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Sleipner Platform Failure

e Sank in August 1991, causing an event registering 3.0 on the
Richter scale and leaving nothing but a pile of debris at a depth of

220m L .
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Sleipner Platform Failure

e Sank in August 1991, causing an event registering 3.0 on the
Richter scale and leaving nothing but a pile of debris at a depth of

¢ Sinking traced to a failure of a concrete
tricell

e FEM performed with NASTRAN under-
estimated shear stresses by 47%

e More precise simulation of under-
designed component predicted failure
at 62m

e Actually sank at 65m
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Basic Question

How do we know if the answer computed with a FE
code is correct!?

1 l.e. consistent with the mathematical model
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code is correct!?

given that:
¢ the solution may not be “well behaved”
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Basic Question

How do we know if the answer computed with a FE
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¢ the solution may not be “well behaved”
e We may not have similar solutions to compare
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Basic Question

How do we know if the answer computed with a FE
code is correct!?

given that:
¢ the solution may not be “well behaved”
e We may not have similar solutions to compare
e We may not have access to the source code
e the code may no longer exist !!

1 i e. consistent with the mathematical model
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Basic Question

How do we know if the answer computed with a FE
code is correct ?

= Provide a Certificate
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What is a Certificate?

Certificates

A data set that documents a given claim
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- What is a Certificate?
Certificates

A data set that documents a given claim

e Can be used to rigorously proof correctness
e Simple to exercise

e Stand alone - access to the code used to compute it
not required

e [he stronger the claim the “longer” the certificate
(usually)
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Current Paradigm

Certificates

COMPUTATIONAL
CODE

UNCERTAINTY ...

- ALGORITHM
- SOFTWARE

—> | SOLUTION
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- Proposed Paradigm
Certificates

COMPUTATIONAL
CODE
—>» | SOLUTION
_|_
CERTIFICATE
_|_
A-POSTERIORI
BOUNDS
Wi e ACDL, April 2005
I Technology ’ p”




- Proposed Paradigm
Certificates

SOLUTION

n } CERTAINTY
CERTIFICATE T GUARANTEED !!

I I I H B Massachusetts
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Examples

Certificates Polynomial Bounds

Given a polynomial F(x), « € IR"

Claim: F(x) > ~, Vx
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Examples

Certificates .
Polynomial Bounds

Given a polynomial F(x), « € IR"

Claim: F(x) > ~, Vx

Certificate : Polynomials fi(x),..., fi.(x) s.t.

F(z)—v =Y fi(x) (SOS)
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Examples

Certificates .
Polynomial Bounds

Given a polynomial F(x), « € IR"

Claim: F(x) > ~, Vx

Certificate : Polynomials fi(x),..., fi.(x) s.t.
F(x) —v = Z fi(x)  (SOS)
() S (F@) - = 3 f@

1=n-+1

10
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Examples

Certificates

Bounds for solutions of IVP...

Given ¢ = f(x,t), x(0) = x,
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Examples

Certificates

Bounds for solutions of IVP...

Given ¢ = f(x,t), x(0) = x,

Claim: x=(T) <~
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Examples

Certificates |
Bounds for solutions of IVP...

Given ¢ = f(x,t), x(0) = xy, (f(x,t) polynomial)

Claim: =(T) <~
Certificate : Polynomial function B(x, t) s.t.
Bi(z,t) + Ba(z,t) f(z,t) <0,  Vax,t

B(xr,T) > B(x,0) , Vg > ~
Parrilo, Doyle, ...

11
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Examples

Certificates _
..Bounds for solutions of IVP..

Bi(x,t) + Ba(w,t) f(w,t) <0,  Va,t

B(z7,T) > B(xo,0), Ver >
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Examples

Certificates _
..Bounds for solutions of IVP..

~

B(x,t) < B(x,0)

Bi(x,t) + Ba(w,t) f(w,t) <0,  Va,t

B(z7,T) > B(xo,0), Ver >
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Certificates

Given:

T — px

x(0) €

p <

mEm Massachuse
Itttof
Technology

0.85, 0.95]

0.05, 0.2]

Examples

...Bounds for solutions of IVP
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Examples

Certificates
...Bounds for solutions of IVP

Given:

T — px

z(0) € [0.85,0.95]

p € [0.05,0.2]

x(2) ; 2.0, 2.5]
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Examples

Certificates
...Bounds for solutions of IVP

Given:

. 3 e e o |
L — P | Barrier function B(x,t) Separating level set :

z(0) € [0.85,0.95] .

p € [0.05,0.2]

z(2) € [2.0,2.5]

N Em Massachusetts .
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Objective

Compute Certificates for Bounds of Outputs of
PDE’s
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Objective

Compute Certificates for Bounds of Outputs of
PDE’s

e Work with quantities of interest

e Work with equations of interest

e Guarantee certainty even for low cost
e Cost effective

| tt t f ACDL, Apl’ll 2005
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Objective

Examples

Elasticity

Non-regular solution (Plane Stress)

R OUTPUTS
[ -
x E g b(u) = | ,uds
5| F b(u) = - t,ds
(0,0) o ’

H B Massachuse
Itttof
Technology
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What can we do
Today?

Linear Functional Outputs for:
- Linear Convection-Diffusion-Reaction Equation
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What can we do
Today?

Linear Functional Outputs for:

- Linear Convection-Diffusion-Reaction Equation
- Linear Elasticity Equations
- Stokes Equations

Collapse Loads in Limit Analysis
Energy Release Rates in Linear Elasticity

usetts

H B Massach .
U s ACDL, April 2005
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Outline

e Problem Description
e Method Overview

1.- Bounds for Energy

2.- Bounds for “Arbitrary” Outputs

3.- Bounds for “Arbitrary” Equations

4.- Domain Decomposition (Hybridization)

e Method Summary and Examples

e Extension to a non-linear Convex Problem: Limit
Analysis

U e ACDL, April 2005
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Problem
Description

Let u(xz) € X, z € Q C IR, be the solution of a PDE

Au=f.

eg. A=-V3 -V24+U.V,etc.

We are typically interested in outputs of the form

e.g.

Itttf
Technology

s=4L(u) €R

L(v) = v(xy), l(v) = /Q, v, dx,

ACDL, April 2005
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Problem
Description

e u(x) is not computable (co— dimensional)
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Problem
Description

e u(x) is not computable (co— dimensional)

e In practice, we compute approximation @ (x), such
that ||u — u|| = C(— 0) (as cost increases — oo ).

- For a given u, C' is unknown, and, any output
approximation s = £(w), is uncertain.

20
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Problem
Description

e u(x) is not computable (co— dimensional)

e In practice, we compute approximation @ (x), such
that ||u — u|| = C(— 0) (as cost increases — oo ).

- For a given u, C' is unknown, and, any output
approximation s = £(w), is uncertain.

e EXisting error estimates are either,

- certain but uncomputable, or,
-computable but uncertain.

U e ACDL, April 2005
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Problem Approach

Description

Compute Strict upper and lower bounds for functional
outputs of the Exact solutions of PDE'’s
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Problem Approach

Description

Compute Strict upper and lower bounds for functional
outputs of the Exact solutions of PDE'’s

.and give Certificates

21
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Method 1.- Energy s = J(u)
Overview

Poisson’s Equation: Find uw € X (€2)
—Vu = f(z), =€ Q, (+ b.c.s)

N
0Q(u = 0)

“Energy” functional: J(v) : X — IR
J(v) = /Qva - Vvdx — Z/vadaz

i ™ ACDL, April 2005

gy
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Method
Overview

Minimization formulation

veX

In tt t f ACDL, Apl’ll 2005
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1.- Energy

Minimization

min J(v) = J(u) :—/Qufda:
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Method 1.- Energy s = J(u)
Overview Minimization

J(v) 3

<— J(u) = min J(v)
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Method 1.- Energy s = J(u)
Overview Upper Bound

Upper bound st = J(up), Vup € X, C X

( trivial )
J(v)
J(up) = mln J(v)
/ vEXp
<— J(w) = min J(v)
X1
Xp

In tt t f ACDL, Apl’ll 2005
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Method 1.- Energy s = J(u)
Overview Lower Bound...

Lower bound s~ ( harder)

Construct dual problem

(J(u) =) J(p) = max J(q) ,

In tt t f ACDL, Apl’ll 2005
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Method
Overview

S — min
veEX

HEEl Mas
Itttf
Technology

1.- Energy s = J(u)

...Lower Bound...

/Q(va . Vv —2vf)dx

ACDL, April 2005
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Method
Overview

1.- Energy s = J(u)

...Lower Bound...

S = min Q(va Vv —2vf)dxe (q = Vv)

veX

— min max
veX q€eqQ

HEEl Mas
Itttf
Technology

/Q(—q-q+2q-Vv —2vf)dr

ACDL, April 2005
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Method 1.- Energy s = J(u)
Overview ...Lower Bound...

s =min | (Vv-:-Vv—-2vf)dx (q= Vv)
veX JO

= minmax/(—q-q—l—Zq-Vv—va)dac
veX qeqQ JO

> maxmin/(—q-q—l—Zq-V'v—va)da:
qgeQ veX JQ

| tt t f ACDL, Apl’ll 2005

Technology
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Method 1.- Energy s = J(u)
Overview ...Lower Bound...

p— 1 °V —2 d :V
S {)Iél)l{l/ﬂ(V’U v vf)dx (q V)
— mi —q - 2q - Vv — 2 d
{}é{,rgr;leagfﬂ( q-q+2q-Vv—2vf)dx
> ' / —q-q+2q-Vv—2vf)d
> max min (—4-a+2q-Vv—2vf)da
—max | —q-qdx
qgeQ s JQ

Qf:{qEQ|/Qq-Vvdm:/ﬂfvdaz, Vv € X }

~V-q=f

26
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Method 1.- Energy s = J(u)
Overview ...Lower Bound...

w
|

e W)

1 —q - 2g - Vv —2vf)dx
ggg;qggg;[;( q-q+2q f)

1 —q - 2g - Vv — 2vT)dx
qﬁggvggg}/g( q-q+2q f)

Vv

max J°€
max (q)

Qf:{qEQ|/Qq-Vvdm:/ﬂfvdaz, Vv € X }

~V-q=f

27
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Method 1.- Energy s = J(u)
Overview ...Lower Bound...

or, in a different way ... /Q(q—V'v)2deO,‘v"v€X,qEQ
/q-qdw—Z/Qq-Vvda:—l—/QV'v-V'vdwZO, Vv e X,q € Q
Q

/q-qdm—Q/fvda:—l—/QV'v-VvdacZO, Vv € X,q € Qy
JQ /O _

"

—J(q) -+ J(v) >0, Vv € X,q € Qy

Qf={q€Q|/Qq°Vvdw=/vadw, Vve X} (=V-.-g=f)

J(v) 2 J(q), VveE X,q€Qy

I I I H B Massachusetts

I Institute of ACDL, Ap”l 2005

Technology
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Method
Overview

Duality

HEEl Mas
Itttf
Technology

1.- Energy s = J(u)

...Lower Bound...

1 J(v)

ACDL, April 2005
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Method 1.- Energy s = J(u)
Overview ...Lower Bound...

Then, s™ = J%pr), Vpn € (Qf)n C Qy .

J(v)

“—J (un) = min J(v)

\ \
X1,(Qyf)1

Xy (Qf)n J¢(pr) = max J°(q)
q<(Qf)n

J(q)

U e ACDL, April 2005
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Method 1.- Energy s = J(u)
Overview ...L.ower Bound

Idea :

We can exchange an infinite dimensional
minimization problem by a finite dimensional
feasibility problem while retaining the bounding

property

U ACDL, April 2005
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Method
Overview

HEEl Mas
Itttf
Technology

1.- Energy s = J(u)

Lower Bound - Summary

Given —V2u = f(z)
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Method 1.- Energy s = J(u)
Overview Lower Bound - Summary

Given —V2u = f(z)

Claim:s:J(u)z—/Qufda: > s

In tt t f ACDL, Apl’ll 2005

Technology

32



Method 1.- Energy s = J(u)
Overview Lower Bound - Summary

Given —V2u = f(z)

Claim:s:J(u)z—/Qufda: > s

Certificate : Any pr, € (Qf)rn C Q¢ S.t. s = J(pp)
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Method 1.- Energy s = J(u)
Overview Lower Bound - Summary

Given —V2u = f(z)

Claim: s = J(u) = —/Qufda: > s
Certificate : Any p, € (Q¢)rn C Qf S.t. s™ = J%pn)

Recall:
~{a€Q| [ a-Vvde= [ fvdz, WweX} (-V-q=7F)

| tt t f ACDL, Apl’ll 2005

Technology
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Method 2.- General Outputs s = £(u)
Overview

Find s = €(u), where u € X (2) (Y(v) = /Qfofv dx)
—Vu = f(z), = € Q, (4+ b.c.s)

U e ACDL, April 2005
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Method 2.- General Outputs s = £(u)
Overview

Find s = €(u), where u € X (2) (Y(v) = /Qfofv dx)

—Vu = f(z), = € Q, (4+ b.c.s)
of,
/Q(Vu-Vv—fv)dm:O, Vv € X

H Em Massachusetts .
U s ACDL, April 2005
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Method 2.- General Outputs s = £(u)
Overview

Find s = €(u), where u € X (2) (Y(v) = /Qfov dx)

—Vu = f(z), = € Q, (4+ b.c.s)
of,
/Q(Vu-Vv—fv)dm:O, Vv € X

Modified Energy : £(v) : X — R
E(v) = /QV’U - Vodx — /ﬂffvda:

H Em Massachusetts .
U s ACDL, April 2005
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Method 2.- General Outputs s = £(u)
Overview

Find s = €(u), where u € X (2) (Y(v) = /Qfov dx)

—Vu = f(z), = € Q, (4+ b.c.s)
of,
/Q(Vu-Vv—fv)dm:O, Vv € X

Modified Energy : £(v) : X — R
S(U)E/QV’U°V”UdZB—/vada? = E(u) =0

34
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Method
Overview

s =L(u) =

Itttf
Technology

Jo(Vo - Vi —

2.- General Outputs s = £(u)

Lagrangian

min l(v)
v e X

fo)de =0,V € X

ACDL, April 2005
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Method
Overview

s =L(u) =

IIII Itttf
Technology

Jo(Vo - Vi —

2.- General Outputs s = £(u)

Lagrangian

min L(v) +E(v)
v e X

fo)de =0,V € X

ACDL, April 2005
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Method 2.- General Outputs s = £(u)

Overview Lagrangian

s =4f(u) = min L(v) +E(v)

v E X
Jo(Vv -V — fop)de =0,V € X

Lagrangian : L(v,®) : X X X — R
L(v,$) = E(v) + £(v) + | (Vv VY — f¢)) da

Wi e ACDL, April 2005

Technology
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Method 2.- General Outputs s = £(u)
Overview Lagrangian

s =4f(u) = min L(v) +E(v)
v e X

Jo(Vv -V — fib)de =0,V € X

Lagrangian : L(v,®) : X X X — R
L(v,$) = E(v) + £(v) + | (Vv VY — f¢)) da

s = L(u) = min m$X L(v, )

35
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Meth o_d 2.- General Outputs s = £(u)
Overview Lower Bound...
Weak duality + Relaxation
s = f(u) = min max L(v, )

HEEl Mas
Itttf
Technology

(&

Vv

max min L(v, 1)

> mvinL(v,vﬁ), Vi € X

ACDL, April 2005
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Method 2.- General Outputs s = £(u)
Overview ...Lower Bound...

L(v,xﬁ):/QVv-Vvdw—/ﬂfvda:

+£(v) + [ (Vo V§ — i) da

| tt t f ACDL, Apl’ll 2005

Technology
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Method 2.- General Outputs s = £(u)
Overview ...Lower Bound...

L(v,xﬁ):/QVv-Vvdw—/ﬂfvda:
+£(v) + [ (Vo V§ — i) da

For a given v, L(v, v), contains quadratic and linear
terms in v

| tt t f ACDL, Apl’ll 2005

Technology
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Method 2.- General Outputs s = £(u)
Overview ...Lower Bound...

L(v,xﬁ):/QVv-Vvdw—/ﬂfvda:
+£(v) + [ (Vo V§ — i) da

For a given v, L(v, 1), contains quadratic and linear
terms in v = identical to J(v) (for an appropriate f;).

L(v,vﬁ):/QVU-Vvdw—Z/Qﬁ;vdw—/ﬂf@dw

H Em Massachusetts .
U s ACDL, April 2005

gy
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Method 2.- General Outputs s = £(u)
Overview ...Lower Bound

Idea :

Write output as a constrained minimization problem.
Relax constraint to obtain an energy-like minimization
problem. Obtain lower bound by finding a feasible
solution of the dual problem.

In tt t f ACDL, Apl’ll 2005
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Method 2.- General Outputs s = £(u)
Overview Upper Bound

Define £,.(v) = —£(v) and compute,
s, < £i(u)

In tt t f ACDL, Apl’ll 2005
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Method 2.- General Outputs s = £(u)

Overview Upper Bound
Define £,.(v) = —£(v) and compute,
s, < Li(u)
st = > —Ly(u) = €(u)

U e ACDL, April 2005
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Method 2.- General Outputs s = £(u)

Overview Upper Bound
Define £,.(v) = —£(v) and compute,
s, < £i(u)
st = > —Ly(u) = €(u)
ldea:

Upper Bound for £(v) = — Lower Bound for

U e ACDL, April 2005

Th Igy

—£(v)
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Method
Overview

EEm Mas
Itttf
Technology

2.- General Outputs s = £(u)

Summary

Given —V2u = f(z)
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Method 2.- General Outputs s = £(u)
Overview Summary

Given —V2u = f(z)

Claim: s™> s =4f(u)> s~
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Method 2.- General Outputs s = £(u)
Ovel‘VieW Summary

Given —V2u = f(z)

Claim: s™> s =4f(u)> s~

Certificate: ¢ € X, C X,
Py € (Qs+)n C Qy+,
Pr € (Qs-)n C Q-

U e ACDL, April 2005
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Method 3.- Non-symmetric equations

Overview

_V2u —I- U ° V’U, p— f(CL'), xr € Q,

U ACDL, April 2005

(+ b.c’s)
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Method 3.- Non-symmetric equations
Overview

—V*u+U-Vu=f(x), x €, (4+ b.c.s)
of,

/Q(Vu-Vfu—l—(U-Vu)’v—fv)dw:O, Vv € X

42
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Method 3.- Non-symmetric equations

Overview

—V?*u+U-Vu=f(z), z€Q,
of,

/Q(Vu - Vv + (U - Vu)v — fv)dx

Modified Energy : £(v) : X — R
E(v) = /QV’U - Vuodx — /ﬂfvda:

N Em Massachusetts .
U s ACDL, April 2005

gy

0,

(+ b.c.s)

Yv € X
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Method 3.- Non-symmetric equations
Overview

—V*u+U-Vu=f(x), x €, (4+ b.c.s)
of,

/Q(Vu-va—l—(U-Vu)’v—fv)dw:O, Vv € X

Modified Energy : £(v) : X — R
8(’0)5/9V’U-Vfudaz—/ﬂfvda: = E(u) =0

H B Massach .
U s ACDL, April 2005

gy
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Method
Overview

s =L(u) =

Itttf
Technology

3.- Non-symmetric equations

Lagrangian...

min £(v)
vEeEX

Jo(Vo-V+(U - Vo)ip—fp) de = 0,V € X

ACDL, April 2005
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Method
Overview

s =L(u) =

Itttf
Technology

3.- Non-symmetric equations

Lagrangian...

min L(v) +E(v)
veEeX

Jo(Vo-V+(U - Vo)ip—fp) de = 0,V € X

ACDL, April 2005 43




Method 3.- Non-symmetric equations
Overview Lagrangian...

s =4f(u) = min l(v) +E&(v)
vEeE X

Jo(Vo-Vp+(U - Vo)p—fi) doe = 0,V € X
Lagrangian : L(v,®) : X X X — R
L(v, ) = E(v) + £(v) + Jo(VV - VY + (U - Vo) — f) dae

43
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Method 3.- Non-symmetric equations
Overview Lagrangian...

s =4f(u) = min l(v) +E&(v)
vEeE X

Jo(Vo-Vp+(U - Vo)p—fi) doe = 0,V € X
Lagrangian : L(v,®) : X X X — R
L(v, ) = E(v) + £(v) + Jo(VV - VY + (U - Vo) — f) dae

s = L(u) = min max L(v, )

43

i e ACDL, April 2005
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Method 3.- Non-symmetric equations
Overview ...Lagrangian

Idea :

Non-symmetric terms do not contribute to the
“energy” and only enter in the Lagrangian linearly.
After relaxation, minimization problem retains convex
structure.

U ACDL, April 2005

Technology
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Overview

1. Primal problem: u;, € X
Aup = f

N Em Massachusetts .
i = ACDL, April 2005
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Overview
1. Primal problem: u;, € X

Aup = f

2. Dual problem: ¥ € X,
Ap = £O, (¢v) = | v da)

U e ACDL, April 2005

Technology
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Overview

3. Domain decomposition (Equilibration) — A

Global Solution

@& B @

Equilibrated Solution

B

U e ACDL, April 2005

Technology
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Overview

4. Obtain lower bounds for local minimization problems

_|_ —

— S S

.and piecewise polynomial certificates

U e ACDL, April 2005
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Overview

4. Obtain lower bounds for local minimization problems

+ g

.and piecewise polynomial certificates

H 8

5. It can be shown that the bound gap can be written as

st —s™ = Z A,

TeETH
with A, > 0

.= Adaptlwty

U e ACDL, April 2005

Technology
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Convection-Diffusion

Examples

u: 0.10.20.30.40.50.60.7 vy -7.1x10% -4.7x10% -2.3x10™

Solution Adjoint

I I I H B Massachusetts

II Institute of ACDL, Aprl| 2005

Technology




Convection-Diffusion

Examples
Adaptive Solution

Agep = 0.0005 s = 0.00370 = 0.00049

S pe
DS
WA~

BTSN
4" 2\
‘mg§§%>VAV
S

X

VYAV,
\VAVAVA\V,

VAVAVAY
AVATAYA

S
AR
QD
UK
SEERAARK

X

LR
NASER X

Gap: 0.0074 0.0134 0.0194 0.0254 0.0314 0.0374

Uniform refinement would require 6356 elements

Wi e ACDL, April 2005

Technology

50




Elasticity

Examples
Test problem
Find v € X such that
: —> V.o(u)=0
Z o(u)  n=y =1L

¢

Exact Solution:
U = (233:‘/9 _V(y2 — wz)/(Z)‘)v (CE, y) S [07 L]2

51

U e ACDL, April 2005
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Elasticity

Examples
Linear Functionals

f(u) = /:L yuids (= L'/3)\)

0

0.65 10

—&— FE Approximation/Lower Bound
—— Upper Bound

067 —— Bound Average

0.55¢

Output

0.35¢

3 — Error: (UB-LB)/(UB+LB)

‘ ‘ ‘ ‘ ‘ ‘ 10 ‘
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 1 02 10 1
Mesh diameter, h

I I I H B Massachusetts

I Institute of ACDL, Ap”l 2005

Technology
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Elasticity

Examples
Energy Release Rates...

Total Potential Energy
1
H(v) — 5(1(”0,’0) — (fa ’U) — (gv ’U>

Displacement solution « minimizes II(v)

. 1 1
ST ) = —atuw = —

30

PrEFTseees

20

O

53
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Elasticity

Examples
Energy Release Rates...

Total Potential Energy
1
H(v) — ia(va ’U) — (fa ’U) — (gv ’U>

| Displacement solution « minimizes II(v)
S P 1

PrEFTseees

. 1
L I(u) = —Ca(u,u) = —[|[ul]]
30 Energy Release Rate J(u)
| OIl(u) = —J(u) Y4

TEEEEEEEE

.. £ crack Iength

53

U e ACDL, April 2005
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Elasticity

Examples
...Energy Release Rates...

Given (an approximate) solution u g, e =u—ug
J(u) = T (ug) + 6Tu(ugse) + T (e)

In tt t f ACDL, Apl’ll 2005

Technology
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Elasticity

Examples
...Energy Release Rates...

Given (an approximate) solution u g, e =u—ug
J(u) = T (ug) + 6Tu(ugse) + T (e)

0T, (ug;e)linear - L~ < 8J,(ug;e) < LT
o J(e) quadratic — |T(e)| < nylllel||* = @Q

54
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Elasticity

Examples
...Energy Release Rates...

Given (an approximate) solution u g, e =u—ug
J(u) = T (ug) + 6Tu(ugse) + T (e)

0T, (ug;e)linear - L~ < 8J,(ug;e) < LT
o J(e) quadratic — |T(e)| < nylllel||* = @Q

T =J(ug) —Q+L <J(u) <J(ug)+Q+LT=J"

N Em Massachusetts .
U s ACDL, April 2005

gy
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Examples

Elasticity

...Energy Release Rates...

Mixed mode crack problem (Plane Strain, v = 0.3)

“
>

‘A
<

Massachusetts
Institute of
Technology

A

R

f
¢ <45
/ \
\,/4/ Crack tip

<« 10—

v vy

a P

ACDL, April 2005
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Examples

Elasticity

...Energy Release Rates...

HEE Mas
Itttf
Technology

ACDL, April 2005 56




Elasticity

Examples
...Energy Release Rates
Mesh size H H/2 H/4 H/8 H/16
J(ug) 41722 5.3889 5.9313 6.1325 6.2034
nlllell]?  10.79021 3.4107 0.8012 0.1829 0.0411
J~ -16.8051  -3.3567 3.3228/5.4447 6.0829
TT 34.6587 17.1489 9.3096 7.0083 6.4621

H B Massachusetts
I Institute of

Technology

ACDL, April 2005
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Nonlinear Limit Analysis

Extension

Compute Bounds on the Collapse Load under the
assumption of rigid-plastic material behavior

Linear vs. Rigid-Plastic
O (o)
q/

E E

In tt t of ACDL, Apl’l| 2005

Technology
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Nonlinear
Extension

a(o,v) = /QO' : €(v) dx

gv ds
BlIY)

F(v) = /Qf'v dr +

Xr={v e X|F(v) =1}

S = {o|f(c) < oy}

, |0 if f(o) < oy
=(v) = {ngg if f(o) =oy

H B Massac husetts
Institute of
Technology

ACDL, April 2005

Limit Analysis

Formulation

max %)
do € XY

a(o,v) = pF(v),Yv € X

= min max a(o,v)
veEXp oeX

= max min a(o, v)
ocl veXp

max a(o,v) — Upper Bound

min a(&,v) — Lower Bound
’UEXF

59




Limit Analysis

Nonlinear
Extension Outline

e By choosing appropriate piecewise polynomial
interpolations for v and o we can obtain strict upper
and lower bounds on ¢

U ACDL, April 2005

Technology
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Limit Analysis

Nonlinear
Extension Outline

e By choosing appropriate piecewise polynomial
interpolations for v and o we can obtain strict upper
and lower bounds on ¢

¢ Discrete minimization/maximization problems are
convex (SOCP) and solved (globally) with an [PM

60

U e ACDL, April 2005
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Limit Analysis

Nonlinear
Extension Outline

e By choosing appropriate piecewise polynomial
interpolations for v and o we can obtain strict upper
and lower bounds on ¢

¢ Discrete minimization/maximization problems are
convex (SOCP) and solved (globally) with an [PM

e o — o~ can be decomposed into elemental
contributions — Adaptivity

60

U e ACDL, April 2005
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Nonlinear
Extension

e Cantilever Beam in Plane Stress

Limit Analysis

Examples...

vy

In tt t f ACDL, Apl’ll 2005

Technology
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Nonﬁngar
Extension

H B Massachusetts
I Institute of
Technology

Limit Analysis

...Examples...

RN
P VAVA"N A N

wﬂﬂ‘%’v’&%‘%ﬁﬂ
K R RSN

N
‘
N

A

N
'i?\x
\\

AV
\A
Yoy,

7
ARG (N
A RSN
DL R
AN
CED

Vv,
avd

UNIFORM

R ]

L TREORAN

B S
R RN N/

"/‘%’5 ,ﬁﬁ:,,m;‘& DRSS N
& % 3

“ s

VAVASYG

AVAVZAYZ:

FAVAVY

Vv

ADAPTED

ACDL, April 2005
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Limit Analysis

Nonlinear
Extension ..Examples...
Uniform Mesh
Number | Number | Low. Bound | Upp. Bound | Bound | Low. Bound | Upp. Bound
of refin. | of elem. LB AUB Gap Ay | Error (%) Error (%)
0 34 0.52186 0.75759 | 0.23573 23.821 10.591
1 136 0.65432 0.71936 | 0.06503 4.484 5.010
2 544 0.68079 0.69704 | 0.01624 0.620 1.752
3 2176 0.68349 0.68983 | 0.00634 0.226 0.699
4 8704 0.68440 0.68662 | 0.00223 0.093 0.231
Adaptive Mesh
Number | Number | Low. Bound | Upp. Bound | Bound | Low. Bound | Upp. Bound
of refin. | of elem. LB AUB Gap Ay | Error (%) Error (%)
0 34 0.52186 0.75759 | 0.23573 23.821 10.591
1 90 0.65782 0.71951 | 0.06169 3.973 5.032
2 300 0.68079 0.69704 | 0.01625 0.620 1.752
3 882 0.68349 0.68989 | 0.00640 0.226 0.708
4 2450 0.68440 0.68667 | 0.00227 0.093 0.238
H E Massachusetts .
I Insitute of ACDL, April 2005
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e Uniform bounds on

H B Massachusetts
I I Institute of
Technology

ACDL, April 2005
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Conclusions

¢ Uniform bounds on
¢ Relevant engineering outputs (linear functionals) of

H B Massachuse

Institute of ACDL, Apl’ll 2005

Technology
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Conclusions
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e Exact weak solutions of linear PDEs, with a

e Stand-alone certificate of precision, including
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Conclusions

e Uniform bounds on

¢ Relevant engineering outputs (linear functionals) of
e Exact weak solutions of linear PDEs, with a

e Stand-alone certificate of precision, including

e Non-symmetric operators, using

H B Massachuse

Institute of ACDL, Apl’ll 2005
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Conclusions

e Uniform bounds on

¢ Relevant engineering outputs (linear functionals) of
e Exact weak solutions of linear PDEs, with a

e Stand-alone certificate of precision, including

e Non-symmetric operators, using

e Standard FE solutions and purely local
subproblems.

H B Massachuse

Institute of ACDL, Apl’ll 2005

Technology

64




Conclusions

H B Massachusetts
I I Institute of
Technology

Certificates allow to

ACDL, April 2005

65



_ Certificates allow to
Conclusions

e Standardize the use of more accurate and safer
mathematical models (e.g. construction codes)
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Conclusions

e Standardize the use of more accurate and safer
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_ Certificates allow to
Conclusions

e Standardize the use of more accurate and safer
mathematical models (e.g. construction codes)

e Eliminate costlier-than-necessary computations

e Allow for true black boxes that can be used by
non-experts in numerical analysis
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_ Certificates allow to
Conclusions

e Standardize the use of more accurate and safer
mathematical models (e.g. construction codes)

e Eliminate costlier-than-necessary computations

e Allow for true black boxes that can be used by
non-experts in numerical analysis

e Document computations

H B Massachuse

Institute of ACDL, Apl’ll 2005

Technology
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_ Certificates allow to
Conclusions

e Standardize the use of more accurate and safer
mathematical models (e.g. construction codes)

e Eliminate costlier-than-necessary computations

e Allow for true black boxes that can be used by
non-experts in numerical analysis

e Document computations
e Address software error issues

H B Massachuse

Institute of ACDL, Apl’ll 2005

Technology
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e Exploit Discontinuous Galerkin Discretizations

H B Massachusetts

Institute of ACDL, Ap”l 2005

I I Technology
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Current Work

e Exploit Discontinuous Galerkin Discretizations
¢ Time dependent parabolic problems
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e Exploit Discontinuous Galerkin Discretizations
¢ Time dependent parabolic problems
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Current Work

e Exploit Discontinuous Galerkin Discretizations

¢ Time dependent parabolic problems

° M—PDE’S

e Non-coercive operators with positivity constraints on
the solution

H B Massachuse

Institute of ACDL, Apl’ll 2005

Technology
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Current Work

e Exploit Discontinuous Galerkin Discretizations

¢ Time dependent parabolic problems

° M—PDE’S

e Non-coercive operators with positivity constraints on
the solution

e Deformation theory of plasticity

Recent papers can be found at:
http://raphael.mit.edu

In tt t f ACDL, Apl’ll 2005

Technology
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Limit Analysis
Current Work

Compute Bounds on the Collapse Load under the
assumption of rigid-plastic material behavior

Linear

03

vs. Rigid-Plastic

o

q/

HEE Mas
Itttof
Technology

ACDL, April 2005
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Current Work

H B Massachusetts
I Institute of
Technology

Limit Analysis

Continuous Formulation

ACDL, April 2005
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Limit Analysis

Current Work
Continuous Formulation
A* = sup \
a(a,u):/Qa:é(u)da: 2o € B
s-t. { a(o,u) = AF(u),YueyY

F(u)z/ﬁfudw—l—/amvguds

sup inf a(o,u)
oceB uel
C={u€eY|F(u) =1}

inf
sefsepalosy)

B = {0 € X|f(s) < ov} = inf D(u).
ueC

— . ower Bound
=(u) {I‘{,g({ if f(o) =oy igga(a w) =

inf a(o™,u) — Upper Bound
ueC -

I I I H B Massachusetts =

Institute of ACDL, April 2005 =

=g

68
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Limit Analysis

Current Work

Discrete Formulation

Mesh the domain €2 and choose interpolation spaces X}, for o
and Y3, for u.

A7 max A
. doy € By,
- CL(O'h, llh) = )\F(uh),‘v’uh €Y,

= max min a(op, up)
oneBp upeCy,

= min max a(op, up)
upeCh opeBy,

= min Dp(up).
Jnig Dn(un)

I I I H B Massachusetts

I Institute of ACDL, Ap”l 2005

Technology
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Limit Analysis

Current Work

Discrete Formulation...

e In general, for a given choice of Xj, X Y3, A} is only an
approximation to A*, but not a bound.

H B Massachusetts

I Institute of ACDL, Ap”l 2005

Technology
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Limit Analysis

Current Work

Discrete Formulation...

e In general, for a given choice of Xj, X Y3, A} is only an
approximation to A*, but not a bound.

e For appropriately-chosen combinations of the interpolation
spaces Xj X Y, then A} is either a lower bound (A;EF < A*)
or an upper bound (A* < A;UB).

U e ACDL, April 2005
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Limit Analysis

Current Work

Discrete Formulation...

e In general, for a given choice of Xj, X Y3, A} is only an
approximation to A*, but not a bound.

e For appropriately-chosen combinations of the interpolation
spaces Xj X Y, then A} is either a lower bound (A;EF < A*)
or an upper bound (A* < A;UB).

e Purely static spaces X;© x Y,'F yield lower bounds. Purely
kinematic spaces X/* x Y,U* yield upper bounds.

U e ACDL, April 2005

Technology
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Limit Analysis

Current Work

...Discrete Formulation...

e Purely static spaces X;© x Y,'P:

— Plane stress/strain - o}, : elementally discontinuous linear
interpolations, uy : constant spaces on the elements and
additional linear interpolations in the inter-element edges.

e Purely kinematic spaces X//* x Y,”%:
— Plane stress - o, : constant spaces on the elements, uy, :
continuous piecewise linear interpolations.

— Plane strain - o}, : constant spaces on the elements and
additional linear tractions in the inter-element edges; uy, :
elementally discontinuous linear spaces.

I I I H B Massachusetts

I Institute of ACDL, Ap”l 2005

Technology
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Limit Analysis

Current Work

Conic Programming...

e Primal (P) and Dual (D) canonical forms of Conic Programs:
(P) min {c'z | Az =b, z € K},

(D) max {b'y| ATy +s=r¢c, s € K.}
where IC C IR" is a closed, convex cone with a nonempty
interior and IC,, = {s € R" | sTz > 0, V& € K} is its dual.

e Canonical Self-Dual Cones IC = K. Positive orthant (LP)- IR} ;
Lorentz cone (SOCP): L™ = {:z: eR"|x, > \/Z?:z CL’?};
Positive semidefinite cone (SDP): = §7

e Mixed Conic Program:
KK=IR" X L™ X ...x L™ X §" X
Nir r‘h”.g; ACDL, April 2005
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Current Work

mEm Massachuse
Itttof
Technology

Limit Analysis

Conic Programming...

ACDL, April 2005
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Limit Analysis

Current Work

...Conic Programming...

Example: Lower Bound Problem as a SOCP

)\*LB = max \

( éeql : Equ ; 2 o 0
st d A BT 0 [ A f=1 0
ASOC : 0 : I(s ngC Q;OC
g, free, A>0, zi° € K

3XE
where IC =L" x -+ X L™, § = 1 refers to plane stress (n = 5)

and § = 2, to plane strain (n = 3).

73

U e ACDL, April 2005
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Limit Analysis

Current Work

...Conic Programming

Solution of the Bound Problems

e Both the upper and the lower bound problems are SOCPs.
e This is important mainly for two reasons:

1. State of the art primal-dual interior point methods (IPMs),
particularly developed for SOCP, can be used. They
guarantee global convergence and efficiency in the solution
process.

2. The bound problems can be solved using any generic conic
programming optimization package.

In tt t f ACDL, Apl’ll 2005

Technology
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Limit Analysis

Current Work

Certificates...

e Claim: )\,";LB < A < )\,’;UB
e Certificate:

— Information about the computational mesh 7,

— (A\iEB, o+P) = check that equilibrium and
membership to the yield condition hold point by
point.

- (AVE, ul’P) — check that u}'* is a kinematically
admissible velocity field and that AUE = D(up'?).

75
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Limit Analysis

Current Work N
...Mesh Adaptivity

e ODbjective: refine the mesh 7, efficiently, by only dividing the
elements that contribute more to the numerical error. Here, the
error is measured by the bound gap, A, = AJV5 — \3LE

e The elemental bound gap, A¢, gives the contribution of each
element, e, in the mesh to the total bound gap:

85 = [ vty — ([ (V- oip) uipav+ [ w05, g, ds),

NG 7 (g 7

~~

De(uUB) Fe(ueUB)

e Properties of Ap: 1) Ap > 0, Ve € T, 2) ) _.c1. AF = Ap.
e Adaptive strategy: refine only the elements with higher A .

76
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