-space form, and the resulting reduced-order model

will have roughly ten states per blade passage. Simulation in the time domain allows for arbitrary

forcing to be considered. It also enables the aerodynamics to be easily incorporated within a global

engine model or coupled to an active control model. The small size of the reduced-order model

makes it amenable to control design and mistuning analyses, and also allows for the full rotor to

be considered and for the analysis of multi-stage problems.

In Section 2 of this paper the underlying CFD model will be described. Some techniques for

deriving reduced-order models will be discussed in Section 3 and the reduction algorithm using

the Arnoldi method will be presented and compared to the POD approach which is identi�ed as a

particular case of the Arnoldi method. Model reduction results will be presented in Section 4 for a

twenty-blade transonic rotor. The performance of the aerodynamic model will be compared to both

the linearized CFD simulation and the POD method by considering a forced response problem. The

aerodynamic reduced-order model will also be coupled to a simple two degree of freedom structural

model for each blade and the coupled aeroelastic system behaviour investigated. Finally, in Section

5 we present some conclusions.
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2 Computational Model

2.1 Non-Linear Model

Consider an arbitrary two-dimensional time-varying control volume 
(t) with boundary �(t). The

Euler equations governing the unsteady, two-dimensional ow of an inviscid compressible uid can

be written in integral form as

@

@t

Z


Wdxdy +

I
�
(Fnx +Gny) d� = 0; (1)

where nx and ny are unit vectors pointing out of 
, W is the unknown vector of conserved variables

given by

W = (�; �u; �v; e)T (2)

and F and G are the inviscid ux vectors given by

F =

0
BBBBBBBBBB@

�(u� xt)

p+ �u(u� xt)

�v(u� xt)

pu+ e(u� xt)

1
CCCCCCCCCCA

G =

0
BBBBBBBBBB@

�(v � yt)

�u(v � yt)

p+ �v(v � yt)

pv + e(v � yt)

1
CCCCCCCCCCA
: (3)

Here �; u; v; p and e denote density, cartesian velocity components, pressure and total energy re-

spectively. xt and yt are the speeds in the x and y directions with which the boundary �(t) moves.

Also, for an ideal gas the equation of state becomes

e =
p

 � 1
+

1

2
�(u2 + v2); (4)
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where  is the ratio of speci�c heats.

To obtain a rectilinear two-dimensional representation of the cascade, the rotor is unwrapped in

the circumferential direction as shown in Figure 1. For the uppermost and lowermost blades in the

cascade representation, the boundaries extending upstream from the leading edge and downstream

from the trailing edge are periodic. Since they coincide in physical space, a condition is enforced

that the ow along the upper periodic boundary is the same as that along the lower periodic bound-

ary. The governing equations are discretised using a �nite volume formulation on an unstructured

triangular grid covering this computational domain and approximations to the unknown ow vector

W are sought at the vertices of that grid. For an interior vertex j, equation (1) can be written

d

dt
(VjWj) +

Z
�j

(Fnx +Gny)d� = 0; (5)

where Vj is the volume consisting of all the triangles having vertex j, �j is the boundary of Vj and

Wj represents the average value of W over volume Vj . The integral in equation (5) is evaluated by

considering weighted summations of ux di�erences across each edge in the control volume [12]. At

boundary vertices, some of the ow variables are prescribed via appropriate boundary conditions.

These prescribed quantities are contained within the vector Ub, while the remaining unknown ow

quantities are contained in the vector U. For interior nodes the components of the unknown vector

U are the conservative ow variables (2), while for boundary nodes a coordinate transformation to

other appropriate ow quantities is performed. The particular transformation depends on which

ow quantities are to be speci�ed via the boundary condition at that node.

Evaluation of (5) at each node combined with appropriate variable transformations leads to a

large set of non-linear ordinary di�erential equations for the unknown ow vector U, which can be

written as

dU

dt
+R(U;Ub;x) = 0; (6)
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where R(U;Ub;x) represents the non-linear ux contributions which are a function of the problem

geometry x, the ow solution U and the boundary conditions Ub.

We consider unsteady motion in which each blade can move with two degrees of freedom. For

blade i the bending displacement (plunge) is denoted by hi and torsion about an elastic axis (pitch)

by �i. In general, blade shape deformations could also be included. The grid geometry x depends

directly on the positions of the individual blades, that is for r blades

x = x(h1; �1; h2; �2; :::; hr ; �r): (7)

At the passage inlet and exit we prescribe constant ow conditions, however ows with unsteady

disturbances in the passages could be considered in an analogous way. For the speci�ed quantities,

we can therefore write

Ub = Up(q; _q); (8)

where q is a vector containing the plunge and pitch displacements for each blade

qi = [hi �i]
T ; (9)

and Up(q; _q) contains the appropriate prescribed quantities.

2.2 Linearised Model

Steady-state solutions can be evaluated by driving the non-linear residual R(U;Ub;x) in (6) to

zero, however to integrate the full non-linear equation in time for unsteady ows is computation-

ally expensive, especially if the disturbances considered have circumferential variation. If we limit

ourselves to the consideration of small amplitude unsteady motions, the problem can be consider-

ably simpli�ed by linearising the equations. We assume that the unsteady ow and grid geometry

are small perturbations about a steady state

U(x; t) = U(x) +U0(x; t)
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Ub(x; t) = Ub(x) +U0
b(x; t)

x(t) = x+ x0(t); (10)

and that the blade motions q and _q are small. Performing a Taylor expansion about steady-state

conditions, for the unknown ow variables the non-linear residual in (6) can be written

R(U;Ub;x) ' R(U;Ub;x) +
@R

@U
(U;Ub;x)U

0 +
@R

@Ub

(U;Ub;x)U
0
b +

@R

@x
(U;Ub;x)x

0: (11)

Using the fact that R(U;Ub;x) = 0 and assuming that the perturbations are small so that quadratic

and higher order terms in U0, U0
b and x

0 can be neglected, the linearised form of equation (6) is

dU0

dt
+

@R

@U
U0 +

@R

@Ub

U0
b +

@R

@x
x0 = 0; (12)

where all derivatives are evaluated at steady-state conditions. Note that due to the linear as-

sumption, the grid is not actually deformed for unsteady calculations, however the �nal term on

the left-hand side of equation (12) represents the �rst order e�ects of grid motion. Likewise, the

boundary conditions can be linearised to obtain

U0
b =

@Up

@q
q+

@Up

@ _q
_q: (13)

We can further simplify the system by condensing U0
b out of (12) using (13) and writing the grid

displacement as a linear function of blade displacement

x0 = Tq; (14)

where T is a constant transformation matrix. The �nal set of ordinary di�erential equations then

becomes

dU0

dt
+

@R

@U
U0 =

�
�
@R

@x
T �

@R

@Ub

@Up

@q

�
q�

@R

@Ub

@Up

@ _q
_q; (15)

which can be written equivalently as

dU0

dt
= AU0 +Bu: (16)
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Here u = [q _q]T is the input vector containing the displacement and velocity of each blade, and

the matrix B contains the appropriate forcing terms of equation (15).

To determine the unsteady response of the cascade, the inputs u(t) are speci�ed (note that

in an aeroelastic analysis these inputs would be provided by the structural model as discussed in

Section 4) and the large system (16) is time-marched to determine the resulting ow. Often we

are not interested in obtaining the actual ow itself, but in relevant output quantities. These are

typically the forces and moments acting on the blades, but could be any feature of the response.

We de�ne an output vector y as

y = CU0; (17)

which for the analysis presented here contains the aerodynamic force and moment acting on each

blade. C is a matrix containing the geometric contributions to the force calculation.

3 Reduction Using Congruence Transforms

The idea behind developing a reduced-order aerodynamic model is to project the large space used by

a high-�delity CFD model, such as that described in the previous section, onto a lower dimensional

space which is characterized by a set of basis vectors. If these vectors are chosen so as to accurately

span the solution space, the model behaviour can be captured with just a few states. In this

way a low-order, high-�delity aerodynamic model can be obtained. There are several options

available for selecting the basis vectors, a few of which will be outlined here. It is desirable to

choose an orthogonal set of vectors, as the resulting congruent transformation preserves the system

de�niteness, and therefore often preserves system stability.

If the set of q orthonormal basis vectors are contained in the columns of the matrix Vq, a qth
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order approximation to the perturbation solution can be made by assuming

U0 = Vqz; (18)

where z(t) is the reduced-order aerodynamic state vector. Substituting this representation of U0

into the linearized governing equations (16) and premultiplying the system by V T
q , we obtain the

reduced-order system

dz

dt
= V T

q AVqz+ V T
q Bu: (19)

Writing the reduced-order matrices as Ar = V T
q AVq and Br = V T

q B, it is clear from (19) that the

de�niteness of the original system has been preserved. This can be seen by considering an arbitrary

vector v, then

vTArv = vTV T
q AVqv = (Vqv)

T A (Vqv)
T : (20)

So the reduced system matrix Ar has the same de�niteness as the original matrix A. A negative

de�nite matrix implies that all the eigenvalues have negative real part and the aerodynamic system

is stable. In this case, if the original system is stable, so will be the reduced-order model. We note

that this property is not preserved in transforms of the form Ar = W T
q AVq where Wq and Vq are

bi-orthogonal.

3.1 Eigenmode Representation

An obvious choice might be to compute the eigenmodes of the large matrix A and to form the

basis with the eigenvectors whose eigenvalues fall within the frequency range of interest. This

approach has been taken for many problems, especially in structural dynamics where the matrices

are generally symmetric and the eigenmodes are easy to compute. In uid problems however,

the eigenmodes of the very large matrix A are much more diÆcult to compute. Even in two

dimensions it was found that for the full Euler equations the matrix was badly conditioned and
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that the eigenmodes su�ered from non-normality problems [13]. In addition, for a non-symmetric

problem, both the right eigenvectors Vq and the left eigenvectors Wq must be computed, and the

reduced matrix representation is of the form Ar = W T
q AVq. Although this is not a congruent

transformation, a basis is obtained which preserves system stability, since the eigenvalues of the

reduced-order model are a subset of the original system eigenvalues.

3.2 Proper Orthogonal Decomposition

The POD is a popular alternative to the eigenmode approach for determining a reduced-space

basis. Typically, a time simulation of the system for a characteristic unsteady ow is performed

and instantaneous solutions or snapshots are obtained at selected times. These snapshots are then

combined to produce an orthogonal set of basis vectors which represents the perturbation solution

U0 in some optimal way. More speci�cally, the basis vectors 	 are chosen so as to maximize the

following cost [5]:

max
�

hj(U0;�)j2i

(�;�)
=

hj(U0;	)j2i

(	;	)
; (21)

where (U0;	) denotes the scalar product of the basis vector 	 with the �eld U0(x; t) and h i

represents a time-averaging operation.

A POD approach to developing reduced-order models for turbomachinery problems is presented

in [7] and is summarized here. To avoid performing a time simulation of the large linearized system

(16), the forcing is decomposed into spatial and temporal Fourier modes, and advantage is taken

of the fact that the governing equations are linear to consider each of these modes separately. The

temporal variation of the forcing can be viewed as a superposition of harmonic components each

at a frequency !. This harmonic displacement of the N blades, u, can then be thought of as

11



comprising a superposition of N travelling wave modes [14]. This can be written for blade k as

uk =
N�1X
r=0

ure
i(!t+(k�1)�r) (22)

where the ur are complex coeÆcients. Here, �r is given by

�r =
r2�

N
(23)

and is the interblade phase angle for the rth travelling wave. It describes the phase di�erence

between the motion of a given blade and its neighbour [3]. Note that this does not mean we are

restricted to consideration of sinusoidal motions, since by superposing these modes, any arbitrary

disturbance in space and time may be represented.

Consider the component of blade motion at temporal frequency !k and spatial frequency �j .

The corresponding motion of the �rst blade can be written as

ujk1 (t) = ujk1 e
i!kt; (24)

where ujk1 contains the magnitudes of the blade position and velocity. The motion of any blade r

can then be written in terms of the motion of the �rst blade as

ujkr (t) = ujk1 e
i(r�1)�j ei!kt: (25)

The corresponding ow solution in each passage will also be harmonic of the form

Ujk
r (t) = U

jk

1 e
i(r�1)�j ei!kt; (26)

with the same spatial frequency �j because all blades have the same aerodynamic shape and so

the jth spatial forcing only excites the jth spatial aerodynamic response. Here the vector Ur

represents the unknown perturbation ow variables associated with blade r. In addition, since each

U
jk

contains a single spatial frequency, if the response of the �rst blade is known, then the response
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of all subsequent blades can be determined by using (26). The governing equations can therefore

be discretized on a single blade passage making the computation much more eÆcient than a time

domain calculation. The linearized Euler equations (16) can now be cast in the frequency domain

on a single passage as

[i!k �Aj ]U
jk

1 = Bu
jk
1 ; (27)

where Aj represents the original matrix A for just one passage, but modi�ed to allow for a complex

periodicity condition which captures the e�ect of neighbouring blade passages without directly

including them in the model [13]. Speci�cally, the complex periodicity condition enforces the fact

that the ow along the upper periodic boundary is the same as that along the lower periodic

boundary but shifted in phase by the interblade phase angle �j .

Resulting solutions of the frequency domain CFD equations (27) provide an image of the ow

at each temporal frequency !k, for each spatial frequency �j . The real and imaginary parts of this

image form the snapshots for the POD analysis. Although far more eÆcient than a POD analysis

in the time domain, this approach requires the factorisation of the matrix [i!k �Aj ] for each pair

of frequencies. For a typical bladed disk, the cost of generating the snapshots can be high if a large

frequency range is to be considered. Another issue with the POD approach is that it is necessary

to arbitrarily specify a set of sample frequencies. Typically some knowledge will be available on the

range of frequencies expected to be present in the system response, and the POD will be sampled

over this range. However it is also necessary to choose exactly which frequencies will be sampled

within this range. If samples are placed too far apart, important system dynamics may be missed; if

they are placed too closely together, a large number of matrix factorisations and solves is necessary

and so the cost of generating the model becomes high.
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3.3 Arnoldi-Based Model Order Reduction

An approach which can be thought of as a compromise between the eigenmode and POD methods

is developed in this section. While the basis is easy to compute, some of the issues associated with

the sampling requirements in the POD are addressed. Our basic goal is to obtain a reduced system

which has many fewer states than the original system, can be computed with a reasonable cost, but

which still represents the original system's dynamics accurately. One approach to ensuring accurate

representation of system dynamics is to try to match the transfer functions of the reduced and the

original systems. Several di�erent matching criteria are possible. Here we describe a process based

on matching moments of the transfer function.

Consider �rst a single input, single output system

_U0 = AU0 + bu; y = cTU0: (28)

The transfer function between input u(t) and output y(t) is

H(s) = cT (sI �A)�1b; (29)

which can also be represented as a rational function

H(s) =
N(s)

D(s)
; (30)

where the numerator N(s) and denominator D(s) are both polynomials in s. A qth order Pad�e

approximation to the transfer function is de�ned as

Hq(s) =
bq�1s

q�1 + :::+ b1s+ b0

aqsq + aq�1sq�1 + :::+ a1s+ 1
: (31)

The 2q coeÆcients of the Pad�e approximation, aj , bj , can be selected so as to match the �rst 2q

terms in a McLaurin expansion of the transfer function (29). We can write

H(s) = �
1X
k=0

mks
k; (32)

14



where

mk = cTA�(k+1)b (33)

is the kth moment of H(s). A qth order Pad�e approximation can be constructed via the Lanczos

process and will match the �rst 2q moments of H(s) [10].

An alternative approach is to use the Arnoldi method to generate a set of vectors which spans

the qth order Krylov subspace de�ned by

Kq(A;b) = spanfA�1b; A�2b; :::; A�qbg: (34)

The set of q Arnoldi vectors matches q moments of the system transfer function, that is half the

number matched by the Pad�e approximation, however since the Arnoldi approach has the advan-

tage of generating a congruent transformation, in many cases it generates models with guaranteed

stability. It is possible to reduce systems with multiple inputs using the block Arnoldi method. For

example, if we consider a system with two inputs u1 and u2,

_U0 = AU0 + b1u1 + b2u2; (35)

then the block Arnoldi method is used to generate vectors which span the Krylov subspace

Kq(A;b1;b2) = spanfA�1b1; A
�1b2; A

�2b1; A
�2b2; :::; A

�qb1; A
�qb2; g: (36)

We also note that it is not necessarily the �rst q moments which must be matched. If we were to

consider a Taylor series expansion of the transfer function about some non-zero value of s, a model

could be obtained which would give a better approximation of the system dynamics for higher

frequencies near the chosen value s. These multiple frequency point Arnoldi methods are described

in [15].

In order to calculate the basis, we consider input vectors which correspond to a particular

blade having a unit displacement or velocity and all other blades �xed. Although vectors must be
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constructed for each of theN blades being perturbed in turn, the calculation need only be performed

once, with the remaining N �1 vectors constructed through symmetry considerations. Once again,

we can use linearity to decompose this forcing into a set of orthogonal modes each containing a

single spatial frequency, and the calculation for each of these modes can be performed on a single

blade passage. For expansions of the transfer function about s = i!k, solutions of the complex

frequency domain equations (27) must be obtained. The resulting solutions are then combined via

an inverse Fourier transform to obtain the �rst blade basis vector. Vectors for subsequent blades

are computed through use of symmetry. Further simpli�cation can be obtained by noting that for

expansions about s = 0, the set of Arnoldi vectors for spatial frequencies � and �� are complex

conjugates of one another. The algorithm for the single input, single output case expanded about

!k is shown below.

Algorithm 3.1 (Arnoldi Method)

arnoldi(input A;b; !k; qk; N; output Vqk)

f

for (j = 1; j <= N ; j++) f

Factor [i!k �Aj ]

Solve [i!k �Aj]v1 = b

for (k = 1; k < qk; k++) f

Solve [i!k �Aj ]w = vk

for (i = 1; i <= k; i++) f

h = wTvi

w = w� hvi

g

vk+1 =
w

jjwjj
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g

V
j
qk = [v1:::vqk ]

g

g

Given the complete set of basis vectors Vq, we substitute the projection ofU
0 (18) into the governing

equations (16) and (17) to obtain the reduced-order system (19) which can be written as

dz

dt
= Arz+Bru; y = Crz: (37)

The choice of qk in the above algorithm is an open question. In the examples presented in

the following section, we have selected the number of basis vectors by comparison with known

solutions. The value of qk is chosen to be suÆciently high so that the CFD result is captured by

the reduced-order model with a desired level of accuracy.

One can see the similarities between the POD approach and the multiple frequency point Arnoldi

method. In fact, solving the system (27) at J frequencies to obtain the POD snapshots results in

an identical data set as taking J frequency points and computing a single Arnoldi vector at each

point (the subsequent orthogonalisation procedure di�ers between the two methods). Very eÆcient

models could be constructed by considering a range of frequencies and using the POD analysis

to choose the basis vectors, but also computing more than one vector at each frequency as in the

Arnoldi approach. One must evaluate the relative gain in choosing a higher number of frequency

points, since by far the most expensive part of the calculation is the factorisation of the matrix in

solving the linear system. In the Arnoldi approach, the matrix is computed and factored just once

for each !k and �j , but as outlined in the Algorithm 3.1, qk vectors are obtained per factorisation.

As mentioned previously, for the POD a di�erent matrix must be factored for every solve.
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4 Results

Reduced-order models have been developed for subsonic and transonic cascades operating with

general unsteady blade motion. A DFVLR L030-4 transonic rotor which operates at a steady-

state inlet Mach number of 0.82 was analysed in unsteady plunging motion for a twenty-blade

con�guration. Figure 2 shows the grid for two passages of this rotor. The steady-state solution

is shown in Figure 3. The CFD computational grid for twenty passages would have 71940 grid

points, which corresponds to 287760 unknowns. Clearly a time-domain computation of this size

is very expensive, however we will show that the cascade dynamics can be accurately captured

by the reduced-order model with less than ten states per blade passage. Several examples will be

considered. The �rst three are for the aerodynamic model alone (structural motion is prescribed).

Of these, the �rst and second examples, although unrealistically simpli�ed, are chosen so that CFD

simulation results can be obtained and used to evaluate the accuracy of the reduced-order model.

Finally, an example will be presented which illustrates the coupling between the aerodynamic

reduced-order model and a structural model.

4.1 Aerodynamic Reduced-Order Model for Transonic Cascade

Forced response of the cascade to a pulse input is a good assessment of the model's capability, since

a pulse contains a continuous spectrum of temporal frequencies. Comparison of reduced-order

modelling predictions with results from the full simulation code (if these results were available)

would determine how many modes are required to accurately capture the system dynamics. The

input takes the form

h(t) = he�g(t�t0)
2

; (38)
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where g is a parameter which determines how sharp the pulse is and thus the value of the highest

signi�cant frequency present.

As mentioned, it would be very expensive to perform a time simulation of the linearized CFD

code on the full rotor. However, if all blades are supplied with the same pulse input, a motion

results in which only an interblade phase angle of zero is present. This problem can be solved

using the linearized simulation code with just a single passage, thus providing the data to assess

the performance of the reduced-order model when a range of forcing frequencies is present. Two

Arnoldi reduced-order models were constructed using basis vectors calculated only about s = 0

(!k = 0 in Algorithm 3.1). These models contained four and six modes for the interblade phase

angle under consideration (qk = 4 and qk = 6 respectively in Algorithm 3.1). The calculated non-

dimensional vertical component of force response on each blade as a function of time is depicted in

Figure 4. It shows that excellent agreement is obtained with only a handful of states in the reduced-

order model. Even in this highly limited case of a single interblade phase angle, the simulation

code has 14388 unknowns and so the reduced-order model represents a signi�cant improvement.

This same case was considered using a reduced-order model constructed with the POD technique

described in [7]. The POD samples were made at ten equally spaced reduced frequencies over the

range k = 0 to k = 1:22 for each interblade phase angle. This frequency range spans the important

content of the pulse for a value of g = 0:01. The response calculated with the POD reduced-

order model is also shown in Figure 4. Although the POD response is more accurate than the

Arnoldi response with four modes, with six modes the Arnoldi model is very close to the linearized

simulation response, while the POD slightly underpredicts the force at both peaks.

For this problem, a total of two hundred matrix factorisations were performed to obtain the

POD snapshots (ten sample frequencies for each of twenty interblade phase angles). In comparison,

just eleven matrix factorisations were required for the Arnoldi reduced-order model since all vectors
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were computed about s = 0. The Arnoldi-based model is an order of magnitude cheaper to obtain

than the POD model, and also does a better job of predicting the response. In addition, the POD

reduced-order model is restricted to responses containing frequencies within the (arbitrary) sample

range. The Arnoldi-based model contains no such restriction, although more modes will be required

if ows containing higher frequencies are to be modelled. In this case, one might choose to use a

multiple frequency point method as described earlier. The reduced-order models obtained using

the POD method are very sensitive to the choice of sample frequencies. As mentioned previously,

it is necessary to ensure not only that the correct range is sampled, but also that enough samples

are performed over this range, or the system dynamics will not be accurately captured. Because

more than one vector is computed at each frequency in the Arnoldi method, the dynamics can

be captured without considering many frequency points (one can liken the Arnoldi approach to

computing higher-order \derivatives" at each frequency point). An appropriate choice of frequency

points can reduce the required size of the reduced-order models, but is not necessarily required to

capture system dynamics, as the example presented here demonstrates.

The reduced-order model was also used to calculate forced response of the twenty-blade cascade

to sinusoidal motion at an interblade phase angle of 90Æ. The linearized CFD solution can be

obtained for this ow using just a single passage in the frequency domain. The calculated force on

the �rst blade is shown as a function of time in Figure 5. The results for the reduced-order model

with twelve, sixteen and twenty states for this interblade phase angle are compared to those obtained

from the CFD frequency domain code. (Note that the frequencies � and �� are considered together

when the model is constructed, so these correspond respectively to six, eight and ten states per

blade passage.) The results obtained with twenty modes in the reduced-order model are virtually

indistinguishable from the CFD. The required size of the Arnoldi reduced-order model for this case

is a little larger than that found to be necessary for the POD approach, which typically used around
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twelve modes for a purely sinusoidal motion. However, the POD snapshots were generated using

sinusoidal motions, so we expect them to predict such a response very eÆciently. As seen with the

pulse response described above, the Arnoldi approach does a much better job with general inputs

as there is no assumed relation between position and velocity when forming the modes.

A case was then considered where just one blade was forced with the pulse input, while all

others were held �xed. This motion contains all possible interblade phase angles. The response for

each blade was computed using the Arnoldi reduced-order model with 196 aerodynamic states. The

inputs and response of each blade are shown in Figure 6. This computation was far too expensive

to be carried out with the linearized simulation code. It is clear from the plot that the largest force

is generated on the disturbed blade and its nearest neighbours, as might be expected intuitively.

We can see that beyond the two closest blades the force generated is very small.

4.2 Structural Coupling

For analysis of forced response, the blade motion inputs uj are speci�ed and the system (37) is

time-marched to determine the resulting aerodynamic response. For a coupled analysis, equations

of motion describing the structural states must be included in the reduced-order model. We might

be interested in investigating the stability of the coupled system, or in determining the overall

response to a perturbation in blade position. The structural model could be a complicated system

(for example a reduced-order structural model derived from a �nite element analysis) or a simple

model (for example a very low-order mass-spring model). We consider here a simple mass-spring-

damper structural model where each blade can move in plunging motion with a natural frequency

of !h as shown in Figure 7. For plunge only, the structural equations of motion for each blade with
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mass m and chord c can be written as

d

dt

2
4hj
_hj

3
5 =

2
4 0 1

�(kM)2 �2kM�

3
5
2
4hj
_hj

3
5+

2
4 0

2M2

��

3
5Cj

l ; (39)

or in matrix form,

_u = Su+ Ty: (40)

In the above, the reduced frequency is de�ned in terms of the plunge natural frequency k = !hc
V
,

� is the structural damping coeÆcient and � = 4mi

��c2
is the blade mass ratio. C

j
l = yj is the lift

coeÆcient for blade j, and M and V are the inlet Mach number and axial velocity respectively.

This structural model is then coupled to the aerodynamic reduced-order state-space system (37).

The coupled system is as follows :

2
4 _z

_u

3
5 =

2
4 Ar Br

TCr S

3
5
2
4 z
u

3
5 : (41)

At each timestep the structural and aerodynamic equations are thus solved simultaneously to

determine the blade position and velocity and the aerodynamic forces acting.

The eigenvalues of the tuned coupled system (41) for a reduced frequency of k = 0:25, no struc-

tural damping and a mass ratio of � = 100 are shown in Figure 8. We observe some movement of

the original aerodynamic eigenvalues due to interaction with the structure, and also the introduc-

tion of forty structural modes with frequencies around the natural frequency kM = 0:205. A zoom

of these structural eigenvalues is shown in Figure 9.

A time-marching simulation of the coupled system was run with k = 0:25 and � = 0. An initial

plunge displacement was applied to one of the blades, then the coupled structural and aerodynamic

response for the entire rotor was computed. Figure 10 shows the resulting displacement and lift

force for each blade. Clearly the disturbed blade (blade 3) exhibits the largest response. The

resulting motion is decaying, although slowly since the coupled system is lightly damped.
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5 Conclusions

A new method of producing reduced-order models for turbomachinery has been demonstrated.

This method provides an excellent alternative to the eigenmode and POD approaches to reduced-

order modelling. The basis vectors are constructed eÆciently by applying the Arnoldi method to

the frequency domain governing equations, while development of the model in the time domain

allows for ease of coupling to actuation and control models and provides a convenient framework

for integration within more global engine models. The framework developed is particularly suited

to the analysis of mistuned rotors where the interblade phase angles do not decouple and the

entire rotor must be considered. It is also straightforward to extend this approach to viscous and

three-dimensional ows if the underlying CFD model is available.

The Arnoldi basis has the bene�ts of an eigenmode approach in that it models the dynamics

of the original high-order system, but it is much more straightforward to compute. The Arnoldi-

based models are much cheaper to compute than those constructed using the POD since one matrix

factorisation can be used to obtain many basis vectors, and are in general applicable to a wider

range of ows. It is also possible to use Arnoldi methods with multiple frequency points to obtain

eÆcient models which are valid for ows containing higher frequencies, however the models obtained

are less sensitive than POD-based models to the choice of sample frequencies. In addition, outputs

of interest can be included in the criterion for selecting the basis vectors, and further improvement

can be obtained by post-processing the resulting reduced-order models using a truncated balanced

realisation.
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Figure 1: Rectilinear two-dimensional representation of cascade. Inlet boundary (1), exit boundary
(2), blade surfaces (3) and periodic boundaries (4).

Figure 2: Computational domain for two blade passages, DFVLR transonic rotor. 3597 nodes,
7040 triangles per blade passage.

Figure 3: Pressure contours for steady inviscid transonic ow. M = 0:82, � = 58:5Æ.

Figure 4: Pulse response for Arnoldi and POD reduced-order models and linearised simulation
code. � = 0Æ, g = 0:01, M = 0:82.

Figure 5: Forced response of �rst blade to sinusoidal motion using Arnoldi reduced-order model
and CFD frequency domain code. � = 90Æ, ! = 0:5, M = 0:82.

Figure 6: Pulse displacement input at blade 3 (dashed line) and blade lift force response (solid line)
for Arnoldi reduced-order model. 196 aerodynamic states, g = 0.01, M = 0.82

Figure 7: Typical section structural model for plunging motion of blade i.

Figure 8: Eigenvalue spectrum for coupled system. 196 aerodynamic states, 40 structural states.
M = 0.82, � = 100; k = 0:25; � = 0:

Figure 9: Zoom of structural eigenvalues. M = 0.82, � = 100; k = 0:25; � = 0:

Figure 10: Coupled system response to an initial plunge displacement input at blade 3 : blade
displacement (dashed line) and blade lift force (solid line). � = 100; k = 0:25; � = 0:


